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Abstract. Server-Aided Verification (SAV) is a method that can be employed to speed up the process
of verifying signatures by letting the verifier outsource part of its computation load to a third party.
Achieving fast and reliable verification under the presence of an untrusted server is an attractive goal
in cloud computing and internet of things scenarios.

In this paper, we describe a simple framework for SAV where the interaction between a verifier and an
untrusted server happens via a single-round protocol. We propose a security model for SAV that refines
existing ones and includes the new notions of SAV-anonymity and extended unforgeability. In addition,
we apply our definitional framework to provide the first generic transformation from any signature
scheme to a single-round SAV scheme that incorporates verifiable computation. Our compiler identifies
two independent ways to achieve SAV-anonymity: computationally, through the privacy of the verifiable
computation scheme, or unconditionally, through the adaptibility of the signature scheme.

Finally, we define three novel instantiations of SAV schemes obtained through our compiler. Com-
pared to previous works, our proposals are the only ones which simultaneously achieve existential
unforgeability and soundness against collusion.
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1 Introduction

The design of new efficient and secure signature schemes is often a challenging task, especially
when the target devices on which the scheme should run have limited resources, as it happens
in the Internet of Things (IoT). Nowadays many IoT devices can perform quite expensive com-
putations. For instance, smartphones have gained significant computational power. Carrying out
several expensive tasks, however, leads to undesirable consequences as, e.g., draining the battery of
the device [11]. We consider signed auctions as a motivating example in an IoT setting. In signed
auctions, bidders sign their offers to guarantee that the amount is correct and that the offer be-
longs to them. The auctioneer considers a bid valid only if its signature is verified. Imagine that
the auctioneer checks the validity of the bids using a resource-limited device. In this case, running
the signature verification algorithm several times drastically affects the device’s performance. In
this setting one may wonder:

Can an auctioneer efficiently, securely and privately check the authenticity of signed bids
using a resource-limited device?

This paper addresses the above question in case the auctioneer has access to a computationally
powerful, yet untrusted, server. This is indeed the setting of server-aided verification.

1.1 Previous Work

The concept of Server-Aided Verification (SAV) was introduced in the nineties in two independent
works [1,18], and refined for the case of signature and authentication schemes by Girault and
Lefranc [15]. The aim of SAV is to guarantee security and reliability of the outcome of a verification
procedure when part of the computation is offloaded from a trusted device, called the verifier, to
an untrusted one, the server. In particular, [18] allows multiple accesses to the server, while [1]
enables a card or RFID tag to sign and verify an RSA signature by interacting with a server both
in the signing and in the verification phase. A similar approach was used ten years later by Girault
and Lefranc [15] who also stated the first formal definition of server-aided verification (SAV).



All existing security models for SAV consider existential forgery attacks [8,15,20,22,24,25], where
the adversary, i.e., the malicious server, tries to convince the verifier that an invalid signature is
valid. Despite the fundamental theoretical contributions, [15] did not consider attack scenarios in
which the malicious signer colludes with the server, e.g., by getting control over the server, in
order to tamper with the outcome of the server-aided verification of a signature. The so-called
collusion attack was defined by Wu et al. in [24,25] together with two SAV schemes claimed to be
collusion-resistant. Subsequent works revisited the notion of signer-server collusion [8,21,22]. The
most complete and rigorous definition of collusion attack is due to Chow et al. [8], who also showed
that the protocols in [25] are no longer collusion resistant under the new definition [7,8]. Recently,
Cao et al. [7] rose new concerns about the artificiality and the expensive communication costs of
the SAV in [24]. Wang et al. [22] attempted to fix some problems in the security model of [24,25].
The major contribution, however, is due to Chow et al. [8], who identified and mitigated the main
weaknesses of all previous proposals [24,25,22].

Chow et al. [8] showed that the enabler of many attacks against SAV is the absence of an
integrity check on the results returned by the server. Integrity however, is not the only concern
when outsourcing computations. In this paper, we address for the first time privacy concerns and
we introduce the notion of anonymity in the context of SAV of signatures.

1.2 Contributions

The main motivation of this work is the need for formal and realistic definitions in the area of
server-aided verification. To this purpose we:

- Introduce a formalism which allows for an intuitive description of single-round SAV signature
schemes (Section 3);

- Define a security model that includes three new security notions: SAV-anonymity (Section
4.3), extended existential unforgeability and extended strong unforgeability (Section 4.1);

- Describe the first compiler to a SAV signature scheme from any signature and a verifiable
computation scheme (Section 5). Besides its simplicity, our generic composition identifies sufficient
requirements on the underlying primitives to achieve security. In particular, we prove that under
mild assumptions our compiler provides: extended (existential/strong) unforgeability (Theorem 1);
soundness against collusion (Theorem 2); and SAV-anonymity when either the employed verifiable
computation is private (Theorem 3) or the signature scheme is adaptive (Theorem 4).

- Apply our generic composition to obtain new SAV schemes for the BLS signature [3] (Section
6.1), Waters’ signature Wat [23] (Section 6.2) and the first SAV for the CL signature by Camenisch
and Lysyanskaya [5] (Section 6.3). While preserving efficiency, our proposals achieve better security
than previous works (Table 1).

1.3 Paper organisation

Notations and preliminaries are presented in Section 2. Section 3 introduces our formalism for
single-round SAV. Section 4 contains our security model. Section 5 presents our compiler and
general results about its security. Section 6 describes three new SAV schemes and compares them
with previous works. Section 7 concludes the paper.

2 Preliminaries

Throughout the paper, x ← A(y) denotes the output x of an algorithm A run with input y. If
X is a finite set, by x ←R X we mean x is sampled from the uniform distribution over the set X.
The expression cost(A) refers to the computational cost of running algorithm A. For any positive
integer n, [n] = {1, ... , n} and Gn is a group of order n. A function f : N→ R is said to be negligible
if f(n) < 1/poly(n) for any polynomial poly(·) and any n > n0, for suitable n0 ∈ N. Finally, ε
denotes a negligible function (implicitly in the security parameter λ ∈ N).



2.1 Signature schemes

Signature schemes [4,5,13] enable one to sign a message in such a way that anyone can verify the
signature and be convinced that the message was created by the signer. Formally,

Definition 1 (Signature Scheme). A signature scheme Σ = (SetUp,KeyGen,Sign,Verify) con-
sists of four, possibly randomized, polynomial time algorithms where:

SetUp(1λ) → gp: on input the security parameter λ ∈ N, the setup algorithm returns the global
parameters gp of the scheme, which include a description of the message and the signature
spaces M, S.

KeyGen(gp)→ (pk, sk): the key generation outputs public-secret key pairs (pk, sk).

Sign(gp, sk,m) → σ: on input a secret key sk and a message m ∈ M, the sign algorithm outputs
a signature σ ∈ S for m.

Verify(gp, pk,m, σ)→ b: The verification algorithm is a deterministic algorithm that given a public
key pk, a message m ∈ M and a signature σ ∈ S, outputs b = 1 for acceptance, or b = 0 for
rejection.

In the sequel, we assume that the global parameters gp are input to all the algorithms (a part from
SetUp), even when not explicitly stated.

Definition 2 ((In)Valid Signatures). Let Σ be a signature scheme. We say that a signature
σ ∈ S is valid for a message m ∈ M under the key pk if Verify(gp, pk,m, σ) = 1. Otherwise, we
say that σ is invalid.

In this paper, we refer to (in)valid signatures also as (in)valid message-signature pairs.

2.2 Verifiable computation

Verifiable computation schemes enable a client to delegate computations to one or more untrusted
servers, in such a way that one can efficiently verify the correctness of the result returned by the
server [2,12]. Gennaro et al. [14] formalised private verification of outsourced computations as:

Definition 3 (Verifiable Computation [14]). A verifiable computation scheme Γ = (KeyGen,
ProbGen,Comp,Verify) consists of four possibly randomized algorithms where:

KeyGen(λ, f)→ (pk, sk): given the security parameter λ and a function f , the key generation al-
gorithm produces a public key pk, that encodes the target function f , and a secret key sk.

ProbGen(sk, x)→ (ωx, τx): given the secret key sk and the input data x, the problem generation
algorithm outputs a public value ωx and a private value τx.

Comp(pk, ωx)→ ωy: given the public key pk and the encoded input ωx, this algorithm computes ωy,
which is an encoding of y = f(x).

Verify(sk, τx, ωy)→ y ∪ ⊥: given sk, τx and the encoded result ωy, the verification algorithm returns
y if ωy is a valid encoding of f(x), and ⊥ otherwise.

A verifiable scheme is efficient if verifying the outsourced computation requires less computational
effort than computing the function f on the data x, i.e., cost(ProbGen)+cost(Verify) < cost(f(x)).

In the remainder of the paper, we often drop the indexes and write τx = τ , ωx = ω, ωy = ρ
and denote by y the output of Verify(sk, τ, ρ).

3 Single-round server-aided verification

In the context of signatures, server-aided verification is a method to improve the efficiency of a
resource-limited verifier by outsourcing part of the computation load required in the signature
verification to a computationally powerful server. Intuitively SAV equips a signature scheme with:

- An additional SAV.VSetup algorithm that sets up the server-aided verification and outputs a
public component pb (given to the server) and a private one pr (held by the verifier only). 3

3 In [8,25] the output of SAV.VSetup is called Vstring.



- An interactive protocol AidedVerify executed between the verifier and the server that outputs: 0
if the input signature is invalid; 1 if the input signature is valid; and ⊥ otherwise, e.g., when the
server returns values that do not match the expected output of the outsourced computation.

In this work, we want to reduce the communication cost of AidedVerify and restrict this to a
single-round (two-message) interactive protocol. This choice enables us to describe the AidedVerify
protocol as a sequence of three algorithms: SAV.ProbGen (run by the verifier), SAV.Comp (run by
the server) and SAV.Verify (run by the verifier). This limitation is less restrictive than it may appear:
all the instantiations of SAV signature schemes in [15,17,20,22,24,25,27] are actually single-round
SAV. Moreover, our single-round framework assures minimal interactions between the verifier and
the server, thus reducing the communication costs.

