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Abstract
In this paper we consider both “OR” and “XOR” based monochrome random

grid visual cryptographic schemes (RGVCS) for t-(k, n)∗ access structure which
is a generalization of the threshold (k, n) access structure in the sense that in all
the successful attempts to recover the secret image, the t essential participants
must always be present, i.e., a group of k or more participants can get back the
secret if these t essential participants are among them. Up to the best of our
knowledge, the current proposed work is the first in the literature of RGVCS which
provides efficient direct constructions for the t-(k, n)∗-RGVCS for both “OR” and
“XOR” model. Finding the closed form of light contrast is a challenging work.
However, in this paper we come up with the closed forms of the light contrasts
for the “OR” as well as for the “XOR” model. As our proposed schemes are the
first proposed schemes for t-(k, n)∗-RGVCS, it is not possible for us to compare
our schemes directly with the existing schemes. However, we have constructed
t-(k, n)∗-RGVCS, as a particular case, from the random grid based schemes for
general access structures. Theoretical as well as simulation based data show that
our proposed schemes work much efficiently than all these customized schemes.

Keywords: Random Grid, essential participants, light contrast, monotone and non-
monotone access structures.

1 Introduction

Visual cryptography is a cryptographic technique which allows visual information to be
encrypted in such a way that decryption becomes the job of the person to decrypt via
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sight reading. Visual cryptography does not really require much sophisticated techniques
that are normally used in other branches of cryptology like public key cryptosystem or
symmetric key cryptosystem or even in other branches of secret sharing. Moreover, here
the decryption process completely stands upon the human visual system. That is why
visual cryptography attracts attention of many researchers. It was first introduced by
Naor and Shamir in Eurocrypt’94[23]. They proposed a (k, n)-threshold scheme to dis-
tribute a secret image S among n participants in such a way that if any k (or more) of
them superimpose their individual shares they get back S with a loss of contrast, while
less than k participants have no information about S. A visual cryptographic scheme
(VCS) with one essential participant was first introduced by Arungam et. al. [22] as an
extension of threshold (k, n)-VCS. Their work was further generalized by Sabyasachi et.
al. [15] to an access structure known as a t-(k, n)∗-VCS where t(≤ k) is the number of
essential participants who must always be present in all the successful attempts to recover
the secret image. A group of k or more participants can get back the secret if those t
essential participants are among them.

The works on visual cryptography, at the very initial stage, came with huge pixel
expansion and very small contrast. That is why researchers started to think to apply
different techniques to reduce the pixel expansion or to increase relative contrast. Proba-
bilistic VCS was proposed to reduce the pixel expansion of a visual cryptography scheme.
Ito et. al.[24] described a size invariant VSS scheme that encodes a white pixel (respec-
tively black) by a column selected from a white (respectively black) basis matrix with
equal probabilities. It was then Yang[35] who proposed a bunch of schemes to implement
non expandable probabilistic VCS. But in all these the problem of selecting suitable basis
matrices remained as it was. A detailed work on classical as well as probabilistic VCS
may be found in [1], [2],[3],[4], [5], [6], [7], [8], [9], [10], [11], [14], [16], [17], [18], [19], [20],
[26], [33].

Random Grid Visual Cryptography (RGVCS) is one of the solutions to all these
problems. The main difference between RGVCS and conventional VCS is that RGVCS
has no extra pixel expansion and does not really require to choose basis matrices. In
RGVCS we treat each pixel of share as a random grid and assign color to it according
to the corresponding secret pixel. For the already proposed schemes in the literature of
RGVCS one can refer to [12],[13] [21], [25],[27], [28], [30], [31], [32].

This paper deals with efficient direct constructions of algorithms for both “OR” and
“XOR” based t-(k, n)∗ schemes for RGVCS. Our theoretical as well as experimental simu-
lated results show that our algorithms work much efficiently than the existing customized
algorims proposed in [34] and [29] which are obtained as a particular case of general access
structures.

The organization of the remaining part of the paper is as follows. In Section 2 we shall
discuss some basic concepts of RGVCS and classical VCS that will be useful throughout
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the paper. Section 3 deals with our proposed efficient “OR” based scheme and related
theoretical discussions and justifications with example to illustrate the theory behind the
scheme. Section 4 deals with the theoretical justifications behind our proposed “XOR”
based scheme. In Section 5, we will show by comparison and by various examples why our
schemes are significant in the study of RGVCS. Finally, the paper ends with conclusion
and discussions on future direction of research.

2 Preliminaries

In this section we will define some important terms related to VCS and RGVCS that will
be required in our subsequent sections. Consider a secret pixel S to be shared among a
set of n participants, say P = {P1, P2, ..., Pn}. Let ΓQual be the collection of all subsets
of P who can get the secret S back by superimposing their shares. Further let ΓForb be
the collection of all those subsets of P who are unable to get the secret S back. We call
each element of ΓQual as qualified set while each element of ΓForb is called a forbidden
set. The ordered pair (ΓQual,ΓForb) is called an access structure for P corresponding to
S. Given B ⊆ 2P , B is said to be monotone increasing if for all B ∈B and C ⊆ P with
B ∩ C = ∅ we have B ∪ C ∈ B. Similarly B is said to be monotone decreasing if for
all B ∈ B and C ⊆ B we have B \ C ∈ B. In case where ΓQual is monotone increasing,
ΓForb is monotone decreasing and ΓQual ∪ ΓForb = 2P, we say that the access structure
is strong. Now we note that, for a strong access structure, a subset of a forbidden set is
always forbidden and a super set of qualified set is always qualified. A participant a ∈ P

is said to be essential if there exists X ⊆ P such that X ∪ {a} ∈ ΓQual but X /∈ ΓQual.
Given a strong access structure we define Minimal Qualified set (Γ0) and Maximal
forbidden set (ZM) as follows:

Γ0 = {A ∈ ΓQual|A′ /∈ ΓQual,∀A′ ⊂ A},
ZM = {B ∈ ΓForb|B ∪ {i} ∈ ΓQual,∀i ∈ P \B}.

For a (k, n) threshold access structure, ΓQual = {Q ⊆ P : |Q| ≥ k} and ΓForb = {F ⊆
P : |F | < k}, where 2 ≤ k ≤ n. By a t-(k, n)∗ access structure, we mean that it is a
(k, n) scheme where t of the n participants are essential. In a t-(k, n)∗ monotone access
structure, a maximal forbidden set can be of the following two types. Type I: Sets of size
k − 1 sets containing all the essential participants. Type II: Sets of size n− 1 containing
all but one of the t essential participants. Mathematically:

ZM =

{
{i1, i2, . . . , ik−1}|ij = Pj for 1 ≤ j ≤ t; ij ∈ {Pt+1, Pt+2, . . . , Pn} for

t+ 1 ≤ j ≤ k − 1

}
∪
{
{P1, P2, . . . , Pn} \ {Pj}|j ∈ {1, 2, . . . , t}

}
.
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On the other hand if we assume that the t essential participants are the first t par-
ticipants from the set P = {1, 2, . . . , n}, then the minimal qualified sets for the t-(k, n)∗

access structure are described by the set of k participants where these t essential partic-
ipants are always there. Thus the collection of all minimal qualified sets for the t-(k, n)∗

monotone access structure is described as

Γ0 =

{
{i1, i2, ..., ik} : ij = Pj for 1 ≤ j ≤ t; ij ∈ {Pt+1, Pt+2, ..., Pn} for t+1 ≤ j ≤ k

}
.

