
Efficient Attribute-Based Searchable Encryption

on the Cloud Storage

Wanfen Guo, Xiaolei Dong, Zhenfu Cao, Jiachen Shen

August 16, 2017

Abstract

Cloud computing is very popular for its computing and storage ca-
pacity at lower cost. More and more data are being moved to the cloud
to reduce storage cost. On the other hand, since the cloud is not fully
trustable, in order to protect data privacy against third-parties and even
the cloud server, they are usually encrypted before uploading. However,
many operations, such as searching, are hard to perform on encrypted da-
ta. To solve this problem, searchable encryption has emerged. Searchable
encryption in multi-user setting is much less efficient than in single-user
setting. In order to address this problem, we propose a multi-owner to
multi-user searchable encryption scheme based on attribute-based encryp-
tion. Our scheme keeps data secure in the cloud even against the cloud
server. It allows users with appropriate authorizations to perform search
operations on encrypted data. In addition, search tokens are generated
by users instead of data owners. We prove that token privacy and index
privacy are well protected in our scheme. The cloud server and illegimate
users are not able to get any useful information about search tokens and
ciphertexts. Ciphertexts of our scheme are constant-size, which reduce
the time-complexity and bandwidth overhead of our scheme.

Keywords: Cloud storage, cloud computing, attribute-based encryption, multi-
users searchable encryption

1 Introduction

With the development of the information technology, more and more infor-
mation exchanges on the Internet. Therefore, not only the computers but also
the mobile devices produce high-volume of data. As a result, cloud storage has
become more and more popular with the low cost and vast capacity. While the
information uploaded to the cloud may be sensitive and data owners want to
keep them secret and prevent them from being exposed. What concerns data
owners is that the cloud server is capable of manipulating their data in the cloud
storage, so a method of encryption on the important data before uploading has
been adopted. On the other hand, the goal of file storage is that we can find

1

data when we need them. Although encryption helps in keeping data safe, it
makes performing computation on the data difficult, such as search operations.
One of naive methods is to download all encrypted files and decrypt them, then
we can perform search operations on the plaintext files. This results in the huge
bandwidth overhead and extra cost on the storage of downloaded files. The
searchable encryption(SE) can solve the problem of searching on the ciphertex-
t and take full advantage of the cloud computing. Let’s consider a scenario:
In a hospital, all patients’ information are uploaded to the hospital system in
the form of ciphertexts, which include their names, telephone numbers, disease
types, record time, the name of their doctors and so on. As a patient, he should
be able to search all the information about himself and nothing about other
people. As a doctor, to track the patients’ recovery, he can search the names
and telephone numbers of his patients. Even the doctor of a patient A changed
for some reason, the new doctor still can search the name and telephone number
of A without encrypting A’s information again. The statistical department can
search the number of the patients who affected some type of diseases during
a certain period of time. Therefore, in this scenario, the different authorities
should be given to different people so that they can search different information
according to their roles. However, most existing schemes are not able to achieve
this. In the general symmetric searchable encryption(SSE) setting, when a data
user wants to search on the files, he should request a search token from the
data owner. After sending the search token to the cloud, the data users will
receive search results computed by the cloud server. In this case, we can see that
the keyword that the data user searched is known by the data owner which is
not desirable. What’s more, multi-owners to multi-users scheme model is more
practical than one-owners to one users. And, the computing capacity of mobile
phones and wearable devices are so week that they only perform efficient algo-
rithms. The problem of the computation complexity and space complexity of is
worth noting. And the response speed of search operations should be improved.

1.1 Our Contributions

We design an efficient attribute-based searchable encryption(EABSE) on the
cloud storage scheme, which allows the cloud to execute the search operations
on the ciphertext and forbids the cloud to get more information except the
search results. We use inverted index data structure to store the index of the
files. The index is encrypted using our EABSE schemes and we select a sym-
metric scheme(such as AES, etc.) to encrypt the files. Our contributions can
be concluded as bellows:

Our scheme implements multi-owners to multi-users searchable encryption
on the base of ciphertext-policy attribute-based encryption. The data owners
use a certain access policy to encrypt the keywords in index, and the data users
whose attributes satisfy the access policy can achieve the corresponding search
tokens.

