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Abstract

Individuals and organizations face a tension between (1) the explosion in the amount of valu-
able data that can be collected and processed and (2) the liability of possession and the threat
of exposure of data (which may be sensitive) due to malicious actors, criminal enterprises, and
software errors. These threats can lead entities to protect their data throughout its lifecycle,
discouraging them from sharing it (or even assessing if sharing has value). Consequently, op-
portunities to benefit from collaborative data analysis are lost. Secure multi-party computation
(MPC) can recover these opportunities and empower both individuals and organizations to ben-
efit from collective data aggregation and analysis in contexts where data sharing is encumbered
by confidentiality concerns, legal restrictions, or corporate policies. Theoretical constructs for
MPC have been known for 35 years, with several existing software frameworks designed over
the past 10 years. Successful examples of deploying MPC for social good include tax fraud
detection, disease surveillance, and pay equity assessment.

Our own experiences deploying MPC indicate that the technology is beyond ready for tran-
sition and deployment in the real world for appropriate scenarios and at suitable scales. MPC’s
benefits are often subtle and identifying compatible scenarios that would benefit from MPC is
a multi-disciplinary array of challenges. Many difficulties and opportunities remain in terms of
both the accessibility and the scalability of the candidate solutions for a given scenario. How
can the community ensure that further research and development efforts lead to building blocks
that will have the flexibility necessary to fit idiosyncratic real-world use cases?

Based on our insights, we advocate for the construction of a collection of production-quality,
modular, open-source components that can support a broad ecosystem in which organizations
and developers can rapidly spin up applications that employ MPC (or related technologies)
to protect security-sensitive data, perform privacy-preserving computations, and enable new
opportunities for collective data analysis that are currently inhibited or disincentivized by legal,
institutional, or economic constraints. Such an ecosystem can allow and incentivize data owners
and a diverse assortment of service providers to leverage sensitive data in deriving new insights
that serve participant goals and/or the public interest.

In addition to its security benefits, the ecosystem vision facilitates separation of responsibili-
ties and areas or expertise by decoupling the work of software engineers, lawyers, data analysts,
communications infrastructure providers, cloud providers, and others. Crucial ingredients for a
realization of such an ecosystem include modular design of functionalities that enable delivery
of MPC services, composable security analyses of such functionalities, policy-agnostic program-
ming and static analysis techniques that enable modularity and scalability, and accessible and
scalable production-quality software applications that utilize MPC functionalities.



1 Introduction and Overview

Enabling Collaborative Data Analytics. We advocate for the development and implementa-
tion of an open-source, accessible, modular, web-based secure multi-party analytics infrastructure
built upon and drawn from a rich body of existing work on secure multi-party computation (MPC).
Such an infrastructure can enable individuals, researchers, businesses, government agencies, and
policymakers to use modern frameworks and development environments to build and deploy ap-
plications that allow cooperating parties to compute analytics securely over data belonging to
multiple entities without the expense, liability, or privacy loss associated with contributors submit-
ting that data to a single trusted entity. Real-world applications enabled by such an infrastructure
can empower their users by enabling new forms of collaborative data analysis that are currently
encumbered by legal, corporate, or individual restrictions and data sharing preferences.

To provide the security guarantees expressed in the vision described above, an infrastructure
must expose (as a collection of modular components and functionalities) secure multi-party com-
putation, a cryptographic technique that allows independent parties to jointly compute a shared
result without revealing their private inputs to the computation. MPC has been an active area of
cryptography research for more than 35 years [14}, [62] 63, 68]. The past decade has seen intense
focus on improving MPC algorithms and designing MPC frameworks that perform quickly enough
on specific functions and algorithms likely to be of interest in practice [I1}, 24, [51], 53], [56]. Due to
these efforts, MPC is a mature technology that is ripe for transition.

Secure Multi-Party Computation as an Accessible Service. Real-world applications of
MPC can be extremely valuable in a number of settings, with significant payoff to society. One
specific example that we have targeted in our preliminary work and to which we refer throughout
this report is the use of payroll data from multiple institutions to shed light on pay inequities [I8],
211, 48, [52]. Other compelling uses of MPC are numerous; applications include disease surveillance
[38], electricity trading markets [12], scientific discovery [4], smart-cities [6], genomics [3], homeland
and cyber security [33], global advanced persistent threat identification in corporate network data
[9], and prevention of satellite collisions [45].