Now we are going to define the concept of grid based VCS. As in [30], we consider
a binary transparency Y in which each pixel y is either transparent (0) or opaque (1).
Suppose that the value of each pixel y is determined by a biased coin-flip procedure with
parameter λ such that the probability of y = 0 is λ. We refer to y as a random pixel with
Pr(y = 0) = λ. Due to the fact that y = 0 lets through light, while y = 1 stops it, we
define the light transmission of y, denoted by t(y), to be Pr(y = 0). Formally, the light
transmission of a random pixel is defined as follows.

Definition 2.1. [30] A random pixel y is said to have a light transmission t(y) = λ if
Pr(y = 0) = λ, where λ is a constant such that 0 < λ < 1.

Once t(y) = λ for each pixel y ∈ Y , we call Y a random grid, defined as follows.

Definition 2.2. [30] A random grid Y is said to have a light transmission of T(Y ) = λ
if t(y) = λ for each pixel y ∈ Y .

Property 1. [30] If X is a random grid with T(X) = λ, then X ⊗X is also a random
grid with T(X ⊗X) = T(X) = λ, where ⊗ denotes Boolean “OR” operation.

Property 2. [30] If X and Y are two independent random grids with T(X) = λ1 and
T(Y ) = λ2, then T(X ⊗ Y ) = λ1λ2.

Notation: As in [27], let S(0) (S(1)) denote the area of all of the transparent (opaque)
pixels in the secret image S, i,e., ijth pixel S[i, j] of the secret S is in S(0) (S(1))
if and only if S[i, j] = 0 (S[i, j] = 1) where S = S(0) ∪ S(1) and S(0) ∩ S(1) = ∅.
Likewise, we denote the area of pixels in random grid R corresponding to S(0)(S(1)) by
R[S(0)] (R[S(1)]), i.e., ijth pixel R[i, j] of the random grid R is in R[S(0)] (R[S(1)])
if and only if R[i, j]’s corresponding pixel S[i, j] is in S(0)(S(1)). Needless to mention,
R = R[S(0)] ∪R[S(1)] and R[S(0)] ∩R[S(1)] = ∅.

Definition 2.3. Given an N ×M binary secret image S and valid parameters t, k and n
for t-(k, n)∗ strong access structure on the set of n participants, the set of random grids
R = {R1, R2, . . . , Rn} forms an “OR” based t-(k, n)∗-RGVCS for the secret image S if
the following conditions are satisfied.

1. T(Rj) = 1
2

for all 1 ≤ j ≤ n.
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2. Let F denote the collection of all maximal forbidden sets for the t-(k, n)∗ access
structure. Then for each F = {Pi1 , Pi2 , . . . , Pip} ∈ F, T(RF [S(0)]) = T(RF [S(1)]),
where RF = Ri1⊗Ri2⊗· · ·⊗Rip, i.e., t(RF [i, j] | S[i, j] = 0) = t(RF [i, j] | S[i, j] =
1), ∀ i, j.

3. Let Q ∈ Γ0, where Γ0 denotes the collection of all minimal qualified sets. Then
T(RQ[S(0)]) > T(RQ[S(1)]) where RQ = R1 ⊗ R2 ⊗ · · · ⊗ Rq, i.e., t(RQ[i, j] |
S[i, j] = 0) > t(RQ[i, j] | S[i, j] = 1), ∀ i, j.

Definition 2.4. For a given t-(k, n)∗-RGVCS, the light contrast for a given set H ⊆ P,
denoted as αH

OR, is defined as

αH
OR = T(RH [S(0)])−T(RH [S(1)]).

3 Proposed “OR” Based Scheme

In this section we propose an efficient method for constructing a t-(k, n)∗-RGVCS for
strong access structure.

3.1 Construction

In the proposed scheme, based on a secret N ×M binary image S, the trusted Dealer
first constructs the shares depending on the given strong t-(k, n)∗ access structure and
then distributes these constructed shares among the participants. For that the dealer
first selects the essential participants and marks them as P1, P2, . . . , Pt. The rest of the
participants are marked as Pt+1, Pt+2, . . . , Pn−1, Pn. Let S[i, j] denote the ijth pixel of
the secret image S. Let us explain our proposed method for one secret pixel S[i, j] from
the secret image S. For the construction of shares, for each secret pixel S[i, j], the dealer
selects k − 1 − t participants randomly from Pt+1, Pt+2,. . ., Pn−1. These participants
together with the essential ones form a set A of size k− 1. Then the dealer assigns them
random grids 0 or 1. Now by applying the function f , defined below, the dealer generates
a new share and assigns it to all of the remaining participants. The function f is defined
as follows:

f(s, x) = s⊕ x, (1)

where ⊕ denotes binary “XOR” operation, s, x ∈ {0, 1}.
Detailed description of the share generation algorithm by the dealer is described in

Algorithm 1.
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Algorithm 1: An efficient algorithm for constructing a t-(k, n)∗-RGVCS

Input: A binary secret image S of size N ×M , and a strong access structure
t-(k, n)∗ for valid parameters t, k, n.

Output: n shares R1, R2, . . ., Rn each of size N ×M .
1 Select the t essential participants from the set P of n participants and denote them

as P1, P2, . . . , Pt. Denote the rest of the participants as Pt+1, Pt+2, . . . , Pn−1, Pn.
2 for (i = 1; i ≤ N ; i+ +) do
3 for (j = 1; j ≤M ; j + +) do
4 Generate (k − 1) random grids r1[i, j], r2[i, j], . . . , rk−1[i, j]
5 Randomly select k − t− 1 participants, say Pl1 , Pl2 , . . . , Plk−t−1

from
{Pt+1, Pt+2, . . . , Pn−1}. Let A = {P1, P2, . . . , Pt, Pl1 , Pl2 , . . . , Plk−t−1

}

6

Construct a1[i, j], a2[i, j], . . . , ak[i, j] as
a1[i, j] = r1[i, j]
ap[i, j] = f(rp[i, j], ap−1[i, j]) ∀p = 2, 3, . . . , k − 1
ak[i, j] = f(S[i, j], ak−1[i, j])

7 for (q = 1; q ≤ t; q + +) do
8 Rq[i, j]← rq[i, j]
9 end

10 for (q = 1; q ≤ k − t− 1; q + +) do
11 Rlq [i, j]← rt+q[i, j]
12 end
13 Rs[i, j]← ak[i, j], for all s ∈ {1, 2, . . . , n} \ {1, 2, . . . , t, l1, l2, . . . , lk−t−1}.
14 end

15 end
16 Participant Pi is given the share Ri, i = 1, 2, . . . , n.
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3.2 Discussion on Light Transmission

In this section we are going to prove the correctness of the Algorithm 1 by showing that
the collection of the random grids as an output of the Algorithm 1 satisfies the conditions
of Definition 2.3. Before that let us fix one notation.
Notation: In Algorithm 1, we have seen that for each secret pixel S[i, j], a set A is
generated. Let A denote the collection of all possible A’s.