We define single-round server-aided verification signature schemes as:

Definition 4 (SAV). A single-round server-aided verification signature scheme is defined by the
following possible randomized algorithms:

SAV.Init(1λ)→ gp: on input the security parameter λ ∈ N, the initialisation algorithm returns the
global parameters gp of the scheme, which are input to all the following algorithms, even when
not specified.

SAV.KeyGen()→ (pk, sk): the key generation algorithm outputs a secret key sk (used to sign mes-
sages) and the corresponding public key pk.

SAV.VSetup()→ (pb, pr): the server-aided verification setup algorithm outputs a public verification-
key pb and a private one pr.

SAV.Sign(sk,m)→ σ: given a secret key sk and a message m the sign algorithm produces a signature
σ.

SAV.ProbGen(pr, pk,m, σ)→ (ω, τ) : on input the private verification key pr, the public key pk, a
message m and a signature σ, this algorithm outputs a public-private data pair (ω, τ) for the
server-aided verification.

SAV.Comp(pb, ω)→ ρ: on input the public verification key pb and ω the outsourced-computation
algorithm returns ρ.

SAV.Verify(pr, pk,m, σ, ρ, τ)→ ∆: the verification algorithm takes as input the private verification-
key pr, the public key pk, m, σ, ρ and τ . The output is ∆ ∈ {0, 1,⊥}.

Intuitively, the output ∆ of SAV.Verify has the following meanings:

- ∆ = 1: the pair (m, σ) is considered valid and we say that (m, σ) verifies in the server-aided
sense;

- ∆ = 0: the pair (m, σ) is considered invalid and we say that (m, σ) does not verify in the
server-aided sense;

- ∆ = ⊥: the server-aided verification has failed, ρ is rejected (not σ), and nothing is inferred
about the validity of (m, σ).

Unless stated otherwise, from now on SAV refers to a single-round server-aided signature verification
scheme as in Definition 4. Definition 4 implicitly allows to delegate the computation of several
inputs, as long as all inputs can be sent in a single round, as a vector ω.

Completeness and efficiency of SAV are defined as follows.

Definition 5 (SAV completeness). A server-aided verification scheme SAV is said to be com-
plete if for all λ ∈ N, gp←SAV.Init(1λ), for any pair of keys (pk, sk) ← SAV.KeyGen(), (pb, pr) ←
SAV.VSetup() and message m←R M; given σ ← SAV.Sign(sk,m), (ω, τ)← SAV.ProbGen(pr, pk,m, σ)
and ρ← SAV.Comp(pb, ω), it holds:

Prob [SAV.Verify(pr, pk,m, σ, ρ, τ) = 1] > 1− ε
where the probability is taken over the coin tosses of SAV.Sign, SAV.ProbGen.

Definition 6 (SAV efficiency). A server-aided verification scheme SAV for a signature scheme
Σ = (SetUpΣ ,KeyGenΣ , SignΣ ,VerifyΣ) is said to be efficient if the computational cost of the whole
server-aided verification is less than the cost of running the standard signature verification, i.e.,(

cost(SAV.ProbGen) + cost(SAV.Verify)
)
< cost(VerifyΣ) .



4 Security model

In server-aided verification there are two kinds of adversaries to be considered: the one that solely
controls the server used for the aided-verification, and the one that additionally knows the secret
key for signing (signer-server collusion). In the first case, we are mostly concerned about forgeries
against the signature scheme, while in the second scenario we want to avoid some kind of repudia-
tion [7]. Existing security models for SAV consider existential unforgeability (EUF) and soundness
against collusion (SAC) [8,25]. In this section, we extend the notion of EUF to capture new realistic
attack scenarios and we consider for the first time signer anonymity in server-aided verification.

In what follows, the adversary A is a probabilistic polynomial time algorithm. We denote by
qs (resp. qv) the upper bound on the number of signature (resp. verification) queries in each query
phase.

4.1 Unforgeability
Intuitively, a SAV signature scheme is unforgeable if a malicious server, taking part to the server-
aided verification process, is not able to tamper with the output of the protocol. All the unforge-
ability notions presented in this section are based on the unforgeability under chosen message and
verification attack (UF-ACMV) experiment:

Definition 7. The unforgeability under chosen message and verification experiment (ExpUF-ACMV
A [λ])

goes as follows:
Setup. The challenger C runs the algorithms SAV.Init, SAV.KeyGen and SAV.VSetup to obtain

the system parameters gp, the key pair (pk, sk), and the public-private verification keys (pb, pr).
The adversary A is given pk, pb, while sk and pr are withheld from A.

Query Phase I. The adversary can make a series of queries which may be of the following
two kinds:

- sign: A chooses a message m and sends it to C. The challenger behaves as a signing oracle:
it returns the value σ ← SAV.Sign(sk,m) and stores the pair (m,σ) in an initially empty list
L ⊂M × S.

- verify: A begins the interactive (single-round) protocol for server-aided verification by sup-
plying a message-signature pair (m,σ) to its challenger. C simulates a verification oracle: it runs
SAV.ProbGen(pr, pk,m, σ)→ (ω, τ), returns ω to A, and waits for a second input. Upon receiving
an answer ρ from the adversary, the challenger returns ∆← SAV.Verify(pr, pk,m, σ, ρ, τ).
The adversary can choose its queries adaptively based on the responses to previous queries, and
can interact with both oracles at the same time.

Challenge. A chooses a message-signature pair (m∗, σ∗) and sends it to C. The challenger
computes (ω̂, τ̂)← SAV.ProbGen(pr, pk,m∗, σ∗). The value τ̂ is stored and withheld from A, while
ω̂ is sent to the adversary.

Query Phase II. In the second query phase, the sign queries are as before, while the verify
queries are answered using the same τ̂ generated in the challenge phase, i.e., A submits only ρ
and C replies with ∆← SAV.Verify(pr, pk,m∗, σ∗, ρ, τ̂).

Forgery. A outputs the tuple (m∗, σ∗, ρ∗). The experiment outputs 1 if (m∗, σ∗, ρ∗) is a forgery
(see Definition 8), and 0 otherwise.

Unlike unforgeability for digital signatures, in SAV the adversary can influence the outcome of the
signature verification through the value ρ∗. Moreover, A can perform verification queries. This is a
crucial requirement as the adversary cannot run SAV.Verify on its own, since pr and τ are withheld
from A. In practice, whenever the output of the server-aided verification is ⊥ the verifier could
abort and stop interacting with the malicious server. In this work, we ignore this case and follow
the approach used in [8] and in verifiable computation [14] where the adversary ‘keeps on querying’
independently of the outcome of the verification queries.
Definition 8 (Forgery). Consider an execution of the UF-ACMV experiment where (m∗, σ∗, ρ∗)
is the tuple output by the adversary. We define three types of forgery:

type-1a forgery: (m∗, ·) /∈ L and 1← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂).
type-1b forgery: (m∗, σ∗) /∈ L and 1← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂).
type-2 forgery (m∗, σ∗) ∈ L and 0← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂),



Existential unforgeability for SAV signature schemes is defined for a quite weak adversary: the
second query phase is skipped and only type-1a forgeries are considered:

Definition 9 (Existential Unforgeability (EUF) [8]). A SAV scheme is (ε, qs, qv)-existentially
unforgeable under adaptive chosen message and verification attacks if Prob

[
ExpUF-ACMV

A [λ] = 1
]
<

ε and the experiment ExpUF-ACMV
A [λ] outputs 1 only on type-1a forgeries, and no query is per-

formed in the Query Phase II.

Existential unforgeability for SAV only considers adversaries that generate a signature for a new
message and make it verify (in the server aided sense). This notion of unforgeability fails to capture
some realistic attack scenarios. For instance, consider the case of signed auctions. The adversary
is a bidder and wants to keep the price of the goods he is bidding on under a certain threshold.
A simple way to achieve this goal is to get control over the server used for the SAV and prevent
signatures of higher bids from verifying correctly. This motivates us to extend the notion of EUF
in [8,25] to also account for malicious servers tampering with the verification outcome of honestly
generated message-signature pairs:

Definition 10 (Extended Existential Unforgeability (ExEUF)). A SAV scheme is (ε, qs, qv)-
extended existentially unforgeable under adaptive chosen message and verification attacks if ε >
Prob

[
ExpUF-ACMV

A [λ] = 1
]

and ExpUF-ACMV
A [λ] outputs 1 on type-1a and type-2 forgeries.

Extended existential unforgeablility deals with a stronger adversary than the one considered in
EUF: in ExEUF the adversary can perform two different types of forgeries and has access to an ad-
ditional query phase (after setting the challenge). Resembling the notion of the strongly unforgeable
signatures [4], we introduce extended strong unforgeability for SAV:

Definition 11 (Extended Strong Unforgeability (ExSUF)). A SAV scheme is (ε, qs, qv)-extended
strong unforgeable under adaptive chosen message and verification attacks if Prob

[
ExpUF-ACMV

A [λ] = 1
]

< ε and ExpUF-ACMV
A [λ] outputs 1 on type-1a, type-1b and type-2 forgeries.

In ExSUF there is no restriction on the pair (m∗, σ∗) chosen by the adversary: it can be a new
message (type-1a), a new signature on a previously-queried message (type-1b) or an honestly
generated pair obtained in the first Query Phase (type-2).

4.2 Soundness against collusion

In collusion attacks, the adversary controls the server used for the aided verification and holds the
signer’s secret key. This may happen when a malicious signer hacks the server and wants to tamper
with the outcome of a signature verification. As a motivating example consider signed auctions.
The owner of a good could take part to the auction (as the malicious signer) and influence its price.
For instance, in order to increase the cost of the good, the malicious signer can produce an invalid
signature for a high bid (message) and make other bidders overpay for it. To tamper with the
verification of the invalid signature, the malicious signer can use the server and make his (invalid)
signature verify when the bid is stated. However, in case no one outbids him, the malicious signer
can repudiate the signature as it is actually invalid.

We define collusion as in [8], with two minor adaptations: (i) we use our single-round framework,
that allows us to clearly state the information flow between A and C; and (ii) we introduce a second
query phase, after the challenge phase (to strengthen the adversary).