However, despite a small number of successful deployments of MPC for social good in areas
such as tax fraud detection [22], the impact of MPC remains fairly limited to proof-of-concept
studies. Adoption of secure MPC is in part hindered by the fact that the existing frameworks
are closed source or are engineered to optimize for metrics that will not necessarily drive adoption
in practice. Many efforts compete on computational performance for small-scale data, a domain
in which all modern frameworks are adequate. Meanwhile, they neglect human-scale performance
costs: frameworks that require users to become familiar with new domain-specific languages and
to set up compatible hardware infrastructures can be burdensome for software engineers and IT
administrators to deploy (and/or impractical for laymen to adopt).

Our own experience creating and successfully deploying an MPC solution for a concrete appli-
cation reflects thoughts expressed by other researchers in the community [69]: “Secure computation
is a general scheme; in reality one has to choose an application, starting from a very real business
need, and build the solution from the problem itself choosing the right tools, tuning protocol ideas
into a reasonable solution, balancing security and privacy needs vs. other constraints: legal, sys-
tem setting, etc.” To meet the needs of our users, we rejected the most algorithmically expressive
MPC solutions available in the literature [41] and adopted a variant of the simplest of protocols
[32]: just expressive enough for the application at hand while being comprehensible enough to fuel
adoption among corporate officers, legal representatives, and rank and file employees after a few
brief meetings with slideshows and whiteboards. We also found that the software platform and IT



infrastructure inflexibilities and limitations (legacy systems, restrictive policies, firewalls, and so
on) required the most lightweight solution: a simple browser-based application that could accom-
modate the familiar look and feel of a spreadsheet, with transparent open-source code to enable
outside auditing [48] [49].

We also agree with the assertion [69] that only after a solution addresses a concrete need
is it appropriate to “Understand, employ, and generalize useful routines: Building more general
routines and secure computation software packages of actual business value may, therefore, be a
result of collecting various examples of actual useful deployments first, and then creating a common
API/software packages based on actual use and experience, in a bottom up fashion.” Having reached
this stage in our work, we propose a model that will help us (and others) proceed to this next step,
as well as to replicate this successful sequence for new use cases and new concrete needs.

2 Role-Based Ecosystem for MPC

Transitioning MPC techniques to practice in a way that drives adoption necessitates a multi-faceted
approach that begins well before the software engineering efforts commence. MPC’s social benefits
cannot be realized unless the decision makers that ultimately choose to adopt MPC (i.e., executives,
directors, and legal advisors) possess a clear and confident understanding of exactly what role they
(and other entities) play in the process, as well as how MPC protects their sensitive data and
mathematically guarantees compliance with data sharing restrictions. Once a solution is accepted,
it should ideally be easily and rapidly deployable at little or no cost, and should not necessitate
changes to existing software and hardware infrastructures. Finally, it should in all aspects support
the needs of the end users that must interact with the solution.

One way to introduce MPC capabilities into practical scenarios in a manageable way is to sep-
arate existing functionalities into distinct, modular, reusable, and composable components. These
components should individually satisfy concrete needs identified by early adopters of MPC facing
real-world use cases. These can then be generalized through incorporation of alternative and com-
plementary techniques and software systems found in the literature. Finally, they can be applied
in the construction and deployment of novel MPC-based solutions. Our prior and ongoing work
reflects our own efforts to advance in this manner, and the envisioned ecosystem would deliver
functionalities that make executing such an approach possible.

Functionalities as Modular and Composable Roles. An effective infrastructure should con-
sist of a collection of libraries and standardized application and service components that implement
functionalities. The functionalities themselves can be subdivided into distinct roles that might be
inhabited by different agents (such as servers, mobile devices, desktops, human users, organizations,
and so on). In a given MPC solution, each agent can inhabit multiple roles.

