
High-Precision Arithmetic in Homomorphic
Encryption

Hao Chen1, Kim Laine2, Rachel Player3, and Yuhou Xia4

1 Microsoft Research, USA haoche@microsoft.com
2 Microsoft Research, USA kim.laine@microsoft.com

3 Royal Holloway, University of London, UK
rachel.player.2013@live.rhul.ac.uk

4 Princeton University yuhoux@math.princeton.edu

Abstract. In most RLWE-based homomorphic encryption schemes the
native plaintext elements are polynomials in a ring Zt[x]/(xn +1), where
n is a power of 2, and t an integer modulus. For performing integer
or rational number arithmetic one typically uses an encoding scheme,
which converts the inputs to polynomials, and allows the result of the
homomorphic computation to be decoded to recover the result as an
integer or rational number respectively. The problem is that the modulus
t often needs to be extremely large to prevent the plaintext polynomial
coefficients from being reduced modulo t during the computation, which
is a requirement for the decoding operation to work correctly. This results
in larger noise growth, and prevents the evaluation of deep circuits, unless
the encryption parameters are significantly increased.
We combine a trick of Hoffstein and Silverman, where the modulus t is
replaced by a polynomial x− b, with the Fan-Vercauteren homomorphic
encryption scheme. This yields a new scheme with a very convenient
plaintext space Z/(bn + 1)Z. We then show how rational numbers can be
encoded as elements of this plaintext space, enabling homomorphic eval-
uation of deep circuits with high-precision rational number inputs. We
perform a fair and detailed comparison to the Fan-Vercauteren scheme
with the Non-Adjacent Form encoder, and find that the new scheme sig-
nificantly outperforms this approach. For example, when the new scheme
allows us to evaluate circuits of depth 9 with 32-bit integer inputs, in the
same parameter setting the Fan-Vercauteren scheme only allows us to go
up to depth 2. We conclude by discussing how known applications can
benefit from the new scheme.

Keywords: homomorphic encryption, encoding, encrypted arithmetic

1 Introduction

1.1 Background

Fully homomorphic encryption enables Boolean or arithmetic circuits to be eval-
uated on encrypted data, without requiring access to the secret key. While the

idea is old [51], the existence of such encryption schemes was an open problem
for decades, and was solved only in 2009 by Craig Gentry [31], with an explicit
construction based on ideal lattices. While the scheme of [31] was impractical,
a long list of vastly more efficient schemes have since emerged [16, 17, 13, 14,
29, 45, 12, 33]. Several lines of research have focused on improving the efficiency
of homomorphic encryption for practical tasks, e.g. by improving the data rep-
resentations [49, 32, 54, 27, 22], and by providing clever optimization tricks to
improve the performance of existing schemes both from a theoretical [32, 7, 38]
and a software engineering [48, 38] point of view.

All of the schemes mentioned above have several features in common. For
example, their security is based on the hardness of either the Learning With Er-
rors (LWE) [50] or the Ring Learning With Errors (RLWE) [46] problem, which
makes the plaintext and ciphertext spaces to be very similar in all of the schemes.
Another commonality is that in each scheme every ciphertext comes with an in-
herent attribute called noise, which accumulates in homomorphic operations—
in particular in multiplications—and corrupts the ciphertext once it reaches a
certain maximum value. Once a ciphertext is corrupted, it can no longer be de-
crypted, even with the correct secret key. Gentry [31] used a clever bootstrapping
procedure to re-encrypt a homomorphically encrypted ciphertext under a second
layer of encryption, by evaluating the decryption circuit homomorphically using
the encryptions of the bits of the secret key. While there has been a lot of work
recently towards making bootstrapping more practical [28, 24, 20, 8], and im-
proving it further is certainly an interesting direction for future work, typically
a more efficient solution is to simply increase the parameters of the encryption
scheme to allow deep enough circuits to be evaluated before the noise ceiling is
reached. This approach—called leveled (fully) homomorphic encryption [6]—has
been remarkably successful: most implementations of homomorphic encryption
do not implement bootstrapping, and most papers discussing applications do not
use it. In this paper we focus on the leveled approach.

In most schemes based on the RLWE assumption, the natural plaintext ele-
ments are polynomials in a ring Rt = Zt[x]/Φm(x), where Φm denotes the m-th
cyclotomic polynomial. For security and performance reasons it is common to
restrict m to be a power of 2, in which case Φ2n(x) is of the form xn + 1. Thus,
homomorphic operations performed on ciphertexts reflect on the plaintext side
as additions and multiplications in the ring Rt. This is extremely unnatural for
nearly all naturally occurring applications, as in practice we often want to per-
form operations on encrypted integers and rational numbers. For this reason, an
encoding of elements of Z or Q into polynomials in Rt is needed. Such an encod-
ing needs to respect both additions and multiplications, and also be injective in
a large domain (subset of Z or Q), so that the results of the computation can
be decoded after decryption. Several encoding methods for integers and rational
numbers have been proposed in the literature [49, 11, 42, 27, 25, 22], but all of
these have a common limitation: the decoding operation will work correctly only
as long as the homomorphic operations do not cause the underlying plaintext
polynomial coefficients to be reduced modulo the integer t. In other words, in

2

order for the result to be correct as an integer or as a rational number, t needs
to be set sufficiently large. This issue is brought up and closely studied in [25],
where for a certain family of “regular circuits”, and bit-length of the inputs, the
authors analyze a lower bound for t that ensures a correct decoding. Therefore,
when selecting encryption parameters for applications, one typically needs to not
only make sure that the noise does not overflow, but also that the plaintext poly-
nomial coefficients do not grow too large. This results in a subtle optimization
problem: in order to have no plaintext coefficient wrap-around, we need to choose
a large t, which unfortunately implies faster noise growth (see Section 3.3). We
may need to choose larger parameters overall for the encryption scheme to in-
crease the noise ceiling and to preserve the security level. The consequence of
this is worse performance.

1.2 Our Contributions

In this work we tackle the issue of the plaintext polynomial coefficient growth
using a trick that Hoffstein and Silverman suggested in [36] to be used in the con-
text of the NTRU encryption scheme [35]. Namely, they suggested replacing the
modulus t with a small polynomial x− b, for some positive integer b (e.g. b = 2),
turning the plaintext space into the integer quotient ring Z/(bn + 1)Z. In typi-
cal parameter settings suitable for homomorphic encryption, n has size several
thousands, yielding a plaintext space large enough to contain the results of many
naturally occurring computations, without modular reduction ever taking place.
We combine this method with the Fan-Vercauteren (FV) scheme [29], which is
one of the most successful homomorphic encryption schemes to date.

In Section 3 we review the FV scheme, and present heuristic upper bounds
for its noise growth in homomorphic operations. In the process, we use a new
and more convenient definition for noise, which results in simpler analysis, and
more uniform growth properties.

In Section 4 we describe the new (leveled) homomorphic encryption scheme,
prove its correctness, and study its noise growth properties both in terms of
strict and heuristic upper bounds.

In Section 6 we show how to encode rational numbers as integers in the
plaintext space Z/(bn + 1)Z, allowing the new scheme to be used to perform
high-precision rational number arithmetic.

In Section 7 we discuss and the performance of the new scheme. In particu-
lar, we describe a fair and reasonable methodology for comparing it to the FV
scheme. We choose to use the Non-Adjacent Form (NAF) encoder [22] to enable
integer arithmetic in the FV scheme, as it yields some of the best performance
results. We find that the new scheme significantly outperforms this FV-NAF ap-
proach when deep circuits on integers or rational numbers need to be evaluated.
Our results are presented in Table 2 (for FV) and Table 3 (for the new scheme),
and summarized in Figure 1.

In Section 8 we discuss how certain known applications of homomorphic en-
cryption can benefit from the new scheme. In many cases, the new scheme allows

3

much smaller parameters to be used, yielding performance, message expansion,
and security level improvements.

1.3 Related Work

The idea of using the trick of [36] in homomorphic encryption is by no means new:
Geihs and Cabarcas [30] applied it in the context of the Brakerski-Vaikuntanathan
(BV) scheme [17]. However, we note that this is much more straightforward than
using it with modern schemes. For convenience, they used b = 2 in the modulus
polynomial x− b, and noted that other choices might produce useful properties,
such as the message space being isomorphic to a finite field, or isomorphic to a
product ring in which one can use the Chinese Remainder Theorem to encode
multiple plaintext integers at once. The same ideas apply in our setting, and we
show that choosing b appropriately is critical for achieving the best results with
the new scheme (see Table 3).