Let us now proceed by proving the following three Lemmas for a given strong access
structure.

Lemma 1. The light transmission T(Ri) =
1

2
for 1 ≤ i ≤ n.

Proof. A single share Ri is either a random grid or it is generated by using the function
f as defined in Equation (1). The rest of the proof follows from [?].

As the given access structure is a strong access structure, it is sufficient to discuss the
light transmission only for the maximal forbidden sets and for the minimal qualified sets.

Lemma 2. For a given t-(k, n)∗-RGVCS, let {Rl1 , Rl2 , . . . , Rlm} denote the set of shares,
obtained in Algorithm 1, corresponding to a maximal forbidden set of participants F =
{Pl1 , Pl2 , . . . , Plm}. Then

T(RF [S(0)]) = T(RF [S(1)]),

where RF = Rl1 ⊗Rl2 ⊗ · · · ⊗Rlm and ⊗ denotes binary “OR” operation.

Proof. Recall that a maximal forbidden set can be of the following two types. Type I:
Sets of size k − 1 containing all the t essential participants. Type II: Sets of size n − 1
containing all but one of the t essential participants.

For Type I sets, while calculating the light transmission, they behave like a set of size
≤ k − 1 of a (k, k)-scheme. For different choices of A ∈ A, the light transmission would
be different. Let us start with a forbidden set F of Type I. Now we will try to explicitly
write down how this set F behaves under different choices of A ∈ A. The main thing is
that we have to look at the number of shares in the intersection of A and F . Let for a
particular choice of A, | F ∩ A | = h. Light transmission for these sets is given by:

t(RF [i, j]|S[i, j] = 0) =
1

2h+1
= t(RF [i, j]|S[i, j] = 1).

If Pn ∈ F then h can run from t to k− 2. In that case we can choose A ∈ A in
(
k−2−t
h−t

)
×(

n−k+1
k−1−h

)
many ways such that the cardinality of the intersection can be h. But if Pn /∈ F

the number of choices of A, where this happens, becomes
(
k−1−t
h−t

)
×
(

n−k
k−1−h

)
. In this case,

| F ∩A | not only runs over t to k−2 but also can be k−1 and the latter case is a unique
case.
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So we get the the total light transmission of F as:

t(RF [i, j]|S[i, j] = 0)

= t(RF [i, j]|S[i, j] = 0)

= 1n− 1− t
k − 1− t




k−2∑
h=t

k − 2− t
h− t

×

n− k + 1
k − 1− h


2h+1

, if Pn∈F

= 1n− 1− t
k − 1− t




1

2k−1 +
k−2∑
h=t

k − 1− t
h− t

×

 n− k
k − 1− h


2h+1

, if Pn 6∈F.

Again for Type II sets, for all choices of A, they behave like sets of size k − 1 of a
(k, k)-scheme. So for these F ’s light transmission would be

t(RF [i, j]|S[i, j] = 0) =
1

2k−1 = t(RF [i, j]|S[i, j] = 1).

This proves the security of our proposed scheme.

Lemma 3. For a given t-(k, n)∗-RGVCS, let {Rl1 , Rl2 , . . . , Rlq} denote the set of shares,
obtained in Algorithm 1, corresponding to a minimal qualified set of participants Q =
{Pl1 , Pl2 , . . . , Plq}. Then

T(RQ[S(0)]) > T(RQ[S(1)]).

Proof. The minimal qualified sets in the scheme are those having k participants of which
t are essential. Mathematically

Γ0 =

{
{i1, i2, ..., ik}|ij = Pj for 1 ≤ j ≤ t; ij ∈ {Pt+1, Pt+2, ..., Pn} for t+ 1 ≤ j ≤ k

}
.

Let us start with such a minimal qualified set Q. Again as in Lemma 2, to find the light
transmission of Q, we have to look for | Q ∩ A |. Now | Q ∩ A | can run over t to k − 1.
If Pn ∈ Q then we have

(
k−1−t
h−t

)
×
(

n−k
k−1−h

)
choices of A where | Q ∩ A |= h, h < k − 1

and it becomes k− 1 uniquely. But if Pn /∈ Q then we have
(
k−t
h−t

)
×
(
n−1−k
k−1−h

)
choices of A

where | Q ∩ A |= h, h < k − 1 and for
(

k−t
k−1−t

)
, i.e. k − t choices it becomes k − 1. So as
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a whole light transmission of stacked share for Q is:

t(RQ[i, j]|S[i, j] = 0)

= 1n− 1− t
k − 1− t




1

2k−1+
k−2∑
h=t

k − 1− t
h− t

×

 n− k
k − 1− h


2h+1

, if Pn∈Q

= 1n− 1− t
k − 1− t




k − t
2k−1 +

k−2∑
h=t

k − t
h− t

×

n− 1− k
k − 1− h


2h+1

, if Pn 6∈Q.

And

t(RQ[i, j]|S[i, j] = 1)

= 1n− 1− t
k − 1− t




k−2∑
h=t

k − 1− t
h− t

×

 n− k
k − 1− h


2h+1

, if Pn∈Q

= 1n− 1− t
k − 1− t




k−2∑
h=t

k − t
h− t

×

n− 1− k
k − 1− h


2h+1

, if Pn 6∈Q.

So light contrast for Q is :

αQ
OR =


1(

n−1−t
k−1−t

) · 1

2k−1 , Pn ∈ Q,

1(
n−1−t
k−1−t

) · k − t
2k−1 , Pn /∈ Q.

The contrast being a strictly positive quantity we can easily say that the scheme obeys
the contrast conditions of RGVCS.
Thus we can now state the following theorem:

Theorem 3.1. For a given secret binary image S and a given strong t-(k, n)∗ threshold
access structure with valid parameters t, k and n, the proposed scheme as described in
Algorithm 1 is a t-(k, n)∗-RGVCS with light contrast for a minimal qualified set:

αQ
OR =


1(

n−1−t
k−1−t

) · 1

2k−1 , if Pn ∈ Q,

1(
n−1−t
k−1−t

) · k − t
2k−1 , if Pn /∈ Q.
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Proof. The proof of the theorem is very much clear from Lemma 1, Lemma 2 and Lemma
3.