In typical models of MPC deployment (supported by existing tools found in the literature and
in practice), it is often the case that an assumption is made at the time of framework design as to
how various kinds of parties (e.g., data contributor, compute party, data analyst, and so on) are
involved in the protocol. This, in turn, determines the architecture of the applications that can be
constructed (e.g., the data contributor must also act as a compute party, or all parties act as the
data analyst that also receives the final result of the computation).

We advocate a clean separation of the duties and functionalities that may be required for an
MPC application into roles that are distinct, modular, and composable. The design of ecosystem
components (including libraries and application components) can be organized around these roles,
and should not predetermine which roles the agents (i.e., servers, devices, application instances,



and human users) must inhabit. Ultimately, functionalities can then be exposed via a framework
and API as roles that are coupled with information about which agents can inhabit those roles and
which needs they can satisfy.

We briefly enumerate the roles we have identified in preliminary work and note that in a given
application, each agent may inhabit more than one of the roles simultaneously.

e A data analyst specifies the analytics to be computed on data. This is normally done by
the analyst with full knowledge of the schema of the data, but not necessarily with advance
knowledge about who owns the data or what data sharing constraints apply to that data (in
other words, the data analyst’s algorithm specification may be policy-agnostic).

e A data contributor is the user (an individual or an organization) of an application that supplies
the sensitive data to be analyzed. Note that the data contributor may not know in advance
the particular analyses that others may want to apply to the contributed data (in other words,
any policies the data contributor may be able to specify may be analysis-agnostic at the time
the data is being contributed). Note also that a contributor may not have the sophistication
necessary to deploy virtual machines or servers when participating in a protocol (for example,
it may be an individual using a mobile device or a web browser).

o A security or policy expert can provide expertise on how to specify appropriate policies over
the data schema (e.g., given legal restrictions, best practices, or constraints chosen by the data
contributors). The policy expert may have the expertise to participate in the development of
an application, or may have no such expertise and would require an accessible way to express
policies on contributed data that the application would then enforce.

o A compute service provider has the capacity to deploy and maintain computational resources
to allow analytics to be computed (e.g., on data that may already be secret-shared). Once
again, for simple applications, the service provider may only have a mobile device or web
browser to contribute; in more complex scenarios, the service provider maybe be a large
organization or even an entire cloud provider. Such a service provider may also act as a
proxy or aid for data contributors or analysts that have limited resources [34].

e A code distributor makes available the actual application (or the specification of the particular
computation) to be executed by compute parties on data provided by the data contributors.
Since the integrity of the computation (and its conformance to the policy specialist’s con-
straints) relies on the trustworthiness of the delivery mechanism, it should be possible to
federate trust among code distributors by allowing multiple entities to inhabit this role.

e The analysis recipient is the party that receives the result of computing the secure multi-party
analytic. Only recipients can benefit from the result of the computation, but different parties
may receive different kinds of information (e.g., an individual user might only have access
to information about how their own metrics stack up against other users, while a service
provider might see aggregate metrics across all users). As before, the recipient may not have
sophisticated hardware, software, or technical expertise.

e A broker or market identifies opportunities that can enable other parties to participate, or
provides infrastructure that enables or mediates interactions between entities that inhabit the
various roles.

e A medium for storage and communications enables coordination between parties and stores
data (including secret-shared data) in transit or in the midst of computations. Note that the



medium can be distinct from the compute parties (e.g., the data contributors could also be
compute parties, but might require an intermediate storage medium to enable the exchange
of secret shares during the operation of a protocol).
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Figure 1: Diagram illustrating an instance of the ecosystem, including entities, the roles they inhabit,
and the communications that occur between them.

Figure [T] illustrates one possible instantiation of an ecosystem for secure analytics applications that
is organized around roles and the functionalities associated with them.

The explicit separation of the roles of data analyst, data contributor, and policy expert, in
particular, emphasizes that decisions related to constraints on data sharing across institutional
boundaries are orthogonal to the analytics that may be computed over that data: analysts cannot
be expected to know all (current and future) data contributors’ security constraints and data
contributors do not necessarily have the resources, expertise, or foresight to specify fully exhaustive
policies. This can be viewed as a generalization of policy agnostic programming [15), 66, [67], an
approach in which security constraints and the program itself should be specified separately and
combined securely via a compilation process. Furthermore, this separation introduces the possibility
of synthesizing potential compatible policies from analysis algorithm definitions [64] or interviews
of data contributors [I7]. The policy expert could then take on the task of evaluating or curating
such policies.