Lauter et al. [42], citing an unpublished work of López-Alt and Naehrig [44],
use a similar variant of the YASHE scheme [12], which relies on non-standard
assumptions that were recently attacked in [2, 21, 40]. We apply [36] to the FV
scheme, which relies only on the RLWE assumption [46]. Moreover, in contrast
to [42] which mostly focuses on specific applications, we present a detailed con-
struction, noise growth analysis, performance evaluation, and comparison to the
FV scheme. While [42] only encrypts integers, we describe also how to efficiently
encrypt rational numbers with high precision.

There has recently been a lot of interest in the homomorphic encryption com-
munity in encrypting rational numbers more efficiently [5, 37, 23, 9, 27]. Some
researchers have even proposed homomorphic encryption schemes that encrypt
true floating point numbers, while others have proposed technical improvements
to existing schemes, or to previously known encoding methods, to enable more
efficient fixed-precision rational number arithmetic. As encrypted floating point
arithmetic is very unnatural from the point of view of the schemes, it is not
surprising that the latter approaches yield substantially more efficient construc-
tions; indeed, our solution falls into the same category, and can be thought of as
a technical modification to the FV scheme.

Some approaches, such as the work of Cheon et al. [23], have substantially
different properties, which makes a direct comparison less meaningful. For ex-
ample, their scheme allows batching to be used, which results in good amortized
performance in cases where the SIMD capabilities of the scheme can be fully
utilized. However, the latency is much worse than in our scheme. This work also
becomes extremely costly as the desired bit-precision increases, as do others with
similar capabilities (e.g. [5]). In comparison, our scheme can more conveniently
support deep circuits on high-precision inputs without any precision loss, and
with much better computational performance.

Finally, it is worth noting that many of the approaches mentioned above for
homomorphic encryption of integers and rational numbers are difficult to use
in an optimal way, even for experts in the field, due to the large number of

4

parameters involved in both encrypting and encoding. On the other hand, our
approach has fewer parameters, making it easier to use and to optimize.

2 Notation

For n a power of 2, we denote R = Z[x]/(xn + 1)—the 2n-th cyclotomic ring
of integers. For an integer a, we denote Ra = R/aR = Za[x]/(xn + 1), and
RQ = R⊗Q = Q[x]/(xn + 1).

For any polynomial in Z[x] (or Q[x]) we denote the infinity norm by ‖ · ‖.
For any polynomial in R (or Ra, RQ), we always consider the representative
with lowest possible degree. We also encounter the infinity norm in the so-called
canonical embedding [32, 26], and for an polynomial in R (or RQ) denote it
by ‖·‖can. For integers modulo a ∈ Z>0, we always use representatives in the
symmetric interval [−d(a − 1)/2e, b(a − 1)/2c]. For any polynomial in Z[x], [·]a
denotes the coefficient-wise reduction modulo a. For any polynomial in Q[x] we
denote rounding of the coefficients to the nearest integer by b·e.

For any polynomial p ∈ Z[x], and an integer base w, we denote the polynomi-
als in its coefficient-wise base-w decomposition by p(i), where i = 0, . . . , blogw ‖p‖c.

We denote by χ a discrete Gaussian distribution having standard deviation σ,
truncated at some large bound B (e.g. B ≈ 6σ). The computational security
parameter is denoted λ. By log we always mean log2.

Ciphertext elements considered in this work are always pairs of polynomials,
e.g. ct = (c0, c1). For such a pair, and a third polynomial s, we denote ct(s) =
c0 + c1s.

3 Preliminaries

3.1 Fan-Vercauteren Scheme

As the new scheme can be thought of as a variant of the Fan-Vercauteren
scheme [29], for the reader to understand and appreciate the differences, we
recall the definition of the FV scheme here.

In the FV scheme the plaintext space is the Rt, and the ciphertext space is
the product ring Rq × Rq. The reader should assume t � q, which is the case
for nearly all useful parameter choices. The degree n in the polynomial modulus
xn + 1 is a power of 2—typically at least 1024. The standard deviation σ of χ
is often in practice chosen rather small; σ ≈ 3.19 is a common choice [43]. We
denote ∆ = bq/tc, so that q = ∆t + rt(q) for some rt(q) < t. We take w ≥ 2
an integer—typically a power of 2 for performance reasons—which is used for
coefficient-wise base-w decompositions of polynomials, and denote ` = blogw qc.

The security of the FV scheme is based on the hardness of the decisional
RLWE problem [46, 29], which is by now a standard building block of homo-
morphic encryption schemes, and states essentially that given a fixed s← χ, the
following two distributions are computationally indistinguishable: the distribu-
tion of pairs (a, b = as + e) ∈ Rq × Rq, where a ← Rq, and e ← χ, and the

5

distribution of uniformly sampled pairs (a, b) ← Rq × Rq. In practice, for per-
formance and noise growth reasons, many implementations instead use a “small
secret” variant and sample the coefficients of s from a narrow distribution, e.g.
uniformly from {−1, 0, 1}. This was suggested as an optimization in [29], and we
will use it also in this work. Although more attacks apply in this setting (e.g. [1]),
there are theoretical results showing that certain small secret RLWE variants are
as hard as those with s ← χ, if the dimension n is increased sufficiently [15].
For a fixed σ, the security level λ is determined mainly by n and q (for fixed n,
smaller q means higher security), and can be estimated using for example the
methods described in [3].

The following set of algorithms describes the leveled fully homomorphic vari-
ant of the FV scheme.

• FV.SecretKeyGen : Sample s ∈ R with coefficients uniform in {−1, 0, 1}.
Output

sk = s .

• FV.PublicKeyGen(sk): Let s = sk. Sample a← Rq, and e← χ. Output

pk = ([−(as+ e)]q, a) ∈ Rq ×Rq .

• FV.EvaluationKeyGen(sk): For i = 0, . . . , `, sample ai ← Rq, and ei ← χ.
Output the vector of pairs

evk = [([−(ais+ ei) + wis2]q, ai) ∈ Rq ×Rq : i = 0, . . . , `] .

• FV.Encrypt(pk,m ∈ Rt): Let pk = (p0, p1). Sample u with coefficients uni-
form in {−1, 0, 1}, and e0, e1 ← χ. Output

ct = ([∆m+ p0u+ e0]q, [p1u+ e1]q) ∈ Rq ×Rq .

• FV.Decrypt(sk, ct): Let s = sk, c0 = ct[0], and c1 = ct[1]. Output[⌊
t

q
[c0 + c1s]q

⌉]
t

∈ Rt .

The correctness of the above public-key encryption scheme is proved in [29],
and its security follows from a simple indistinguishability argument, relying on
the hardness of the decision-RLWE problem [29, 46].

We next describe the homomorphic operations. Addition is easy:

6

• FV.Add(ct0, ct1): Output

(ct0[0] + ct1[0], ct0[1] + ct1[1]) ∈ Rq ×Rq .

Multiplication is more complicated, and consists of two parts. The first part
(FV.Multiply′) forms an intermediate three-component ciphertext ct′mult. While
in fact the three-component ciphertext can be easily decrypted with an extension
of the FV.Decrypt method described above, it is standard to instead employ
a key switching method to reduce the size of the ciphertext back to 2. Thus,
the second part (FV.Relinearize) converts ct′mult to the final two-component
output ciphertext ctmult using the evaluation key evk.

• FV.Multiply′(ct0, ct1): Denote (c0, c1) = ct0 and (d0, d1) = ct1. Compute

c′0 =

[⌊
t

q
c0d0

⌉]
q

, c′1 =

[⌊
t

q
(c0d1 + c1d0)

⌉]
q

, c′2 =

[⌊
t

q
c1d1

⌉]
q

,

and output
ct′mult = (c′0, c

′
1, c
′
2) ∈ Rq ×Rq ×Rq .

• FV.Relinearize(ct′, evk): Denote (c′0, c
′
1, c
′
2) = ct′. Express c′2 in base w,

so that c′2 =
∑`

i=0 c
′
2
(i)
wi. Set

c0 = c′0 +
∑̀
i=0

evk[i][0]c′2
(i)
, c1 = c′1 +

∑̀
i=0

evk[i][1]c′2
(i)
,

and output
(c0, c1) ∈ Rq ×Rq .