Definition 12 (Soundness Against Collusion (SAC)). Define the experiment ExpACVAuC
A [λ]

to be ExpUF-ACMV
A [λ] where:

- in the Setup phase, C gives to A all keys except pr, and
- no sign query is performed, and
- the tuple (m∗, σ∗, ρ∗) output by A at the end of the experiment is considered forgery if

∆ ← SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂) is such that ∆ 6= ⊥ and ∆ 6= SAV.Verify(pr, pk,m∗, σ∗, ρ, τ̂),
where ρ← SAV.Comp(pb, ω̂) is generated honestly.
A SAV signature scheme is (ε, qv)-sound against adaptive chosen verification attacks under collusion
if Prob

[
ExpACVAuC

A [λ] = 1
]
< ε.



Definition 12 highlights connections between the notions of extended existential unforgeability and
soundness against collusion. In particular, it is possible to think of collusion attacks as unforgeabil-
ity attacks where A possesses the signing secret key sk (and thus no sign query is needed), and a
forgery is a tuple for which the output of the server-aided verification does not coincide with the
correct one, e.g., if σ∗←SAV.Sign(sk, m∗) then SAV.Verify(pr, pk, m∗, σ∗, ρ∗, τ̂) returns 0.

4.3 Anonymity

Anonymous signatures were introduced by Yang et al. in [26]. In a nutshell, anonymity (for digital
signatures) states that an adversary, who has access to a signature σ and does not hold the
corresponding message m, is not able to determine the identity of the signer of σ. Thus, anonymity
requires to withhold the pair (m,σ) from the adversary, Otherwise A could run the verification
algorithm of the signature scheme and determine under which public key (among the candidate
ones) the given pair is valid. Retaining m from the adversary is a necessary requirement which,
however, limits considerably the application scenarios for anonymous signatures. We initiate the
study of anonymity in the context of server-aided verification of signatures and provide the first
definition of SAV-anonymity.

Consider the running setting of signed auctions. If a malicious server can distinguish whose
signature it is performing the aided-verification of, it can easily ‘keep out’ target bidders from the
auction by preventing their signatures from verifying (in the server aided sense). To prevent such
an attack, bidders may want to hide their identity from the untrusted server. SAV-anonymity guar-
antees precisely this: the auctioneer (trusted verifier) learns the identities of the bidders (signers),
while the untrusted server is not able to determine whose signature was involved in the SAV.

Definition 13 (SAV-anonymity). A SAV scheme is (ε, qv)-SAV-anonymous if

Prob
[
ExpSAV-anon

A [λ] = 1
]
<

1

2
+ ε

and ExpSAV-anon
A [λ] is:

Setup. The challenger runs the algorithms SAV.Init, SAV.VSetup to obtain the system parame-
ters and the verification keys (pb, pr). Then it runs SAV.KeyGen twice to generate (sk0, pk0), (sk1, pk1)
and draws b←R {0, 1}. C gives pb, pk0, pk1 to A and retains the secret values pr, sk0, sk1.

Query I. A can adaptively perform up to qv partial-verification queries as follows. The ad-
versary sends a pair (m, i), i ∈ {0, 1} to C. The challenger computes σ ← SAV.Sign(ski,m), runs
SAV.ProbGen(pr, pki,m, σ)→ (ω, τ) and returns ω to A.

Challenge. The adversary chooses a message m∗ to be challenged on, and sends it to C. The
challenger computes σ ← SAV.Sign(skb,m

∗) and (ω, τ) ← SAV.ProbGen(pr, pkb,m
∗, σ); and sends

ω to the adversary.
Query II. A can perform another query phase, as in Query I.
Output. The adversary outputs a guess b∗ ∈ {0, 1} for the identity b chosen by C. The experi-

ment outputs 1 if b∗ = b and 0 otherwise.

The fundamental difference between anonymity for signatures schemes [13,26] and SAV-anonymity
lies in the choice of the challenge message m∗. In the former case, it is chosen by the challenger
at random, while in SAV we let the adversary select it. This change increases the adversary’s
power and reflects several application scenarios where A learns the messages (e.g., bids in signed
auctions). We remark that in SAV-anonymity the adversary does not have access to the verification
outcome ∆, as this would correspond to having a verification oracle, which is not allowed in the
anonymity game for signature schemes [13,26].

5 A compiler for SAV

We present here the first generic compiler for server-aided verification of signatures. Our generic
composition method allows to combine any signature scheme Σ with an efficient verifiable com-
putation scheme Γ for a function f involved in the signature verification algorithm, and outputs



SAVΓΣ , a single-round server-aided verification scheme for Σ. In particular, our compiler renders
the design of SAV schemes more intuitive and modular.

The idea to employ verifiable computation in SAV comes from the following observation. All
the attacks presented in [8] succeed because in the target SAV schemes the verifier never checks
the validity of the values returned by the server. We leverage the efficiency and security properties
of verifiable computation to mitigate such attacks.

5.1 Description of our compiler

Let Σ = (SetUpΣ ,KeyGenΣ ,SignΣ ,VerifyΣ) be a signature scheme and Γ = (KeyGenΓ , ProbGenΓ ,
CompΓ , VerifyΓ ) be a verifiable computation scheme.4 In our generic composition, we identify a
computationally-expensive sub-routine of VerifyΣ that we refer to as VerH (the heavy part of the
signature verification); and we outsource f = VerH using the verifiable computation scheme Γ . To
ease the presentation, we introduce:

ProbGenPRE: This algorithm prepares the input to ProbGenΓ .
VerL: This algorithm is the computationally light part of the signature verification. More precisely,

VerL is VerifyΣ where VerH is replaced by the output y of VerifyΓ . It satisfies: cost(VerL) <
cost(VerifyΣ) and VerL(pkΣ ,m, σ, y) = VerifyΣ(pk,m, σ) whenever y 6= ⊥.

To give an example, one can split the BLS verification algorithm into VerH(pk,m, σ)→ y = (β1, β2),
which computes the two bilinear pairings β1 = e(σ, g), β2 = e(H(m), pk); and VerL(pk,m, σ, y),
which performs the equality check β1 =? β2. In order to securely outsource VerH to the server, we
need to prepare opportune inputs for ProbGenΓ . We call this preparatory routine ProbGenPRE.

Definition 14 (SAVΓΣ). Let Σ, Γ and f be as above. Our generic composition method for single-
round server-aided verification signature scheme SAVΓΣ is defined by the following possibly random-
ized algorithms:

SAV.Init(1λ): the initialisation algorithm outputs the global parameters gp ← SetUpΣ(1λ), which
are implicitly input to all the algorithms.

SAV.KeyGen(): this algorithm outputs (pkΣ , skΣ)← KeyGenΣ().
SAV.Sign(skΣ ,m): the sign algorithm outputs σ ← SignΣ(skΣ ,m).
SAV.VSetup(): the verification setup algorithm outputs verification keys (pkΓ , skΓ )← KeyGenΓ (λ, f),

where the function f is described in gp.
SAV.ProbGen(skΓ , pkΣ ,m, σ): this algorithm first runs ProbGenPRE(pkΣ ,m, σ)→x to produce an

encoding of pkΣ, m, σ. Then x is used to compute the output (ω, τ)← ProbGenΓ (skΓ , x).
SAV.Comp(pkΓ , ω): this algorithm returns ρ← CompΓ (pkΓ , ω).
SAV.Verify(skΓ , pkΣ ,m, σ, ρ, τ): the verification algorithm first executes VerifyΓ (skΓ , ρ, τ) → y; if
y = ⊥, it sets ∆ = ⊥ and returns. Otherwise, it returns the output of VerL(pkΣ ,m, σ, y)→ ∆ ∈
{0, 1}.

Completeness of SAVΓΣ. The correctness of SAVΓΣ is a straight-forward computation assuming
that Σ is complete and Γ is correct (see the Appendix A for a detailed proof).
Efficiency of SAVΓΣ. It is immediate to check that cost(VerifyΣ) = cost(VerL) + cost(VerH). The
ProbGenPRE algorithm is just performing encodings of its inputs (usually projections), and does not
involve computationally expensive operations.5 By the efficiency of verifiable computation schemes
we have: cost(VerH) > cost(ProbGenΓ )+cost(VerifyΓ ) and thus cost(VerifyΣ) > cost(ProbGenPRE)+
cost(ProbGenΓ ) + cost(VerifyΓ ) + cost(VerL), which proves the last claim.

Our generic composition enjoys two additional features: it applies to any signature scheme and it
allows to reduce the security of SAVΓΣ to the security of its building blocks,Σ and Γ . To demonstrate
the first claim, let us set f = VerH = VerifyΣ and ProbGenPRE(pkΣ ,m, σ) → x = (pkΣ ,m, σ). The
correctness of Γ implies that y = VerH(x) = VerifyΣ(pkΣ ,m, σ). In this case, VerL(pkΣ ,m, σ, y) is
the function that returns 1 if y = 1 and 0 otherwise. We defer the proof of the second claim to the
following section.

4 To improve readability, we put the subscript Σ (resp. superscript Γ ) to each algorithm related to the signature
(resp. verifiable computation) scheme.

5 This claim will become clear after seeing examples of SAV signature schemes.



5.2 Security of our generic composition

The following theorems state the security of the compiler presented in Definition 14. Our approach
is to identify sufficient requirements on Σ and Γ to guarantee specific security properties in the
resulting SAVΓΣ scheme. To improve readability, all proofs are collected in the Appendix A. We high-
light that the results below apply to all our instantiations of the SAV signature schemes presented
in Section 6, since these are obtained via our generic composition method.

Theorem 1 (Extended Unforgeability of SAVΓΣ). Let Σ be an (εΣ , qs)-existentially (resp.
strong) unforgeable signature scheme, and Γ an (εΓ , qv)-secure verifiable computation scheme. Then

SAVΓΣ is ( εΣ+εΓ

2 , qs, qv)-extended existential (resp. strong) unforgeable.

The proof proceeds by reduction transforming type-1a (resp. type-1b) forgeries into existential
(resp. strong) forgeries against Σ; and type-2 forgeries, into forgeries against the security of Γ .

Theorem 2 (Soundness Against Collusion of SAVΓΣ). Let Σ be a correct signature scheme and
Γ an (εΓ , qv)-secure verifiable computation scheme. Then SAVΓΣ is (εΓ , qv)-sound against collusion.