Our scheme protects the privacy of both the data owners and the data users.
Only when data users’ attributes satisfy the data’s access policy, he can get the

2

data which encrypted by the data owner. On the other hand, in this scheme, the
search token is computed by the users, and the data owners don’t know which
word the users want to search. While in the general scenes, the data user must
submit the keyword he want to search and apply the data owners for search
tokens.

Under the random oracle security model, we define the security of the E-
ABSE basing on the DL-assumption and construct a proper scheme. Moreover,
we analyze the security of the scheme and prove it secure from the aspects of
correctness and privacy.

We improve the efficiency of the scheme to meet the needs of the practical
scenes. In time complexity, we improved the complex computation operations.
In space complexity, we reduce the size of the ciphertext greatly.

The inverted index, the bilinear pairing and ciphertext policy attribute-based
encryption are the powerful tools in the scheme.

1.2 Related Work

Many search schemes have been proposed after the symmetric searchable
encryption was first introduced in [1] and asymmetric searchable encryption
was introduced in [2].

Searchable Encryption SE technology solves the problem of searching on
the encrypted files and improves the practicability of cloud storage and cloud
computing. Not only the functionality but also efficiency of the searchable
encryption have improved a lot. In [3], the scheme which supported search-
ing multi-keyword at the same time was proposed. [5] introduced a searchable
scheme with dynamic updating. And, the time of updating, which includes
addition and deletion, was as much as searching. To improve the efficiency,
utilizing the useful RAM as a solution like [6] was deployed. Since Abdalla et
al. [4] constructed asymmetric searchable encryption scheme from identity based
encryption(IBE) and proved it secure, some works transformed the efficient IBE
into efficient PEKS [23]. The multi-participants searchable encryption allowed
data share among many people [21, 22], where the authorised data-users can
search on the files uploaded by according data-owners. Our work emphasises
the research on multi-users model in searchable schemes.

Index The index of the files is very important in search. Different indexes
have both advantages and disadvantages. Curtmola et al. [1] proposed the first
encrypted searchable index basing on the inverted index. Some searches base
on inverted index because of the efficiency while it is not convenient for the files
updating. The index basing on a bloom filter was introduced by Goh et al. [7].
While Chang et al. proposed a vector index in [8]. Diverse kinds of index are
proposed to assist in perfecting the scheme.

3

Attribute-Based Searchable Encryption To remove the Trusted Author-
ity(TA) in identity-based encryption schemes, Sahai and Waters [15] presented
FIBE as a solution which we considered as the prototype of Attribute-Based
Encryption(ABE). In practical scenes, ciphertext-policy ABE(CP-ABE) as an
effective method to solve the data share in safety between multiple data-owners
and multiple data-users, was very popular and discussed by many papers [16–18].
ABE family is diversified a lot. ABE plays an important role in fine-grained
access control. The searchable encryption scheme with data users’ attributes
as the search secret key is more practical. Attribute-based searchable encryp-
tion(ABSE) and its application were proposed in [14,24]. As scheme in [14], data
owners encrypted their index using different access policy, then data users were
able to search keywords that they were interested in if their attributes satisfied
the associated access policy. Besides, [14] proposed verifiable attribute-based
searchable encryption on the malicious cloud. Most existing works has imple-
mented additional function of ABE in ABSE, like revocability of data users’
search right. However, the computation complexity and communication effi-
ciency of the above schemes were not taken into account. In this paper, we use
ABE as a smoothly tools to implement the search on ciphertext. Therefore, we
require the ABE scheme with enough efficiency. We adopt constant-ciphertext
extension ABE [19, 20] to prevent the time complexity and space complexity
increase obviously with the data growing on the cloud. Besides, we reduce the
communication cost between data-owners and cloud when upload the constant
ciphertext.

2 Preliminary

Inverted Index In the searchable encryption systems, the inverted index [10]
is a practical data structure. As showed in the Figue1, the inverted index
includes many inverted lists Iw1 , Iw2 , · · · , Iwm , where m is the size of the keyword
dictionary. One inverted list Iwi contains all files that contain the keyword wi.
The files f1, f2, · · · , fn1 in Iw1 include the keyword w1 where n1 denotes the
number of the files. The reason that we use inverted index like most works
[11–13] is the search efficiency can be improved comparing to other indexes [1,9].

