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Abstract. Although AES is designed to be secure againstde wariety of linear and differential attacks,
security ultimately depends on a combination oféhgineering implementation and proper applicatign
intended users. In this work, we attack a publahgilable VHDL implementation of AES by exploitirag
partial result visible at the top-level public irfeee of the implementation. The vulnerability ders the
security of the implementation equivalent to a om#ad version of AES. An algorithm is presentedtth
exploits this vulnerability to recover the secreylin 2% operations. The algorithm is coded in an intetgate
high-level language and successfully recovers s&eges, with one set of known plaintext, using aegal-
purpose CPU in an average of 30 minutes.
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1 Introduction

In 2001, the U.S. Government prescribed the usthefAdvanced Encryption Standard (AES) in [1]. A&Ss
selected after a multi-year competition of opennsisbions. Selection was based on security, flétipiand
efficiency in hardware and software. Since 200&r¢ have been many software and hardware impletam of
AES. Although the AES standard states that “anglémentation that produces the same output (cipkiedr
plaintext) as the algorithm specified in this stamtlis an acceptable implementation of the AESdlgb issues the
caveat that “cryptographic security depends on nfantors besides the correct implementation of rerygtion
algorithm” [1]. As such, it is possible for effert implementations of AES to suffer critical weakses due to
implementation vulnerabilities, or to be weak daertisunderstandings of the implementation’s intendse, even
when vulnerabilities are understood by the engmeer

This paper outlines an attack that exploits acaitiveakness in a hardware implementation of AE8i|a@ble at [2].
The attack exploits the public availability of arfa result which exposes an intermediate variahlgng the first
round of computation to recover the entire secest ik 2 operations, given one known arbitrary plainteXthe
methodology and algorithm for the attack is desatiBubsequently. The recovery algorithm is thetedan Python,
and used to recover a number of secret keys basetdserved AES simulations of the implementatiof2at

2 Related Research

There are several documented studies of lineaddfetential attacks against AES, as discusse@]jn However,
since the Rijndael algorithm was designed withdimand differential cryptanalysis in mind, there &w known
attacks which successfully reduce the key seanoé bielow that required for brute-force attacks &8AL28 with 10
full round encryptions [4] (a notable exceptiorBiglique Cryptanalysis which recovers an AES-12§ ke 21261

operations, documented in [5]). However, the wtiensuccess of algebraic attacks against AES isawk and is an
ongoing area of study [3]. Additionally, technigueave been shown to reduce the complexity ofkstagainst AES-
192 and AES-256 to less than that required foresfotce attacks required for the prescribed kesngiths of the
respective ciphers [5 - 7].

There are several examples in literature whichereanalogies to the approach applied in this papke main area
of analogies is in reduced-round attacks. Manglbtiphers are designed to eliminate statistioaligmgs of possible
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linear combinations of plaintext, ciphertext, arglykas well as eliminate differential branches witim-uniform
probability, provided that a number of rounds asedi[3]. Taking this minimum number of rounds iatount, a
“safety factor” is added which forms the numberadinds prescribed by cryptographic specificatiomsa given
algorithm, key strength, and use case. For examA8-128 has 10 prescribed rounds, while AES-18212 rounds,
and AES-256 uses 14 rounds [1].

Reduced-round attacks are able to examine a sghiotext (e.g. often chosen plaintext) and ciprdrfor a subset
of rounds which is less than the prescribed nurabesunds in order to determine the security imgiiens. Usually,
the secret key is predictably recovered more eagign considering fewer rounds, and attacks becoore difficult
as the number of rounds are increased. Some édearmpreduced-round attacks against AES include Bj.
Reduced-round attacks are not restricted to AE&ngkes of reduced-round attacks which exploit paldir features
of other block ciphers include SIMON, PRINCE, Midt, and pi-Cipher, as documented in [9 - 12], eetipely.