• FV.Multiply(ct0, ct1, evk): Output

FV.Relinearize(FV.Multiply′(ct0, ct1), evk) ∈ Rq ×Rq .

3.2 Noise Fundamentals

As we briefly explained in Section 1.1, every ciphertext in FV carries with itself a
noise component, which grows in homomorphic operations. When using leveled
fully homomorphic encryption schemes, it becomes particularly important to be
able to estimate the noise growth as accurately as possible. This is because only
the party holding the secret key can compute the exact value of the noise, and the
party performing the homomorphic evaluations must estimate the noise growth
to ensure that the ciphertexts will not become corrupted. For the FV scheme, [29]
presents upper bound estimates for noise growth, but these estimates are not very
tight, and cannot be used for determining accurately whether specific parameters

7

work for a specific computation. Costache and Smart [26] instead study heuristic
upper bounds for the noise growth for a number of schemes, including FV. Such
a heuristic analysis proves to be a powerful tool, yielding much tighter and more
realistic noise growth estimates, and yields reasonable results when used for
determining parameters in the leveled setting.

In Section 3.3 we will present heuristic noise growth results for the FV scheme,
and in Section 5 both strict and heuristic noise growth bounds à la Costache-
Smart for the new scheme. In Section 7 we use these heuristic results as a com-
ponent in our comparison of the two schemes.

3.3 Noise in FV

In this section we present (without proof) heuristic upper bounds for noise
growth in the FV scheme. For much more details on the methodology, we refer
the reader to [26, 32].

The definition of noise (invariant noise) that we employ here is the same
that is used in [41], and different from those used in e.g. [29, 26].

Definition 1 (FV invariant noise). Let ct = (c0, c1) be an FV ciphertext
encrypting the message m ∈ Rt. Its invariant noise v ∈ RQ is the polynomial
with the smallest infinity norm such that

t

q
ct(s) =

t

q
(c0 + c1s) = m+ v + at ∈ RQ ,

for some polynomial a ∈ R.

Intuitively, Definition 1 captures the notion that the noise v being rounded
incorrectly is what causes decryption failures in the FV scheme. We see this in
the following Lemma, which bounds the coefficients of v.

Lemma 1. An FV ciphertext ct encrypting a message m decrypts correctly, as
long as the invariant noise v satisfies ‖v‖ < 1/2.

Proof. Let ct = (c0, c1). Using the formula for decryption, we have for some
polynomial A:

m′ =

[⌊
t

q
[c0 + c1s]q

⌉]
t

=

[⌊
t

q
(c0 + c1s) +At

⌉]
t

=

[⌊
t

q
(c0 + c1s)

⌉]
t

.

By the definition of v,m′ = [bm+ v + ate]t = m+bve (mod t). Hence decryption
is successful as long as v is removed by the rounding, i.e. if ‖v‖ < 1/2. ut

Strict upper bound estimates for the noise growth in homomorphic operations
are presented in [41], and here we will only present the heuristics. The key to
obtaining the heuristics is to use the infinity norm in the canonical embedding,
which we call the canonical norm and denote ‖·‖can, instead of the usual infinity
norm. Discussing the canonical norm in detail is beyond the scope of this paper.
The canonical norm is useful due to the following facts.

8

Lemma 2 ([26, 32]). For any polynomials a, b ∈ RQ,

‖a‖ ≤ ‖a‖can ≤ ‖a‖1 , ‖ab‖can ≤ ‖a‖can ‖b‖can
.

If a ∈ RQ has its coefficients sampled independently from a distribution with
standard deviation σcoeff, then ‖a‖can ≤ 6σcoeff

√
n, with very high probability.

Since the usual infinity norm is always bounded from above by the canoni-
cal norm, it suffices to ensure for correctness that the canonical norm never
reaches 1/2, and therefore in the heuristic estimates all bounds are presented for
the canonical norm of the noise.

The following Lemmas can easily be obtained from standard noise growth
arguments for FV [29], combined with Lemma 2. For more details on exactly
how this is done, we refer the reader to [26].

Lemma 3 (FV initial noise heuristic). Let ct be a fresh FV encryption of
a message m ∈ Rt. Let Nm be an upper bound on the number of non-zero terms
in the polynomial m. The noise v in ct satisfies

‖v‖can ≤ rt(q)

q
‖m‖Nm +

6σt

q

(
4
√

3n+
√
n
)
,

with very high probability.

Lemma 4 (FV addition heuristic). Let ct1 and ct2 be two ciphertexts en-
crypting m1,m2 ∈ Rt, and having noises v1, v2, respectively. Then the noise
vadd in their sum ctadd satisfies ‖vadd‖can ≤ ‖v1‖can

+ ‖v2‖can
.

Lemma 5 (FV multiplication heuristic). Let ct1 be a ciphertext encrypting
m1 with noise v1, and let ct2 be a ciphertext encrypting m2 with noise v2. Let
Nm1

and Nm2
be upper bounds on the number of non-zero terms in the polynomi-

als m1 and m2, respectively. Then the noise vmult in the product ctmult satisfies
the following bound:

‖vmult‖can ≤
(

2‖m1‖Nm1
+ 6tn+ t

√
3n
)
‖v2‖can

+
(

2‖m2‖Nm2
+ 6tn+ t

√
3n
)
‖v1‖can

+ 3 ‖v1‖can ‖v2‖can
+
t
√

3n

q
· (12n)

3/2 − 1√
12n− 1

+
6
√

3t

q
nσ(`+ 1)w ,

with very high probability.

Of the five summands appearing this formula, the first two are by far the most
significant ones. The parameter w only affects the running time, so when that
is not a concern we can assume it to be small. This makes the last term small

9

compared to the first two. Since ‖mi‖ ≤ t/2, and Nmi
≤ n, we find the following

simple estimate:

‖vmult‖can . 14tn max {‖v1‖can , ‖v2‖can} . (1)

In this paper we are restricting our considerations to a situation where the
native SIMD functionality (batching) of the scheme [54] is not used, in which
case it is possible to choose the parameters so that rt(q) = 1. Furthermore,
in practice ‖m‖ � t/2 when encoding integers or rational numbers using the
encoders described in [27, 19, 22, 9]. This implies that the first term in the initial
noise estimate of Lemma 3 is small, yielding the following simpler estimate:

‖vinitial‖can .
42σtn

q
. (2)

4 The New Scheme

4.1 Hat Encoder

Before describing the new scheme, we need to introduce a variant of the integer
encoder of [19].

Let m ∈ M be a plaintext element, considered in the symmetric inter-
val [−dbn/2e, bbn/2c]. When b > 2, denote by m̂ a polynomial whose coefficients
are the (symmetric representatives of) the base-b digits of m. When b = 2, we
use the binary digits of m, but augmented with the (repeating) sign. Note that
this is exactly the integer encoding discussed in [19]. Unfortunately, only bn con-
secutive integers can be represented in such a way as polynomials of degree at
most n−1, and we are left with one plaintext integer without an obvious encod-
ing. However, it suffices to allow the coefficients (in fact, at most one coefficient)
in the encodings to have absolute value up to (b+ 1)/2. This gives more room to
encode all elements of M, but also introduces non-uniqueness in the encodings.
This is not a problem, however, as evaluating any such encoding at x = b yields
the correct result modulo bn + 1. Furthermore, will only need the fact that ev-
ery element ofM has such an encoding of length at most n, with coefficients at
most (b+1)/2. For example, when b = 3 and n = 2, we can encode −5 as −x−2,
but also as −2x+ 1. For definiteness, we fix once and for all one such encoding
per each element of M.

Definition 2. Let m ∈M. For each m ∈M choose a shortest polynomial with
‖m̂‖ ≤ (b + 1)/2, such that m̂(b) = m modulo bn + 1, and denote it m̂. As was
explained above, such a polynomial m̂ always exists, and has degree at most n−1.

4.2 New (Leveled) Scheme

Let b ≥ 2 be an integer, and define the new plaintext spaceM = Z/(bn+1)Z. The
parameters n, q, σ, w, `, and the ring Rq are as in the FV scheme (Section 3.1).

10

The ciphertext space is the same as in FV, namely Rq ×Rq. We define

∆b =

⌊
− q

bn + 1
(xn−1 + bxn−2 + . . .+ bn−1)

⌉
,

which is analogous to ∆ in Section 3.1, as we will explain in Section 4.3.
The following set of algorithms describes our new leveled fully homomorphic

encryption scheme.