Symmetric Bilinear Group Let G and GT be the two cyclic multiplicative
group of prime order p, and g is the generator of G. There exists a pairing e:
G×G −→ GT with the below three properties:

(1) Bilinearity: e(ga, gb) = e(g, g)ab, for a, b ∈ Zp;

(2) Non-degeneracy: e(g, g) ̸= 1;

(3) Computability: for all a, b ∈ Zp, e(g
a, gb) is efficiently computed.

4

Figure 1: Inverted Index

Decisional Linear (DL) Assumption There exists g, f, h chosen randomly
from the group G and r1, r2 chosen randomly from Zp. DL assumption says
the probability of a probabilistic polynomial-time algorithm A can distinguish
Q = hr1+r2 with Q is random element from the tuple (g, f, h, fr1 , gr2 , Q) is
negligible. We define ϵ is a negligible parameter, then the advantage of A in
solving DL problem is

|Pr[A(g, f, h, fr1 , gr2 , hr1+r2) = 1]− Pr[A(g, f, h, fr1 , gr2 , Q) = 1]| 6 ϵ

3 Our Scheme

The scheme implements the multi-owners to multi-users keyword search
functionality with high-efficiency. In order to satisfy the requirement of real
environment, we promise the correctness of the search result but also the priva-
cy of the data in storage and transmission.

3.1 System model

There are three main entities: data owner, data user and cloud server. Fol-
lowing the figure2, data owners encrypt their files F = {f1, f2, · · · , fn} into the
ciphertexts C = {c1, c2, · · · , cn} using some symmetric encryption. Because the
file encryption is common, we don’t discuss it in detail in this paper. Of course,
a pre-defined keyword dictionary WD = {w1, w2, · · · , wm} is needed. Every
data owner constructs his encrypted inverted index according to the keyword
dictionary. We can use the identifier of the file instead of the file itself stored
in the index for convenience in actual application. Finally, data owner uploads
all the above information to cloud server. When the data user wants to search

5

Figure 2: System Model

some keyword, he generates search token using his attributes. The cloud server
executes the search on the index after receiving the token and returns the result
to the user.

3.2 Algorithms and Security

3.2.1 Algorithms

According to the system model, we divide our scheme into three parts: data
upload, query and data download. Each part is implemented by several algo-
rithms respectively.

Data Upload This part is executed by the data owner and system. The
owner generates a secure inverted index and encrypts files before uploading.

(msk, pk) ← Setup(U, 1λ). On input a security parameter λ and the at-
tribute set U(which includes the all attributes of users), this probabilistic algo-
rithm outputs the master key msk and public key pk.

(cphW, cphF) ← Enc(S,WD,F, pk). After receiving the access policy S,
keyword dictionaryWD = {w1, w2, · · · , wm} and the file set F = {f1, f2, · · · , fn},
the probabilistic encryption algorithm generates the encrypted index and the
ciphertext of files. The file encryption is executed using some simple symmetric
encryption considering of the efficiency.

Query This part is executed by the data user and the cloud server. The user
generates token for the keyword he wants to query.

sk ← KeyGen(Attr,msk, pk). Given the attributes Attr by the user, master
key msk and public key pk, the probabilistic algorithm outputs the secret key
sk.

6

tok ← TokenGen(pk, sk, w). This algorithm is used to generate token tok
with the secret key sk and the keyword w to be queried.

Data Download This part is executed by the cloud server. After receiving
the search token, the cloud server runs Search algorithm on the data in cloud
storage. Then it downloads the matched ciphertexts of files and returns them
to user.

rslt ← Search(tok, cphW, cphF). This deterministic algorithm outputs the
ciphertext of the files cphF if cphW can matched with the tok, outputs ⊥
otherwise.

3.2.2 Security

In the general schemes, we suppose the data owner and the data user are
trusted, but the cloud server is semi-trusted. It means that the cloud server
would execute data users’ instructions honestly but try to get the information
about what it is curious about. In the common ABE schemes, the data is closed
absolutely after encryption. While the ciphertexts in searchable encryption
must leave a threshold for each keyword ciphertext. Therefore, the security
of the searchable encryption is more tedious. In this paper, we guarantee the
scheme secure from two aspects: correctness and privacy.

