
What about Bob?

The Inadequacy of CPA Security for Proxy Reencryption

Aloni Cohen∗

MIT

Abstract

Consider three parties: Alice, Bob, and Polly. Alice keeps some encrypted data that she can
decrypt with a secret key known to her. She wants to communicate the data to Bob, but not to
Polly (nor anybody else). Assuming Alice knows Bob’s public key, how can she communicate
the data to him? Proxy reencryption provides an elegant answer: Alice creates a reencryption
key that will enable Polly (the proxy) to reencrypt her data for Bob’s use, but that will not help
Polly learn anything about the data.

There are two well-studied notions of security for proxy reencryption schemes: security
under chosen-plaintext attacks (CPA) and security under chosen-ciphertext attacks (CCA).
Both definitions aim to formalize security against both Polly and Bob.

However, we observe that CPA security guarantees much less security against Bob than was
previously understood. In particular, CPA security does not prevent Bob from learning Alice’s
secret key after receiving a single honestly reencrypted ciphertext. In common applications of
proxy reencryption, this means that CPA security provides scant guarantees.

We propose security under honest-reencryption attacks (PRE-HRA), a new notion interme-
diate to CPA and CCA that better captures the goals of proxy reencryption. In applications,
PRE-HRA security provides much more robust security. We identify a property of proxy reen-
cryption schemes that suffices to amplify CPA security to PRE-HRA security and show that
two existing proxy reencryption schemes are in fact PRE-HRA secure.

1 Introduction

Consider three parties: Alice, Bob, and Polly. Alice keeps some encrypted data that she can decrypt
with a secret key known to her. She wants to communicate the data to Bob, but not to Polly (nor
anybody else). Assuming Alice knows Bob’s public key, how can she communicate the data to him?

If she is willing to entrust Bob with all her secrets, past and future, Alice may simply tell Bob
her secret decryption key by encrypting it using Bob’s public key. We call this the “Trivial Scheme.”
If she does not have such trust in Bob, Alice can instead decrypt the data, and reencrypt it using
Bob’s public key. But what if Alice does not want to do the work of decrypting and reencrypting
large amounts of data?

Proxy reencryption (PRE) provides an elegant answer: Alice creates a reencryption key that
will enable Polly (the proxy) to reencrypt her data for Bob’s use, but that will not reveal the data

∗aloni@mit.edu. Supported in part by NSF GRFP, NSF MACS CNS-1413920, DARPA IBM W911NF-15-C-0236,
and Simons Investigator Award Agreement Dated 6-5-12

1



to Polly. Alice wants Bob to recover the data uncorrupted (correctness) and wants to be sure that
Polly cannot learn anything about her data (security).

But what about Bob? As already observed, if we do not require any security against Bob, proxy
reencryption is trivial: Alice simply sends Bob her secret key (encrypted with his public key). Of
course, this is undesirable, unsatisfying, and insufficient for a number of supposed applications of
proxy reencryption (see Section 2).

Surprisingly, the Trivial Scheme is a CPA-secure proxy reencryption (defined below)
when instantiated with a circular-secure encryption scheme [BHHO08]! The circular security is
used only to prove security against a malicious Polly; Bob completely learns Alice’s secret key.
Relatedly, the CPA-security of any proxy reencryption scheme remains uncompromised if Polly
attaches the reencryption key to every reencrypted ciphertext sent to Bob, even though this would
enable Bob to decrypt any message encrypted under Alice’s public key.1

We restrict our attention to unidirectional proxy reencryption, where the reencryption key al-
lows Alice’s ciphertexts to be reencrypted to Bob’s key, but not the reverse; in a bidirectional
scheme, a lack of security against Bob is inherent.

First considered by Blaze, Bleumer, and Strauss [BBS98], proxy reencryption has received
significant and continuous attention in the last decade, including definitions [ID03, AFGH06, CH07,
NAL15], number-theoretical constructions [ABH09, LV08, CWYD10], lattice-based constructions
[Gen09, ABPW13, PWA+16, FL], implementations [LPK10, HHY11, PRSV17, BPRR17], and early
success in program obfuscation [HRsV11].

Adapting notions from standard encryption, this literature considers two main indistinguishability-
based security notions for proxy reencryption: security under chosen plaintext attacks (CPA)
[ABH09] and chosen ciphertext attacks (CCA) [CH07]. While CCA security is considered the gold-
standard, CPA security has received significant attention [AFGH06, ABH09, HRsV11], especially
in latticed-based constructions [Gen09, ABPW13, PWA+16, PRSV17].

Both notions are typically defined using a security game between an adversary and a challenger
in which the adversary’s task is to distinguish between encryptions of two messages; they differ in
the information granted to the adversary. CCA security [CH07] allows the adversary to corrupt
either Bob (learning skbob) or Polly (learning the reencryption key rk), and additionally grants the
adversary access to two oracles:

• ODec: The decryption oracle takes as input a ciphertext along with the public key of either
Alice or Bob, and outputs the decryption of the ciphertext using the corresponding secret
key.

• OReEnc: The reencryption oracle takes as input a ciphertext ctalice and outputs the reencrypted
ciphertext ctbob.

This naturally extends the chosen-ciphertext security notion of standard encryption (Enc-CCA).
CPA security of proxy reencryption [AFGH06] also allows the adversary to corrupt either Bob

or Polly, but removes both oracles. To adapt the chosen-plaintext security notion from standard
encryption (Enc-CPA) to proxy reencryption, we must of course do away with ODec. It seems we
must also remove OReEnc, sinceby corrupting Bob (learning skbob), the adversary can simulate ODec

by reencrypting and decrypting [ABH09]. Therefore removing both oracles naturally extends the
Enc-CPA security notion to proxy reencryption.

1This can be formalized with some care. See also Footnote 2.