The intuition behind the proof of Theorem 2 is the same as in Theorem 1 for the case of type-2
forgeries.

We present now two independent ways to achieve SAV-anonymity for schemes obtained with
our compiler: leveraging either the privacy of the verifiable computation scheme or the adaptibility
of the signature scheme.

Theorem 3 (Anonymity of SAVΓΣ from Private Verification). Let Σ be a correct signa-
ture scheme and Γ an (εΓ , qv)-private verifiable computation scheme. Then SAVΓΣ is (εΓ , qv)-SAV-
anonymous.

Theorem 3 does not require Σ to be anonymous and SAV-anonymity comes directly from the
privacy of the verifiable computation scheme.

Key-homomorphic signatures have been recently introduced by Derler and Slamanig [10]. In
a nutshell, a signature scheme provides adaptibility of signatures [10] if given a signature σ for a
message m under a public key pk, it is possible to publicly create a valid σ′ for the same message
m under a new public key pk′. In particular, there exists an algorithm Adapt that, given pk, m, σ
and a shift amount h, returns a pair (pk′, σ′) for which Verify(pk′,m, σ′) = 1 (cf. Definition 16 in
[10] for a formal statement). 6

Theorem 4 (Anonymity of SAVΓΣ from Perfect Adaption). Let Σ be a signature scheme
with perfect adaption and Γ a correct verifiable computation scheme. If the output of ProbGenPRE

depends only on the adapted values, i.e., for all pr, pk,m, σ there is a function G such that:

ProbGenPRE(pr, pk,m, σ) = G(Adapt(pk,m, σ, h),m)

for a randomly chosen shift amount h, then SAVΓΣ is unconditionally SAV-anonymous.

Theorem 4 provides a new application of key-homomorphic signatures to anonymity. The proof is
inspired to the tricks used in [10], intuitively SAV-anonymity follows from the indistinguishability
of the output of Adapt from (pk′′, σ′′ ← Sign(sk′′,m)) for a freshly generated key pair (pk′′, sk′′).
Many signatures based on the discrete logarithm problem enjoy this property, e.g., BLS [3] and
Wat [23].

6 New instantiations of SAV schemes

Our generic composition requires the existence of a verifiable computation scheme for a function
f = VerH used in the signature verification algorithm. To the best of the authors’ knowledge, there
are verifiable computation schemes for arithmetic circuits [9,19] and bilinear pairings [6], but no
result is yet known for simpler computations such as hash functions and group exponentiations.

6 To provide an example, consider the BLS signature scheme [3]. Given pk = gsk, m ∈ {0, 1}∗, σ ∈ Gp and h ∈ Zp,
the output of Adapt can be defined as: pk′ = pk · gh and σ′ = σ ·H(m)h. It is immediate to check that (σ′,m) is a
valid pair under pk′.



Following previous works’ approach, we consider only SAV for pairing-based signatures [8,20,25,27],
since bilinear pairings are bottle-neck computations for resource-limited devices.7

All our instantiations of SAV schemes are obtained using the compiler in Definition 14. Their se-
curity therefore follows from the results of Section 5.2, once shown that that the chosen schemes sat-
isfy the hypothesis of the theorems. For conciseness, we only define the two algorithms ProbGenPRE

and VerL. Appendix B contains thorough descriptions.

6.1 A secure SAV for BLS (SAVCDS1
BLS )

The BLS signature by Boneh et al. [3] has been widely used for constructing server-aided verification
schemes, e.g., Protocols I and II in [25]. Cao et al. [7] and Chow et al. [8] have shown that all
the existing SAV for BLS are neither existentially unforgeable, nor sound against collusion. This
motivates us to propose SAVCDS1

BLS (described in Figure 1). As a verifiable scheme for the pairing
computation, we employ ‘a protocol for public variable A and B’ by Canard et al. [6], which we
refer to as CDS1.

ProbGenPRE(pkΣ ,m, σ) : on input pkΣ ∈ G1, m ∈ {0, 1}∗ and σ ∈ G1, the algorithm returns x =(
(pkΣ , H(m)), (σ, g)

)
.

VerL(pkΣ ,m, σ, y) : this algorithm is VerifyBLS where the computation of the two pairings is replaced with
the output y = (y1, y2) of VerifyCDS2 . Formally, VerL checks whether y1 = y2, in which case it outputs
∆ = 1, otherwise it returns ∆ = 0.

Fig. 1. The core algorithms of SAVCDS1
BLS .

By the correctness of the CDS1 scheme y2 = e(pkΣ , H(m)) and y2 = e(σ, g), thus VerL has the same
output as VerifyBLS. Given that BLS is strongly unforgeable in the random oracle model [3] and
that CDS1 is secure in the generic group model [6], SAVCDS1

BLS is extended strongly unforgeable and
sound against collusion. Our SAV scheme for the BLS is not SAV-anonymous: the signer’s public
key is given to the server for the aided verification. However, SAV-anonymity can be simply gained
via the adaptability of BLS [10].

In SAVCDS1
BLS the verifier does not need to perform any pairing computation. This is a very

essential feature, especially if the verifying device has very limited computational power, e.g., an
RFID tag.

6.2 A secure SAV for Wat (SAVCDS1
Wat )

Wu et al. [25] proposed a SAV for Waters’ signature Wat [23], which is neither existentially un-
forgeable nor sound against collusion. Here we propose SAVCDS1

Wat (described in Figure 2), which is
similar to Protocol III in [25], but has strong security guarantees thanks to the verifiable compu-
tation scheme for ‘public A and B’ CDS1 [6].

ProbGenPRE(pkΣ ,m, σ) : given pkΣ ∈ G1, m ∈ {0, 1}∗ and σ ∈ G1, select h ←R Zp, compute (pk′Σ , σ
′) ←

Adapt(pkΣ ,m, σ, h), return x = (pk′Σ ,m, σ
′).

VerL(pk′Σ ,m, σ, y) : this is VerifyWat where the computation of the two pairings is replaced with the outputs
y1, y2 of VerifyCDS1 . Formally, VerL checks if y1 = pk′Σ · y2, in which case it outputs ∆ = 1, otherwise it
returns ∆ = 0.

Fig. 2. The core algorithms of SAVCDS1
Wat .

By the correctness of the CDS1 scheme y1 = e(σ1, g), and y2 = e(H(m), σ2). Thus, VerL has the
same output as VerifyWat. Given that CDS1 is secure in the generic group model [6], and that
Wat is existentially unforgeable in the standard model [23] our SAVCDS1

Wat is extended existential

unforgeable and sound against collusion. Similarly to Protocol III in [25], SAVCDS1
Wat achieves SAV-

anonymity thanks to the perfect adaption of Wat [10].

7 To give benchmarks, let Mp denote the computational cost of a base field multiplication in Fp with log p = 256,
then computing za for any z ∈ Fp and a ∈ [p] costs about 256Mp, while computing the Optimal Ate pairing on
the bn curve requires about 16000Mp (results extrapolated from Table 1 in [16]).



6.3 The first SAV for CL (SAVCDS2
CL )

The verification of the BLS and the Wat signatures only requires the computation of two bilinear
pairings. We want to move the focus to more complex signature schemes that would benefit more
of server-aided verification. To this end, we consider scheme A by Camenish and Lysyanskaya [5],
which we refer to as CL, where VerifyCL involves the computation of five bilinear pairings. For
verifiability we employ CDS2, ‘a protocol with public constant B and variable secret A’ by Canard
et al. [6]

Our SAVCDS2
CL scheme is reported in Figure 3.

ProbGenPRE(pkΣ ,m, σ) : this algorithm simply returns the first two entries of the signature σ =
(σ1, σ2, σ3), i.e., x = (σ1, σ2).

VerL(pkΣ ,m, σ, y) : this algorithm is VerifyCL, except for two pairing computations which are replaced with
the outcome y = (β1, β2) of VerifyCDS2 . More precisely, the VerL algorithm computes α1 = e(σ1, Y ),
α2 = e(X,σ1) and α3 = e(X,σ2)m. It then checks whether α1 = β1 and α2 · α3 = β2. If both of the
conditions hold, the algorithm returns ∆ = 1, otherwise ∆ = 0.

Fig. 3. The core algorithms of SAVCDS2
CL .

By the correctness of CDS2 we have: y1 = β1 = e(σ, g), and y2 = β2 = e(H(m), pkΣ). Therefore
VerL performs the same checks as VerifyCL and the two algorithms have the same output. Given
that CL is existential unforgeable in the standard model [5] and CDS2 is secure and private in the
generic group model [6], SAVCDS2

CL is extended-existential unforgeable, sound against collusion and

SAV-anonymous. Therefore SAVCDS2
CL is an example of a scheme which is SAV-anonymous although

the base signature scheme is not anonymous (cf. Lemma 1 in Appendix D).

6.4 Comparison with previous work

Table 1 gives a compact overview of how our SAV schemes compare to previous proposals in terms
of unforgeability, soundness under collusion and SAV-anonymity. We report only the highest level
of unforgeability that the scheme provides. A yes (resp. no) in the table states that the scheme
does (resp. does not) achieve the property written at the beginning of the row, e.g., Protocol III
does not employ a verifiable computation scheme and provides SAV-anonymity. Every scheme or
property is followed by a reference paper or the section where the claim is proven.

Protocol
I [25]

Protocol
II [25]

SAVCDS1
BLS

Protocol
III [25]

SAVCDS1
Wat

SAV-
ZSS [15]

SAVCDS2
CL

signature BLS [3] BLS [3] BLS [3] Wat [23] Wat [23] ZSS [27] CL [5]

verifiability no no CDS1 [6] no CDS1 [6] no CDS2 [6]

unforgeability EUF [25] no [8]
ExSUF
(6.1)

no (C.1)
ExEUF
(6.2)

EUF [15]
ExEUF
(6.3)

collusion
resistance

no [8] no (C.3) yes (6.1) no (C.3) yes (6.2) no (C.3) yes (6.3)

anonymity no (C.4) no (C.4) no (6.1) yes (C.4) yes (6.2) no (C.4) yes (6.3)

Table 1. Comparison among our SAV schemes and previous works: Protocol I (Figure 3 in [25]), Protocol II (Figure
5 in [25]), Protocol III (Figure 4 in [25]), SAV-ZSS [15] (depicted in Figure 1 in [25]).

