
Gimli, Lord of the Glittering TRS-80

Jean-Marie Chauvet

MassiveRand
jmc@massiverand.com

http://www.massiverand.com

62, ave. Pierre Grenier, 92100 Boulogne-Billancourt, France

Abstract. Bernstein et al. have proposed a new permutation,Gimli [1],
which aims to provide simple and performant implementations on a wide
variety of platforms ranging from the AVR ATmega and ARM-Cortex to
the Intel Haswell. In a festive spirit of retrocomputing, this brief paper
reports such a simple and (somewhat) performant implementation on
the almost Third-Age-of-Middle-earth-dating TRS-80.

Keywords: Cryptography, Permutation, Stream Cipher, Sponge func-
tions, Gimli, Z80, TRS-80, Retrocomputing, Crazy Ideas, Remix

1 Introduction

In their recent paper introducing Gimli [1], a 384-bit permutation, Bernstein
et al. explain: �What distinguishes Gimli from other permutations is its cross-

platform performance.� While the platforms referred to there are most certainly
contemporary architectures, and indeed the paper presents reference implemen-
tations for FPGA, ASIC, 8-bit microcontroller, 32-bit high-end embedded micro-
controller, 32-bit smartphone CPU and 64-bit server CPU platforms, the choice
of a name of a once famous character of the Third Age of Middle-earth is an
invitation to investigate extending the notion of cross-platform to more antique
architectures. Short of having a distributed network of Silmarils at hand, we
settle for a TRS-80 Model 1 [4] � from 1977, complete with 16K memory and
BASIC Level II � and embark on porting the new permutation to the 40-year
old Z80 platform in festive retrocomputing spirit [3,2].

2 Z80: �Microprocessor for fourth generation computers�

All Z80 registers are implemented using static RAM. The registers include two
sets of six general-purpose registers, named B, C, D, and E, that may be used
individually as 8-bit registers or in pairs as 16-bit registers. There are also two
sets of accumulator and �ag registers, respectively A and F, and six special-
purpose registers: Interrupt Vector I, Memory Refresh R, Index registers IX and
IY, Stack Pointer SP and Program Counter PC. At any given time only one set
of registers is active.

2 Jean-Marie Chauvet

All instructions are executed as series of basic operations. Each of these
operations can take from three to six clock periods to complete (or they can be
lengthened to synchronize the CPU to the speed of external devices). The clock
periods are referred to as T (time) cycles and the operations are referred to as
M (machine) cycles. We look at the performance of the implementation in terms
of number of T-cycles. In the TRS-80 the processor is clocked at 1.77MHz.

The Z80 CPU can execute 158 di�erent instruction types falling into the
usual major groups: load and exchange, block transfer and search, arithmetic
and logical, rotate and shift, bit manipulation, jump, call and return, I/O, basic
CPU control, an ample supply for our purposes. The arithmetic and logical in-
structions operate on data stored in the accumulator and other general-purpose
CPU registers or external memory locations. The results of the operations are
placed in the accumulator and the appropriate �ags are set according to the
result of the operation. The Z80 provides a variety of addressing modes: imme-
diate (8b), immediate extended (16b), modi�ed page zero addressing, relative
(in jump instructions), extended (in jump instructions), indexed (an 8b o�set
from an index register), register indirect (using HL as a 16b pointer).

On a TRS-80 Model 1, although the Z80 can address 64k memory, not all
of it is available for users' programs. The Level II ROM, memory mapped I/O,
keyboard map, video RAM, �ll in the �rst 0x42E8 bytes so Level II BASIC
programs start at 0x42E9 and may expand up to 0x7FFF on a 16K system, the
target machine for our port of Gimli. (Introduced in 1977 the Model 1 Level 1
had only 4K RAM; Level II machines, introduced later, usually came with 16K
and could be upgraded to 32K and 48K through the purchase of the �Expansion
Interface�.)