• SecretKeyGen : Output

sk = FV.SecretKeyGen .

• PublicKeyGen(sk): Output

pk = FV.PublicKeyGen(sk) .

• EvaluationKeyGen(sk): Output

evk = FV.EvaluationKeyGen(sk) .

• Encrypt(pk,m ∈ M): Let pk = (p0, p1). Sample u with coefficients uniform
in {−1, 0, 1}, and e0, e1 ← χ. Let m̂ be an encoding of m, as described above.
Output

ct = ([∆bm̂+ p0u+ e0]q, [p1u+ e1]q) ∈ Rq ×Rq .

• Decrypt(sk, ct): Let s = sk, c0 = ct[0], and c1 = ct[1]. Let

M̂ =

⌊
x− b
q

[c0 + c1s]q

⌉
.

Output

m′ = M̂(b) ∈M .

We prove correctness of the above public-key encryption scheme in Sec-
tion 4.3. Security follows from exactly the same argument as for the FV scheme,
and will be commented on in Section 4.3.

For the new scheme, homomorphic addition is exactly the same as for FV:

• Add(ct0, ct1): Output

FV.Add(ct0, ct1) .

11

Multiplication again consists of two parts. The first part (Multiply′) forms
an intermediate three-component ciphertext ct′mult, just like in FV, which can
be converted back to size 2 using FV.Relinearize with evk, to form the final
two-component output ciphertext ctmult.

• Multiply′(ct0, ct1): Denote (c0, c1) = ct0 and (d0, d1) = ct1. Compute

c′0 =

[⌊
x− b
q

c0d0

⌉]
q

, c′1 =

[⌊
x− b
q

(c0d1 + c1d0)

⌉]
q

,

c′2 =

[⌊
x− b
q

c1d1

⌉]
q

,

and output

ct′mult = (c′0, c
′
1, c
′
2) ∈ Rq ×Rq ×Rq .

• Relinearize(ct′, evk): Output

FV.Relinearize(ct′, evk) .

• Multiply(ct0, ct1, evk): Output

Relinearize(Multiply′(ct0, ct1)) ∈ Rq ×Rq .

4.3 Correctness

We use the following variant of Definition 1 to analyze the performance and
correctness of the public-key encryption scheme.

Definition 3 (Invariant noise). Let ct = (c0, c1) be a ciphertext encrypting
the message m ∈ M. Its invariant noise v ∈ RQ is the polynomial with the
smallest infinity norm such that

x− b
q

ct(s) =
x− b
q

(c0 + c1s) = m̂+ v + a(x− b) ∈ RQ ,

for some polynomial a ∈ R.

We now consider under what conditions decryption works correctly.

Lemma 6. The function Decrypt, as presented in Section 4.2, correctly de-
crypts a ciphertext ct encrypting a message m, as long as the invariant noise v
satisfies ‖v‖ < 1/2.

12

Proof. Let ct = (c0, c1). Using the formula for decryption, we have for some
polynomial A:

M̂ =

⌊
x− b
q

[c0 + c1s]q

⌉
=

⌊
x− b
q

(c0 + c1s+Aq)

⌉
= bm̂+ v + a(x− b)e+A(x− b)
= m̂+ bve+ (A+ a)(x− b) .

As long as v is removed by the rounding, i.e. if ‖v‖ < 1/2, Decrypt outputs

m′ = M̂(b) = m̂(b) = m ∈M. ut

Next, we prove that the noise in a fresh encryption is small enough for correct
decryptions. To this end, we recall the definition of ∆b, and prove the following
analogue of q = ∆t+ rt(q):

Lemma 7. With

∆b =

⌊
− q

bn + 1
(xn−1 + bxn−2 + . . .+ bn−1)

⌉
,

∆b(x− b) = q + ρ ∈ RQ, and ‖ρ‖ ≤ (b+ 1)/2.

Proof. The proof is a straightforward computation. For some polynomial ε, with
‖ε‖ ≤ 1/2,

∆b(x− b) = − q

bn + 1
(x− b)(xn−1 + bxn−2 + . . .+ bn−1) + ε(x− b)

= − q

bn + 1
(xn − bn) + ε(x− b)

=
q

bn + 1
(bn + 1− (xn + 1)) + ε(x− b)

= q + ε(x− b)− q

bn + 1
(xn + 1) .

Thus, ∆b(x− b) = q + ρ in RQ, where ρ = ε(x− b). The bound ‖ρ‖ ≤ (b+ 1)/2
is clear. ut

Lemma 8 (Initial noise). Let ct = (c0, c1) be a fresh encryption of a mes-
sage m ∈ M. Let Nm denote an upper bound on the number of non-zero coeffi-
cients in m̂. The noise v in ct satisfies the bound

‖v‖ ≤ 1

q

(
b+ 1

2

)2

Nm +
b+ 1

q
B(2n+ 1) .

13

Proof. Let ct = (c0, c1) be an encryption of m under the public key pk =
(p0, p1) = ([−(as+ e)]q, a). Then, for some polynomials k0, k1, k,

x− b
q

(c0 + c1s) =
x− b
q

(∆bm̂+ p0u+ e0 + k0q + p1us+ e1s+ k1qs)

= m̂+
ρm̂

q
+
x− b
q

(p0u+ e0 + p1us+ e1s)

+ (x− b)(k0 + k1s)

= m̂+
ρm̂

q
+
x− b
q

((−as− e+ kq)u+ e0 + aus+ e1s)

+ (x− b)(k0 + k1s)

= m̂+
ρm̂

q
+
x− b
q

(−eu+ e1 + e2s)

+ (x− b)(k0 + k1s+ ku) ,

so the noise is

v =
ρm̂

q
+
x− b
q

(−eu+ e1 + e2s) .

To bound ‖v‖, we use Lemma 7, that the error polynomials sampled from χ
have coefficients bounded by B, and that ‖s‖ = ‖u‖ = 1:

‖v‖ ≤ 1

q

(
b+ 1

2

)2

Nm +
b+ 1

q
B(2n+ 1) .

ut

Note that Nm ≤ n in any case. We combine Lemma 6 and Lemma 8 to obtain
correctness for the public-key encryption scheme.

Theorem 1. The public-key encryption scheme defined by the algorithms Se-

cretKeyGen, PublicKeyGen, Encrypt, and Decrypt, is correct as long as the
parameters are chosen so that

1

q

(
b+ 1

2

)2

n+
b+ 1

q
B(2n+ 1) <

1

2
.

ut

4.4 Security

The security argument for the new scheme is exactly the same as for the FV
scheme. Namely, the public key is indistinguishable from uniform due to the
decision-RLWE assumption [46]. Ciphertexts are indistinguishable from uniform
due to a two-layered decision-RLWE assumption, where the uniformity of the
public key is used together with the decision-RLWE assumption to hide the

14

message. Thus, one can prove that the scheme is secure if the 2-sample (small-
secret) decision-RLWE problem is hard. The evaluation key does introduce a
standard circular security assumption, as is discussed in more detail in [29]. For
much more details on the security argument, we refer the reader to [47].

5 Homomorphic Operations

In this section we prove the correctness of homomorphic addition and multiplica-
tion, and describe the noise growth bounds for the new scheme. We also present
heuristic noise growth estimates analogous to those in Section 3.3.

5.1 Addition

Let ct1 be a ciphertext encrypting m1, and ct2 a ciphertext encrypting m2.
Recall (Definition 2), that the messages m1 and m2 can always be encoded as
polynomials m̂1 and m̂2 of degree at most n− 1, where ‖m̂1‖, ‖m̂2‖ ≤ (b+ 1)/2.
The output ctadd = Add(ct1, ct2) of a homomorphic addition is supposed to
encrypt the sum of the underlying plaintexts, m1 + m2 ∈ M, as long as ctadd
has noise less than 1/2.

In the following proof, we will want to replace the sum of the encodings
m̂1 and m̂2 with ̂m1 +m2. Luckily, these are not too different: (m̂1 + m̂2 −
̂m1 +m2)(b) = 0 mod (bn + 1), which means that in R (i.e. modulo xn + 1) we

can always write m̂1 + m̂2 − ̂m1 +m2 = a(x − b), for some integer-coefficient
polynomial a.

Lemma 9. Let ct1 and ct2 be two ciphertexts encrypting m1,m2 ∈ M, and
having noises v1, v2, respectively. Then ctadd = Add(ct1, ct2) encrypts the
sum m1 +m2 ∈M, and has noise vadd, such that ‖vadd‖ ≤ ‖v1‖+ ‖v2‖.