3 Roles, Requirements, and Incentives

In our work developing and deploying MPC solutions there has been a need to satisfy a number
of concrete requirements that are derived from the constraints imposed by target users (including



their level of technical literacy, their access to appropriate kinds of IT infrastructure, and their
logistical constraints). We note that some of these needs may need to be met in order to satisfy
more general, overarching goals or to provide essential incentives (such as improving usability to
drive adoption by a greater number of participants).

Application Requirements. We enumerate a number of these requirements, explicitly refer-
encing how they relate back to the roles described in Section

Comprehensibility: To drive adoption, MPC protocols must be straightforward enough to
explain so that decision-makers and users who might not possess technical expertise can be
confident that they understand their operation and guarantees. This is most important for
data contributors and policy experts, who are responsible for deciding whether participation
in a protocol is appropriate, desirable, and safe.

Auditability: To inspire trust, applications must have complete transparency, with open-
source code and/or support for outside auditing. In most cases, those most closely involved
with a particular application (analysts, contributors, and policy experts) will not possess
the resources to inspect source code or perform auditing over the entire application stack.
However, this presents an opportunity for those in the code distributor role (e.g., cloud
distribution networks may choose to offer this as a service coupled with application delivery).

Accessibility: To minimize any hurdles that might discourage participation by data contrib-
utors and data analysts, solutions must be easily and rapidly deployable, requiring no setup,
specialized software, specialized hardware, or public internet addresses for agents behind
firewalls. The way that compute service providers, code distributors, brokers, and the com-
munications medium are incorporated can all have an effect on an application’s accessibility.

Simplicity: The software must be usable within a relatively narrow time window by non-
expert human contributors and data analysts whose technical expertise may only include
basic familiarity with common software applications.

Asynchronicity: Agents only need to be online while actively performing relevant tasks (i.e.,
not throughout the duration of a protocol’s operation). This would primarily apply to data
analysts and data contributors, and may be enabled through the inclusion of compute service
providers.

Idempotence: Contributors must be able to resubmit (i.e., update) their data if they discover
the data they submitted was corrupted (either through human error, through a software
application failure, or both).

Non-commitment: Contributors may decide not to participate, or may be unable to partici-
pate due to technical or logistical issues. The protocol should not require advance knowledge
of which parties will participate or their quantity.

Robustness: Incorrect or malformed data from even one contributor destroys the value of
aggregate analytics. Hence, interfaces must proactively warn users about spurious data.
Furthermore, data analysts should have some assistance in assembling algorithms that are
robust to outliers or common errors (one natural source of such expertise might be the security
experts, though it could come from a distinct entity or toolchain).



Many of the existing protocols and tools discussed in Section [5| can be wrapped, adapted,
adopted, or translated into a common infrastructure (using a shared modern language and plat-
form such as JavaScript and Node.js) that arranges them into role variants that satisfy different
combinations of the requirements enumerated above (and that can be inhabited by different agents).
However, substantial software engineering efforts may be required to do so; in many cases a frame-
work’s authors explicitly discourage direct use of their tools in production [1T], 36] 53, 66, H8].

Accessibility and Composability. With regard in particular to accessibility: we believe that
there is no “one size fits all” accessibility measurement. Different agents in the ecosystem have
different usability concerns. For example, different potential participants “speak” different (pro-
gramming) languages: distributed systems engineers on the cloud speak Spark, data analysts speak
R, and lawyers and privacy experts speak their own less-structured languages. As a result, one of
the most important accessibility metrics is the participants’ ability not to be burdened by under-
standing the actions and responsibilities of roles they do not inhabit.

Consequently, the viability and success of such an ecosystem depends on the secure distributed
applications being composable at the software and algorithmic layers. Composability allows each
participant to use and build upon prior contributions while only learning succinct API-level speci-
fications of functionality and security. It also facilitates upgrading: if one component is improved,
all derived software packages gain its benefits too.