Remark 1. In general we can do the same thing for any qualified set of participants.
The light transmission for any qualified set Q of size q will be :

t(RQ[i, j]|S[i, j] = 0)

= 1n− 1− t
k − 1− t





q − 1− t
k − 1− t


2k−1 +

k−2∑
h=t

q − 1− t
h− t

×

 n− q
k − 1− h


2h+1

,

if Pn∈Q

= 1n− 1− t
k − 1− t





 q − t
k − 1− t


2k−1 +

k−2∑
h=t

q − t
h− t

×

n− 1− q
k − 1− h


2h+1

,

if Pn 6∈Q.

and

t(RQ[i, j]|S[i, j] = 1)

= 1n− 1− t
k − 1− t




k−2∑
h=t

q − 1− t
h− t

×

 n− q
k − 1− h


2h+1

, if Pn∈Q

= 1n− 1− t
k − 1− t




k−2∑
h=t

q − t
h− t

×

n− 1− q
k − 1− h


2h+1

, if Pn 6∈Q.

So light contrast for Q is :

αQ
OR =



1

(n−1−t
k−1−t)

·

q − 1− t
k − 1− t


2k−1 , if Pn ∈ Q,

1(
n−1−t
k−1−t

) ·
(
q − 1− t
k − 1− t

)
2k−1 , if Pn /∈ Q.

Example 3.1. Let us now illustrate the whole theoretical computation through an example
of t-(k, n)∗-RGVCS with the parameters as t = 2, k = 4 and n = 6.
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As we have discussed in the proofs of Lemma 1, Lemma 2 and Lemma 3, the light
contrast of the set of participants (say H) mainly depends on |H ∩A|, where A ∈ A. So,
to start with, let us first identify A for this specific case. In the current example,

A = {{P1, P2, P3}, {P1, P2, P4}, {P1, P2, P5}}.

We further identify the maximal forbidden set ZM and the minimal qualified set Γ0 re-
spectively as:

ZM = {{P1, P2, P3}, {P1, P2, P4}, {P1, P2, P5}, {P1, P2, P6},

{P2, P3, P4, P5, P6}, {P1, P3, P4, P5, P6}},

Γ0 = {{P1, P2, P3, P4}, {P1, P2, P3, P5}, {P1, P2, P3, P6},
{P1, P2, P4, P5}, {P1, P2, P4, P6}, {P1, P2, P5, P6}}.

Clearly, for H ∈ ZM ∪ Γ0, |H ∩ A| can be 2 or 3. Note that, the light transmission of
the stacked shares corresponding to the set of participants H depends on whether P6 is an
element of the set or not. Keeping this in mind we have categorized all the set of partici-
pants as “In” and “Out”, where “In” means P6 ∈ H and “Out” means P6 6∈ H. Clearly,
the elements {P1, P2, P3}, {P1, P2, P4}, {P1, P2, P5} of A of type I maximal forbidden sets
have same behaviour under different choices of A whereas {P1, P2, P6} acts differently.
On the other hand, the two type II maximal forbidden sets for this access structure be-
ing in “Out” category have same behaviour. Again, the elements of maximal qualified
sets {P1, P2, P3, P4}, {P1, P2, P3, P5} and {P1, P2, P4, P5} are all in “Out” category and
{P1, P2, P3, P6}, {P1, P2, P4, P6}, {P1, P2, P5, P6} are all in “In” category. So, discussion
on light transmission for {P1, P2, P3}, {P1, P2, P6}, {P2, P3, P4, P5, P6}, {P1, P2, P3, P4}
and {P1, P2, P3, P6} will be sufficient.

Let H = {P1, P2, P3}. Then |H ∩ A| is 2 for
(
4−1−2
2−2

)
×
(

6−4
4−1−2

)
, i.e., 2 choices of A

and it is 3 for a unique case. Now, if H = {P1, P2, P6}, then |H ∩ A| is 2 for
(
4−2−2
2−2

)
×
(
6−4+1
4−1−2

)
, i.e., for all the choices of A. Again, if H = {P2, P4, P5, P6}, then |H ∩ A| is

always 2. Now, for the qualified ones first let H = {P1, P2, P3, P4}, then |H ∩ A| is 2 for(
4−2
2−2

)
×
(
6−1−4
4−1−2

)
, i.e., for only 1 choice of A and it is 3 for 4 − 2, i.e., 2 choices of A.

Lastly, take H = {P1, P2, P3, P6}, then |H ∩A| is 2 for
(
4−1−2
2−2

)
×
(

6−4
4−1−2

)
, i.e., 2 choices

of A and it is 3 for a unique choice of A.
In Table 1, we have verified the corresponding light contrasts of H using these data.

Remark 2. If we have a deeper look at the algorithm as described in Algorithm 1, we
see that when constructing the k− 1 set A ∈ A, we have never selected Pn as an element
of A. But if we include it in our choice then also we will get a scheme for t-(k, n)∗-
RGVCS. The light contrast for that scheme can also be calculated exactly in the same
manner as we have done in Theorem 3.1. Notice that in our Algorithm 1, Pn is treated

11



Set of Participants: H n2(A) n3(A) T(RH [S(0)]) T(RH [S(1)]) αH
OR

{P1, P2, P3} 2 1 0.250 0.250 0.000
{P1, P2, P6} 3 0 0.250 0.250 0.000
{P2, P3, P4, P5, P6} 3 0 0.250 0.250 0.000
{P1, P2, P3, P4} 1 2 0.167 0.083 0.083
{P1, P2, P3, P6} 2 1 0.208 0.167 0.042

Table 1: Verification table of light contrast for the access structure 2-(4, 6)∗-RGVCS,
where n2(A) and n3(A) denote the number of choices of A for which |H ∩ A| is 2 and 3
respectively.

same as the other non essential participants. So, for the current case, when calculating
the light transmission of some set, two cases as occurred earlier, will not arise. So light
transmission for all the sets of a fixed length will be the same. As a result, instead of(
n−1−t
k−1−t

)
, we will have

(
n−t

k−1−t

)
choices for selecting the k − 1 set. So in a nutshell we can

have the following theorem.

Theorem 3.2. Given a secret binary image S and n participants, of which t are essential,
sharing the secret binary image S with a threshold value k, the above procedure, described
in Remark 2, produces a t-(k, n)∗-RGVCS with light contrast ᾱQ

OR for a minimal qualified
set Q ⊆ P and is given by

ᾱQ
OR =

1(
n−t

k−1−t

) · 1

2k−1 .