Proof. According to Definition 3, we can write

x− b
q

ct1(s) = m̂1 + v1 + a1(x− b) , x− b
q

ct2(s) = m̂2 + v2 + a2(x− b) ,

for some integer-coefficient polynomials a1, a2. It follow from the definition
of Add, that

x− b
q

ctadd(s) =
x− b
q

ct1(s) +
x− b
q

ct2(s)

= m̂1 + m̂2 + v1 + v2 + (a1 + a2)(x− b)
= ̂m1 +m2 + v1 + v2 + (a1 + a2 + a)(x− b) .

Therefore, ctadd indeed encrypts the sum m1+m2, and has noise vadd = v1+v2.
Obviously ‖vadd‖ = ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖. ut

15

5.2 Multiplication

Recall that homomorphic multiplication (Multiply) consists of two steps: the
first step (Multiply′ outputs an intermediate three-component ciphertext, and
the second step (Relinearize) changes it back to size 2.

The output ctmult = Multiply(ct1, ct2, evk) of a homomorphic multiplica-
tion is supposed to encrypt the product of the underlying plaintexts, m1m2 ∈M,
as long as ctmult has noise less than 1/2.

Just like in Lemma 9, in the following proof, we will want to replace the
product of the encodings m̂1 and m̂2 with m̂1m2. Again, these are not too
different: (m̂1m̂2 − m̂1m2)(b) = 0 mod (bn + 1), which means that in R (i.e.
modulo xn + 1) we can always write m̂1m̂2− m̂1m2 = a(x− b), for some integer-
coefficient polynomial a.

Lemma 10. Let ct1 and ct2 be two ciphertexts encrypting m1,m2 ∈ M, and
having noises v1, v2, respectively. Let Nm1 and Nm2 be upper bounds on the
number of non-zero terms in the polynomials m̂1 and m̂2, respectively. Then
ctmult = Multiply(ct1, ct2, evk) encrypts the product m1m2 ∈ M, and has
noise vmult, such that

‖vmult‖ ≤
b+ 1

2
(Nm1

+ n2 + 2n)‖v2‖

+
b+ 1

2
(Nm2 + n2 + 2n)‖v1‖

+ 3n‖v1‖‖v2‖+
(b+ 1)B

q
(1 + n+ n2)

+
b+ 1

q
nB(`+ 1)w .

Proof. Denote ct1 = (x0, x1) and ct2 = (y0, y1). Consider the three-component
ciphertext ct′mult = (c′0, c

′
1, c
′
2) output by Multiply′(ct1, ct2). By definition,

c′0 =
x− b
q

x0y0 + ε0 +A0q ,

c′1 =
x− b
q

(x0y1 + x1y0) + ε1 +A1q ,

c′2 =
x− b
q

x1y1 + ε2 +A2q ,

for some polynomials ε0, ε1, ε2 with coefficients in (− 1
2 ,

1
2], and for some polyno-

mials A0, A1, A2 with integer coefficients.
First we prove that

x− b
q

ct′mult(s) =
x− b
q

(c′0 + c′1s+ c′2s
2) = m̂1m2 + v′mult + a′(x− b) ,

for some small polynomial v′mult, and for some integer coefficient polynomial a′.
According to Definition 3, we can write

x− b
q

ct1(s) = m̂1 + v1 + a1(x− b) , x− b
q

ct2(s) = m̂2 + v2 + a2(x− b) ,

16

for some integer-coefficient polynomials a1, a2. It follows from the definition
of Multiply′, that

x− b
q

ct′mult(s) =
x− b
q

(c′0 + c′1s+ c′2s
2)

=
x− b
q

[(
x− b
q

(x0y0) + ε0 +A0q

)
+

(
x− b
q

(x0y1 + x1y0) + ε1 +A1q

)
s

+

(
x− b
q

(x1y1) + ε2 +A2q

)
s2
]

=
x− b
q

ct1(s) · x− b
q

ct2(s)

+
x− b
q

(ε0 + ε1s+ ε2s
2)

+
(
A0 +A1s+A2s

2
)

(x− b)
= (m̂1 + v1 + a1(x− b))(m̂2 + v2 + a2(x− b))

+
x− b
q

(ε0 + ε1s+ ε2s
2)

+ (A0 +A1s+A2s
2)(x− b)

= m̂1m2 + m̂1v2 + m̂2v1 + v1v2

+ v1a2(x− b) + v2a1(x− b)

+
x− b
q

(ε0 + ε1s+ ε2s
2) mod (x− b) .

Thus,

v′mult = m̂1v2 + m̂2v1 + v1v2

+ v1a2(x− b) + v2a1(x− b)

+
x− b
q

(ε0 + ε1s+ ε2s
2) .

To establish a bound for v′mult, we first note that∥∥∥∥x− bq (ε0 + ε1s+ ε2s
2)

∥∥∥∥ ≤ (b+ 1)B

q
(1 + n+ n2) . (3)

Next, note that

‖ai(x− b)‖ =

∥∥∥∥x− bq cti(s)− m̂i − vi
∥∥∥∥

≤ b+ 1

2
(1 + n) +

b+ 1

2
+ ‖vi‖

=
b+ 1

2
(2 + n) + ‖vi‖ .

(4)

17

Now use (3) and (4) to bound v′mult:

‖v′mult‖ ≤ ‖m̂1v2‖+ ‖m̂2v1‖+ ‖v1v2‖
+ ‖v1a2(x− b)‖+ ‖v2a1(x− b)‖

+

∥∥∥∥x− bq (ε0 + ε1s+ ε2s
2)

∥∥∥∥
≤ b+ 1

2
Nm1
‖v2‖+

b+ 1

2
Nm2
‖v1‖+ n‖v1‖‖v2‖

+ n‖v1‖
(
b+ 1

2
(2 + n) + ‖v2‖

)
+ n‖v2‖

(
b+ 1

2
(2 + n) + ‖v1‖

)
+

(b+ 1)B

q
(1 + n+ n2)

=
b+ 1

2
(Nm1 + n2 + 2n)‖v2‖

+
b+ 1

2
(Nm2

+ n2 + 2n)‖v1‖

+ 3n‖v1‖‖v2‖+
(b+ 1)B

q
(1 + n+ n2) .

It remains to analyze what happens when Relinearize is applied to ct′mult.
Recall that, given an evaluation key

evk = [([−(ais+ ei) + wis2]q, ai) : i = 0, . . . , `] ,

Relinearize(ct′mult, evk) outputs ctmult = (c0, c1), where

c0 = c′0 +
∑̀
i=0

evk[i][0]c′2
(i)
, c1 = c′1 +

∑̀
i=0

evk[i][1]c′2
(i)
,

and c′2
(i)

denotes the i-th component in the base-w expansion of c′2. Then, for
some integer-coefficient polynomials ai, 0 ≤ i ≤ `+ 1,

x− b
q

ctmult(s) =
x− b
q

(c0 + c1s)

=
x− b
q

(∑̀
i=0

evk[i][0]c′2
(i)

+ s
∑̀
i=0

evk[i][1]c′2
(i)

)

+
x− b
q

(c′0 + c′1s)

=
x− b
q

(
−
∑̀
i=0

eic
′
2
(i)

+
∑̀
i=0

aiqc
′
2
(i)

+ s2
∑̀
i=0

wic′2
(i)

)

+
x− b
q

(c′0 + c′1s) .

18

Since
∑

i w
ic′2

(i)
= c′2, this becomes

x− b
q

(
−
∑̀
i=0

eic
′
2
(i)

+
∑̀
i=0

aiqc
′
2
(i)

)
+
x− b
q

(c′0 + c′1s+ c′2)

= −x− b
q

∑̀
i=0

eic
′
2
(i)

+
x− b
q

(
c′0 + c′1s+ c′2s

2
)

+ (x− b)
∑̀
i=0

aic
′
2
(i)

= m̂1m2 + v′mult −
x− b
q

∑̀
i=0

eic
′
2
(i)

+

(
a`+1 +

∑̀
i=0

aic
′
2
(i)

)
(x− b) .

Hence, the noise further grows by an additive factor in the relinearization process.
Bounding the new term is easy:∥∥∥∥∥−x− bq ∑̀

i=0

eic
′
2
(i)

∥∥∥∥∥ ≤ b+ 1

q

∑̀
i=0

∥∥∥eic′2(i)∥∥∥ ≤ b+ 1

q
nB(`+ 1)w .