2



Unfortunately, a natural definition is not always a good definition. Not only is the above in-
tuition false,2 but CPA security as defined above guarantees little against a corrupted Bob: the
adversary will not win the game as long as it never sees any reencrypted ciphertexts. It guar-
antees nothing if Bob sees even a single reencrypted ciphertext, allowing us to prove that the
Trivial Scheme is CPA secure. Furthermore, CPA security is ill-suited for the most commonly
cited applications of proxy reencryption, including forwarding of encrypted email and single-writer,
many-reader encrypted storage (See Section 2).

What guarantee do we want from (unidirectional) proxy reencryption? For this overview, let’s
consider restrict ourselves to the three-party setting of Alice, Bob, and Polly described above.
First, we want security against the proxy Polly when Alice and Bob are honest and using the proxy
reencryption as intended. Polly’s knowledge of a reencryption key from Alice to Bob (or vice versa)
should not help her learn anything about the messages underlying ciphertexts encrypted under
pkalice or pkbob. Security against the proxy is guaranteed by CPA.

Second, we want security against the receiver Bob (symmetrically, Alice) when Alice and Polly
are honest and using the proxy reencryption as intended. Bob’s knowledge of honestly reencrypted
ciphertexts (that were honestly generated to begin with) should not help him learn anything about
the messages underlying other ciphertexts encrypted under pkalice that have not been reencrypted.
As we have seen, security against the receiver is not guaranteed by CPA.3

Generalizing these dual guarantees to many possibly colluding parties, we want security as long
as the adversary only sees honestly reencrypted ciphertexts. In Section 3, we formalize this notion
as proxy reencryption security against honest-reencryption attacks (PRE-HRA).

As already observed, CPA security for proxy reencryptionis a natural generalization of Enc-
CPA security for (standard) encryption. Observe that Enc-CPA security does not change when the
adversary is given access to an encryption oracle and an oracle that decrypts honest ciphertexts:
those output by the encryption oracle (excluding the challenge ciphertext). PRE-HRA can be
viewed as an adaptation of this equivalent view of Enc-CPA to proxy reencryption.

In addition to better capturing our intuitions about proxy reencryption security, PRE-HRA
guarantees more meaningful security in the most common applications of proxy reencryption. PRE-
HRA security is an appropriate goal when developing new techniques for proxy reencryption and
in settings where full CCA security is undesirable or out of reach.

While PRE-HRA security is (strictly) stronger than CPA, it is (strictly) weaker than CCA.
With the new definition, the most immediate question is: can we construct a proxy reencryption
scheme that is PRE-HRA secure (that is not also CCA secure)?

A natural place to begin is with existing CPA schemes. In order to avoid proving the PRE-HRA

2 It is easy to separate the notions. Suppose (KeyGen,Enc,Dec,ReKeyGen,ReEnc) is CCA secure, and let “‖”
denote concatenation of strings. Define a new scheme as follows: KeyGen′ ≡ KeyGen; ReKeyGen′ ≡ ReKeyGen;
Enc′(pk,m) := Enc(pk,m)‖0; ReEnc′(rk, ct‖b) := ReEnc(rk, ct)‖b;

Dec′(sk, ct‖b) :=

{
Dec(sk, ct) b = 0
sk b = 1

.

This scheme enjoys security against an adversary with access to OReEnc, but is easily attacked using ODec.
3This dual-guarantee conception of proxy reencryption security mirrors the security requirements of [ID03] that

were not adopted by subsequent work. Indeed, our definition of security can be viewed as an adaptation and
modernization of their CPA notion (defined only in a proof in the appendix).

3



security of these schemes from first principles, we identify a property – reencryption simulatablity
– which is sufficient to boost CPA security to PRE-HRA security. Very roughly, reencryption sim-
ulatability means that reencrypted ciphertexts resulting from computing ReEnc(rkalice→bob, ctalice)
can be simulated without knowledge of the secret key skalice (but with knowledge of the plaintext
message m). Reencryption simulatability allows an algorithm with access to the CPA oracles to
efficiently implement the honest reencryption oracle, thereby reducing PRE-HRA security to CPA
security.

In Section 4, we first examine the simple construction of proxy reencryption from any fully-
homomorphic encryption [Gen09], and second the pairings-based construction of [AFGH06]. In the
first case, if the fully-homomorphic encryption secure is circuit private, then the resulting proxy
reencryption scheme is reencryption simulatable. In the second case, rerandomizing reencrypted
ciphertexts suffices for reencryption simulation.4

2 Insufficiency of CPA security for applications

In Section 3.1, we define CPA security of proxy reencryption, and formalize the Trivial Scheme from
the introduction satisfying the notion. We are faced with a choice: accept the existing definition
of CPA security, or reject it and seek a definition that better captures our intuitions. In support
of the latter, we describe a number of applications of proxy reencryption proposed in the literature
in which CPA security (as implemented by the Trivial Scheme) is potentially unsatisfactory.5 We
revisit these applications in Section 3.3 after proposing a new security notion.

Encrypted email forwarding [BBS98, Jak99, AFGH06] A common suggestion, forwarding
of encrypted email without requiring the sender’s participation might be desirable for tem-
porary delegation during a vacation [Jak99] or for spam filtering [AFGH06]. Does the Trivial
Scheme suffice? The Trivial Scheme enables Bob, the receiver of Alice’s forwarded (and reen-
crypted) email, to recover Alice’s secret key. If Alice trusts Bob enough to use the Trivial
Scheme, she could instead reveal her secret key. The Trivial Scheme might be preferable in
very specific trust or interaction models, but is does not offer meaningful security against
Bob if Alice only wishes to forward a subset of emails (for example, from particular senders
or those received while on vacation).