Note: It is clear from the closed forms of ᾱQ
OR and αQ

OR (even in “In” case) that, αQ
OR

gives higher value than ᾱQ
OR and they become same when t = k − 1.

3.3 Comparison with the Schemes Proposed by Wu and Sun
[34] and Shyu [29]

Up to the best of our knowledge, our proposed scheme is the first proposed scheme for
t-(k, n)∗-RGVCS. As a result, it is not possible for us to compare our scheme with the
existing schemes. However, we can construct t-(k, n)∗-RGVCS, as particular cases, from
the random grid based schemes for general access structures. In this section we are
going to compare our proposed Algorithm 1 with the customized schemes, obtained as a
particular case from general access structures proposed in [34] and [29] which are, upto
the best of our knowledge, the most efficient schemes for general access structures that
exist in the literature.

If we apply the scheme proposed in [34] on the access structure for t-(k, n)∗ we have
the following theorem:

12



Theorem 3.3. (customized from [34]) For a given secret binary image S and valid pa-
rameters t, k and n for a t-(k, n)∗ access structure, the scheme described in [34] produces
a t-(k, n)∗-RGVCS with light contrast:

αw =
1(

n−t
k−t

) · 1

2k−1 .

If we apply the scheme proposed by Shyu [29] on the access structure for t-(k, n)∗ we
have the following theorem:

Theorem 3.4. (customized from [29]) For a given secret binary image S and valid pa-
rameters t, k and n for a t-(k, n)∗ access structure, the scheme described in [29] produces
a t-(k, n)∗-RGVCS with light contrast:

αs = 1
2K

, where K = 1 +
k−1∑
h=t

(
k − t
h− t

)(
n− k
k − h

)
h.

Remark 3. It is not difficult to check that the light contrast for our scheme is better
than that of the schemes proposed in [34] and [29]. Numerical evidences from Table 2
show that our scheme performs much better than the existing schemes in terms of light
contrast.

4 Non Monotone Access Structure: “XOR” Based

Scheme

Our construction of t-(k, n)∗-RGVCS uses binary “OR” operation at secret reconstruction
phase. In literature we have visual cryptographic schemes where the secret reconstruction
is done by binary “XOR” operation instead of “OR” operation. Keeping that in mind
we will now apply the “XOR” operation to our construction with an intuition that it will
result to a non-monotone access structure for t-(k, n)∗-XOR-based Random Grid VCS,
we call it as t-(k, n)∗-XRVCS. The reason of saying the specific kind of access structure as
non-monotone is that there is no guarantee for a super set of a minimal qualified set to be
a qualified set again. The definitions for t-(k, n)∗-XRGVCS and the corresponding light
contrast are similar to that of the Definition 2.3 and Definition 2.4, except for the fact that
instead of applying “OR” operation we shall use “XOR” operation for superimposition
of shares. We denote the light contrast corresponding to a set of participants H ⊆ P for
a t-(k, n)∗-XRGVCS by αH

XOR.

Remark 4. From the construction of our scheme it is clear that we are doing nothing
but repeated application of (k, k) scheme. So, to start with, we put t = 0, k = n in
our construction as described in Algorithm 1 and apply “XOR” operation in the secret
reconstruction phase to get the following theorem.
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Theorem 4.1. If we put t = 0, k = n in our construction as described in Algorithm 1
and replace the binary “OR” operation by “XOR” operation in the reconstruction phase,
we obtain a (k, k)-XRGVCS with perfect light contrast 1.

Proof. Firstly, for single shares Ri, 1 ≤ i ≤ n, as we have discussed previously, T(Ri) =
1

2
,∀1 ≤ i ≤ n.

In this specific access structure the maximal forbidden sets are the sets of participants
with cardinality (k − 1). When participants of such a set try to get back the secret by
“XOR”ing their corresponding shares, the following two cases arise:

Case I: It may happen that all the (k − 1) pixels corresponding to chosen secret pixel
are assigned with random grids. Then

t(RF [i, j] | S[i, j] = 0)

= Pr(RF [i, j] = 0 | S[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−1[i, j] = 0 | S[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−1[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−1[i, j] = 0 | S[i, j] = 1)

= Pr(RF [i, j] = 0 | S[i, j] = 1)

= t(RF [i, j] | S[i, j] = 1).

Case II: It may also happen that one of the pixels, say rk[i, j] is assigned with the grid
generated by f function as described in Equation 1. Then

t(RF [i, j] | S[i, j] = 0)

= Pr(RF [i, j] = 0 | S[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−2[i, j]
⊕ ak[i, j] = 0 | S[i, j] = 0)

= Pr(S[i, j]⊕ rk−1[i, j] = 0 | S[i, j] = 0)

= Pr(rk−1[i, j] = 0 | S[i, j] = 0)

= Pr(rk−1[i, j] = 1 | S[i, j] = 1)

= Pr(S[i, j]⊕ rk−1[i, j] = 0 | S[i, j] = 1)

= Pr(RF [i, j] = 0 | S[i, j] = 1)

= t(RF [i, j] | S[i, j] = 1).
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Now for the minimal qualified set, that is to say for the set of all k participants:

t(RF [i, j] | S[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−1[i, j]⊕ ak[i, j] = 0 | S[i, j] = 0)

= Pr(S[i, j] = 0 | S[i, j] = 0)

= 1

and

t(RF [i, j] | S[i, j] = 1) = Pr(S[i, j] = 0 | S[i, j] = 1)

= 0.

Hence we have the theorem.

The following theorem shows what will happen if we apply the same above technique
to Algorithm 3 of [30]. We put (S) in the expression αQ

XOR(S) to emphasize that the
method is originated from the scheme proposed by Shyu in [30].

Theorem 4.2. If we replace the “OR” operation by “XOR” operation in the reconstruc-
tion phase of Algorithm 3 of [30], then the modified scheme leads to a non-monotone
(k, n)-XRGVCS with light contrast αQ

XOR(S) for the minimal qualified set Q, which is
given by

αQ
XOR(S) =

1(
n
k

) .
Proof. Firstly, for single shares Ri, 1 ≤ i ≤ n, as we have discussed previously, T(Ri) =
1

2
,∀1 ≤ i ≤ n.

If we look back at the construction of Algorithm 3 of [30] we note that the participants
get q1, q2, . . . , qk, g1, g2, . . . , gn−k as shares, where q1, q2, . . . , qk form shares for a (k, k)
scheme.