3 Implementation

Our starting point is the SP-box in assembly and the description of its implemen-
tation on a modern 8-bit microcontroller in the Gimli paper [1], and speci�cally
Listing 5.2 therein, showing application the SP-box to three 32-bit registers x,
y, z using just two temporary registers u and v.

Fig. 1. SP-box assembly instructions from Listing 5.2

Algorithm 1

Rotate
1: x← x ≪ 24
2: y ← y ≪ 9
3: u← x

Algorithm 2

Compute x
1: v ← z � 1
2: x← y ∧ z
3: x← x� 2
4: x← x⊕ v
5: x← x⊕ u

Algorithm 3

Compute y
1: v ← y
2: y ← u ∨ z
3: y ← y � 1
4: y ← y ⊕ v
5: y ← y ⊕ u

Algorithm 4

Compute z
1: u← u ∧ v
2: u← u� 3
3: v ← v ⊕ u
4: z ← z ⊕ v

Gimli, Lord of the Glittering TRS-80 3

The Z80 provides 7 8-bit registers, two of which (HL) are preferentially used
jointly as a 16-bit memory pointer, leaving then 5 registers to perform the actual
computation � a long shot from the 32 AVR registers. This obviously does not
allow the full 384-bit Gimli state to stay in the registers but furthermore it does
not even accommodate a half-state as in the optimized construction for the AVR
architecture in [1] � in fact, a single column of 3 32-bit integers does not even
�t in the available registers.

Some drastic simpli�cations are required in order to minimize the number
of loads and stores we are forced to use in the main loop. First, we keep the
state in a block of 48 bytes, and work column by column as in the reference
C implementation. Each 32-bit word in a column however is processed byte by
byte, from low byte 0 to high byte 3. The rotations in Algorithm 1 are done
in-place on the 48-byte state, at the cost of one load and store for each byte. In
contrast, the compute steps in Algorithms 2, 3, and 4 fully use all registers to
operate on each byte of a column word in an unrolled loop of 4 substeps, one for
each byte 0 to 3 respectively of words x, y, z, u, and v.

Listing 1.1. Rotate left 24 bits
030B 1A [7] 505 ld a , (de)
030C D5 [1 1] 506 push de
030D E1 [1 0] 507 pop hl
030E 23 [6] 508 inc hl
030F 0E 03 [7] 509 ld c ,#0x03
0311 06 00 [7] 510 ld b,#0x00
0313 ED B0 [2 1] 511 l d i r
0315 12 [7] 512 ld (de) , a ;

In Listing 1.1 we implement left rotation by 24 bits, 3 bytes, by permuting
in-place the column word B[3..0] as c = B[0]; B[0] = B[1]; B[1]=B[2];

B[2]=B[3]; B[3]=c;, register pairs HL and DE are used as pointers to the con-
secutive bytes of the word. The left rotation by 9 bits is implemented as a left
rotation by 1 byte (see Listing 1.2, where IY points to the word), followed by a
left rotation of one byte also in-place.

Listing 1.2. Rotate left 1 bit
0353 FD 7E 03 [1 9] 548 ld a , 3 (iy)
0356 CB 17 [8] 549 r l a
0358 FD CB 00 16 [2 3] 550 r l 0 (iy)
035C FD CB 01 16 [2 3] 551 r l 1 (iy)
0360 FD CB 02 16 [2 3] 552 r l 2 (iy)
0364 FD CB 03 16 [2 3] 553 r l 3 (iy)

Note that all words in the state are stored low-byte �rst in memory. The �rst
two columns in the listings display the address and its value for the assembly
code in the last two columns; the third one shows the number of T-cycles between
brackets for each instruction and the fourth column is simply a source �le line
number.

The only catch in the compute steps is in in the correct implementation of
the left shifts, respectively by 1 and 2 in Algorithm 2, by 1 in Algorithm 3 and
by 3 in Algorithm 4. Since we operate byte by byte in an unrolled loop, we have
to keep the carry result of every single shift at each substep for the next one. We
allocate a register, if available, to store this carry result after each 1-bit shift.
As only 2 registers remain free, the total 3 1-bit shifts in computing x and z

requires one additional read-write operation in memory for the extra shift.