A second analogy is attacks on “white-box” impletations of AES. White-box implementations are geed to
include additional encoding and decoding featuhes provide some level of protection, even if thiaeker has
complete access to the internal state of the ciphdris able to measure intermediate variables [E#hough the
victim implementation attacked in this paper is designed as a white-box implementation, the attaethodology
is similar in that the attacker is (unwittinglyJ@ked to access an internal state variable to siynble attack.

A third analogy is the “guess and determine” metdsdussed in [8]. This attack takes a systemgahtons that
describe a function or operation, assumes someradms on the plaintext and ciphertext, checksegpes” to see if
they are correct, and recomputes if guesses aregwro A one-round attack using one set of knowainpéxt is
documented to recover a secret key¥haperations [8].

The final analogous attack, documented in [14],trolosely resembles the attack discussed in thisparhe purpose
of [14] was to refute the claim by the Rijndaeltars that there is no security implication resgtfrom lack of a
MixColumns in the final AES encryption. The authof [14] showed that, while this is true for 1Qnal (or greater)
versions of AES, there is a significant reductiésecurity when MixColumns is omitted from a onexnd AES. In
fact, the secret key is recovered to within a fahldvcandidates in an order dfdperations [14].

In contrast to the above works, however, it is eagted that that the method used in this papetiamattack against
the AES algorithm in general, but rather againstdpecific implementation available at [2]. Theref the emphasis
of this paper is on engineering rather than mathieaianalysis.

3 Methodology

The AES implementation at [2] has a top-level ifstee where the podout contains the correct block encryption
(or decryption) on the ftclock cycle. This makes sense, because thielbek cycle does not conduct a MixColumns
or AddRoundKey, and it is desirable for the AEQute® be available to an application on thé tlbck cycle.

There is a vulnerability, however, in allowing thalue ofdout to be accessed publicly prior to the completion of
the block encryption. In fact, if an attacker krsothie plaintext and is allowed to access the comifrdout after
the F'round, the attacker can recover the entire s&esetvith relatively minimal effort. The victim iplementation

is shown in Fig. 1
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Figure 1 — AES-128 Victim Implementation [2]

The below procedure assumes a known plaiftaxd the ability to observe the contents of the gout after one
clock cycle. The details of the AES algorithm,luting SubBytes, ShiftRows, and Round Key Schedulare
outlined in [1].

Assume a known plaintext such as Plainte@t? Lety equal the value afout observed during the'lock cycle,
wherey; represents thé" byte ofdout . LetS() represent the S-Box of byte () (i.e., SubBytasjlS () be the
Inverse S-Box of byte (). Lét be theit" byte of the secret key. Lek; be theit® byte of theRoundKeygoyng 1-
Let {K} be the set of all possible valid keys, whévalid Keys} S {K}, and where the target secret kgy €
{Valid Keys}. {K} is the solution set of the simultaneous equatinisgs. 2 and 3, anf{/alid Keys} is the subset
of {K} that reproduces the correct valuedoiut after one round. Note that if the numbefld&lid Keys} > 1, it
is not possible to uniquely identi&s by observinglout after only one round; observations of at leastsuimEsequent
round are required.

After the Btround,y = ShiftRows[S(K;)|@RoundKeygoung 1- 1N Matrix form (Fig. 2), this can be expresssd a

S(ko) S(ks) S(kg) S(ki2) Yo®rkg Y4Bk, Yg®rkg Y121k,
S(ks) S(ko) S(ky3) S(k1) V1 ©rk, Ys®rks Yo®rko Y1301k 3
S (ko) S(ky4) S(k2) S(ke) y2@Ork; Y6®rke Y10@rky0 V1a@®rkyy
S(kys) S(ks) S(kq) S(ky1) y3@rks; y7@rk, Y110rk11 | ¥15@rkss

Figure 2 — Relation of Secret K&y to value observed diout in Matrix Form
Since we are interpreting the output of a functibthe round key on the first clock cycle, thera @irect relationship
between the bytes of the round key and the seefet Khe computation of RoundKgyind 1 (also labeleRK;) is
shown in Fig. 3. This allows us, in all casegdplacerk; and rewrite equations in Fig. 2 as functiong of