Correctness The search algorithm outputs the right result if only if the inputs
of the Search(token, cphW, cphF) algorithm are from the Setup, KeyGen, Enc
and TokenGen. We say the scheme is correct when the above statement holds.

Privacy For the files, the ciphertexts cphF are semantic security by adopting a
symmetric encryption, such as AES, then the adversary can not get information
from what the file ciphertext revealed with non-negligible probability. For the
keyword, we have:

• Index Privacy: A probabilistic polynomial-time adversary can not get any
useful information from the encrypted keyword cphW without associate
search tokens. That is, the adversary can not determine which of the
ciphertext of the keyword w1 and the ciphertext of the keyword w2 is
about the keyword w he submitted.

• Token Privacy: Given the keyword token, a probabilistic polynomial-time
adversary can not learn the keyword plaint. In other words, the cloud
server can not learn which keyword the data user queried.

Our scheme implements a secure searchable encryption if it satisfies all above
requirements.

7

3.2.3 Threat Model

Under the random oracle model, we prove the index privacy of the EABSE
scheme with selectively chosen-keyword attack game [14] and prove the token
privacy with token privacy game.

• Selectively Chosen-Keyword Attack(SCKA) Game

Setup: At first, the adversary gives a access policy S to the challenger.
The challenger plays as the system and runs Setup(U, 1λ), then it keeps
the master key mk.

Query Phase1: For the efficiency, the challenger applies for a query list
ql and sets it empty before the Phase1 running. The adversary adaptively
queries the below for polynomial times:
With the KeyGen(Attr,msk, pk) algorithm, the adversary inputs the at-
tributes Attr to challenger and gets associated secret key sk from the
challenger if the attributes can not satisfy access policy S, otherwise the
procedure aborts; according to the TokenGen(pk, sk, w) algorithm, the
adversary can get a search token after inputting sk and keyword w. The
challenger puts w into the querylist ql if the token is legitimate for the
keyword.

Challenge phase: The adversary selects two keywords w0 and w1 ran-
domly which are excluded from the list ql. The challenger flips a coin to
select µ← {0, 1} and then runs the Enc algorithm. The challenger returns
the ciphertext cph∗ of the wµ to the adversary.

Query Phase 2: The adversary can execute the queries as Phase1 did
but the keyword w0 and w1 can not be queried any more.

Guess: Finally, adversary gives a guess µ
′
of µ and wins the game if

µ
′
= µ.

We can define the advantage of adversary winning the game is |Pr[µ
′
=

µ] − 1
2 |. If the advantage is negligible, our scheme is secure with index

privacy.

• Token Privacy Game

Setup: The challenger plays as the system and runs Setup(U, 1λ), then
it keeps the master key msk.

Query Phase 1: As in SCKA game, the challenger selects the key list
kl which is empty initially. The adversary can execute below process for
polynomial times. The adversary chooses a attribute set Attr as the input
of KeyGen algorithm. The challenger returns KeyGen’s output sk to ad-
versary and add Attr into kl. Then, challenger runs TokenGen algorithm
and returns token to adversary after receiving the sk and keyword w.

Challenge phase: The adversary submits a access policy S with the
restriction that each Attr in kl can not satisfy S. The challenger randomly
chooses a keyword w∗ from the keyword dictionary and encrypt it with the

8

S into cphW ∗. The challenger selects a attribute set Attr∗ which satisfies
S. The adversary gets token∗ from challenger.

Query Phase 2: As did in Phase 1 except that keyword w∗ can not be
queried.

Guess: The adversary outputs guess keyword w
′
, and can win the game

if w
′
= w∗.

3.3 Constructions

In our scheme, we use inverted index structure as introduced above and
implement searchable encryption with AND gate as access control. The scheme
consists of 5 main algorithms. We introduce them in detail as below:

Init We suppose all the attributes are included in set U={attr1, attr2, · · · , attrn},
where n is the size of U. For each attribute attri(1 ≤ i ≤ n), there has 2 val-
ues vi and ¬vi. If the attributes set Attr of one data user include attribute
attri(1 ≤ i ≤ n), the value of attri is vi and the value of attri is ¬vi if attri is
not in Attr. To formalize the description of attributes, we adopt the value of
attribute to represent whether user’s set contains this attribute.