Key escrow [ID03] Similar to email forwarding, “The problem is to allow the law enforcement
agency to read messages encrypted for a set of users, for a limited period of time, without
knowing the users secrets. The solution is to locate a key escrow agent between the users
and the law enforcement agency, such that it controls which messages are read by the law
enforcement agencies” [ID03]. As in email forwarding, the “for a limited period of time”

4While we don’t examine every pairings-based construction of proxy reencryption, we suspect that rerandomizing
reencryption will suffice for reencryption simulation in many, if not all.

5One might look to the originators of the proxy encryption notion: “Clearly, A must (unconditionally) trust B,
since the encryption proxy function by definition allows B to decrypt on behalf of A” [BBS98]. While seeming to
disagree with us, to properly understand [BBS98], it is important to recognize that the authors conceive of only two
parties (A tells B the reencryption key). The shortcoming we identify does not manifest in that setting and therefore
[BBS98] provides little guidance. We might also appeal to [ID03], the only paper in the proxy reencryption literature
of which we are aware adopting a security definition providing a reencryption oracle without a decryption oracle.

4



requirement suggests that Ivan and Dodis would not have been satisfied with the Trivial
Scheme.6

Single-writer, many-reader encrypted storage [AFGH06, KHP06, LPK10, PRSV17] Under
different monikers (including DRM and publish/subscribe systems), these works describe sys-
tems in which a single privileged writer encrypts data and determines an access control policy
for readers. A semi-honest proxy server is entrusted with reencryption keys and is tasked with
enforcing the access control policy. Whether the Trivial Scheme suffices for these applications
depends on what sort of access control policies are envisioned. If the access is all or nothing
(i.e., all readers may access all data), the Trivial Scheme suffices; if the access is fine grained
(i.e., each reader may access only a specific subset of the data), then it does not. Existing
works are often unclear on which is envisioned.

For completeness, we mention two applications of proxy reencryption for which CPA security does
suffice.

Key rotation for encrypted cloud storage Encryption is a natural option when outsourcing
storage to an untrusted cloud. Periodically updating secret keys is recommended by NIST,
the Payment Card Industry Data Security Standard, and the OpenWeb Application Security
Project [PWA+16]. Proxy reencryption naturally allows the storage server to perform the
key rotation without decrypting. In this application, CPA security suffices as there are only
two parties: the client (who is both Alice and Bob) and the server (Polly).

Fully homomorphic encryption [Gen09] Though not exactly an application of proxy reen-
cryption, fully homomorphic encryption is closely connected. There is a trivial construction
of proxy reencryption (unidirectional, multi-hop) from any public key fully homomorphic
encryption.7 Conversely, reencryption is a critical component of FHE constructions includ-
ing Gentry’s. As in key rotation, there is only one party with knowledge of secret keys; a
homomorphic evaluator acts only as the proxy.

3 Security against honest reencryption attacks

In this section, we motivate and formalize security of proxy reencryption (PRE) against honest
reencryption attacks (PRE-HRA). We begin with the definitions of syntax, correctness, and CPA
security from [ABH09, Definition 2.2] (with minor changes in notation and presentation, and the
change noted in Remark 1). For the sake of concreteness, simplicity, and brevity, we restrict the
discussion to unidirectional, single-hop schemes. In multi-hop schemes, rkA→B and rkB→C can be
used to reencrypt a ciphertext ctA from pkA to pkC . In single-hop schemes, they cannot. Single-hop

6Note that Ivan and Dodis do not adopt the CPA definition used elsewhere, but a definition much closer to our
own. There is no gap between their security guarantees and the requirements of their briefly-described application.

Though primarily focused on the setting where the key escrow agent enforces the limited time requirement by
eventually refusing to reencrypt, [ID03] considers the possibility of dividing time into epochs and enforcing the time
limitation technically. Such a proxy reencryption is called temporary in [AFGH06]. We do not discuss temporary
proxy reencryption further.

7Though this fact was observed in [Gen09] and discussed in [Kir], it goes surprisingly unmentioned in a number
of works constructing proxy reencryption from lattice assumptions [FL, PRSV17, PWA+16]. The construction also
works from depth-bounded FHE (if the depth-bound is greater than the depth of the decryption circuit), removing
the need for circularity assumptions.

5



or multi-hop schemes each have their benefits and drawbacks, and works typically focus on one or
the other notion.8 To the best of our knowledge, our observations and results can all be adapted
to the multi-hop setting.

3.1 Security against chosen plaintext attacks

Definition 1 (Proxy Reencryption: Syntax [ABH09]). A proxy reencryption scheme is a tuple of
algorithms PRE = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) for message space M:

• Setup(1λ) → pp. On input security parameter 1λ, the setup algorithm outputs the public
parameters pp.

• KeyGen(pp) → (pk, sk). On input public parameters, the key generation algorithm outputs a
public key pk and a secret key sk. For ease of notation, we assume that both pk and sk include
pp and refrain from including pp as input to other algorithms.

• ReKeyGen(ski, pkj) → rki→j. Given a secret key ski and a public key pkj, where i 6= j, the
reencryption key generation algorithm outputs a reencryption key rki→j.

• Enc(pki,m) → cti. On input a public key pki and a message m ∈ M, the encryption
algorithms outputs a ciphertext cti.

• ReEnc(rki→j , cti)→ ctj. Given a reencryption key from i to j and a ciphertext under key pki,
the reencryption algorithm ouputs a ciphertext ctj or the error symbol ⊥.

• Dec(skj , ctj) → m. Given a secret key skj and a ciphertext ctj, the decryption algorithm
outputs a message m ∈M or the error symbol ⊥.

Definition 2 (Proxy Reencryption: Correctness [ABH09]). A proxy reencryption scheme PRE is
correct with respect to message space M if:

• For all (pk, sk)← KeyGen(pp) and all m ∈M:

Dec(sk,Enc(pk,m)) = m.