2 Anull plaintext is chosen as a slight simplificatj the procedure, however, works with any knovairpéxt.
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ko = S(ky3)® ko®1 rhky = Tk ® k4 rkg = Tk, @ kg ki, = Tkg @ kq
rky = S(k14)® kq rks = rki D kg rkg = 1ks @ ko rkiz = rke @ ki3
rk, = S(ki5)® k, rke = 1k, @ k¢ rkig = ke D kqg rkis = 1kio D kis
k3 = S(ki2)® k3 rk; = rks @k, rky1 = ks @ ki rkis = rki1 D kqs

Figure 3 — Computation of Round K&K, as a function of the Secret Key in Round 1
Given the matrices in Figs. 2 and 3, it remaingHierattacker to solve féy, throughk, s, where many of the variables
are dependent. The below procedure, consististeps 1 — 5 and algorithms 1 — 5, exploits deparids between
ko throughk,; to recover a s€iK’} of possibly valid secret keys:

Step 1. Recoverky, ks, kg, kiz, ki3 }

Step 1.a. Gively, kg = S (S(ki3) D ko ® 1D y,), andrk, = S(ky3) ® ko @ 1, find all { k, , k45 } pairs.

Algorithm 1a Recovef k,, ki3 }

1 functionRecover { kg, kq3 }

2 fori=0to 255 do

3 for j=0to 255 do

4: Ifi==S"1(SHDPiDLDy,)
5: rkoli]l « SH@id1
6.

7

8

9

{rko, ki3}[i] < j
end for j
end fori
return{ k, , k5 }

Step 1.b. Givety,, k, =St (rky ® k, ®y,), andrk, = rky, @ ky, find all{ k, , 7k, } pairs.

Algorithm 1b Recovef k, ,rk, }
functionRecover { k, ,rk }
fori=0to 255 do
for j=0to 255 do
ifi ==S"1(rko[j]1Di ®ys)
rkyli] < rko[j] @ i
{rka, Tko}[i] < j
end for j
end for i
return{ k, , vk, }

Step 1.c. Givelyg, kg = S71 (rk, @ kg ® yg), andrkg = 1k, ® kg, Find all{ kg, 7kg } pairs.

Algorithm 1c Recoverkg , rkg}
1. functionRecover{ kg ,rkg}

2 fori=0to 255 do

3 forj=0to 255 do

4. ifi==S"1(rk,[j]1®i ®ys)
S rkgli] < Thy[j] D
6.

7

8

9

{rkg,rky}[i] < j
end for j
end for i

return{ kg ,rkg }




Step 1.d. Givetylz, k12 = S_l (rkg @ k12 @ ylz), and rklz = rkg @ k4, f|nd a”{klz ,rklz } paII’S.

Algorithm 1d Recoverk,, , rk,,}
1 functionRecover{ kq,, rkq2}

2 fori=0to 255 do

3 for j=0to 255 do

4: ifi ==S57" (rks[j1® i © y12)
5: rki,[i] « rkg[j1 D i
6.

7

8

9

{rkiz, Tkg}[i] < j
end for j
end for i
return{ k,, , 7k, }

Step 1.e. Traverse the tree of valid pairs to &ttdalid { k, , k, , kg, k5, ki3 } S€ts.

Algorithm 1e Build Valid Combinations ofK, , k, , kg, k15, ki3 }

1: functionRecover { ko, k4, kg, k13, kq3}
2 fori=0to 255 do

3 ko« i

4: ki3 < ks € {rko, ki3}[i]

5: forj=0to 255

6 {rky, rko}lj] < i

7 ky < j

8: {ke, k12} < find {kg, k12} (/)

O: end for j

10: end for i

11: return { ko, ks, kg, kiz, ki3 }
12: functionfind {kg, k12} (j)