Setup Given a bilinear group e : G × G → GT , p as prime order of G and
GT , and H : {0, 1}∗ → Zp as an one-way hash function, randomly select three
numbers a, b, c← Zp, a set {r1, r2, · · · , r2n} ← Zp and a set {x1, x2, · · · , x2n} ←
G. Set ui = g−ri and yi = e(xi, g), where 1 ≤ i ≤ 2n. Then, output the
public key pk = (g, ga, gb, gc, (ui, yi)|1 ≤ i ≤ 2n) and the master key msk =
(a, b, c, (ri, xi)|1 ≤ i ≤ 2n).

Enc Choose random t1, t2 ∈ Zp. Suppose the access policy structure S =∧
vi∈U v

′

i, where v
′

i = vi or ¬vi. Set u
′

i = ui if v
′

i = vi, u
′

i = ui+n otherwise.

Compute ugate = gt2
∏n

i=1 u
′

i. For each keyword w ∈ WD, then set W
′
= gct1 ,

W = ga(t1+t2)gbH(w)t1 , and encrypt files F which associate with the keyword
w with some symmetric encryption algorithm into cphF . Obviously, cphW =
(W

′
,W, ugate). Then, the whole cph = (cphW, cphF) as the result of encryption.

KeyGen At First, we set v = gac. For each attribute v∗i in data user’s at-
tribute collection, set y∗i = yi if v∗i = vi, y∗i = yi+n otherwise. Similarly,
compute σ∗

i = xiv
ri if v∗i = vi, σ

∗
i = xi+nv

ri+n otherwise. Set σuser =
∏n

i=1 σ
∗
i

Then, the secret key sk = (yuser =
∏n

i=1 y
∗
i , < v, σuser >).

TokenGen Select s ← Zp. To generate the search token for keyword w,

compute tok1 = (gagbH(w))
s
, tok2 = gcs. Therefore, the search token tok =

(ysuser, < vs, σs
user >, tok1, tok2).

9

Search At first, compute E =
e(ugate,v

s)e(σs
user,g)

ys
user

. If user’s attributes satisfy

the access policy according to the ciphertext, E = e(g, g)acst2 and e(W
′
, tok1)E =

e(W, tok2) holds.
According to the above, the search token tok can match with the cphW in the

ciphertext cph, if the attributes of data user can satisfy the access policy used
for encrypting the keyword. The cphF in cph should be downloaded afterwards
and returned to the data user.

4 Security Analysis

In this part, we will introduce the security of the EABSE scheme. From the
scheme construction, the correctness is easy to prove. Then, we show that the
scheme meets the security definition in Privacy section.

Theorem 4.1. If an adversary A wins the SCKA game mentioned above with
the advantage ϵ, there is a Challenger B can break the DL assumption with the
advantage ϵ

2 .

Proof: Setup: The challenger run Setup(U, 1λ), randomly selects {r1, r2,
· · · , r2n} ← Zp and {x1, x2, · · · , x2n} ← G, sets ga = h, gc = f , and gb = fd

where d ← Zp. As in the scheme, ui = g−ri and yi = e(xi, g)|i = 1, 2, · · · , 2n
. It makes the public key pm = (h, fd, f, r1, r2, · · · , r2n, x1, x2, · · · , x2n), then it
keeps the master key mk = (d, r1, r2, · · · , r2n, x1, x2, · · · , x2n).

The adversary gives a access policy S to the challenger which it wants to
challenge.

Query Phase 1: For the efficiency, the challenger applies for a query list ql
and sets it empty before the phase running. The adversary adaptively queries
the below for polynomial times:

The adversary inputs the attributes set Attr to challenger. If Attr satisfies
the S, then the algorithm terminates. Select κsec as one of master key a. For
each attribute in U according toAttr, computes σi and yi. Set v = fκsec , σuser =∏n

i=1 σi where σi = xiv
ri , and yuser =

∏n
i=1 yi. So A gets associated secret key

sk = (yuser, < v, σuser >) from the challenger.
According to the TokenGen(sk, w) algorithm, after choosing a random s←

Zp, the adversary can get a search token tok = (tok1 = (hfdH(w))
s
, tok2 =

fs, < vs, σuser
s >, yuser

s) after inputting sk and keyword w. The challenger
put w into the querylist ql if the token is legitimate for the keyword.