4 Jean-Marie Chauvet

Listing 1.3. Compute y
0453 16 00 [7] 716 ld d,#0x00
0455 21 r04r00 [1 0] 717 ld hl ,#_y+0
0458 4E [7] 718 ld c , (h l)
0459 21 r10r00 [1 0] 719 ld hl ,#_v+0
045C 71 [7] 720 ld (hl) , c
045D 21 r0Cr00 [1 0] 721 ld hl ,#_u+0
0460 46 [7] 722 ld b , (h l)
0461 21 r08r00 [1 0] 723 ld hl ,#_z+0
0464 7E [7] 724 ld a , (h l)
0465 B0 [4] 725 or b
0466 CB 27 [8] 726 s l a a ; s h i f t l e f t through carry
0468 CB 12 [8] 727 r l d ; s t o r e carry in b i t 0 o f d
046A A8 [4] 728 xor b
046B A9 [4] 729 xor c
046C 21 r04r00 [1 0] 730 ld hl ,#_y+0
046F 77 [7] 731 ld (hl) , a
0470 21 r05r00 [1 0] 732 ld hl ,#_y+1
0473 4E [7] 733 ld c , (h l)
0474 21 r11r00 [1 0] 734 ld hl ,#_v+1
0477 71 [7] 735 ld (hl) , c
0478 21 r0Dr00 [1 0] 736 ld hl ,#_u+1
047B 46 [7] 737 ld b , (h l)
047C 21 r09r00 [1 0] 738 ld hl ,#_z+1
047F 7E [7] 739 ld a , (h l)
0480 B0 [4] 740 or b
0481 CB 1A [8] 741 r r d ; s e t carry from b i t 0 o f d
0483 CB 17 [8] 742 r l a ; s h i f t l e f t through carry
0485 CB 12 [8] 743 r l d ; s t o r e carry in b i t 0 o f d
0487 A8 [4] 744 xor b
0488 A9 [4] 745 xor c
0489 21 r05r00 [1 0] 746 ld hl ,#_y+1
048C 77 [7] 747 ld (hl) , a
048D 21 r06r00 [1 0] 748 ld hl ,#_y+2
0490 4E [7] 749 ld c , (h l)
0491 21 r12r00 [1 0] 750 ld hl ,#_v+2
0494 71 [7] 751 ld (hl) , c
0495 21 r0Er00 [1 0] 752 ld hl ,#_u+2
0498 46 [7] 753 ld b , (h l)
0499 21 r0Ar00 [1 0] 754 ld hl ,#_z+2
049C 7E [7] 755 ld a , (h l)
049D B0 [4] 756 or b
049E CB 1A [8] 757 r r d ; s e t carry from b i t 0 o f d
04A0 CB 17 [8] 758 r l a ; s h i f t l e f t through carry
04A2 CB 12 [8] 759 r l d ; s t o r e carry in b i t 0 o f d
04A4 A8 [4] 760 xor b
04A5 A9 [4] 761 xor c
04A6 21 r06r00 [1 0] 762 ld hl ,#_y+2
04A9 77 [7] 763 ld (hl) , a
04AA 21 r07r00 [1 0] 764 ld hl ,#_y+3
04AD 4E [7] 765 ld c , (h l)
04AE 21 r13r00 [1 0] 766 ld hl ,#_v+3
04B1 71 [7] 767 ld (hl) , c
04B2 21 r0Fr00 [1 0] 768 ld hl ,#_u+3
04B5 46 [7] 769 ld b , (h l)
04B6 21 r0Br00 [1 0] 770 ld hl ,#_z+3
04B9 7E [7] 771 ld a , (h l)
04BA B0 [4] 772 or b
04BB CB 1A [8] 773 r r d ; s e t carry from b i t 0 o f d
04BD CB 17 [8] 774 r l a ; s h i f t l e f t through carry
04BF CB 12 [8] 775 r l d ; s t o r e carry in b i t 0 o f d
04C1 A8 [4] 776 xor b
04C2 A9 [4] 777 xor c
04C3 21 r07r00 [1 0] 778 ld hl ,#_y+3
04C6 77 [7] 779 ld (hl) , a

We present the computation of word y in Listing 1.3, for illustrative purposes,
x and z unrolled loops are similar, if a bit longer. These 64 instructions are
executed in 483 t-cycles on the TRS-80.