As we mentioned in Section policy agnostic programming provides composability at the
software layer. At the algorithmic layer, we advocate for universal composability (UC) [27] to
provide separation of responsibilities. UC has been specialized and simplified for the MPC setting
[29]. Additionally, the value of UC has been shown throughout the computing stack; it has been
used to model the security properties of a filesystem [28], a networking protocol [3I], and the
OpenStack cloud management framework [30].

Incentives: the Ecosystem as a Marketplace. The population of the role-based ecosystem
with appropriate, scalable, and usable MPC systems, applications, tools, and libraries provides an
opportunity to explicitly address and leverage the incentives that may drive the agents that inhabit
various roles. This naturally suggests the notion of a marketplace, and such a framing mechanism
can further motivate, delineate, and constrain development efforts.

The major challenges of populating the marketplace, in our opinion, lie less with the design of
faster MPC algorithmic building blocks but with developing developer- and user-centric software
packages that span the range of possible security, usability, and performance trade-offs. Interfacing
with existing languages and platforms already in widespread use within the community allows use
of existing code distribution infrastructures and enables a broader population of users to participate
immediately.

We use the term marketplace because a successful ecosystem must provide rational incentives
for parties to interact. The multiplier effect of composition is not merely a benefit to software
engineers but an incentive to deliver modular code in the first place (a principle that is well-known
to all software engineers but is sorely lacking in the security domain). The marketplace must also
incentivize data owners to make their data available for secure analyses (e.g., by giving responses
quicker [16] or more accurately to those who provide more data). Next, by being open to (and
in some cases requiring) multiple compute service providers [20], our vision reduces the current
cloud computing incentives toward vendor lock-in and instead favors compute service providers
who compete and specialize in areas like trusted client application code delivery, untrusted high-
performance computing, data analysis, policy synthesis, and reliable data delivery. Finally, a



marketplace allows for new types of actors to emerge who broker the exchange of information or offer
suggested advice on privacy policies governing this exchange. This has the effect of further reducing
barriers to entry: data contributors and analysts may not need to work as hard to understand
the details of MPC in order to receive its benefits (as others may be incentivized to help them
understand or to shield them from having to do so). Finally, we observe that such a marketplace
model naturally points to mechanism design [47, 55] as an important area of MPC research—one
that can lead to opportunities to exploit the benefits of secure computing for maximal social good.

4 Use Cases and Applications in the Ecosystem Context

The recommendations in this report are in part informed by planning, development, and deployment
efforts on a number of real-world applications brought forth by local collaborator organizations with
a need for accessible, secure analytics solutions that are critical to their missions. We briefly discuss
three of these use cases within the context of the proposed role-based ecosystem.

Accessible MPC for Privacy-Preserving Data Analytics In 2013, the Boston Women’s
Workforce Council (BWWC) [g] initiated a study of gender and ethnicity wage gaps among em-
ployers within Greater Boston. Uniquely, they planned to use employer-provided data to quantify
and track progress over time. The BWWC has signed over 200 companies [7] to their 100% Talent
Compact [1], in which companies agree to provide wage data corresponding to the EEO-1 form [10]
that companies are required to submit annually to the Equal Employment Opportunity Commis-
sion. For an organization, participating in the tracking portion of the effort involves aggregating
data internally (broken down by by gender, ethnicity, and job category) and then contributing that
data to a computation of the overall category totals across all organizations.

The BWWC’s efforts were initially stymied by a variety of privacy and legal barriers to sharing of
sensitive payroll data. Companies refused to submit data to a “trusted third party”, and conversely
the BWWC had difficulties recruiting an entity to serve in a trusted data collection role due to the
risk of being held liable by Compact signers if the payroll data were accidentally leaked or breached.
We designed and deployed a web-based MPC system that the BWWC has used twice (and will
deploy for a third time in the fall of 2017) to collect payroll analytics securely, thus sidestepping
the legal risks involved with handling payroll data [48], 49]. Thanks to MPC, the BWWC has one
of the largest publicly-released metrics about pay disparity: the 2016 payroll disparity metrics are
based upon the salary data of 112,600 employees that collectively represent about $11 billion in
wages and more than 10% of the Greater Boston workforce [2].