From Theorem 4.1, it is clear that only when q1, q2, . . . , qk are stacked together, their
will be difference in light transmission for areas corresponding to black pixels with that of
the areas corresponding to white pixels of the secret. So, for F ∈ ZM , |F | = k− 1 implies
at least one of q1, q2, . . . , qk is not assigned to any element of F as share. Clearly, F will
have equal light transmission corresponding to the areas of all white as well as black pixels
of the secret. If Q ∈ Γ0, i.e., |Q| = k, then only in the unique case, where elements of Q are
assigned with q1, q2, . . . , qk, t(RQ[i, j] | S[i, j] = 0) = 1 and t(RQ[i, j] | S[i, j] = 1) = 0.
But we have

(
n
k

)
many choices to select those k participants out of those n participants.

So we have light contrast corresponding to the set Q of participants as

αQ
XOR(S) =

1(
n
k

) .
15



Hence we have the theorem.

Now we shall discuss the corresponding case for general t, k and n as described in
Algorithm 1.

Theorem 4.3. “XOR” operation in the reconstruction phase of Algorithm 1 leads to a
Non-Monotone t-(k, n)∗-XRGVCS with light contrast αQ

XOR, where

αQ
XOR =


1

(n−1−t
k−1−t)

, if Pn ∈ Q
k−t

(n−1−t
k−1−t)

, if Pn 6∈ Q,

where Q is a minimal qualified set.

Proof. The proof follows the same line of arguments as in the proofs of Lemma 1,
Lemma 2 and Lemma 3. The only thing that is different here is the values of light
transmission of a set of participants under different choices of A. For single share, the
value of light transmission is independent of black and white secret pixel. Now let for
F ∈ ZM , |F ∩A| = h. So, h runs from t to k − 1. As discussed in Theorem 4.2, here
also, F will have same light transmission for all the areas corresponding to white and
black pixels of the secret S. Again, for Q ∈ Γ0 when |Q ∩ A| = k − 1 then elements of
Q are assigned with r1, r2, . . . , rk−1, ak. So, only for those choices of A ∈ A, Q will have
different values of light transmission for area corresponding to black region of secret with
that corresponding to white region. From Lemma 3, it is clear that light contrast for the
stacked share corresponding to Q will be:

αQ
XOR =


1(

n−1−t
k−1−t

) , if Pn ∈ Q

k − t(
n−1−t
k−1−t

) , if Pn 6∈ Q.

Hence the theorem.

Corollary 1. A non monotone t-(k, n)∗-XRGVCS gives optimal light contrast 1 if k =
t+ 1 or n = k + 1.

Proof. The result follows by putting the value of n as k+1 or k as t+1 in the expression
of αQ

XOR in Theorem 4.3.

Remark 5. The Theorem 4.3 shows that for a (k, n)-XRGVCS, our scheme works better
than the scheme as described in Theorem 4.2.

The next theorem shows that our “XOR” based t-(k, n)∗-XRGVCS works much better
than our “OR” based t-(k, n)∗-RGVCS.
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Theorem 4.4. Our proposed t-(k, n)∗-XRGVCS is much more efficient than our proposed
t-(k, n)∗-RGVCS with respect to light contrast.

Proof. For a minimal qualified set Q, the light contrast of t-(k, n)∗-RGVCS constructed
in Algorithm 1 is given by

αQ
OR =


1

(n−1−t
k−1−t)

1

2k−1 , if Pn ∈ Q

k−t
(n−1−t
k−1−t)

1

2k−1 , if Pn 6∈ Q.

So, comparing with αQ
XOR, we have if Pn ∈ Q, then

αQ
XOR =

1(
n−1−t
k−1−t

) > 1(
n−1−t
k−1−t

) 1

2k−1 ,

and if Pn 6∈ Q, then

αQ
XOR =

k − t(
n−1−t
k−1−t

) > k − t(
n−1−t
k−1−t

) 1

2k−1 .

Hence we have the theorem.

5 Experiment and Discussions

In this section we shall validate our theoretical results through experimental simulations.
For that let us first fix few notations. Let R be a set of all n random grids, obtained
through our proposed Algorithm 1, corresponding to a t-(k, n)∗ access structure with valid
parameters t, k and n. Let H ⊆ R be such that 1 ≤ h(=| H |) ≤ n. For experimental
verification, we use a Python code which superimposes all the shares coming from the
participants in H. In Tables 6, 7 and 8, we compare the analytic light contrasts αH

OR and
αH
XOR obtained in Section 3.2 and Section 4 respectively against the experimental values

as done in Experiments 1, 2 and 3. To calculate the experimental values of light contrast,
we use the following notations. Recall that RH [S(0)](RH [S(1)]) denotes the area of pixels
in the stacked share RH corresponding to S(0)(S(1)), where S(0)(S(1)) is the area of all
transparent (opaque) pixels in the secret image S. Then we calculate the experimental
light contrast eαH

OR for “OR” based scheme as

eαH
OR =

η0(R
H [S(0)])

η0(S)
− η0(R

H [S(1)])

η1(S)
,

where η0(X)(η1(X)) denotes the number of transparent (opaque) pixels in X. Similarly,
we calculate the experimental light contrast eαH

XOR, for “XOR” based RGVCS.
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We have also given comparison table of numerical values of light contrast of our scheme
with that of the already proposed general access structures restricted to customized t-
(k, n)∗ scenario. Comparison among different schemes in terms of numerical values of
the light contrast and their corresponding graphical representations are shown in Tables
2, 3 and in Figures 4, 5. In this section the computer programs are coded in Python
Builder, run in a PC with operating system UBUNTU 16.04. The graphs are prepared
with TikZ in LATEX. We have given three experiments. Experiment 1, Experiment 2 and
Experiment 3 have discussion on access structures 1-(2, 4)∗, 1-(3, 5)∗ and 2-(3, 5)∗.

Remark 6. Recently, a new scheme is proposed in [25] . However, as the model does
not match with our model of random grid, we are unable to compare the scheme with our
scheme.

Experiment 1 for RGVCS

In this experiment we have prepared four shares for 1-(2, 4)∗-RGVCS. Here in the super-
imposition stage we have used the binary “OR” operation of the shares. In Fig. 1, (a)
is the secret binary image and (b)-(e) are the four shares: R1, R2, R3, and R4. Note
that R1 is the share of the only essential participant. Here (f), (g), (h), (i), (j) are the
superimposed images corresponding to R2 ⊗ R3, R1 ⊗ R2, R1 ⊗ R4, R1 ⊗ R2 ⊗ R3 and
R1⊗R2⊗R3⊗R4. From the images we can note that the superimposed image of R2⊗R3

does not reveal anything about the secret, as R1, the share for P1, is not present in that
superimposition, which verifies {P2, P3} as a Type 1 maximal forbidden set. At the same
time R1 ⊗ R2 gives back the image with some loss of light contrast as expected from
Lemma 3. Also from (g) and (h) it is clear that R1 ⊗R4 gives the same light contrast as
R1 ⊗R2.