Regarding efficiency, the computational cost of pairing-based algorithms is influenced by three
main parameters: (i) the elliptic curve, (ii) the field size, and (iii) the bilinear pairing. As a result,
it is impossible to state that a given algorithm is efficient for all pairings and for all curves, since
even the computational cost of the most basic operations (e.g., point addition) variates significantly
with the above parameters. For example, CDS2 provides a 70% efficiency gain8 for the delegator
(verifier) when the employed pairing is the Optimal Ate pairing on the kss-18 curve [6], but is
nearly inefficient when computed on the bn curve [16].

8 Efficiency gain is the ratio
(
cost(SAV.ProbGen) + cost(SAV.Verify)

)
/cost(VerifyΣ).



7 Conclusions

In this paper, we provided a framework for single-round server-aided verification signature schemes
and introduced a security model which extends previous proposals towards more realistic attack
scenarios and stronger adversaries. In addition, we defined the first generic composition method
to obtain a SAV for any signature scheme using an appropriate verifiable computation scheme.
Our compiler identifies for the first time sufficient requirements on the underlying primitives to
ensure the security and anonymity of the resulting SAV scheme. In particular, we showed sufficient
conditions to achieve both computational and unconditional SAV-anonymity. Finally, we introduced
three new SAV signature schemes obtained via our generic composition method, that simultaneously
achieve existential unforgeability and soundness against collusion.

Currently, Canard et al.’s is the only verifiable computation scheme for pairings available in the
literature. Considering the wide applicability of bilinear pairings in cryptography, a more efficient
verifiable computation scheme for these functions would render pairings a server-aided accessible
computation to a large variety of resource-limited devices, such as the ones involved in IoT and
cloud computing settings.

Acknowledgements We thank Dario Fiore (Assistant Research Professor) for providing useful
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A Collected proofs

This Appendix collects the proofs of the results stated in Section 5.

Correctness of our compiler (Definition 14).
According to Definition 5, a single-round server-aided verification signature scheme is correct if
SAV.Verify outputs 1 with all but negligible probability when all the other algorithms of the scheme
are run honestly. This property should hold for any key-tuple and for any message m ∈ M. Let
(pkΣ , skΣ) ← SAV.KeyGen() and (pkΓ , skΓ ) ← SAV.VSetup() be the keys used in the scheme. Let
σ ← SAV.Sign(skΣ ,m) = Sign(skΣ ,m), and (ω, τ) ← SAV.ProbGen(skΓ , pkΣ ,m, σ). By the com-
pleteness of the VC scheme Γ , VerifyΓ (skΓ , τ,CompΓ (pkΓ , ω)) = y 6= ⊥. Finally, by the properties
of VerL we have that VerL(pkΣ ,m, σ, y, τ) = VerifyΣ(pk,m, σ) → 1, since the signature scheme Σ
is complete.

Proof of Theorem 1 (Extended Unforgeability of SAVΓΣ).

Proof. Let A be an adversary attacking the extended existential unforgeability of the SAVΓΣ scheme.
In what follows, we construct a reduction that uses a forgery output by A to break either the
existential unforgeability of Σ (AΣ) or the security of Γ (AΓ ). Finally, we give an upper bound
for the advantage of A in terms of the advantages of the other two adversaries.

The reduction begins by choosing a value c ∈ {1, 2}. If c = 1, the reduction (AΣ) starts the
EUF game for Σ; if c = 2, the reduction (AΓ ) starts the verif (security) game for Γ (Experiment
4). This step corresponds to guessing what kind of forgery A will output (type-1a, or type-2).
Let c = 1. The reduction AΣ starts the EUF game for Σ (described in Experiment 2), and re-
ceives pkΣ from its challenger. AΣ also generates (pkΓ , skΓ ) ← SAV.VSetup(), and sends to A

the keys pkΓ and pkΣ . In the query phase, AΣ forwards to its challenger all the signature queries
received by A, and also stores the transcript in a list L of pairs (mi, σi). AΣ replies to the verifi-
cation queries using skΓ . Let (m∗, σ∗) be the output of A in the challenge phase. If (m∗, σ∗) ∈ L,
AΣ aborts, as A is making a type-2 forgery. Otherwise, AΣ outputs (m∗, σ∗) as an existential
forgery to its challenger (and then aborts its interaction with A). By the correctness of the VC
scheme Γ , the pair (m∗, σ∗) is part of an extended-existential type-1a forgery against SAVΓΣ . Thus,
Adv(A : type-1a) = Adv(AΣ) < εΣ , by the existential unforgeability of Σ.
Let c = 2. The reduction AΓ starts the verif security game for the scheme Γ (described in Experi-
ment 4), and receives pkΓ from its challenger. AΓ also generates (pkΣ , skΣ)← SAV.KeyGen(), and
sends to A the keys pkΣ and pkΓ . In the query phase, AΣ answers all the signature queries using
skΣ , and stores the transcript, i.e., keeps a list L of queried (mi, σi). When receiving a verification
query (mj , σj), A

Γ transforms it into xj ← ProbGenPRE(pkΣ ,mj , σj), for its challenger. AΓ then
relays the communication, i.e., AΓ forwards the public output (ωj) of ProbGenΓ to A, and A’s
reply (ρj) to its challenger. Let yj denote the final output of the challenger to the verification query.
If y = ⊥, AΓ sends ∆ = ⊥ to A. Otherwise, AΓ returns ∆ ← VerL(pkΣ ,m, σ, y). Let (m∗, σ∗)



denote A’s challenge pair. The reduction checks if (m∗, σ∗) ∈ L, otherwise it aborts, since A is
submitting a type-1a forgery. If (m∗, σ∗) ∈ L, AΓ computes x∗ ← ProbGenPRE(pkΣ ,m

∗, σ∗), sends
x∗ to its challenger, and returns to A the public output ω̂ received from its challenger. The second
round of queries is handled by AΓ as the first one. Let (m∗, σ∗, ρ∗) be the (type-2) forgery output
by A; then AΓ outputs ρ∗ to its challenger. By definition of type-2 forgery, it follows that ρ∗ is a
forgery against the verifiable computation scheme Γ . Thus, Adv(A : type-2) = Adv(AΓ ) < εΓ ,
by the security of Γ .
To conclude, we combine the advantages of the two cases (c ∈ {0, 1}), and obtain that SAVΓΣ is a

( εΣ+εΓ

2 , qs, qv)-extended existential unforgeable SAV signature scheme.
It is easy to see that the same proof works for A an extended strong existential forger,

the only change is that for c = 1 AΣ starts the SEUF game (described in Experiment 2) and
Adv(A : type-1a or type-1b) = Adv(AΣ) < εΣ .

Proof of Theorem 2 (Soundness against Collusion of SAVΓΣ).

Proof. The proof is done via reduction, in a similar way to the proof of Theorem 1, case c = 2.
For completeness, we write the detailed proof.

We want here to build a reduction B that uses a collusion forgery against the scheme SAVΓΣ
(produced by an adversary A), to break the security of the VC scheme Γ . The reduction works as
follows. B starts the verif security game for the scheme Γ (Experiment 4), and gets pkΓ from its chal-
lenger. B additionally generates (pkΣ , skΣ)← SAV.KeyGen(), and sends pkΣ , skΣ , pk

Γ to A. Dur-
ing the first query phase, B transforms A’s verification queries (m, σ) into x← ProbGenPRE(pkΣ ,
m, σ), for its challenger. B then relays the communication, i.e., forwards the public output of
(ω, τ) ← ProbGenΓ (skΓ , x), to A, and A’s the reply, ρ, to its challenger. Let y denote the fi-
nal output of the challenger to the verification query. If y = ⊥, B sends ∆ = ⊥ to A. Oth-
erwise, B returns ∆ ← VerL(pkΣ ,m, σ, y). Let (m∗, σ∗) denote A’s challenge pair. B computes
x∗ ← ProbGenPRE(pkΣ ,m

∗, σ∗), sends x∗ to its challenger, and returns to A the public output ω̂
received from its challenger. The second round of verification queries is handled by B with the same
strategy as before (this time, using m∗ and σ∗). Denote by (m∗, σ∗, ρ∗) the final output of the adver-
sary A. We recall that (m∗, σ∗, ρ∗) is a soundness forgery under collusion if SAV.Verify(pr, pk,m∗,
σ∗, ρ∗, τ̂) → ∆∗ /∈ {⊥,SAV.Verify(pr, pk,m∗, σ∗, ρ, τ̂)}, where ρ ← SAV.Comp(pb, ω̂) is generated
honestly. The previous condition implies that:

VerL(pkΣ ,m
∗, σ∗,VerifyΓ (skΓ , ρ∗, τ)) 6= VerL(pkΣ ,m

∗, σ∗,VerifyΓ (skΓ , ρ, τ))

and that VerifyΓ (skΓ , ρ∗, τ) 6= ⊥. The two inequalities above imply ⊥ 6= VerifyΓ (skΓ , ρ∗, τ) 6=
VerifyΓ (skΓ , ρ, τ). Therefore (x∗, ρ∗) is a valid forgery against the VC scheme Γ . Since we assume
Γ to be an εΓ secure verifiable computation scheme, we derive that Adv(A) ≤ Adv(B) < εΓ .

Proof of Theorem 3 (Anonymity of SAVΓΣ from Private Verification).

Proof. The proof proceeds by reducing the privacy of the VC scheme Γ to the anonymity of SAVΓΣ .
Let the reduction B initiate the priv game for the VC scheme Γ (described in Experiment 5). B

receives the public key pkΓ from its challenger, and runs SAV.KeyGen twice to generate two pairs
of signing keys (pk0, sk0) and (pk1, sk1). Eventually, B forwards pk0, pk1 and pkΓ to A.

During the query phase of the SAV-anonymity game, B essentially relays the communication
between A and its challenger. More precisely, upon receiving a query of the form (m, pkb), from
A, the reduction performs the following steps:

(1) it selects skb corresponding to the queried identity b ∈ {0, 1},
(2) it produces a valid signature σ ← SAV.Sign(skb,m),
(3) it computes x← ProbGenPRE(pk0,m, σ),
(4) it starts a (public) verification query on x with its challenger.