In this scenario, the signing companies are the data contributors (and, indirectly, also analysis
recipients). The BWWC is the data analyst and also a recipient, viewing the employee earnings
totals aggregated across all companies; however, the individual company aggregates remain private.
Boston University (BU) facilitates the private aggregation by supplying the personnel resources
(thus fulfilling the security expert role) and by installing and running the application backend on
an Amazon Web Services (AWS) cloud-based server (thus acting together with AWS as a compute
service provider). The latter arrangement also means that AWS acts as the code distributor. The
internet is the communications medium, with secure end-to-end communications achieved via TLS.

The choice of MPC protocol for this use case was determined by negotiation and reconciliation
of a number of trade-offs and constraints, including which of the roles from Section [2| participants
could inhabit and which of the requirements listed in Section [3] had to be satisfied. Ultimately,
we developed an asynchronous variant of a secret-sharing protocol that allows multiple parties to
collectively compute a sum of their own individual quantities without revealing those quantities to



one another [32]. This solution was comprehensible, required only one compute service provider, did
not burden the data contributors or data analyst, and had acceptable performance characteristics.
However, it was also limited in its expressiveness and in its security guarantees: (1) it only allowed
for the computation of linear combinations on the input data and (2) it did not protect against the
collusion between the compute party and recipient.

We implemented an accessible web application[] to allow a group of non-expert participants to
execute a session of the protocol. The two main components of the application are (1) the client-
facing interactive interfaces to be used by the analyzer and participants and (2) the backend service
provider that aids in the computation of the analytic and also delivers the client-facing interfaces.
The software application automates all portions of the protocol except the initiation of a session
(which can be done with a single manual click), the distribution of the session identifier (which
is simply delivered to participants via email by the analyst), and the entry of participant data
(participants must use the client-facing interface to paste or enter the data before submitting).

Our experience indicates that, for a number of the roles, computational efficiency of the MPC
component is not the primary performance bottleneck. For simple analytics over relatively small
datasets, all modern frameworks perform rather well (7.e., seconds to minutes) [13]. However, other
seemingly unrelated considerations such as choice of client-side cryptographic library can have a
substantial effect when working with small data sets. For example, an initial implementation relied
on the JSEncrypt library for web-based cryptography, but (because it is interpreted) it suffered
from sub-optimal performance compared to compiled cryptography implementations. We chose to
use an alternative (interpreted) library that is 20% slower when encrypting data, but offers forward
compatibility with native browser cryptography. In turn, a speedup of 3000% on the decryption
side was made possible; this accommodated the particular use case, as the analysis recipient had to
decrypt a larger amount of data than the data contributors had to encrypt. Furthermore, human
time can dominate any form of computing time when a window spanning multiple days is required
to collect data from a large number of human contributors operating according to incompatible
schedules. In such cases, MPC solutions should prioritize asynchrony rather than computation
time. More generally, performance characteristics can be optimized in a variety of ways for each
of the proposed roles. Accommodations for exploring such optimization trade-offs can accompany
the modular role-based ecosystem components, allowing application developers to meet the needs
of specific MPC adopters.

The constituent functionalities of our solution for this use case can be expanded to be general-
purpose by adding support for multiplication of input data (which in principle enables the evaluation
of any computable function) and extending the architecture to support multiple compute parties,
thus improving its robustness to collusion. A variety of existing systems could be utilized to
accomplish this; however, if comprehensibility based on arithmetic is required, then an intuitive
extension of the protocol to enable multiplication is to use an additively homomorphic encryption
scheme such as Paillier [57] in place of RSA. Under other circumstances, it may be acceptable to
use Yao’s garbled circuit protocol within the application [60].

The application provides only a single privacy guarantee: passive (also known as semi-honest)
security without collusion, which essentially states that parties cannot learn any data besides the
analytic as long as they all adhere to the protocol [40]. Passive security suffices in this scenario
because incentives provided by existing privacy law are leveraged. We claim that the service
provider and analyzer lack any clear incentive to falsify the results of the aggregation or to learn
private input data; on the contrary, completing the study successfully is directly beneficial to

!This application can be viewed at https://100talent.org and its source is available at https://github.com/
multiparty/web-mpc.
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BWWC (as the initiator of the study) as well as to BU (as an institution reliant upon a reputation
of integrity). Additionally, obtaining any of the contributors’ private data would create a liability
risk for the service provider and analyzer (as would any other type of collusion between the two).
The passive model is very natural in this case as it protects the service providers from any of the
usual legal risks of processing sensitive data so long as the parties follow the protocol.