13: for k = 0 to 255 do

14: if{rkg, rk,}[k] ==j
15: kg < k

16: ki, «find {k2}())
17: end for k

18: returr{kg, ki,}
19: functionfind {kq,}(k)
20: for 1= 0to 255 do

21: if{rk,,, rkg}ll] ==k
22: ki, <1
23: end for |

24: return {k,,}

Step 2. Recovelrk, , ks, kg, ki4}

Giveny,, ys, yo, ¥i3; ks =S (S(kys) @ ky @ 1), kg = S(kya) @ ky, Ths = 1k @ ks, ko = S™ ( 7ks @ y5),
rkg = Tks @ kg, k13 = S_l ( rkg @ yg), Tk13 = Tkg @ k13, k1 = S_l ( Tkl?, ®y13)l and a” Valld sets Of
{ ko ’ k4_ ,kg , k12 , k13 }, find all {ko , k1 ’ k4 ,k5 ’ kg, kg , klZ’ k13, k14 } sets.

Algorithm 2 Recovef k,, ks, ko, k4 }

1 functionRecover { ky, ks, kg, kq4}

2: c « 0 /*array index for recoveredk, , k,, k4, ks, kg, ko, kis, ki3, kq4 } SELS */
3: fori=0to 255 do /* assumed*
4.
5

forj=0to 255 do /* assumegk
for k = 0 to 255 do /* assumed%



6: ifjf ==S"1(Sk)DiD v,)
7: Thks < S(k)BiDj
8: kg(—S_l( rk5®y5)
9: kg « Tks @ kq
10: ki3 « S (ke @ yo)
11 Vikiz: ki €{ko, ky, kg, kyz, ky3}
12: if i ==5"1(rke® ki3 ® y;3) I* check to see if assumed was correct */
13: {ki) ks ko, kia } < {1, J, ko, k}
14: Ko, ki, ky ks, ke, ko, ki, ki3, ki }c] <
{ko, ko kg, k12, ki J[I]U{ ks, ks ko, kis}
15: c—c+1
16: end for k
17: end for j
18: end for i

19: return {kq, ki, k, ks, kg, kg, kis, ki3, k14 }

Step 3. Recoverk,, k¢, k1o, k15 }

Giveny,, ¥, Y10, Y14 s k1o = S™H(S(kis) @ ky @ ¥,), 1ky = S(k1s) @ kp, vk = 1k, @ kg, k1 =

STH( 1k @ y6), Tkig = Tk @ kg, ky = STH( k1o @ ¥10), This = Thio @ ks, ke = STH( Th1s © ¥14), and
all valid sets of kg , ky, k4, ks, kg, ko, ki2, ki3, k14 } Wherec is the number of valid sets, find all

{ko, k1, ko, ko, ks, ke, kg, Ko, K10, K12, k13, 14, K15} SELS.

Algorithm 3 Recover{k,, k¢, ki, kis }

1: functionRecover {k,, k¢, k1o, k15 }

2: d « 0 /* array index for recoverefky, ky, ky, k4, ks, k¢, kg, ko, K10, K12, k13, k14, K15} SELS */

3: for i =0 to 255 do /* assumed

4. forj=0to 255 do /* assumeg K

5: for k = 0 to 255 do /* assumael

6: ifj==S"1(Sk)D®iD y,)

7: rk, « S(k)® i

8: forl=0to cdo

9: kis < kyawhereky, € {ky, ks, ko, ki }[1]

10: for m = 0 to 255 ddkg*guess */

11: ifkiy == ST ( 1k, ® Mm@ y¢)

12: kg < Tk, ©@m

13: ff== S ( rk¢®j ® y10)

14: ih== St (rke®j D kis O yia)

15: Ko, ke k1o, kis} < {i, m, j, k}

16: {ko, k1, ko, Ky, ks, ke, kg, ko, k1o, k12, ki3, ki, kys}d] <

{kO ’ kl ) k4 'kS 4 kS' k9 4 k12' k13' k14 }[l]

U {ky, ke kio, kis }

17: ded+1

18: end for m

19: end for |

20: end for k

21: end for j

22: end for i

23:  return{kg, ki, ky, ka, ks, ke, kg, ko, k1o, K12, k13, k14, K15}

Step 4. Recovdiks, k;, k11}

Givenys, y7, y11; k3 = S(kis)DS(k12)®y3, k; = S(k3)BS (k1) Bk Dy, kiy = S(k;)DS(k12) Dk Ok, Dy 1,
and all valid set$k,, kq, k;, ks, ks, ke, kg, ko, k10, K12, K13, k14, k15 } Whered is the number of valid sets, find &i}
sets.