Putting everything together, we finally find

‖vmult‖ ≤ ‖v′mult‖+

∥∥∥∥∥−x− bq ∑̀
i=0

eic
′
2
(i)

∥∥∥∥∥
≤ b+ 1

2
(Nm1

+ n2 + 2n)‖v2‖

+
b+ 1

2
(Nm2

+ n2 + 2n)‖v1‖

+ 3n‖v1‖‖v2‖+
(b+ 1)B

q
(1 + n+ n2)

+
b+ 1

q
nB(`+ 1)w .

ut

5.3 Heuristic Estimates

In this section we present heuristic upper bounds for the noise growth in the
new scheme, just like we did for FV in Section 3.3, and as was motivated in Sec-
tion 3.2. Again, we use the canonical norm ‖·‖can instead of the usual infin-
ity norm ‖ · ‖ for the same reasons as in Section 3.3: essentially, it allows to
prove much more accurate heuristic estimates for the noise growth in multipli-
cation. We will present these results, but omit the proofs, as they are simple
modifications of the proofs of Lemma 8, Lemma 9, and Lemma 10 combined
with Lemma 2.

Lemma 11 (Initial noise heuristic). Let ct be a fresh encryption of a mes-
sage m ∈ M. Let Nm denote an upper bound on the number of non-zero coeffi-
cients in m̂. The noise v in ct satisfies the bound

‖v‖can ≤ 1

q

(
b+ 1

2

)2

2
√

3nNm +
6σ(b+ 1)

q

(
4
√

3n+
√
n
)
,

19

with very high probability.

Lemma 12 (Addition heuristic). Let ct1 and ct2 be two ciphertexts en-
crypting m1,m2 ∈ M, and having noises v1, v2, respectively. Then ctadd =
Add(ct1, ct2) encrypts the sum m1 + m2 ∈ M, and has noise vadd, such that
‖vadd‖can ≤ ‖v1‖can

+ ‖v2‖can
.

Lemma 13 (Multiplication heuristic). Let ct1 and ct2 be two ciphertexts
encrypting m1,m2 ∈ M, and having noises v1, v2, respectively. Let Nm1

and
Nm2 be upper bounds on the number of non-zero terms in the polynomials m̂1

and m̂2, respectively. Then

ctmult = Multiply(ct1, ct2, evk)

encrypts the product m1m2 ∈M, and has noise vmult, such that

‖vmult‖can ≤ (b+ 1)
(
Nm1 + 6n+

√
3n
)
‖v2‖can

+ (b+ 1)
(
Nm2 + 6n+

√
3n
)
‖v1‖can

+ 3 ‖v1‖can ‖v2‖can
+
b+ 1

q

√
3n
(

1 +
√

12n+ 12n
)

+
6
√

3(b+ 1)

q
nσ(`+ 1)w ,

with very high probability.

Of the five summands appearing this formula, the first two are again by far
the most significant ones. As before, the parameter w only affects the running
time, so when that is not a concern we can assume it to be small. This makes the
last term small compared to the first two. Since Nmi ≤ n, we find the following
simple estimate:

‖vmult‖can . 14(b+ 1)n max {‖v1‖can , ‖v2‖can} . (5)

For the initial noise, we again use Nm ≤ n to obtain

‖vinitial‖can .
(b+ 1)2n3/2

q
. (6)

6 Fractional Encoder

The fractional encoder introduced by Dowlin et al. in [27] (see also [19, 25]) is a
convenient way of encoding and encrypting fixed-precision rational numbers, and
can be used in conjunction with many RLWE-based homomorphic encryption
schemes. In this section we construct a fractional encoder based on theirs to be
used in conjunction with the new scheme.

20

6.1 Abstract Fractional Encoder

For the new scheme, and in fact for any homomorphic encryption scheme whose
plaintext space is a ring M, we can abstract out the functionality of encoding
fractional numbers as a triple (P, Encode, Decode), where P is a finite subset
of Q, and

Encode : P →M , Decode : Encode(P)→ P

are maps satisfying Decode(Encode(x)) = x, for all x ∈ P.
To preserve the homomorphic property, we additionally require that when

x, y, x+ y, xy ∈ P, then

Encode(x+ y) = Encode(x) + Encode(y),

Encode(xy) = Encode(x)Encode(y) .

In our case we haveM = Z/(bn +1)Z, so a natural candidate for a fractional
encoding map that satisfies the homomorphic properties would be

Encode : P →M, Encode

(
x

y

)
= xy−1 mod (bn + 1) . (7)

However, P needs to chosen carefully to make this map both well-defined and
injective. For example, it is clearly undefined when gcd(y, bn+1) > 1. We resolve
these issues below, presenting appropriate choices for P.

6.2 Case of Odd b

When b is odd, we prove that

P =

{
c+

d

bn/2
: c, d ∈

[
−b

n/2 − 1

2
,
bn/2 − 1

2

]
∩ Z
}

makes the map Encode presented above well-defined and injective, and thus
invertible in its range.

Lemma 14. The map Encode : P →M in (7) is injective.

Proof. Suppose c+ d/bn/2 = c′ + d′/bn/2 mod (bn + 1). Then

(c− c′)bn/2 + (d− d′) = k(bn + 1) ,

for some integer k. However, we have∣∣∣(c− c′)bn/2 + (d− d′)
∣∣∣ ≤ (bn/2 − 1)bn/2 + (bn/2 − 1)

= bn − 1 < bn + 1 .

Thus k = 0, and cbn/2 + d = c′bn/2 + d′. Dividing both sides by bn/2 proves the
claim. ut

21

We define Decode as the left inverse of Encode in its range. We derive a simple
description for Decode below. As usual, [y]a denotes reduction of the integer y
modulo a in the symmetric interval [−d(a− 1)/2e, b(a− 1)/2c].

Lemma 15. For z ∈ Encode(P), we have

Decode(z) =
[zbn/2]bn+1

bn/2
.

Proof. Assume z = Encode(y), with y = c + d/bn/2. By definition of Encode,
zbn/2 = ybn/2 = cbn/2 + d mod (bn + 1). It follows from definition of P, that
|cbn/2 + d| ≤ (bn − 1)/2. Hence [zbn/2]bn+1 = cbn/2 + d, and dividing both sides
by bn/2 yields the result. ut

6.3 Case of Even b

When b is odd, we can encode fractions with n/2 integral base-b digits, and
n/2 fractional base-b digits. When b is even, due to technical constraints (see
Remark 1 below), we need to reduce either the number of fractional digits or the
number of integral digits by one. Suppose we reduce the number of fractional
digits by one, and set

P =

{
c+

d

bn/2−1
: |c| ≤ (bn/2 − 1)b

2(b− 1)
, |d| ≤ (bn/2−1 − 1)b

2(b− 1)
, c, d ∈ Z

}
.

We prove that this makes the map Encode presented above well-defined and
injective, and thus invertible in its range.

Lemma 16. The map Encode : P →M in (7) is injective.

Proof. Suppose c+ d/bn/2−1 = c′ + d′/bn/2−1 mod (bn + 1). Then

(c− c′)bn/2−1 + (d− d′) = k(bn + 1) ,

for some integer k. However, we have∣∣∣(c− c′)bn/2−1 + (d− d′)
∣∣∣ ≤ b

b− 1

[
(bn/2 − 1)bn/2−1 + bn/2−1 − 1

]
=

b

b− 1

(
bn−1 − 1

)
≤ bn − b < bn + 1.

Thus k = 0, and cbn/2−1 + d = c′bn/2−1 + d′. Dividing both sides by bn/2−1

proves the claim. ut

Remark 1. Note that if we do not reduce the number of digits by one, then
Lemma 16 might fail. Namely, if we have n/2 digits for both the integral and
fractional parts, then the equation in the proof becomes

(c− c′)bn/2 + (d− d′) = k(bn + 1) ,

22

and the inequality becomes∣∣∣(c− c′)bn/2 + (d− d′)
∣∣∣ ≤ b

b− 1
(bn − 1) ,

where the right-hand side can now be greater than or equal to bn + 1.

We now derive a simple expression for Decode.

Lemma 17. For z ∈ Encode(P), we have

Decode(z) =
[zbn/2−1]bn+1

bn/2−1
.