• For all (pki, ski), (pkj , skj)← KeyGen(pp), rki→j ← ReKeyGen(ski, pkj), and m ∈M:

Dec(skj ,ReEnc(rki→j ,Enc(pki,m))) = m.

8 The literature is divided about whether “single-hop” is merely a correctness property (i.e., demonstrating how to
reencrypt once, but agnostic about whether reencrypting more than once is possible) or if it is also a security property
(i.e., a ciphertext can be reencrypted once, but never twice). This distinction manifests in the security definition.
In works that consider only single-hop correctness [AFGH06, ABH09, HRsV11, NAL15], the oracle OReKeyGen in the
security game will not accept queries (i, j) such that i ∈ Hon and j ∈ Cor . We adopt this formalism in Definitions 3
and 5 for simplicity of presentation only.

In works that consider single-hop security [LV08, CWYD10, FL], the oracle will answer such queries, but the
challenge ciphertext must be encrypted under a key i∗ for which no such reencryption key was generated (which can
be formalized in a number of ways).

6



Security is modeled by a game played by an adversary A. In the setting of many users, A has
the power to corrupt a set of users Cor (learning their secret keys) while learning only the public
keys for a set of honest users Hon. Additionally, A may reencrypt ciphertexts (either by getting
a reencryption key or calling a reencryption oracle) between pairs of users in Hon or in Cor, or
from Cor to Hon, but not from Hon to Cor. This is in contrast to the simplified three-party setting
discussed in the introduction, where the A could not reencrypt whatsoever.

Definition 3 (Proxy Reencryption: Security Game for Chosen Plaintext Attacks (CPA) [ABH09]).
Let λ be the security parameter and A be an oracle Turing machine. The CPA game consists of an
execution of A with the following oracles. The game consists of three phases, which are executed in
order. Within each phase, each oracle can be executed in any order, poly(λ) times, unless otherwise
specified.

Phase 1:

• Setup: The public parameters are generated and given to A. A counter numKeys is initialized
to 0, and the sets Hon (of honest / uncorrupted indices) and Cor (of corrupted indices) are
initialized to be empty. This oracle is executed first and only once.

• Uncorrupted Key Generation: Obtain a new key pair (pki, ski) ← KeyGen(pp). A is given
pki. The current value of numKeys is added to Hon and numKeys is incremented.

• Corrupted Key Generation: Obtain a new key pair (pki, ski) ← KeyGen(pp). A is given
(pki, ski). The current value of numKeys is added to Cor and numKeys is incremented.

Phase 2: For each pair i, j ≤ numKeys, compute the reencryption key rki→j ← ReKeyGen(ski, pkj).

• Reencryption Key Generation OReKeyGen: On input (i, j) where i, j ≤ numKeys, if i = j or if
i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return the reencryption key rki→j.

• Reencryption OReEnc: On input (i, j, cti) where i, j ≤ numKeys, if i = j or if i ∈ Hon and
j ∈ Cor, output ⊥. Otherwise return the reencrypted ciphertext ReEnc(rki→j , cti).

• Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈ M, sample a bit
b ← {0, 1} uniformly at random, and return the challenge ciphertext ct∗ ← Enc(pki,mb).
This oracle can only be queried once.

Phase 3:

• Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The CPA advantage of A is defined as

AdvACPA(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in the CPA game.

Definition 4 (Proxy Reencryption: CPA Security [ABH09]). Given a security parameter 1λ, a
proxy reencryption scheme is CPA secure if for all probabilistic polynomial-time adversaries A,
there exists a negligible function negl such that

AdvACPA(λ) < negl(λ)

7



Remark 1. Another definitional subtlety of proxy reencryption worth discussing affects not just
CPA security, but PRE-HRA and CCA security as well. Consider the specification of OReKeyGen

and OReEnc in Definition 3 of CPA security. As defined, the reencryption keys rki→j are persistent:
the same key is used each time a pair (i, j) is queried. This follows [ABH09, Definition 2.5] and
[ABPW13, FL], though we find our formalization somewhat simpler.

Contrast this with [ABH09, Definition 2.2] in which reencryption keys are ephemeral: they are
generated afresh each time either oracle is invoked on the same pair (i, j). [BLMR13, PWA+16,
CH07] similarly use ephemeral keys in their definitions. In the remaining papers we examined, it
was less clear whether reencryption keys were ephemeral or persistent.

Neither definition implies the other; it is a simple exercise to construct proxy reencryption
schemes separating the notions. Of course, one can easily define a hybrid notion stronger than both
by allowing the adversary to specify for each query whether it wants to use reencryption keys that
are new or old. Even so, we believe that it is generally desirable to use the persistent formalization
as it better captures ‘typical’ use. To the best of our knowledge, all claims in this work can be
adapted to the ephemeral setting.

The weakness of CPA security lies in the specification of OReEnc, which does not reencrypt
any ciphertexts from honest to corrupt users. While it is easy to show that the following schemes
(described in the introduction) are CPA secure, in each scheme a single ciphertext reencrypted
from an honest index to a corrupted index completely destroys security.

Concatenation Scheme Let (KeyGen,Enc,Dec,ReKeyGen,ReEnc) be a CPA-secure proxy reen-
cryption. Define a new scheme by modifying reencryption:

ReEnc′(rk,m) := ReEnc(rk,m)‖rk.

Trivial Scheme Let (Setupcirc,KeyGencirc,Enccirc,Deccirc) be a circularly secure encryption scheme
(or rather “clique-secure” as in [BHHO08]). Let Setup ≡ Setupcirc; KeyGen ≡ KeyGencirc;
Enc ≡ Enccirc; ReKeyGen(ski, pkj) := Enc(pkj , ski); ReEnc(rki→j , cti) := cti‖rk;

Dec(sk, ct) :=

{
Deccirc(Deccirc(sk, ct

′′), ct′) if ct = ct′‖ct′′
Deccirc(sk, ct) else

.