Challenge phase: The adversary selects two keywords w0 and w1 randomly
except from the list ql. The challenger flips a coin to select µ← {0, 1} and then
runs the Enc algorithm. Select t1, t2 ← Zp, B computes ugate = gt2

∏n
i=1 ui,

and w
′
= f t1 , w = QfdH(wµ)t1 . The challenger returns the ciphertext cphW ∗ =

(w
′
, w, ugate) of the wµ to the adversary. Because the access policy is public, it

is easy to get gt2 from the ugate. Therefore, all the parameters in ciphertext are
from the instance of the DL assumption.

Query Phase 2: The adversary can execute the queries as Phase1 did but
the keyword w0 and w1 can not be queried.

10

Guess: Finally, adversary gives a guess µ
′
of µ. If µ

′
= µ, the challenger

deems Q = hr1+r2 implicitly. Because cphW ∗ is a valid ciphertext for keyword
wµ only when Q = hr1+r2 and w in cphW ∗ is a random element of G when
Q ̸= hr1+r2 .

Therefore, we suppose adversaryA can break the scheme with a non-negligible
advantage ϵ, then the probability Pr[µ

′
= µ] is 1

2 + ϵ if Q = hr1+r2 , Pr[µ
′
= µ]

is 1
2 otherwise. Finally, the advantage of challenger solving the DL problem is

1
2 × (12 + ϵ) + 1

2 ×
1
2 −

1
2 = ϵ

2 .

Theorem 4.2. The challenger can break the Token Privacy Game with a neg-
ligible advantage if the probability of getting w from H(w) is negligible ν.

Proof: Setup: The challenger plays as the system and runs Setup(U, 1λ) as
in the scheme, then it makes the pk = (ga, gb, gc, (ui, yi)|1 ≤ i ≤ 2n) public and
keeps the master key msk = (a, b, c, (ri, xi)|1 ≤ i ≤ 2n) where a, b, c, {ri|i =
1, 2, · · · , 2n} ← Zp, {xi|i = 1, 2, · · · , 2n} ← G and ui = g−ri , yi = e(xi, g).

Query Phase 1: As in SCKA game, the challenger selects the key list kl
which is empty initially.The adversary can execute below process for polynomial
times qt. The adversary chooses a attribute set Attr as the input of KeyGen
algorithm. The challenger returns KeyGen’s output sk to adversary and add
Attr into kl. Then, challenger runs TokenGen algorithm and returns token tok =
(gs, ysuser, u

s
user, tok1, tok2) to adversary after receiving the sk and keyword w.

(The marks such as tok1, tok2 are the same as the scheme.)
Challenge phase: The adversary submit a access policy S with the restric-

tion that each Attr in kl can not satisfy S. The challenger randomly chooses a
keyword w∗ from the keyword dictionary and encrypt it with the S into cphW ∗.
The challenger selects a attribute set Attr∗ which satisfies S. The adversary gets
token∗ from challenger.

Query Phase 2: As did as Phase 1 with the restriction that the keyword
w∗ can not be queried.

Guess: The adversary A outputs guess keyword w
′
, and can win the game

if w
′
= w∗. Simply, we can judge A wins the game if Search(token∗, cphW

′
)

returns the correct file result.

If the adversary wants to get the information about the keyword, it will
analyse the tok1=(gagbH(w))

s
in the token. The s is randomly chosen by the

challenger, so the adversary can get information from the H(w) leakage at most.
If the probability of getting w from H(w) is negligible ν, then adversary can
break the Token Privacy game with 1

|WD|−qt + ν. The |WD| denotes the size

of the keyword dictionary WD and qt represents the query time in Phase 1. In
practical scene, |WD| is big enough. Finally, our scheme can gurantee the token
privacy.

From the Construction section, we can prove the correctness of our proposed
scheme. Combining with the above proofs, we can say the scheme satisfies the
Index Privacy and Token Privacy. In general, the EABSE scheme is secure.