Another potential improvement is to focus on the issue of trusted code distribution. In the
existing application architecture, AWS is the sole code distributor and thus represents a compelling
attack surface and a single point of failure. One approach that might mitigate risk would be to
federate code delivery across a group of distribution services (such as content distribution networks).

Mobile Applications for Digital Health. Hey,CharlieE] is a digital behavioral intervention
platform designed to help individuals recovering from opioid addiction avoid triggers that might
lead to relapse and connect with their support network when they need it most. It additionally
provides tools to enhance strategy development between patients and clinicians. The platform
consists of a mobile application that can track progress and collect data, and a backend web service
that stores encrypted data and makes it available for analysis to clinicians. Among its features is
an assessment that can track the communication patterns of consenting users with individuals on
their contact list (7.e., phone calls and text messages), as well as their travel patterns in daily life. It
is desirable for the app to (1) upload tracking data so that users may switch devices and clinicians
can get better feedback and (2) aggregate communication patterns across users to provide a better
model for all participants. MPC ensures that the aggregation process does not violate users’ privacy
and confidentiality, or cause the service itself to become a target.

The roles and requirements in this scenario overlap with those of the wage data use case: it is
preferable that only one party act as the compute service provider (Hey,Charlie) while users act as
data contributors and clinicians act as data analysts and analysis recipients. Depending on the kind
of benefits users might experience thanks to insights that can be derived from aggregate data (and
automatically incorporated into the app’s behavior), the users may also act as analysis recipients.
Comprehensibility is not as important in this scenario; this is fortunate, as the particular features of
the app necessitate the implementation of privacy-preserving set intersections. This likely requires
more sophisticated MPC techniques [44].

Scalable MPC Supporting Heterogeneous Data Stacks. The goal of the Conclave frame-
work [65] is to enable MPC deployment in scenarios that involve multiple organizations, each with
their own distinct data storage and processing stacks. The framework’s design addresses three
real-world challenges associated with using MPC at scale: poor integration with existing analytics
workflows and data processing systems, a requirement of expert knowledge to implement analytics
in an MPC framework, and poor scalability to large data sets. Conclave addresses these challenges
by adding secure MPC support to the Musketeer big data workflow manager [39], which auto-
matically generates code for a variety of widely-used data processing frameworks such as Hadoop
and Spark. Conclave extends Musketeer to generate Python code automatically for MPC frame-
work backends such as VIFF [I1] and Sharemind [24]. Conclave accepts input programs specified
in a relational language inspired by LINQ [54]. Experiments [65] using Conclave to compute the
Herfindahl-Hirschman Index (HHI) [42] over a large data set [59] showed that running a partion
of the computation using MPC in this framework had only negligible overhead compared to an
insecure (non-MPC) solution.

*More information is available at http://heycharlie.org/.
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Conclave’s design assumes that data contributors are also willing to act as compute parties. It
seeks to eliminate the burden on data contributors of tasking their in-house software developers
and IT administrators with adopting brand new data storage and computation stacks. The design
also seeks to allow data analysts to use a familiar data analysis language rather than learning a
new domain-specific language, and to avoid dealing with the issue of data sharing policies (which
should be the domain of the data contributors or policy experts). Ultimately, the goal of the
framework is to support the policy-agnostic programming approach described in Section [2|in which
responsibilities are divided between data contributors, data analysts, and policy experts.

5 Related Work

This report draws on prior work to propose a model for the further development of real-world
MPC libraries, systems, and applications that can operate in practical settings. We briefly review
related efforts in developing MPC frameworks, deploying MPC applications in the real world, and
addressing usability of applications that utilize MPC.

The past few years have seen several successful deployments of MPC [23] 25, 35]. Further, an
array of software frameworks is available. These range from proprietary implementations [24} [50]
to open-source, proof-of-concept work [1T}, [T9] 26, [36], 37, 53], 56), 58]. Available frameworks vary not
only in software maturity, security guarantees, and programming APIs but also in the roles that
parties must inhabit to participate, the requirements that can be satisfied, and the communication
topology of the participating parties.