The challenger replies to B’s query with ωx, the public output of the algorithm SAV.ProbGen(skΓ , x).
B forwards ωx as ω = ωx to A. In order to complete its verification query, B can return a random
value ωy to its challenger, and ignores the challenger’s public verification output β ∈ {0, 1}.



Let m∗ denote the challenge message submitted by A. B prepares its challenge inputs as
follows. First, it generates a valid signature of m∗ for each identity, i.e., σb ← SAV.Sign(skb,m

∗), for
b ∈ {0, 1}. Secondly, it computes x∗b ← ProbGenPRE(pkb,m

∗, σb). Finally, it provides to its challenger
the values x∗0, x

∗
1. The challenger replies with ωx∗b , according to the private-VC experiment. The

reduction concludes the challenge phase by relaying ω̂ = ωx∗b to A.
In the second query phase, B acts as in the first query phase. The final output of B is the same

bit b′ output by A.
Since our simulation is perfect, it holds Adv(A) = Adv(B) < εΓ .

Proof of Theorem 4 (Anonymity of SAVΓΣ from Perfect Adaption).

Proof. For this proof, we define a sequence of hybrid games, and prove that the case b = 0 is
indistinguishable from the case b = 1. As a matter of notation, Wi denotes the event ‘the adversary
wins Game i’, while Prob [W] is the probability of event W. The function µ : H→ G is the natural
secret-key to public key homomorphism of Σ (implied by perfect adaptivity), i.e., it holds that
pkΣ = µ(skΣ) for any key pair. To highlight the changes between subsequent games, we frame the
parts that differ.

As stated by the theorem, ProbGenPRE runs Adapt as a subroutine. To ease the presentation
for the proof we describe ProbGenPRE as a composition of Adapt and a function G:

ProbGenPRE(pr, pk,m∗, σ) = G(Adapt(pk,m∗, σ, h←R H),m∗).

Game 0: The original SAV-anonymity game (described in Definition 13), where in challenge phase
the challenger runs:

SAV.ProbGen(pr, pkb,m
∗, σ): Output (τ, ω) where

h←R H
(pk′, σ′)← Adapt(pkb,m

∗, σ, h)
x← G(pk′, σ′,m∗), (τ, ω)← SAV.ProbGen(x)

Note that, with overwhelming probability pk′ /∈ {pk0, pk1}, i.e., pk′ is different from the two public
keys involved in the anonymity game.
Game 1: This is the same with Game 0 apart that in the challenge phase the challenger runs the
following SAV.ProbGen′ algorithm, instead of SAV.ProbGen:

SAV.ProbGen′(pr, pkb,m
∗, σ): Output (τ, ω) where

h←R H, set h′ = skb⊕1 · h

(pk′, σ′)← Adapt(pkb,m
∗, σ, h′ )

x← G(pk′, σ′,m∗), (τ, ω)← SAV.ProbGen(x)

Transition - Game 0 → Game 1: Under adaptability of signatures, this change is conceptual and
Prob [W0]=Prob [W1].
Game 2: This is the same as Game 1, apart that in the challenge phase the challenger replies with
signatures generated with the other secret key:

SAV.ProbGen′(pr, pkb,m
∗, σ): Output (τ, ω) where

h←R H, σ̃ ← Sign(skb⊕1,m
∗)

(pk′, σ′)← Adapt( pkb⊕1 , m∗, σ̃, h)

x← G(pk′, σ′,m∗), (τ, ω)← SAV.ProbGen(x)

Transition - Game 1 → Game 2: Also this change in conceptual and Prob [W1]=Prob [W2]. To
see why, recall that by definition of adaptability the output of Adapt(pk,m, σ, h) → (pk′, σ′) has
the same distribution as (pk · µ(h), Sign(sk + h,m)). Thus, in Game 2, σ′ is actually a signature
for m∗ under the public key pk′ = pkb ·

(
pkb⊕1 · µ(h)

)
. Since H is abelian, we can write pk′ also

as pk′ = pkb⊕1 ·
(
pkb · µ(h)

)
= pkb⊕1 · µ(h′), for some h′ ∈ H. Under adaptability, this change is

conceptual: the previous equalities show that σ′ is a signature adapted from pkb but it can also be
a signature adapted from pkb⊕1. Distinguishing between the two cases implies guessing the shift
amount h chosen by the challenger, which leads to unconditional SAV-anonymity.



B Detailed descriptions of our SAV schemes

In this Appendix we present thorough descriptions of the new SAV scheme proposed in this paper
(Section 6). The complete explanations of the algorithms in SAVCDS1

BLS , SAVCDS1
Wat and SAVCDS2

CL are
presented in Figures 4, 5 and 6 respectively.

For consistency, we adopt the multiplicative notation for describing the operation elliptic curve
groups.

SAV.Init(1λ) = SetUpBLS(1λ). This algorithm generates the global parameters of the scheme, that include: a Gap
Diffie-Hellman bilinear group (p, g,G,GT , e) according to the security parameter λ; and a hash function H :
{0, 1}∗ → G that maps messages m ∈M = {0, 1}∗ to group elements in G. The output is gp = (p, g,H,G,GT , e).
SAV.KeyGen() = KeyGenBLS(). The key generation algorithm draws a random s←R Z∗p and outputs (pk, sk) = (gs, s).

SAV.VSetup() = KeyGenCDS1(). This algorithm outputs pr = void and pb = (p,G,GT , e, g, β̂), where β̂ = e(g, g).
SAV.Sign(sk,m) = SignBLS(sk,m). The signing algorithm outputs σ = H(m)s ∈ G.
SAV.ProbGen(void, pk,m, σ). This algorithm runs ProbGenPRE(pk,m, σ)→

(
(pk, H(m)), (σ, g)

)
and returns the out-

puts of ProbGenCDS1 on the two pairs (pk, H(m)) and (σ, g). In details, for (pk, H(m)) the problem generator

algorithm selects two random values r1, r2 ←R Zp, computes the points R1 = pkr
−1
2 gr1 , R2 = H(m)r

−1
1 gr2 and

Û = β̂r1r2 . This process (with fresh randomness) is applied to the pair (σ, g) as well. The final outputs are

ω =
(
(pk, H(m), R

(1)
1 , R

(1)
2 ), (σ, g,R

(2)
1 , R

(2)
2 )
)

and τ =
(
(Û (1), r

(1)
1 , r

(1)
2 ), (Û (2)r

(2)
1 , r

(2)
2 )
)
.

SAV.Comp(pb, ω). The algorithm computes the following bilinear pairings: α
(1)
1 = e(pk, H(m)), α

(1)
2 =

e(R
(1)
1 , R

(1)
2 )
(
e(pk, g)e(g,H(m))

)−1
, α

(2)
1 = e(σ, g), α

(2)
2 = e(R

(2)
1 , R

(2)
2 )
(
e(σ, g)e(g, g)

)−1
. It returns ρ = (ρ1, ρ2) =(

(α
(1)
1 , α

(1)
2 ), (α

(2)
1 , α

(2)
2 )
)
.

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm first runs VerifyCDS1(ρi, τi) for i ∈ [2], i.e., checks whether

α
(i)
2 = Û (i)(α

(i)
1 )(r

(i)
1 r

(i)
2 )−1

and α1 ∈ GT . If any of the previous checks fails, the verification algorithm returns

∆ = ⊥ and halts. Otherwise, it sets yi = α
(i)
1 , for i ∈ [2] and runs VerL(pk,m, σ, y), which returns ∆ = 1 if y1 = y2,

and ∆ = 0 otherwise.

Fig. 4. SAVCDS1
BLS : Our SAV for the BLS Signature in [3].

SAV.Init(1λ) = SetUpCL(1λ). The setup algorithm generates the global parameters of the scheme, that include a
bilinear group (q,G, g,GT , ĝ, e).
SAV.KeyGen() = KeyGenCL(). The key generation algorithm draws two random values x, y ←R Zq, computes
gx = X, gy = Y and returns pk = (X,Y ) and sk = (x, y).
SAV.VSetup() = KeyGenCDS2(). This algorithm outputs pr = void and pb = (p,G,GT , e, G,B, β̂), where G ←R G,
B = g and β̂ = e(G,B).
SAV.Sign(sk,m) = SignCL(sk,m). The sign algorithm picks a random a ←R G and outputs the signature
σ = (σ1, σ2, σ3) = (a, ay, ax+mxy) ∈ G3.
SAV.ProbGen(void, pk,m, σ). This algorithm first runs ProbGenPRE(pk,m, σ)→ (σ2, σ3). Then it runs ProbGenCDS2

on σ2 and σ3. In more details, for i ∈ {2, 3} it selects three random values r
(i)
1 , r

(i)
2 , u(i) ←R Zq, computes the points

R
(i)
1 = σi · Gr

(i)
1 and R

(i)
2 = σu

(i)

i · Gr
(i)
2 , and calculates X̂

(i)
1 = (β̂)r

(i)
1 , X̂

(i)
2 = (β̂)r

(i)
2 . The final outputs are

ω = (R
(2)
1 , R

(2)
2 , R

(3)
1 , R

(3)
2 ) and τ = (u(2), X̂

(2)
1 , X̂

(2)
2 , u(3), X̂

(3)
1 , X̂

(3)
2 ).

SAV.Comp(pb, ω). The algorithm parses ω = (R
(2)
1 , R

(2)
2 , R

(3)
1 , R

(3)
2 ) and returns ρ = (e(R

(2)
1 , g), e(R

(2)
2 , g),

e(R
(3)
1 , g), e(R

(2)
2 , g)).

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm first runs VerifyCDS2(ρ, τ), i.e., for i ∈ {2, 3} it checks if

α
(i)
2 = X̂

(i)
2 (α1(X̂

(i)
1 )−1)u and α

(i)
1 ∈ GT . If any of the previous checks fails, the verification algorithm returns

∆ = ⊥ and halts. Otherwise, the values y(i) = β
(i)
1 (X̂

(i)
1 )−1, for i ∈ {2, 3} are used as input for VerL. In details,

VerL(pk,m, σ, y = (y(2), y(3))), computes: β1 = e(σ1, Y ), β2 = e(X,σ1σ
m
2 ). If both β1 = y(1) and β2 = y(2), the

algorithm returns ∆ = 1; otherwise it returns ∆ = 0.