11

5 Performance and Efficiency Analysis

In the practical scenes, the users prefer the scheme with quicker response
and less bandwidth cost. Therefore, we considered the efficiency of the scheme
when we designed the scheme. In our scheme, we achieved the constant-size ci-
phertext. Basing on the computation on the group of prime order p, we mainly
evaluate the exponentiation operation, multiplication operation and pairing op-
eration in time complexity and the size of group G and GT in space complexity.
It is worth mentioning that multiplication operation is much more efficient than
the exponentiation.

Compared to the CP-ABKS works in [14], we analyse the efficiency of the
scheme from the two aspects of time complexity and space complexity. The
results are showed in below tables Table1 and Table2. E denotes the exponen-
tiation operation on the element in group G, ET denotes the exponentiation
operation on the element in group GT . Similarly, M denotes the multiplication
operation on the element in group G, MT denotes the multiplication operation
on the element in group GT . And Pair is the symbol of the pairing operation.
We use |G| and |GT | as the remarks of the size of G and GT respectively. At last,
we use N to represent the number of attributes which satisfy the access policy
and S to represent the number of attributes which owned by the data-user. (In
our scheme, S=N.)

Our Scheme [14]
Enc 4E+(N+2)M (2N+4)E+M

KeyGen (S+1)E+2SM+SMT (2S+2)E+SM
TokenGen 6E+M (2S+4)E+M
Search 4Pair+ET+3MT (2N+3)Pair+NET+(N+2)MT

Table 1: Time Complexity Analysis

Our Scheme [14]
Enc 3|G| (2N+3)|G|

KeyGen 2|G|+|GT | (2S+1)|G|
TokenGen 4|G|+|GT | (2S+3)|G|

Table 2: Space Complexity Analysis

Considering the balance of time complexity and space complexity, our scheme
aggregated σ1, σ2, · · · , σn into σuser and y1, y2, · · · , yn into yuser in KeyGen
phase. This behavior reduced the sizes of secret key and token, thus saving
the bandwidth cost. There is a transformation of our scheme. We can trans-
mit σ1, σ2, · · · , σn and y1, y2, · · · , yn as parts of the secret key. Then the cloud
server should firstly aggregate the tokens σs

i , y
s
i in the Search phase. The com-

putation works is transferred to the cloud server from the client. However, the
communication cost between cloud server and the data user rise.

12

6 Conclusion

We introduced an efficient searchable scheme basing on the ciphertext-policy
attribute-based encryption. The EABSE scheme allows secure data share in
multi-owners and multi-users system model. The data owners upload the data
wrapped with a certain access policy, and others can not get any information
about the data whose attributes can not satisfy the access policy. While the
authenticated data users are able to search a keyword w on the ciphertexts and
get the encrypted files including w. Besides, the search token is generated by
data users. This action prevents the keyword that users queried from being
known by owners and improves the users’ privacy. It is mentioned that, our
scheme raises the efficiency of computation and reduces the cost of communi-
cation because of the constant-size ciphertext. Our performance and efficiency
analysis illustrates this point effectively. The new requirements also rises with
the times, so the efficient search on the dynamic dataset is still for future work.

References

[1] Curtmola, J. Garay, S. Kamara and R. Ostrovsky, Searchable symmetric
encryption: improved denitions and efficient constructions. Proc, ACM CCS,
2006, pp. 79-88.

[2] D. Boneh, G.D. Crescenzo, R. Ostrovsky and G. Persiano, Public key en-
cryption with keyword search. Proc, EUROCRYPT, May 2004,pp. 506-522.

[3] P. Golle, J. Staddon, B. Waters, Secure conjunctive keyword search over
encrypted data. ACNS 2004. Lecture Notes in Com-puter Science, vol 3089.
Springer, Berlin, Heidelberg.

[4] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, Searchable en-
cryption revisited: consistecy properties, relation to anony-mous IBE and
extentions. Springer, 2004.

[5] S. Gajek, Dynamic Symmetric Searchable Encryption from Constrained
Functional Encryption. In: Sako K. (eds) Topics in Cryptology-CT-RSA
2016. Lecture Notes in Computer Science, vol 9610. Springer,Cham, pp.
75-89.