Algorithm 4 Recovefks, k;, k11}

1 functionRecover {ks3, k7, k11}

2 fori=0toddo

3 ks < S(k15)®DS(k12)Dys3

4: k7 < S(k3)®S (k12)Dks Dy,

3 kiy < S(k7)®S(k12)Dks Dk, Dy1,
6

7

8

{K}[l] < {kO! kl' k2! k4! kS! k6' kB! k9! k10! k12' k13' k14' le}[l] u {k3' k7! kll}
end for i
return {K}

Step 5. Find the set of all valid kejigalid Keys}

Given{ K } and the number of possible kejsfind {Valid Keys}.

Algorithm 5 Recove{Valid Keys}
functionRecover {Valid Keys}
{Valid Keys} < @
fori=0to ddo
RKl < RoundKeyRound 1(K[i])
if ShiftRows(S(K[i])) ® RK, == y /* check againstiout (e.g. y) during ¥ round */
{Valid Keys} « {Valid Keys} U {K}[i]
end for i
return {Valid Keys}

1
2
3
4.
5:
6
7
8

4 Results

The victim AES implementation at [2] is implementadXilinx Vivado Simulator. Using the set of taftgsecret keys
(Ky) listed in Table 1, values afout are generated. Sinc®ut is publicly available as a port in the top-level
interface, the value adout is a partial result observed by the attacker &rimediate points, including during the
first round of calculations.

The above algorithm is implemented in the Pythowgleage, and tested on a CPU with Intel Core i7 &i@B RAM
and two 1 TB hard drives. Table 1 shows statigticsuccessful secret key recoveries. To dategedbvery attempts
have been successful.

Key TargetK Run Time (min) | Numbef Number

Recovery of {K} [ of

Event {Valid
Keys}

1 0123456789 ABCDEFAABBCCDD EEFF00118 2 242 3

2 09 CAB4 7D FE 87 AC 2E 86 53 BC 7D 6AEC 52 A99 2 228 1

3 89 AB CD EF 01 234567 AABBCCDDEEFFO00113 3 294 1

4 0000 00 00 00000000 00 OO0 OO0 OOOOMOOO| 81 770 4

5 0123 45 6789 AB CD EF 01 2345 67 89 ABEID| 27 252 2

Table 1 — Secret Key Recovery Attempts
5 Conclusion

The victim AES implementation at [2] is exploitey & key recovery algorithm which performs the eglént of a
reduced-round (i.e., one round) known plaintexacit The attack is possible due to the engineeainthe
implementation, which makes internal intermediadeables visible to an attacker during all rounfisalculation,
including the first round. The attack recoversdkeret key to a finite number of possible valigkéetween 1 and



4 valid keys, depending on target, in the trials conducted in this research)ihdperations. Running on a CPU in
a high-level interpreted language (e.g., Pythdm recovery takes approximately 30 minutes for mases.

The recovery order of'2described in an analogous attack in [14], and-¢hatively low recovery time described in
the “guess and determine” attack in [8], suggeat the algorithm of this attack can be made mofieieft by
improved search, tree traversal, and solution tgcis. Additionally, a compiled implementationngia language
such as C would run faster on similar hardware.

Finally, the purpose of this work was to exposeneuhbilities that could occur given shortcomingeigineering
design, misuse, or misunderstanding of the promer of the implementation by intended users. In, fdut
vulnerability in this implementation can be elimiee by registering the value dbut so that no partial results or
intermediate values are available before the fiealilt is computed, or by using this AES implemtotaas a
component of a higher-level authenticated cipheerehvalues at the output interface are protecteoh fpublic
disclosure.
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