3.2 Security against honest reencryption attacks

We seek a definition of security which holds as long as the adversary only sees honestly reen-
crypted ciphertexts, unless the set of corrupt parties can trivially violate security (by some chain
of reencryption keys from an uncorrupted public key to a corrupted public key).

We term this notion “security against honest-reencryption attacks (PRE-HRA)”. To formalize
it, we model the ability of an adversary to see honest reencryptions by granting it access to a
modified reencryption oracle OReEnc. Instead of taking a ciphertext as input, the modified OReEnc

takes as input a reference to a previously generated ciphertext (either as the output of OEnc or
OReEnc itself). To implement such an oracle, we introduce to the definition a key-value store C as
additional state: the values are ciphertexts ct which are keyed by a pair of integers (i, k), where
i denotes the index of the key pair (pki, ski) under which ct was (re)encrypted, and k is a unique
index assigned to ct.

As described, this new OReEnc admits a trivial attack: simply reencrypt the challenge ciphertext
to a corrupted key and decrypt. Following [CH07], our definition rules out this trivial attack by

8



storing a set Deriv of ciphertexts derived from the challenge by reencrypting, and rejecting queries to
OReEnc for ciphertexts in Deriv and a corrupted target key. We might have instead chosen to forbid
any reencryptions of the challenge ciphertext, even between uncorrupted keys. Though this would
have simplified the definition, it would have been unsatisfactory. For example, in the single-writer,
many-reader encrypted storage application the contents of a message m that gets reencrypted from
Alice to Charlie should be hidden from Bob.

Definition 5 (Proxy Reencryption: Security Game for Honest Reencryption Attacks (PRE-HRA)).
Let λ be the security parameter and A be an oracle Turing machine. The PRE-HRA game consists
of an execution of A with the following oracles. The game is identical to the CPA security game
except with the following modifications of Setup, Challenge, and OReEnc, and the addition of an Enc
oracle OEnc to Phase 2. OEnc may be executed poly(λ) times and in any order relative to the other
oracles in Phase 2.

Phase 1:

• Setup: Setup additionally initializes a counter numCt to 0, a key-value store C to empty, and
a set Deriv to be empty.

Phase 2:

• Encryption OEnc: On input (i,m), where i ≤ numKeys, compute ct ← Enc(pki,m) and
increment numCt. Store the value ct in C with key (i, numCt). Return (numCt, ct).

• Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈ M, sample a bit
b ← {0, 1} uniformly at random, compute the challenge ciphertext ct∗ ← Enc(pki,mb), and
increment numCt. Add numCt to Deriv. Store the value ct∗ in C with key (i, numCt). Return
(numCt, ct∗). This oracle can only be queried once.

• Reencryption OReEnc: On input (i, j, k) where i, j ≤ numKeys and k ≤ numCt, if j ∈ Cor and
k ∈ Deriv return ⊥. If there is no value in C with key (i, k), return ⊥. Otherwise, let cti be
that value in C, let ctj ← ReEnc(rki→j , cti), and increment numCt. Store the value ctj in C
with key (j, numCt). Return (numCt, ctj).

Phase 3:

• Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The PRE-HRA advantage of A is defined as

AdvAPRE−HRA(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in PRE-HRA game.

Definition 6 (Proxy Reencryption: PRE-HRA Security ). Given a security parameter 1λ, a proxy
reencryption scheme is PRE-HRA secure if for all probabilistic polynomial-time adversaries A,
there exists a negligible function negl such that

AdvAPRE−HRA(λ) < negl(λ)

9



3.3 Sufficiency of PRE-HRA security for applications

Neither the Trivial Scheme nor the Concatenation Scheme satisfy PRE-HRA. Returning to the
applications of proxy reencryption described in Section 2, we observe that PRE-HRA security
provides meaningfully stronger security guarantees.

Encrypted email forwarding Using proxy reencryption with PRE-HRA security, Alice can for-
ward encrypted email to Bob for a short period of time (during a vacation, say) and be sure
that Bob cannot read her email after she returns.

Key escrow Similar to encrypted email forwarding, proxy reencryption with PRE-HRA can be
used to enable law enforcement to read certain encrypted messages without compromising
the secrecy of documents outside the scope of a search warrant or subpoena, for example.

Single-writer, many-reader encrypted storage Whereas proxy reencryption with CPA secu-
rity can only support all or nothing access (i.e., all readers may access all data), PRE-HRA
security can support fine grained access control (i.e., each reader may access only a specific
subset of the data).

4 Security of existing proxy reencryption schemes

Can we construct PRE-HRA-secure proxy reencryption? The most natural place to begin is with
existing schemes. In this section we examine the relationships between CPA, PRE-HRA, and CCA
security, showing that each is stronger than the previous. Although CPA security is strictly weaker
than PRE-HRA security, we might hope that the existing CPA secure schemes already satisfy the
more stringent definition. To this end, we identify a property (reencryption simulatability) sufficient
to boost CPA security to PRE-HRA security.9

We examine the simple construction of CPA secure proxy reencryption from any fully-homomorphic
encryption (FHE) presented in [Gen09]. While the resulting proxy reencryption may not be PRE-
HRA secure in general, if the FHE is circuit private – a property Gentry imbues into his FHE by
rerandomization – the same construction will be PRE-HRA secure. We then examine pairings-based
schemes, finding there too that rerandomization provides a direct path to PRE-HRA security.10

4.1 PRE-HRA in relation to CPA and CCA security

In this section, we examine the relationships between PRE-HRA, CPA, and CCA notions of security,
and identify a property (reencryption simulatability) that suffices to elevate CPA security to PRE-
HRA security.