The corresponding values of αH
OR, eα

H
OR are summarized in Table 6. One can easily

notice from the table that αH
OR−eαH

OR is less than 0.004 for each of the cases. So, we realize
that the analytic values of light contrast are pretty close to that of the experimental values.
In Table 6, we further compare the values for αH

XOR and the corresponding experimental
values for eαH

XOR. So in a nutshell we have a verification for our proposed algorithm for
a 1-(2, 4)∗-RGVCS.

Experiment 2 for RGVCS

In this experiment we have prepared five shares for an 1-(3, 5)∗-RGVCS. In Fig.2, (a)
is the secret and (b) to (f) are the five shares: R1, R2, R3, R4, and R5. Note that R1

is the share for the only essential participant P1. Here (g), (h), (i), (j), (k), (l) are the
superimposed images corresponding to R1⊗R2, R1⊗R3⊗R4, R1⊗R2⊗R3, R1⊗R2⊗R5

R1 ⊗ R2 ⊗ R3 ⊗ R4, and R1 ⊗ R2 ⊗ R3 ⊗ R4 ⊗ R5. From the images it is clear that the
superimposed image of R2⊗R3⊗R4 does not reveal anything about the secret, as R1 is not
present in that superimposition. Which gives the verification of {P2, P3, P4}. At the same
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: Implementation results of 1-(2, 4)∗-RGVCS. Here (a) stands for the secret S.
(b) stands for the random grid R1. (c) R2. (d) R3. (e) R4. (f) Stands for the stacked
image R2 ⊗R3. (g) R1 ⊗R2. (h) R1 ⊗R4. (i) R1 ⊗R2 ⊗R3. (j) R1 ⊗R2 ⊗R3 ⊗R4

time R1 ⊗ R2 ⊗ R3 gives back the image with some loss of light contrast as expected.
Also from (i) and (j) it is clear that whenever R5 is included in the superimposition
(R1 ⊗ R2 ⊗ R5 the light contrast is relatively less, which verifies the different values of
light contrast corresponding to two minimal qualified sets, one containing Pn, another
not containing it.

The corresponding values of αH
OR, eα

H
OR and their differences are summarized in Table

7. One can easily notice from the table that αH
OR − eαH

OR is less than 0.004 for each of
the cases. So, we realize that the analytic values of light contrast are pretty close to that
of the the experimental values. In Table 7, we further compare the values for αH

XOR and
the corresponding experimental values for eαH

XOR. So in a nutshell we have a verification
for our proposed algorithm for 1-(3, 5)∗-RGVCS.

Experiment 3 for XRGVCS

In this experiment we have prepared five shares for a 2-(3, 5)∗-XRVCS, where we perform
binary “XOR” operation of the shares coming from participants in the superimposition
stage. In Fig.3, (a) is the secret S and (b) to (f) are five shares: R1, R2, R3, R4,
and R5. Note that R1 and R2 are the shares for the essential participants P1 and P2

respectively, while (g), (h), (i), (j) are the superimposed images corresponding to R1⊕R2,
R1⊕R2⊕R3⊕R4, R1⊕R2⊕R3⊕R4⊕R5, and R1⊕R2⊕R3. From the figure we can note
that the none of the superimposed images except R1⊕R2⊕R3 and R1⊕R2⊕R3⊕R4⊕R5
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Implementation results for 1-(3, 5)∗-RGVCS. Here (a) stands for the secret
S. (b) stands for the random grid R1. (c) R2. (d) R3. (e) R4. (f) R5. (g) Stands for
the stacked image R1 ⊗ R2. (h) R2 ⊗ R3 ⊗ R4. (i) R1 ⊗ R2 ⊗ R3. (j) R1 ⊗ R2 ⊗ R5. (k)
R1 ⊗R2 ⊗R3 ⊗R4. (l) R1 ⊗R2 ⊗R3 ⊗R4 ⊗R5

reveals anything about the secret. The case of R1⊕R2⊕R3 is evident from the Theorem
4.3. For the case of R1 ⊕R2 ⊕R3 ⊕R4 ⊕R5, R4, R5 does not make any difference in the
stack share, because they carry the same pixels.

The corresponding values of the theoretical values αH
XOR and the corresponding ex-

perimental values eαH
XOR and their differences are summarized in Table 8. One can easily

notice from the table that αH
XOR − eαH

XOR is less than 0.004 for each of the cases. This
implies that the analytic values of light contrast are pretty close to that of the the exper-
imental values. In Table 8, we further compare the values for αH

OR and the corresponding
experimental values for eαH

OR. So in a nutshell we have a verification for our proposed
algorithm for 2-(3, 5)∗-XRGVCS.

6 Conclusion

In this paper we propose efficient direct constructions of algorithms for both “OR” and
“XOR” based t-(k, n)∗ schemes for RGVCS and come up with the closed forms of light
contrast. Our theoretical as well as experimental simulated results show that our algo-
rithms work much efficiently than the customized algorithms proposed in [34] and [29]
which are obtained as a particular case of general access structures. Obtaining closed
forms of the optimal light contrast for both “OR” and “XOR” based VCSs for t-(k, n)∗

access structure
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Access Structures
Our

Wu Shyu(Q) Shyu(F)
In Out

A0 : 1-(2, 3)∗ 0.500 0.500 0.250 0.250 0.500
A1 : 1-(2, 4)∗ 0.500 0.500 0.167 0.125 0.500
A2 : 1-(3, 4)∗ 0.125 0.250 0.083 0.016 0.125
A3 : 1-(3, 5)∗ 0.083 0.167 0.042 0.000 ∗1 0.063
A4 : 1-(3, 6)∗ 0.063 0.125 0.025 0.000 ∗2 0.031
A5 : 1-(4, 5)∗ 0.042 0.125 0.025 0.000 ∗3 0.016
A6 : 1-(4, 6)∗ 0.021 0.063 0.013 0.000 ∗4 0.001
A7 : 2-(3, 6)∗ 0.250 0.250 0.063 0.004 0.250
A8 : 2-(4, 5)∗ 0.063 0.125 0.042 0.002 0.063
A9 : 2-(4, 6)∗ 0.042 0.083 0.021 0.000 ∗5 0.031
A10 : 2-(5, 6)∗ 0.021 0.062 0.016 0.000 ∗6 0.008
A11 : 2-(5, 7)∗ 0.010 0.031 0.006 0.000 ∗ 7 0.000 ∗1
A12 : 3-(5, 7)∗ 0.042 0.083 0.010 0.000 ∗8 0.016
A13 : 3-(6, 7)∗ 0.010 0.031 0.008 0.000 ∗9 0.004
A14 : 3-(6, 8)∗ 0.005 0.016 0.003 0.000 ∗10 0.000 ∗1
A15 : 3-(7, 8)∗ 0.004 0.016 0.003 0.000 ∗11 0.000 ∗12