Fig. 6. SAVCDS2
CL : Our SAV for the CL Signature in [5].



SAV.Init(1λ) = SetUpWat(1
λ). This algorithm generates a bilinear group (p, g,G,GT , e) according to the security

parameter λ; selects n + 1 group elements V0, V1, ... Vn ←R G and defines a function H : {0, 1}n → G as H(m) =
V0(
∏n
i=1 V

mi
i ). The output is gp = (p, g,H,G,GT , e).

SAV.KeyGen() = KeyGenWat(). The key generation algorithm draws a random s ←R Z∗p and outputs (pk, sk) =
(e(g, g)s, s).
SAV.VSetup() = KeyGenCDS1(). This algorithm outputs pr = void and pb = (p,G,GT , e, g, β̂), where β̂ = e(g, g).
SAV.Sign(sk,m) = SignWat(sk,m). The signing algorithm picks a random a ←R Zp and outputs σ = (σ1, σ2) =
(gs(H(m))a, ga) ∈ G2.
SAV.ProbGen(void, pk,m, σ). This algorithm runs ProbGenPRE(pk,m, σ) → (pk′, σ′) to create a signature for a new
public key, i.e., it picks two random values h, b ←R Zp and sets pk′ = pkβ̂h, σ′ = (ghσ1H(m)b, σ2g

b). (By the
adaptivity of Wat if σ is a valid signature for m under sk with randomness a, then σ′ is a valid signature for m
under sk′ + h with randomness a+ b).
Secondly, the problem generation algorithm runs ProbGenCDS1 on (σ′1, g) and (H(m), σ′2). In details, for each pair

(A,B), the algorithm selects two random values r1, r2 ←R Zp, computes the points R1 = Ar
−1
2 gr1 , R2 = Br

−1
1 gr2

and Û = β̂r1r2 . The final outputs are ω = (R
(1)
1 , R

(1)
2 , R

(2)
1 , R

(2)
2 ) and τ = (pk′Û (1), r

(1)
1 , r

(1)
2 , Û (2)r

(2)
1 , r

(2)
2 ).

SAV.Comp(pb, ω). The algorithm parses ω as
(
(R

(1)
1 , R

(1)
2 ), (R

(2)
1 , R

(2)
2 )
)
; for each pair (A,B) it computes α1 =

e(A,B) and α2 = e(R1, R2)
(
e(g,B), e(A, g)

)−1
. It returns ρ = (α

(1)
1 , α

(1)
2 , α

(2)
1 , α

(2)
2 ).

SAV.Verify(void, pk,m, σ, ρ, τ). The verification algorithm parses ρ = (ρ(1), ρ(2)) =
(
(α

(1)
1 , α

(1)
2 ), (α

(2)
1 , α

(2)
2 )
)

and

τ = (pk′, τ (1), τ (2)) =
(
(Û (1), r

(1)
1 , r

(1)
2 ), (Û (2)r

(2)
1 , r

(2)
2 )
)
. For i ∈ [2] it runs VerifyCDS2(ρ(i), τ (i)), i.e., it checks if

α
(i)
2 = Û (i)(α

(i)
1 )(r

(i)
1 r

(i)
2 )−1

and α1 ∈ GT . If any of the previous checks fails, the verification algorithm returns

∆ = ⊥ and halts. Otherwise, it returns y(i) = α
(i)
1 and runs VerL(pk,m, σ, y), which returns ∆ = 1 if y(1) = pk′ y(2),

and ∆ = 0 otherwise.

Fig. 5. SAVCDS1
Wat : Our SAV for the Wat Signature in [23].

C New attacks against previous works

In this Appendix, we review the main existing works on SAV and provide new attacks against
existing schemes.

C.1 (Extended) Existential/Strong Forgeability of [15,25]

Chow et al. proved that Protocol II (Figure 5 in [24]) is not existentially unforgeable [8]. In what
follows we show that: Protocol III (Figure 4 in [25]) is not existentially unforgeable; Protocol I
(Figure 3 in [25]) is not extended existentially unforgeable; and SAV-ZSS [15] (depicted in Figure
1 in [25]) is not extended strongly unforgeable.

Protocol III is a SAV for the Wat signature. Despite what claimed in [25], this scheme is
not existentially unforgeable according to Definition 9. We adapt the notation used in [25] and
show a very simple attack strategy to produce type-1a forgeries against Protocol III. Let the
adversary select a random message m∗ ←R {0, 1}n and two group elements σ1

∗, σ2
∗ ←R G. Let

(m∗, σ∗ = (σ1
∗, σ2

∗)) be the challenge pair. By construction the challenger returns to the adversary
ω̂ = (m∗, σ′1, σ2

∗), where σ′1 = σ1
∗gr for a randomly chosen r ←R H. The adversary can now use σ1

∗

to compute gr as gr =
σ′1
σ1∗

. At this point, A sets K∗2 = pke(g, gr), K∗3 = 1 and outputs (m∗, σ∗, ρ∗ =
(K∗2 ,K

∗
3 )). This is a type-1a forgery. Indeed by bilinearity we have K∗2 = pk·1·e(g, gr) = pk·K∗3 ·Kr

1 .
We have thus described a successful strategy to make an un-queried message-signature pair verify
in the server-aided sense.

The enabler of our attack against Protocol I and SAV-ZSS is the simplistic definition of the
SAV.Verify algorithm: in neither of the schemes the verifier can distinguish between an invalid
signature and a wrong value returned by the server. We adapt the notation in [25] and show a
successful attack strategy to produce type-2 forgeries. Let the adversary select a random message
m ←R M and make a sign query on m. Denote by σ the returns signature. According to the
unforgeability game the pair (m, σ) is valid. Set (m∗, σ∗) = (m,σ), and output (m∗, σ∗, ρ∗), where
ρ∗ ←R GT . With overwhelming probability ρ∗ 6= e(H(m∗), pk), and thus SAV.Verify returns 0 (on
(m∗, σ∗) ∈ L). The same attack strategy can be employed against the SAV-ZSS scheme by Girault
and Lefranc [15].



We describe an attack strategy to produce extended strong forgeries against SAV-ZSS (the same
idea applies also against Protocol I). With the notation in [25], let the adversary pick a random
message m ←R M and make a sign query on m in the first query phase. Let σ be the signature
returned by the challenger for message m. A can set as challenge message to be m∗ = m and
choose a random σ∗ 6= σ. After the challenge phase, A parses ω̂=(σ∗, R), and outputs (m∗, σ∗,
ρ∗=e(σ,R)) at the end of the experiment. It is immediate to check that the adversary’s output is
a type-1b forgery. Indeed, (m∗, σ∗) /∈ L and the output of SAV.Verify is 1, since the adversary used
the correct σ to produce ρ∗ (note that this is not a type-1a forgery since (m∗, σ) ∈ L).

C.2 Critical review of previous models for collusion attacks

In the seminal work on SAV, Girault and Lefranc [15] addressed the signer-server collusion scenario
as “auxiliary non-repudiation”. The first formal definition is due to Wu et al. in [24], where collusion
is seen as a way to increase the adversary’s power, allowing A to produce valid signatures using
the signing key sk. The aim is to make SAV.Verify output 1 (valid) for an invalid pair (m∗, σ̄), where
m∗ is a message chosen by A, and σ̄ is a random invalid signature provided by the challenger.
This model was criticised by Wang et al. [22] in two points. First, the leakage of the signing key
sk to the malicious server is considered unrealistic and replaced with a forger’s key pair (pkf , skf ).
Secondly, Wang et al. suggested to let the adversary output both m∗ and the signature σ∗ – which
is no longer an invalid signature produced by the challenger –. Although the approach proposed in
[22] gives an interesting twist to the notion of collusion, we retain that in most practical scenarios,
the adversary – i.e., the colluding pair malicious signer-server – actually holds the signing key sk.
Therefore we prefer to use Chow et al.’s model for collusion [8], which builds on Wu et al.’s [24].

C.3 New collusion attacks against the soundness of [15,25]

We present a new attack strategy to break the soundness under collusion in SAV-ZSS [15] and
Protocol I [25]. The idea is similar to the one presented at the end of Section 4 for type-1b
forgeries against SAV-ZSS. We explain the attack for the Protocol I, the procedure for SAV-ZSS
is analogous. The adversary picks a random message m∗ and a random signature σ∗, to be the
challenge pair. With overwhelming probability σ∗ is not a valid signature for m∗. Nonetheless,
by the correctness of the scheme SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂) outputs 1 whenever ρ∗=e(σ,R).
The adversary can compute ρ∗ using ω̂=(σ∗, R) and generating a valid signature for the challenge
message σ ← SAV.Sign(sk,m∗). Thus the scheme is not sound under collusion.

Our collusion attack against Protocol II [25] uses a slightly different technique. In order to
construct a collusion forgery the adversary can pick m∗ and σ∗ at random. Let ω̂ = (m∗, σ̃∗, pk)
be the value returned by the challenger. The adversary can generate the valid signature σ ←
SAV.Sign(sk,m∗), compute σ̃∗

σ∗ · σ = σ · gr = σ̃ and set ρ∗ = (K1,K2) = (e(σ̃, R), e(H(m∗), pk)). It
is trivial to check that K1 = K2 · τ̂ , since for the BLS signature σ = H(m∗)sk and pk = gsk.

Finally, we show that Protocol III [25] is not sound against collusion. Let the adversary choose
a random message m∗ as the challenge message and set σ∗ ← SignΣ(sk,m∗), ρ∗ = (K∗2 ,K

∗
3 ) for

K∗2 ,K
∗
3 ←R GT . By construction σ∗ is a valid signature for m∗, thus the output of the server-

aided verification should be ∆ = 1. However, since the adversary returns random values for the
verification, with non-negligible probability it holds that: K∗2 6= pk ·K∗3 · e(g, g)r. To conclude, we
have SAV.Verify(pr, pk,m∗, σ∗, ρ∗, τ̂) → ∆ = 0 with overwhelming probability, since Protocol III
performs no check on the correctness of the results returned by the server.