Most frameworks do not clearly distinguish between data analysts, data contributors, and policy
experts. However, two predominant communication models can be identified: (1) peer-to-peer
frameworks in which all participating parties are connected to each other and are required to
install the MPC framework locally on their own computing infrastructure to participate, and (2)
client-server frameworks in which there is a central server running an installation of the MPC
framework while the other parties are mutually unreachable, web-based clients. This distinction
most closely relates to the features of our proposed ecosystem and is of particular interest with
regard to accessibility of deployed MPC solutions. We examine some of the frameworks available
in each category and highlight some feature-enhancing opportunities and adaptation challenges to
be addressed in incorporating these frameworks into the proposed ecosystem.

Peer-to-peer. The majority of existing MPC frameworks follow the peer-to-peer communication
model. Among these, most frameworks are open-source research prototypes [11], [19, 26, [36] 37, 53],
H0, 58]. In many cases, the framework’s authors explicitly discourage use in production [11] [36),
53, 56l 58]; furthermore, in these frameworks all participating parties, including contributors, must
deploy the software framework on mutually available servers that remain online for the duration
of the protocol execution [19] 26] 37, 46]. The proprietary frameworks [24), [50] are closed-source,
which does not meet the auditability criterion. It is important to note that there is a variation
of the peer-to-peer model [24] that enhances usability by distinguishing between the role of a
contributor and service provider. In this model contributors secret-share their input data among
multiple service providers via the browser. The service providers then jointly compute the required
analytics over the secret-shared data. We were able to extend VIFF [II] with this functionality
during our prototyping phase. In this approach, the analyzer acts as a second service provider and
uses VIFF’s built-in output mechanism to retrieve the results. Note that this solutions does not
meet the criteria of asynchronicity (both service providers must be simultaneously online for the
duration of the computation) and accessibility (users lacking the technical expertise to configure a
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web server, obtain a web certificate, and install our VIFF prototype and its dependencies cannot
be accommodated).

Client-server. In the client-server model one entity effectively acts as a service provider while
the analyzer and contributors can be viewed as resource-constrained clients. Unfortunately, this
setting has received far less attention in the community and available frameworks are sparse [43] 61].
The work by Schropfer et al. [61] is a web-based implementation of Yao’s garbled circuit scheme
that allows two browser clients to perform a secure two-party computation leveraging a webserver
for communication and code delivery. The framework is closed-source and restricted to two parties.
Canon-MPC [43] offers a web-based system that supports MPC with symmetric binary functions.
Each participant registers an account on the system, can start a session by choosing a symmetric
binary function, and can indicate which other registered users are contributors. The contributors
evaluate the agreed-upon function with the aid of a service provider. Each contributor interacts
with the service provider exactly once, simultaneously submitting data and performing part of the
computation. At the end of the computation the contributors receive the outcome of the function.
While Canon-MPC addresses many of the shortcomings of the traditional peer-to-peer model, it
falls short of meeting several usability requirements: auditability (the cryptographic library is de-
livered as a compiled binary and runs in Google’s proprietary NativeClient), accessibility (only
Google Chrome is supported because of the reliance on NativeClient; Google has also indicated it
ceased development on NativeClient [5]), asynchronicity (while participants do not have to enter
data in any particular order, no two participants can access the system at the same time; this does
not scale past a few participants), and idempotence (data cannot be corrected after submission).
Furthermore, we remark that if not all contributors submit their data, a second pass is required
to finish the session. Importantly, Canon-MPC does not distinguish between the contributor and
service provider roles: any party that contributes data must also actively participate in the com-
putation. In terms of usability this is, in a sense, a step backwards from the model adopted in
peer-to-peer frameworks such as Sharemind which do distinguish between contributors and service
providers. Minimizing the participation effort for contributors and increasing the robustness of
the platform to contributors failing or neglecting to participate is crucial as it addresses the fact
that, in some cases, contributors only have weak incentive to contribute data. At the same time
it is natural to expect more active and reliable involvement from the analyzers since these parties
directly benefit from a successful completion of the computation.
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