The resulting SP-box implementation is summarized in Table 2.

We also compare this implementation with TRS-80-hosted implementations
of the Keccak permutation and the scalar multiplication on Curve25519 devel-
opped earlier in [3,2].

Table 3 shows that, in spite of the limited number of registers available on
the platform, this implementation plays well along the compactness and high-
throughput features of Gimli described in [1], when compared to other imple-
mentations on the TRS-80.

Gimli, Lord of the Glittering TRS-80 5

Fig. 2. T-cycles and instructions counts

T-cycles Instructions

Rotate 397 44
Compute x 692 89
Compute y 483 64
Compute z 659 79

Total 2,231 276

Fig. 3. Compared performance on the TRS-80

Keccak (b=1600) Scalar Mul. c25519 Gimli (this paper)

Code Size 8,742 7,880 1875
Data Size 1,930 733 86
T-Cycles 42.8 106 2,677 106 ≈ 74, 000

4 Conclusions

High security without sacri�cing performance is also possible on the TRS-80
with Gimli, even though the antique machine predates the new permutation by
40 years � it was introduced on August 3, 1977. Simple hand-crafting of the inner
SP-box assembly code produces an implementation which is about 30 % faster
in T-cycles count than the reference code naively compiled e.g. with SDCC [5].

The screen shot 4 shows the result of running Gimli on a Level II, 16K
machine, starting from an all-zero initial state.

Even on this older system, Gimli, as advocated in the original paper, can
easily be used to build high-security block ciphers, tweakable block ciphers,
message-authentication code, hash functions etc. using BASIC Level II (within
the memory limitations!). Indeed the PEEK and POKE BASIC instructions may
be used to read and write the state byte by byte. Then, once the address of the
main machine code entry point for Gimli is stored (using, e.g., POKE), little-
endian, in addresses 16526 and 16527, the permutation is called by issuing the
BASIC instruction USR(0), with the argument 0 ignored.

We place all software implementations described in this paper into the public
domain, they are available at https://github.com/CRTandKDU/TRS80 .

References

1. Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Flo-
rian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier Stan-
daert, Yosuke Todo, and Benoît Viguier. Gimli: a cross-platform permutation. Cryp-
tology ePrint Archive, Report 2017/630, 2017. http://eprint.iacr.org/2017/630.

https://github.com/CRTandKDU/TRS80
http://eprint.iacr.org/2017/630

6 Jean-Marie Chauvet

Fig. 4. Gimli running on a TRS-80 Model 1 Level II. Screen shot from sdltrs emulator
on Windows showing the 48 consecutive 32-bit words of the �nal state.

2. Jean-Marie Chauvet. TRS-80 With A Grain Of Salt. Cryptology ePrint Archive,
Report 2013/546, 2013. http://eprint.iacr.org/2013/546.

3. Jean-Marie Chauvet. TRS-80 With A Keccak Sponge Cake. Cryptology ePrint
Archive, Report 2013/736, 2013. http://eprint.iacr.org/2013/736.

4. David Lien. TRS-80 Micro Computer System. Radio Shack, 1978.
5. SDCC Team. SDCC - Small Device C Compiler. http://sdcc.sourceforge.net/

index.php.

http://eprint.iacr.org/2013/546
http://eprint.iacr.org/2013/736
http://sdcc.sourceforge.net/index.php
http://sdcc.sourceforge.net/index.php

Gimli, Lord of the Glittering TRS-80 7

Fig. 5. Teaching an old TRS to run new (crypto)tricks!

	Gimli, Lord of the Glittering TRS-80
	Introduction
	Z80: ``Microprocessor for fourth generation computers''
	Implementation
	Conclusions