C.4 Anonymity of [15,25]

We observe that whenever ω contains σ the SAV is trivially not anonymous: A can output b∗ such
that Verify(pkb∗ ,m

∗, σ) = 1.

Since in both Protocol I [25] and SAV-ZSS [15] the value outsourced to the server, ω, contains
σ, the schemes are not SAV-anonymous.



In Protocol II [25], ω contains pk, and thus A can easily win the SAV-anonymity experiment
by outputting b∗ such that pkb∗ = pk.

Protocol III by Wu et al. [25] is SAV-anonymous, in this case anonymity follows from the fact
that the verifier adapts the given signature before sending it to the server (Theorem 4).

D Digital Signatures (security notions and schemes)

In what follows, we recall the fundamental definition of a correct signature scheme and give the
detailed description of two signature schemes that we turn into SAVΓΣ in the paper, as well as
standard security definitions for signature schemes.

Definition 15 (Completeness). A signature scheme Σ is said to be ε-complete if ∀λ ∈ N, ∀gp←
SetUp(1λ), all pairs (pk, sk)← KeyGen() and for all possible messages m ∈M, it holds that:

Prob
[
Verify

(
gp, pk,m,Sign(gp, sk,m)

)
= 1
]
≥ 1− ε.

D.1 Unforgeability and Anonymity

We present the security notions in a compact notation using experiments and oracles. In particular,
OSign denotes the signing oracle, which holds the secret key sk and on input a message m returns
σ ← Sign(gp, sk,m). The notation AOSign denotes the interaction between the adversary A and
the signing oracle.

We present two flavours of unforgeability: existential and strong.

Definition 16 (Existential Unforge-
ability [4]). A digital signature scheme Σ
is said to be (ε, qs)-existential unforgeable
(EUF) against adaptive chosen message
attacks if for any PPT adversary A it
holds that:

Prob
[
ExpEUF

A [Σ] = 1
]
< ε .

Experiment 1 (ExpEUF
A [Σ])

(pk, sk) ← KeyGen()

for i = 1, ... , qs
xi ← AOSign(sk,·)(pk, {(xj , σj)}i−1

j=1)

(m∗, σ∗)← A(pk, {(xj , σj)}qsj=1)

if (1)Verify(pk,m∗, σ∗) = 1 and
(2)(m∗, ·) /∈ {(xj , σj)}qsj=1

return 1, else return 0.

Intuitively, existential unforgeability requires that the verification algorithm does not accept signa-
tures that are not generated in an honest way. It is important to notice that the winning condition
includes a new message: indeed m∗ should not be among the queried messages. Strong unforgeabil-
ity extends EUF to also ensure that the adversary cannot modify (e.g., re-randomising) a signature
obtained in the query phase and output a new valid signature on the same message [4].

Definition 17 (Strong Existential Un-
forgeability [4]). A digital signature
scheme Σ is said to be (ε, qs)-strongly exis-
tential unforgeable against adaptive chosen
message attacks if for any PPT adversary
A it holds that:

Prob
[
ExpSEUF

A [Σ] = 1
]
< ε .

Experiment 2 (ExpSEUF
A [Σ])

(pk, sk) ← KeyGen()

for i = 1, ... , qs
xi ← AOSign(sk,·)(pk, {(xj , σj)}i−1

j=1)

(m∗, σ∗)← A(pk, {(xj , σj)}qsj=1)

if (1)Verify(pk,m∗, σ∗) = 1 and
(2a)(m∗, ·) /∈ {(xj , σj)}qsj=1 or

(2b)(m∗, σ∗) /∈ {(xj , σj)}qsj=1

return 1, else return 0.

The concept of anonymous signatures was introduced in 2006 by Yang et al. [26]. As the name
suggests, the main feature of anonymous signatures is to hide the identity of the signer when only
the signature σ is known. In this case, we modify the signing oracle as follows. OSign now holds
two secret keys sk0, sk1; on input a message m and an identifier for the identity of the signer, e.g.,
bi ∈ {0, 1} σ ← Sign(skbi ,m).



Definition 18 (Anonymity [26]). A digital
signature scheme Σ is said to be (ε, qs)-
anonymous if for any PPT adversary A it
holds that:∣∣∣∣ Prob [Expanon

A [Σ] = 1]− 1

2

∣∣∣∣ < ε .

Definition 18 is the one given in [26] for static se-
curity. Anonymity holds as long as the challenge
message is not revealed to the adversary.

Experiment 3 (Expanon
A [Σ]) (pk0, sk0) ←

KeyGen()
(pk1, sk1)← KeyGen()
for i = 1, ... , qs

xi ←AOSign(sk0,sk1,·,·)(pk0, pk1,
{(xj , σj)}i−1j=1)

b←R {0, 1},m←R M

σ ← Sign(skb,m)
b′ ←AOSign(sk0,sk1,·,·)(σ)

if b′ = b output 1, else output 0.

Otherwise, the adversary could simply run the public algorithm Verify(pk1,m, σ) → b and deter-
mine the identity of the signer according to the value of b = b′.

Lemma 1. The CL signature scheme in [5] is not anonymous.

Proof. We need to show that an adversary A who possesses the two public keys pk0 = (X0, Y0)
and pk1 = (X1, Y1) and a signature σ = (σ1, σ2, σ3) on an unknown message, has non-negligible
probability in determining the identity b ∈ {0, 1} of the signer of σ. Consider the equation
e(σ1, Y0) = e(σ2, g), i.e., e(a, gy0) = e(ayb , g) for a random value a ←R G. If the equality does
not hold, the adversary outputs the guess b′ = 1, otherwise, it outputs b′ = 0. It is immediate that
using the previous strategy A wins the anonymity game with overwhelming probability.

E Security notions in verifiable computation

In what follows, we collect the basic properties of verifiable computation schemes.

Definition 19 (Correctness). A VC scheme is said to be correct if ∀f and ∀x, given (pk, sk)←
KeyGen(λ, f), (ωx, τx) ← ProbGen(sk, x) and ωy ← Comp(pk, ωx), then Verify(sk, τx, ωy) → y with
y = f(x) 6= ⊥, holds with all-but negligible probability.

Below we report the notions of security (Expverif
A [VC] [2]) and privacy (Exppriv

A [VC] [12]) for a
verifiable computation scheme. Note that the adopted security models allow for verification queries
(which were not considered in the seminal work [14]). Intuitively, a verifiable computation
scheme is secure if a malicious server (the
worker) cannot succeed in persuading the ver-
ifier to accept an incorrect output. More for-
mally,

Definition 20 (Security). A verifiable com-
putation scheme Γ is (ε, qv)-secure for a func-
tion f if for any probabilistic polynomial time
adversary A it holds that:

Prob
[
Expverify

A [Γ , f ,λ] = 1
]
≤ ε .

The notion of privacy for a verifiable com-
putation scheme essentially states that if the
algorithm ProbGen is run on two different
inputs, the corresponding two public outputs
are indistinguishable to a malicious server.
More formally,

Experiment 4 (Expverif
A [VC, f ,λ])

(pk, sk)← KeyGen(λ, f)

for i = 1, ... , ` = qv = poly(λ)
xi ← A(pk, {(xj , ωxj , yj)}

i−1
j=1)

(ωxi , τxi)← ProbGen(sk, xi)
ωyi ← A(pk, {(xj , ωxj , yj)}ij=1)
yi ← Verify(sk, τxi , ωyi)

x̂← A(pk, {(xj , ωxj , yj)}`j=1)
(ωx̂, τx̂)← ProbGen(sk, x̂)

set aux={x̂, ωx̂, pk, {(xj , ωxj , yj)}`j=1}
for i = 1, ... , ` = qv = poly(λ)

ωy′i ← A(aux, {(ωy′j , y
′
j)}i−1

j=1)

y′i ← Verify(sk, τx̂, ωy′i)

ω∗ŷ ← A(aux, {(ωy′j , y
′
j)}`j=1)

y∗ ← Verify(sk, τx̂, ω
∗
ŷ)

if y∗ 6= ⊥ and y∗ 6= f(x)
return 1, else return 0.



Definition 21 (Private). A verifiable
computation scheme Γ is (ε,qv)-private
for a function f if for any probabilistic
polynomial time adversary A it holds that:

Prob
[
Exppriv

A [VC, f , λ] = 1
]

≤ 1
2 + ε.

The privacy experiment reported below is an
adaptation to our notation of the definition
given by Fiore et al. in [12]. We define a func-
tion Bool to simulate the public verification
output of a VC scheme, i.e., Bool(y 6= ⊥)
returns 1 if y differs from the rejection value
⊥, and 0 otherwise.

Experiment 5 (Exppriv
A [VC, f , λ])

b←R {0, 1}
(pk, sk)← KeyGen(λ, f)

for i = 1, ... , ` = qv = poly(λ)
xi ← A(pk, {(xj , ωxj , βj)}

i−1
j=1)

(ωxi , τxi)← ProbGen(sk, xi)
ωyi ← A(pk, {(xj , ωxj , βj)}ij=1)
yi ← Verify(sk, τxi , ωyi)
βi ← Bool(yi 6= ⊥)

(x̂0, x̂1)← A(pk, {(xj , ωxj , βj)}`j=1)
(ωx̂0 , τx̂0) ← ProbGen(sk, x̂0)
(ωx̂1 , τx̂1) ← ProbGen(sk, x̂1)

set aux={x̂0, x̂1, ωx̂b , pk, {(xj , ωxj , βj)}
`
j=1}

for i = 1, ... , ` = qv = poly(λ)
x′i ← A(aux, {(x′j , ωx′j , β

′
j)}i−1

j=1)

(ωx′i , τx′i)← ProbGen(sk, x′i)

ωy′i ← A(aux, {(x′j , ωx′j , β
′
j)}ij=1)

yi ← Verify(sk, τxi , ωyi)
βi ← Bool(yi 6= ⊥)

b′ ← A(aux, {(x′j , ωx′j , β
′
j)}`j=1)

if b′ = b output 1, else output 0.
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