[6] S. Garg, P. Mohassel, C. Papamanthou, Efficient Oblivious RAM in Two
Rounds with Applications to Searchable Encryption. In:Robshaw M., Katz
J. (eds) Advances in Cryptology C CRYPTO 2016.CRYPTO 2016. Lecture
Notes in Computer Science, vol 9816. Springer,Berlin, Heidelberg

[7] E. Goh, Secure Indexes. In: IACR Cryptology ePrint Archive, vol 2003

[8] YC. Chang, M. Mitzenmacher, Privacy Preserving Keyword Searches on
Remote Encrypted Data. In: Ioannidis J., Keromytis A., Yung M. (eds)

13

Applied Cryptography and Network Security. ACNS 2005. Lecture Notes in
Computer Science, vol 3531. Springer, Berlin, Heidelberg.pp, 442-455.

[9] C. Rongmao, M. Yi, Y. Guomin, G. Fuchun, H. Xinyi, W. Xiaofen, W.
Yongjun, ”Server-Aided Public Key Encryption With Keyword Search”, In-
formation Forensics and Security IEEE Transactions on, ISSN 1556-6013.vol.
11, 2016, pp. 2833-2842.

[10] D.E. Knuth, The art of computer programming,volume 1:Fundamental al-
gorithms,2nd edition.Addison-Wesley (1973)

[11] S. Ji, On the Correctness of inverted index based public-key Searchable
Encryp-tion scheme for Multi-time Search, 2016.

[12] R. Zhang, R. Xue, T. Yu, L. Liu, Dynamic and Efficient Private Keyword
Search over Inverted Index–BasedEncrypted Data[J], ACM Transactions on
Internet Technology (TOIT), 2016.

[13] B. Wang, W. Song, W. Lou, YT. Hou ,Inverted Index Based Multi-Keyword
Public-key Searchable Encryption with Strong Privacy Guarantee, IEEE,
2015.

[14] Q. Zheng, S. Xu, G. Ateniese, Verifiable Attribute-based Keyword Search
over Outsourced Encrypted Data, 2014 proceedings IEEE, 2014.

[15] A. Sahai and B. Waters. Fuzzy Identity Based Encryption. In Advances in
Cryptology - Eurocrypt volume 3494 of LNCS pages 457-473. Springer 2005.

[16] L. Ibraimi, Q. Tang, PH. Hartel, W. Jonker, Efficient and Provable Secure
Ciphertext-Policy Attribute-Based Encryption Schemes, Springer, 2009.

[17] B. Waters, Ciphertext-Policy Attribute-Based Encryption: An Expressive,
Efficient,and Provably Secure Realization, Springer, 2011.

[18] G. Yu, Z. Cao, G. Zeng, W. Han, Accountable Ciphertext-Policy Attribute-
Based Encryption Scheme Supporting Public Verifiability and Nonrepudia-
tion, International Conference on Provable Security. Springer International
Publishing, 2016: 3-18.

[19] K. Zhang, J. Gong, S. Tang, J. Chen, X. Li, H. Qian, Practical and Efficient
Attribute-Based Encryption with Constant-Size Ciphertexts in Outsourced
Verifiable Computation, 2016.

[20] C. Chen, Z. Zhang, D. Feng, Efficient Ciphertext Policy Attribute-Based
Encryption with Constant-Size Ciphertext and Constant Compution-Cost,
Springer, 2011.

[21] Zhao, F., Nishide, T., Sakurai, K.: Multi-user keyword search scheme for
secure data sharing with fine-grained access control. In: Kim, H. (ed.) ICISC
2011. LNCS, vol. 7259, pp. 406C418. Springer, Heidelberg (2012)

14

[22] X. Liu, Y. Zhang, B. Wang, J. Yan, Mona: secure multi-owner data sharing
for dynamic groups in the cloud. IEEE Trans. Parallel Distrib. Syst. 24(6),
1182C1191 ,(2013)

[23] XA. Wang, F. Xhafa, W. Cai, J. Ma, F. Wei, Efficient Privacy Preserving
Predicate Encryption with Fine-grained Searchable Capability for Cloud
Storage, 2016.

[24] W. Sun, S. Yu, W. Lou, YT. Hou, Protecting Your Right: Attribute-based
Keyword Search with Fine-grained Owner-enforced Search Authorization in
the Cloud, IEEE, 2014.

15