Proof. Assume z = Encode(y), with y = c+ d/bn/2−1. By definition of Encode,
zbn/2−1 = ybn/2−1 = cbn/2−1 + d mod (bn + 1). It follows from the definition
of P, that ∣∣∣cbn/2−1 + d

∣∣∣ ≤ bn − b
2(b− 1)

<
bn + 1

2
.

Hence [zbn/2−1]bn+1 = cbn/2−1 + d, and dividing both sides by bn/2−1 yields the
result. ut

As an example, let n = 8, b = 10, and y = 12.55. Since 100−1 = −106

mod (108 + 1), z = Encode(y) =
[
−1255 · 106

]
108+1

= 45000013. For the pur-

poses of encryption, we need to also compute the polynomial encoding ẑ =
−5x7− 5x6 +x+ 2. Decryption evaluates this polynomial (or—more correctly—
a polynomial equal to it modulo x − 10) at x = 10. Of course, this gives back
the number 45000013 mod (108 + 1), which decoding converts to

Decode(z) =

[
45000013 · 103

]
108+1

103
= 12.55 .

7 Comparison to FV

In this section we present a performance comparison of the new scheme with
the FV scheme. Since the schemes have very different properties, how such a
comparison should be performed in a fair and realistic way is not immediately
obvious. Thus, we start by describing and motivating the methodology, after
which we present the comparison, and finally summarize the results.

7.1 Methodology

To make a comparison of FV and the new scheme meaningful, we need to fix
on a specific computational task, which both schemes can perform reasonably
well. For such a task, we choose the evaluation of a “regular circuit”, as described
in [25]. Such a regular circuit is parametrized by three integers A, D, and L, and
consists of evaluating A levels of additions, followed by one level of multiplication,

23

iterated D times. The inputs to the circuit are integers in the interval [−L,L].
Note that such a regular circuit has (multiplicative) depth D. For a fair compar-
ison, and to illustrate the different cases, we consider A ∈ {0, 3, 10}, with inputs
of size L ∈ {28, 216, 232, 264, 2128}, and try to find the largest possible D.

Since FV does not natively encrypt integers, we choose to use the NAF en-
coder [22], which performs better than the integer encoders of [19]. The main
challenge with using FV is the plaintext polynomial coefficient growth, which
quickly forces a very large t to be used, causing faster noise growth, and subse-
quently restricting the depth of the circuits. In all settings that we considered,
we did not get even close to filling the plaintext polynomial space up to the top
coefficient. Since the only advantage of using a higher base (as in [19]) in the
encoding process is that the encodings are shorter, we are not losing anything
by restricting to the NAF encoder.

Since the security of FV and the new scheme are based on exactly the same
parameters, it suffices to fix σ, and settle on a set of pairs (n, q) with desired
security properties. We choose to use the parameter sets presented in [19], which
are estimated [3] to have a high security level even considering the new attack
of Albrecht [1]. For convenience, we present these pairs in Table 1. We also
include a set that is one step larger than these, namely (n = 32768, q ≈ 2890),
as such parameter sizes can still be considered practical. For all parameters we
use σ = 3.19, which is a standard choice [43, 19].

n 2048 4096 8192 16384

q 260 − 214 + 1 2116 − 218 + 1 2226 − 226 + 1 2435 − 233 + 1

Table 1. Parameters (n, q).

Having all of the above settled, the strategy is fairly simple. We use the
heuristic upper bound estimates for noise growth, as presented in Section 3.3
for FV, and in Section 5.3 for the new scheme, to find optimal tuples (t,D) for
FV, and tuples (b,D) for the new scheme, such that the depth D of the regular
circuit is maximized, while ensuring correctness. Next, we discuss the inequalities
imposed by these constraints for both schemes.

FV. Using (2), (1), and Lemma 4, we can bound the noise after the evaluation
of a regular circuit with parameters A and D by (approximately)

(
14tn 2A

)D 42σtn

q
.

For correctness, this needs to be less than 1/2, which gives us the heuristic depth
estimate

D .

⌊
log q − log(84σtn)

log(14tn) +A

⌋
. (8)

24

We use the analysis of [22] (see also [25]) to bound the coefficient growth in
the plaintext polynomials. One can show that the length of the NAF encoding
of integers of absolute value up to L is bounded by blogLc+ 2, of which at most
d = d(blogLc+ 2) /2e are non-zero. For correct decoding, [22] proves that we
need √

6

π2Dd(d+ 2)
(d+ 1)2

D

2A(2D+1−2) < t/2 . (9)

We also need to ensure that the plaintext polynomial does not wrap around
xn + 1, resulting in the condition (blogLc + 2) · 2D ≤ n − 1, but this bound
has no effect in any of the experiments we run, as was already pointed out
in Section 7.1, and can easily be verified from the results. It therefore suffices to
search for a t, that yields a maximum depth D, satisfying only the coefficient
growth condition (9), and the noise condition (8). The results are presented in
Table 2.

A = 0
L = 28 L = 216 L = 232 L = 264 L = 2128

n log q log t maxD log t maxD log t maxD log t maxD log t maxD

2048 60 4 1 5 1 6 1 7 1 8 1
4096 116 9 2 11 2 13 2 16 2 19 2
8192 226 19 3 24 3 30 3 36 3 19 2
16384 435 39 4 50 4 63 4 36 3 43 3
32768 890 80 5 102 5 63 4 76 4 91 4

A = 3
L = 28 L = 216 L = 232 L = 264 L = 2128

n log q log t maxD log t maxD log t maxD log t maxD log t maxD

2048 60 10 1 11 1 12 1 13 1 — 0
4096 116 10 1 11 1 12 1 13 1 14 1
8192 226 27 2 29 2 31 2 34 2 37 2
16384 435 61 3 66 3 72 3 78 3 85 3
32768 890 129 4 140 4 153 4 78 3 85 3

A = 10
L = 28 L = 216 L = 232 L = 264 L = 2128

n log q log t maxD log t maxD log t maxD log t maxD log t maxD

2048 60 — 0 — 0 — 0 — 0 — 0
4096 116 24 1 25 1 26 1 27 1 28 1
8192 226 24 1 25 1 26 1 27 1 28 1
16384 435 69 2 71 2 73 2 76 2 79 2
32768 890 159 3 164 3 170 3 176 3 183 3

Table 2. Allowed maximum depth D for the FV scheme with NAF encoding; at each
level the circuit has 2A additions followed by a multiplication. Results are given for
A ∈ {0, 3, 10}, and several input sizes L ∈

{
28, 216, 232, 264, 2128

}
.

25

New scheme. For the new scheme, using (6), (5), and Lemma 12, we can bound
the noise after the evaluation of a regular circuit with parameters A and D by
(approximately) (

14(b+ 1)n 2A
)D (b+ 1)2n3/2

q
.

For correctness, this needs to be less than 1/2, which gives us the heuristic depth
estimate

D .

⌊
log q − log

(
2(b+ 1)2n3/2

)
log(14(b+ 1)n) +A

⌋
. (10)

We also get a restriction from the plaintext wrapping around bn + 1. The
output of the regular circuit has absolute value bounded by (see [25]) V =

L2D2A(2D+1−2), so for correctness it is necessary that V ≤ (bn − 1)/2, which
yields

D .

⌊
log

(
log
(
(bn − 1)22A−1

)
log (22AL)

)⌋
≈
⌊

log

(
n log b+ 2A− 1

2A+ logL

)⌋
. (11)

Combining (11) with the noise condition (10) yields, for a fixed b, the overall
bound

D . min

{⌊
log

(
n log b+ 2A− 1

2A+ logL

)⌋
,

⌊
log q − log

(
2(b+ 1)2n3/2

)
log(14(b+ 1)n) +A

⌋}
.

The results for maximizing D are presented in Table 3. The largest parameters
illustrate how the size of the integers quickly becomes the main bottleneck in
the new scheme, and demands the use of extremely large values for b.

7.2 Results

Comparing Table 2 and Table 3 shows that, for performing encrypted arithmetic
on both small and large integers, the new scheme significantly outperforms the
FV scheme with the NAF encoding. The difference becomes particularly strong
when more additions are performed at each level, as FV suffers from the coeffi-
cient growth resulting from these multiplications. For example, when A = 10 the
FV scheme allows us to evaluate regular circuits of depth at most 3, even with
the smallest input size that we considered, whereas with the new scheme we can
go up to depth 15; this is a massive increase in performance. For convenience,
we summarize the performance results in Figure 1 in a more intuitive way.