Claim 1. Let PRE be an PRE-HRA secure proxy reencryption scheme. Then PRE is CPA secure.

9Some existing notions in the proxy reencryption literature seem powerful enough to elevate CPA security to PRE-
HRA security, including proxy invisibility [AFGH06], unlikability [FL], and punctured security [ACJ17]. However,
these notions are not sufficiently well defined to draw any concrete conclusions. The notion of key-privacy [ABH09]
does not in general suffice for PRE-HRA security.

10While we don’t examine every pairings-based construction of proxy reencryption, we suspect that rerandomizing
reencryption will suffice for reencryption simulation in many, if not all.

10



The proof is below. As we omit a proper definition of CCA security for proxy reencryption, the
next claim is stated without proof.11

Claim 2. Let PRE be an CCA secure proxy reencryption scheme ([CH07, Definition 2.412]). Then
PRE is PRE-HRA secure.

Proof of Claim 1. From any probabilistic, polynomial-time algorithm A (the CPA adversary), we
construct an efficient algorithm A′ such that AdvA

′
PRE−HRA(λ) = AdvACPA(λ); by the PRE-HRA

security of PRE this advantage is negligible, completing the proof.
A′ runs A and simulates the CPA security game (if A does not follow the specification of the

CPA security game, A′ simply aborts). For Phase 1, A′ runs Setup and gives A the generated public
parameters; A′ passes all key generation oracle calls and answers unaltered between A and its own
PRE-HRA oracles. A′ begins Phase 2 by requesting all (admissible) reencryption keys rki→j from
OReKeyGen. Oracle calls from A to OReKeyGen are answered with the corresponding reencryption
key. Oracle calls from A to OReEnc are answered by A′ by computing the reencryption using the
appropriate reencryption key; this is possible because OReEnc returns ⊥ if and only if A′ is unable
to get the corresponding reencryption key. Calls from A to the Challenge and Decision oracles are
passed to the corresponding PRE-HRA oracles unaltered. The running time of A′ is polynomially
related to the that of A.

Observe that A′ implements the CPA security game perfectly, and A wins that game if and
only if A′ wins the PRE-HRA security game. Therefore AdvA

′
PRE−HRA(λ) = AdvACPA(λ).

Reencryption simulatability While PRE-HRA is a strictly stronger security notion than CPA,
we now show that if a CPA secure proxy reencryption scheme has an additional property we call
reencryption simulatability, then it must also be PRE-HRA secure. Very roughly, reencryption
simulatability means that ciphertexts resulting from computing ReEnc(rki→j , cti) can be simulated
without knowledge of the secret key ski (but with knowledge of the plaintext message m). Note
that ReEnc uses rki→j which is a function of ski.

Reencryption simulatability allows an algorithm with access to the CPA oracles to efficiently
implement the honest reencryption oracle. For intuition, consider the following approach to reduc-
ing PRE-HRA security to CPA security. Suppose there existed an adversary APRE−HRA violating
the PRE-HRA security of a scheme; the reduction plays the roles of both the CPA adversary and
the challenger in the PRE-HRA security game, and attempts to violate CPA security. To succeed,
the reduction must be able to answer honest reencryption queries from uncorrupted keys to cor-
rupted keys. Though the reduction knows the messages being reencrypted, it does not know the
appropriate reencryption key. However, if it could indistinguishably simulate these reencryptions
then it could indeed leverage APRE−HRA to violate CPA security.

Definition 7 (Reencryption Simulatability). A proxy reencryption scheme PRE is reencryption
simulatable if there exists a probabilistic, polynomial-time algorithm ReEncSim such that for all
m ∈M:

(ReEncSim(pki, pkj , cti,m), aux) ≈s (ReEnc(rki→j , cti), aux),

11As in standard encryption, a number of CCA variants have been studied in the proxy reencryption literature.
Using the family of parameterized definitions of [NAL15], Claim 2 holds for CCAa,2 for a ∈ {0, 1, 2}. The claim
additionally holds “replayable” variants of CCA security (as is considered in [CH07, LV08]).

12More precisely, Definition 2.4 of [CH07] modified to use persistent, rather than ephemeral, reencryption keys, as
per Remark 1.

11



where ≈s denotes statistical indistinguishability and ctj, ct
′
j and aux are sampled according to

pp← Setup(1λ),

(pki, ski)← KeyGen(pp),

(pkj , skj)← KeyGen(pp),

rki→j ← ReKeyGen(skj , pki),

cti ← Enc(pki,m),

aux = (pp, pki, ski, pkj , skj , cti, rki→j).

A special case of the above is when ReEncSim(pki, pkj , cti,m) = Enc(pkj ,m) simply computes
a fresh encryption of the message. That is, if reencrypted ciphertexts are distributed like fresh
ciphertexts, then the proxy reencryption is source-hiding.

Theorem 1. Let PRE be an CPA secure, reencryption simulatable, proxy reencryption scheme.
Then PRE is PRE-HRA secure.

Proof outline. The proof proceeds according to the intuition above. From any probabilistic, polynomial-
time algorithm A (the PRE-HRA adversary), we construct an algorithm A′ such that AdvA

′
CPA(λ) ≥

AdvAPRE−HRA(λ) − negl(λ); by the CPA security of PRE this advantage is negligible, completing
the proof.
A′ runs A and simulates the PRE-HRA security game (if A does not follow the specification of

the PRE-HRA security game, A′ simply aborts). To answer oracle calls by A to any oracle other
than OReEnc, A′ simply passes the calls and answers unaltered to the corresponding CPA oracles.

To answer oracle calls to OReEnc between two uncorrupted keys or two corrupted keys, A′ uses
the corresponding reencryption key. On the other hand, for calls to OReEnc from an uncorrupted
key to a corrupted key, A′ simulates the reencryption using ReEncSim. This is possible because
A′ knows the underlying m. Note that the challenge (for which A′ does not know the underlying
plaintext) cannot be reencrypted from uncorrupt to corrupt keys in the PRE-HRA security game.