Table 2: Comparison of different “OR” based light contrasts for different access struc-
tures, where ∗1, ∗2, ∗3, ∗4, ∗5, ∗6, ∗7, ∗8, ∗9, ∗10, ∗11, ∗12 correspond to the 3 digit approx-

imations of the terms 1
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respectively. Here “In” and “Out” stands for the cases when nth participant Pn ∈ Q and
Pn 6∈ Q respectively, where Q is the minimal qualified set. Further Shyu (Q) and Shyu
(F) represent respectively the value of light contrasts obtained in schemes proposed by
Shyu in Theorem 2 and Theorem 3 in [29] (See Fig.4).
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Access Structures
OR XOR

In Out In Out
A0 : 1-(2, 3)∗ 0.500 0.500 1.000 1.000
A1 : 1-(2, 4)∗ 0.500 0.500 1.000 1.000
A2 : 1-(2, 5)∗ 0.500 0.500 1.000 1.000
A3 : 1-(3, 4)∗ 0.125 0.250 0.500 1.000
A4 : 1-(3, 5)∗ 0.083 0.167 0.333 0.667
A5 : 1-(3, 6)∗ 0.063 0.125 0.250 0.500
A6 : 1-(4, 5)∗ 0.042 0.125 0.333 1.000
A7 : 1-(4, 6)∗ 0.021 0.063 0.167 0.500
A8 : 2-(3, 4)∗ 0.250 0.250 1.000 1.000
A9 : 2-(3, 5)∗ 0.250 0.250 1.000 1.000
A10 : 2-(3, 6)∗ 0.250 0.250 1.000 1.000
A11 : 2-(4, 5)∗ 0.063 0.125 0.500 1.000
A12 : 2-(4, 6)∗ 0.042 0.083 0.333 0.667
A13 : 3-(4, 5)∗ 0.125 0.125 1.000 1.000
A14 : 3-(5, 6)∗ 0.031 0.063 0.500 1.000
A15 : 3-(6, 7)∗ 0.010 0.031 0.333 1.000

Table 3: Comparison table: our proposed “OR” based RGVCS and our “XOR” based
XRGVCS (See Fig.5).

Set of Participants Shyu(Q) Shyu(F) Wu
Our

In Out
S0 : {P1} 0.000 0.000 0.000 0.000 0.000
S1 : {P1, P2} 0.125 0.500 0.167 0.500 1.000
S2 : {P1, P4} 0.125 0.500 0.167 0.500 1.000
S3 : {P1, P2, P3} 0.125 0.500 0.167 0.500 NS
S4 : {P1, P2, P4} 0.125 0.500 0.167 0.500 NA
S5 : {P1, P2, P3, P4} 0.125 0.500 0.125 0.500 NA

Table 4: Comparison of access Structures 1-(2, 4)∗ (See Fig.6(a)).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: Implementation results for 2-(3, 5)∗-XRGVCS, where “⊗” stands for binary
“OR” operation. Here (a) stands for the secret S. (b) stands for the random grid
R1. (c) R2. (d) R3. (e) R4. (f) R5. (g) Stands for the stacked image R1 ⊕ R2. (h)
R1 ⊕R2 ⊕R3 ⊕R4. (i) R1 ⊕R2 ⊕R3 ⊕R4 ⊕R5. (j) R1 ⊕R2 ⊕R3

Set of Participants Shyu(Q) Shyu(F) Wu
Our

In Out
S0 : {P1} 0.000 0.000 0.000 0.000 0.000
S1 : {P1, P2} 0.000 0.000 0.000 0.000 0.000
S2 : {P1, P5} 0.000 0.000 0.000 0.000 0.000
S3 : {P1, P2, P3} 0.000 ∗1 0.063 0.042 0.167 0.667
S4 : {P1, P2, P5} 0.000 ∗1 0.063 0.042 0.083 0.333
S5 : {P1, P2, P3, P4} 0.000 ∗2 0.063 0.063 0.167 NS
S6 : {P1, P2, P3, P5} 0.000 ∗2 0.063 0.063 0.167 NA
S7 : {P1, P2, P3, P4, P5} 0.000 ∗1 0.063 0.042 0.250 NA

Table 5: Access Structure: 1-(3, 5)∗, where ∗1 and ∗2 corresponds to the 3 digit approxi-
mations of the terms 1

2048
and 1

4096
respectively (See Fig.6(b)).
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Figure 4: (i) and (ii) represent the graphical representation of the values from Table 2.24
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Figure 5: Graphical representation of values for our “OR” and “XOR” based schemes as
shown in Table 3.

Set of Participants: H αH
OR eαH

OR αH
XOR eαH

XOR

{P1, P2} 0.5000 0.5004 1.0000 1.0000
{P1, P4} 0.5000 0.5004 1.0000 1.0000
{P2, P3} 0.000 0.0000 0.0000 0.0000
{P1, P2, P3} 0.5000 0.5000 NA NA
{P1, P2, P4} 0.5000 0.5000 NA NA
{P2, P3, P4} 0.0000 0.0000 NA NA
{P1, P2, P3, P4} 0.5000 0.5004 NA NA

Table 6: 1-(2, 4)∗-RGVCS
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Figure 6: (a) 1-(2, 4)∗ RGVCS (See Table 4), (b) 1-(3, 5)∗ RGVCS (See Table 5).26



Set of Participants: H αH
OR eαH

OR αH
XOR eαH

XOR

{P2, P3} 0.0000 0.0000 0.0000 0.0002
{P1, P2, P3} 0.1669 0.1667 0.6667 0.6658
{P1, P2, P5} 0.0833 0.0831 0.3333 0.3330
{P2, P3, P4} 0.0000 0.0000 0.0000 0.0001
{P1, P2, P3, P4} 0.1666 0.1669 NA NA
{P1, P2, P3, P5} 0.1666 0.1669 NA NA
{P2, P3, P4, P5} 0.0000 0.0000 NA NA
{P1, P2, P3, P4, P5} 0.2500 0.2498 NA NA

Table 7: 1-(3, 5)∗-RGVCS

Set of Participants: H αH
OR eαH

OR αH
XOR eαH

XOR

{P1, P2} 0.0000 0.0004 0.0000 0.0003
{P1, P2, P3} 0.2500 0.2495 1.0000 1.0000
{P1, P2, P5} 0.2500 0.2495 1.0000 1.0000
{P2, P3, P4} 0.0000 0.0002 0.0000 0.0007
{P1, P2, P3, P4} 0.2500 0.2495 NA NA
{P1, P2, P3, P5} 0.2500 0.2495 NA NA
{P2, P3, P4, P5} 0.0000 0.0002 NA NA
{P1, P2, P3, P4, P5} 0.2500 0.2495 NA NA

Table 8: 2-(3, 5)∗-RGVCS
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