Reencryption simulatability implies that the views of A in the real security game (using the real
OReEnc) and the simulated security game (using ReEncSim) are statistically close, and A′ wins the
CPA security game if and only if A wins in the simulated PRE-HRA game described above.

4.2 Fully homomorphic encryption and proxy reencryption

There is an intimate connection between FHE and proxy reencryption: a sufficiently powerful
somewhat homomorphic encryption scheme implies CPA secure proxy reencryption, which can be
used to “bootstrap” the scheme to achieve fully homomorphic encryption [Gen09]. For the relevant
FHE definitions, see [Gen09, Section 2].

Let FHE = (SetupFHE,KeyGenFHE,EncFHE,DecFHE,EvalFHE) be an FHE scheme. Proxy reen-
cryption can be constructed as follows (compare to the Trivial Scheme from Section 3.1):

• KeyGenPRE, EncPRE and DecPRE are identical to their FHE counterparts.

• ReKeyGenPRE(ski, pkj) = EncFHE(pkj , ski)‖pkj . The reencryption key rki→j is an encryption
under pkj of ski, along with the target public key pkj .

12



• ReEncPRE(rki→j , cti): Let cti→j ← EncFHE(pkj , cti). Homomorphically compute the FHE de-
cryption function DecFHE(ski, cti) using the corresponding ciphertexts rki→j and cti→j (under
pkj). That is, output ctj = EvalFHE(pkj ,DecFHE, rki→j , cti→j).

The correctness of the FHE implies the correctness of the resulting proxy reencryption:

DecPRE(skj , ctj) = DecFHE(skj , ctj) = DecFHE(ski, cti) = DecPRE(ski, cti).

Furthermore, the proxy reencryption scheme is CPA secure.
To demonstrate that the construction might not be PRE-HRA secure, consider the following

fully homomorphic encryption scheme FHE′ constructed from any existing scheme FHE. The only
modification made in FHE′ is to EvalFHE′ :

EvalFHE′(pkj , C, ct1, ct2) := EvalFHE(pkj , C, ct1, ct2)‖ct1.

Note that FHE′ does not violate FHE compactness if ct1 (in the proxy reencryption construction,
rki→j) is always of some size bounded by a polynomial in the security parameter of the FHE
scheme; this suffices for our purpose. Instantiating the proxy reencryption construction with FHE′

essentially results in the Concatenation Scheme from Section 3.1, which is not PRE-HRA secure.

Circuit privacy An FHE scheme is circuit private if ciphertexts resulting from FHE evaluations
are statistically indistinguishable from fresh ciphertexts [Gen09]. Namely, if for any circuit C and
any ciphertexts ct1,. . . ,ctt:

EncFHE(pk, C(ct1, . . . , ctt)) ≈s EvalFHE(pk, C, ct1, . . . , ctt).

In [Gen09], an FHE scheme without circuit privacy is modified to be circuit private by rerandomizing
the ciphertexts resulting from EvalFHE.

While our proxy reencryption construction above is not in general PRE-HRA secure, it is easy
to see that if the underlying FHE is circuit private, then the proxy reencryption is reencryption
simulatable (Definition 7). By Theorem 1, the resulting scheme is therefore PRE-HRA secure.

4.3 Pairings-based proxy reencryption

Many constructions of proxy reencryption are based on the hardness of Diffie-Hellman-type prob-
lems over certain bilinear groups, including [AFGH06, CH07, LV08, ABH09, HRsV11].

A prototypical construction is that of [AFGH06], which itself is based on the original scheme
of [BBS98]. For every λ, let G1 and G2 be groups of prime order q = Θ(2λ), and let g be a
generator of G1. Let e be a non-degenerate bilinear map e : G1×G1 → G2 (i.e., for all h ∈ G1 and
a, b ∈ Zq, e(ha, hb) = e(h, h)ab, and for all generators g of G1, e(g, g) 6= 1). Let Z = e(g, g). The
message-space of the scheme is G2.

• Setup(1λ): Output pp = (q, g,G1, G2, e).

• KeyGen(pp): Sample a← Zq uniformly at random. Output sk = a and pk = ga.

• Enc(pk,m): Sample k ← Zq uniformly at random. Output ct = (pkk,mZk) = (gak,mZk).

• ReKeyGen(skA = a, pkB = gb): Output rkA→B = gb/a.

13



• ReEnc(rkA→B, ctA): Let ctA = (α1, α2). Output

ctB = (e(α1, rkA→B), α2) = (e(gak, gb/a),mZk) = (Zbk,mZk).

• Dec(sk, ct): Let ct = (α1, α2). If α1 ∈ G2 (i.e., if it is the result of ReEnc), then out-

put α2/α
1/a
1 = mZk/Zk = m. Otherwise α1 ∈ G1 (i.e., it is a fresh ciphertext); output

α2/e(α1, g)1/a = mZk/e(gak, g)1/a = mZk/Zk = m.

Is this scheme PRE-HRA secure? It is tempting to say that the scheme is reencryption simu-
latable; after all, given a message m it is indeed straightforward to sample (Zbk,mZk) for random
k ← Zq. However ctA = (gak,mZk) and ctB = ReEnc(rkA→B, ctA) = (Zbk,mZk) share the ran-
domness k. Given ctA = (gak,mZk) and m, it is not clear how to output (gbk,mZk).

Rerandomization A minor modification to the scheme above guarantees reencryption simulata-
bility and therefore PRE-HRA security. Replace ReEnc above with ReEnc′:

• ReEnc′(rkA→B, ctA): Compute (Zbk,mZk) = ReEnc(rkA→B, ctA). Sample k′ ← Z uniformly
at random, and output (Zbkk

′
,mZkk

′
).

The resulting proxy reencryption scheme maintains the CPA security of the original, as the only
modification is the rerandomization of reencrypted ciphertexts (which can be done by anyone with
knowledge of the public parameters).

Furthermore, the scheme is now reencryption simulatable. To see why, observe that the result-

ing reencrypted ciphertexts are uniformly distributed in {(ct1, ct2) ∈ G2 × G2 : ct2/ct
1/b
1 = m},

independent of all other keys and ciphertexts. Such ciphertexts are easily sampled with knowledge
of pp, pkB = gb and m as follows.

• ReEncSim(pp, pkB,m): Sample k′ ← Zq uniformly at random, and and output (e(pkB, g
k),m ·

e(g, gk)) = (Zbk
′
,mZbk

′
).

Thus, by Theorem 1, the modified scheme is PRE-HRA secure. Observe that rerandomization
was the key to achieving circuit privacy (and thereby PRE-HRA security) in the FHE-based proxy
reencryption construction as well.

The pairings-based schemes of [ABH09] and [HRsV11] already incorporate rerandomization
during reencryption. In the former case, it is used to achieve “key privacy;” in the latter, to achieve
obfuscation of the reencryption functionality. In each, it is straightforward to show that the schemes
are also reencryption simulatable and therefore PRE-HRA secure.

References

[ABH09] Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-private proxy re-
encryption. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 5473:279–294, 2009.

[ABPW13] Yoshinori Aono, Xavier Boyen, Le Trieu Phong, and Lihua Wang. Key-Private Proxy
Re-encryption under {LWE}. (23500031):1–18, 2013.

14



[ACJ17] Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain. Cryptography with updates.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 445–472. Springer, 2017.

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. ACM
Transactions on Information and System Security, 9(1):1–30, 2006.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In Advances in CryptologyEUROCRYPT’98, pages 127–144. Springer,
1998.

[BHHO08] Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-secure en-
cryption from decision diffie-hellman. In Annual International Cryptology Conference,
pages 108–125. Springer, 2008.

[BLMR13] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key homo-
morphic prfs and their applications. In Advances in Cryptology–CRYPTO 2013, pages
410–428. Springer, 2013.

[BPRR17] Cristian Borcea, Yuriy Polyakov, Kurt Rohloff, and Gerard Ryan. Picador: End-to-end
encrypted publish–subscribe information distribution with proxy re-encryption. Future
Generation Computer Systems, 71:177–191, 2017.

[CH07] Ran Canetti and Susan Hohenberger. Chosen-Ciphertext Secure Proxy Re-Encryption.
pages 1–22, 2007.

[CWYD10] Sherman S M Chow, Jian Weng, Yanjiang Yang, and Robert H Deng. Efficient Unidi-
rectional Proxy Re-Encryption. (60903178):316–332, 2010.

[FL] Xiong Fan and Feng-Hao Liu. Proxy re-encryption and re-signatures from lattices.

[Gen09] Craig Gentry. a Fully Homomorphic Encryption Scheme. PhD Thesis, (September):1–
209, 2009.

[HHY11] Yi Jun He, Lucas C K Hui, and Siu Ming Yiu. Avoid illegal encrypted DRM content
sharing with non-transferable re-encryption. International Conference on Communi-
cation Technology Proceedings, ICCT, pages 703–708, 2011.

[HRsV11] Susan Hohenberger, Guy N Rothblum, Abhi shelat, and Vinod Vaikuntanathan. Se-
curely Obfuscating Re-Encryption. 24(4):694–719, 2011.

[ID03] Anca Ivan and Yevgeniy Dodis. Proxy cryptography revisited. Proceedings of the
Network and Distributed System Security Symposium (NDSS), pages 1–20, 2003.

[Jak99] Markus Jakobsson. On quorum controlled asymmetric proxy re-encryption. In Inter-
national Workshop on Public Key Cryptography, pages 112–121. Springer, 1999.

[KHP06] Himanshu Khurana, Jin Heo, and Meenal Pant. From proxy encryption primitives to
a deployable secure-mailing-list solution. In International Conference on Information
and Communications Security, pages 260–281. Springer, 2006.

15



[Kir] Elena Kirshanova. Proxy Re-encryption from Lattices. pages 77–94.

[LPK10] Sangho Lee, Heejin Park, and Jong Kim. A secure and mutual-profitable DRM interop-
erability scheme. Proceedings - IEEE Symposium on Computers and Communications,
pages 75–80, 2010.

[LV08] Benoit Libert and Damien Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy
Re-encryption. pages 360–379, 2008.

[NAL15] David Nunez, Isaac Agudo, and Javier Lopez. A Parametric Family of Attack Models
for Proxy Re-encryption. Proceedings of the Computer Security Foundations Workshop,
2015-Septe(Csf):290–301, 2015.

[PRSV17] Yuriy Polyakov, Kurt Rohloff, Gyana Sahu, and Vinod Vaikuntanthan. Fast proxy
re-encryption for publish/subscribe systems. 2017.

[PWA+16] Le Trieu Phong, Lihua Wang, Yoshinori Aono, Manh Ha Nguyen, and Xavier Boyen.
Proxy Re-Encryption Schemes with Key Privacy from LWE. IACR Cryptology ePrint
Archive, 2016:327, 2016.

16


	Introduction
	Insufficiency of CPA security for applications
	Security against honest reencryption attacks
	Security against chosen plaintext attacks
	Security against honest reencryption attacks
	Sufficiency of PRE-HRA security for applications

	Security of existing proxy reencryption schemes
	PRE-HRA in relation to CPA and CCA security
	Fully homomorphic encryption and proxy reencryption
	Pairings-based proxy reencryption