We would also like to point out that the parameters we used in our com-
parison are estimated to have a very high security level against the most recent
attacks [3, 1]. In some sense, the new scheme will perform better in comparison
to FV when using lower-security parameters: for a fixed n and σ, a lower secu-
rity level corresponds to using a larger q, which has a smaller initial noise. Thus,
there is more room for homomorphic operations noise-wise. This is in many cases

26

A = 0
L = 28 L = 216 L = 232 L = 264 L = 2128

n log q b maxD b maxD b maxD b maxD b maxD

2048 60 2 2 2 2 2 2 2 2 2 2
4096 116 2 5 2 5 2 5 2 5 3 5
8192 226 3 10 5 10 5 9 17 9 17 8
16384 435 257 14 257 13 257 12 257 11 65539 11
32768 890 ≈ 216 16 ≈ 216 15 ≈ 232 15 ≈ 232 14 ≈ 232 13

A = 3
L = 28 L = 216 L = 232 L = 264 L = 2128

n log q b maxD b maxD b maxD b maxD b maxD

2048 60 2 2 2 2 2 2 2 2 2 2
4096 116 2 5 2 5 2 5 2 5 3 5
8192 226 4 10 7 10 6 9 21 9 19 8
16384 435 128 13 2048 13 724 12 431 11 332 10
32768 890 ≈ 228 16 ≈ 222 15 ≈ 219 14 ≈ 235 14 ≈ 233.5 13

A = 10
L = 28 L = 216 L = 232 L = 264 L = 2128

n log q b maxD b maxD b maxD b maxD b maxD

2048 60 2 2 2 2 2 2 2 2 2 2
4096 116 2 5 2 5 2 5 2 5 3 5
8192 226 4 9 5 9 10 9 7 8 25 8
16384 435 128 12 512 12 91 11 1447 11 609 10
32768 890 ≈ 228 15 ≈ 218 14 ≈ 226 14 ≈ 221 13 ≈ 237 13

Table 3. Allowed maximum depth D for the new scheme; at each level the circuit
has 2A additions followed by a multiplication. Results are given for A ∈ {0, 3, 10}, and
several input sizes L ∈

{
28, 216, 232, 264, 2128

}
.

great for the new scheme, allowing deeper circuits to be evaluated. In the FV
scheme, increasing the depth requires t to be substantially larger, which directly
affects the noise growth in homomorphic multiplications, and quickly makes any
increase in the noise ceiling irrelevant.

7.3 Rational Number Arithmetic

Even though the comparison above focused on integer arithmetic, a generaliza-
tion to rational number inputs, with a generalization of the NAF or other integer
encoders being used with the FV scheme, would yield similar results. The reason
for this is explained in detail in [25]: integer operations on scaled plaintexts are
essentially equivalent to performing computations using the fractional encoders,
including the one described in Section 6. The difference between scaling to inte-
gers and using fractional encoders is very minor, and is explained in [19]. Instead,
the benefit of using fractional encoders is mostly for convenience, as it frees the

27

Fig. 1. Comparing maximum depthD between the FV scheme with NAF encoding, and
the new scheme; at each level the circuit has 2A additions followed by a multiplication.
Results are given for A ∈ {0, 3, 10}, and input sizes L ∈

{
28, 232, 2128

}
.

user from having to keep track of different scaling factors. Thus, the performance
of integer arithmetic is exactly the same as the performance of rational number
arithmetic. For example, computations on 64-bit integer inputs (Table 2 and
Table 3) has the same performance as computations on rational numbers with
e.g. 32-bit fractional and 32-bit integral parts.

7.4 Computational Overhead

The new scheme is algebraically slightly more complicated than the FV scheme,
and one can reasonably ask what kind of an impact these changes have on its
performance in implementations.

First, we note that the hat encoding of Section 4.1 is computationally the
same as the usual integer encoders, and same is true for the fractional encoder

28

of Section 6. In general, the cost of encoding is typically negligible compared to
other operations.

Encryption incurs a slight overhead due to multiplication by the constant ∆
in FV encryption being replaced by the polynomial ∆b. However, ∆b is typically
very sparse, containing fewer than log q/ log b non-zero terms, so the product
∆bm̂ can be very efficiently computed. This is negligible compared to the cost of
the dense polynomial multiplications that dominate the cost of encryption both
in FV and in the new scheme.

The cost of homomorphic multiplications is nearly unchanged. Instead of
multiplying ciphertext polynomials by an integer t in the FV scheme, we multiply
then by a polynomial x− b. This is almost equally fast, and negligible compared
to the cost of the dense polynomial multiplications that dominate the cost of
multiplication both in FV and in the new scheme.

Decryption is most affected by the changes, as one has to evaluate the poly-
nomial M̂ (see Section 4) at x = b, and in the process reduce it modulo bn + 1.

In particular, M̂ can be dense even if M̂(b) evaluates to something very small
modulo bn + 1. This is normally not the case in the FV scheme with the NAF
encoder: the decrypted plaintext polynomial tends to be proportional in size to
the number it decodes to. While this is not ideal, we would like to point out
that the new scheme allows smaller parameters to be used, which will instantly
make up for the cost of evaluating M̂(b), and that decryption is very rarely a
bottleneck in applications of homomorphic encryption anyway.

8 Applications

The applications of homomorphic encryption on integral or rational number data
are numerous. Recently, several papers have discussed applications to medical
risk prediction [11], genomic analysis [42, 39, 22], evaluating neural networks on
encrypted images [34], and performing predictive analysis on power consumption
in smart grids [10, 9]. A common challenge in works of this type is the growth of
the plaintext polynomial coefficients, which is commonly solved either by increas-
ing all of the parameters, or by using several smaller relatively prime plaintext
polynomial coefficient moduli, and performing the computations separately using
each of these: the final result can then be obtained using the Chinese Remainder
Theorem coefficient-wise in the plaintext space (e.g. [34, 10]). However, with the
new scheme, the situation is much better.

First, we would like to comment on [42], and [22]. These works implement
medical risk prediction tasks using logistic regression, and the Cox Proportional
Hazard model. Both models require non-polynomial functions to be evaluated,
which the authors solve by using Taylor [42] and minimax [22] approximations.
For example, for evaluating logistic regression models, [22] uses polynomials up
to degree 11 evaluated on high-precision rational number inputs. This forces
them to use very large parameters: their polynomial modulus has degree 23430,

29

yielding an acceptable estimated5 security level λ ≈ 110 against the attack of [1].
With the new scheme such computations can be done easily with only n = 4096,
and an estimated security level of λ ≈ 120.

In [34] the authors discuss evaluating neural networks on encrypted images.
To achieve good performance, they use a network specifically designed to be
easy to evaluate on homomorphically encrypted data. Namely, they use square
activation functions, instead of the more common sigmoid or rectified linear
functions, which are hard to approximate well with low-degree polynomials. The
authors choose to use (n = 8192, q ≈ 2383), and σ = 3.19, resulting in a low
estimated security level of λ ≈ 72 against the attack of [1]. The computation
consists of three linear layers, and two non-linear (square) layers, which can
easily be performed using the new scheme with n = 4096 size parameters, and
an estimated security level of λ ≈ 120. This also will make a big difference
in terms of computational performance, and in terms of message expansion.
To be fair, one of the key aspects of [34] is to use batching to improve the
amortized performance by allowing thousands of small image predictions to be
done simultaneously, which might also be the preferred scenario in applications
to medical image prediction. Nevertheless, in cases where only one instance needs
to be evaluated, our approach will be much more efficient. The authors also point
out that the square function might not be suitable for deeper networks due to
the instability it creates in the training process. This problem could be solved to
some extent using the new scheme, as the enhanced homomorphic capabilities
would allow the use of higher degree activation functions, with better growth
properties near zero.

Remark 2. It is possible to use batching also with the new scheme, although
typically to a lesser extent than in schemes like FV. The idea is simply to choose
b such that bn + 1 factors into a product of relatively prime factors

∏
ei. Then,

by the Chinese Remainder Theorem, there is a canonical ring isomorphism

Z/(bn + 1)Z ∼=
∏

Z/eiZ ,

allowing us to operate on integers in each factor separately. Of course, now
the integers in each factor separately must not wrap around the corresponding
modulus ei, which limits the usefulness of this technique. On the other hand,
with a small number of factors (such as 2–8) this might not be an issue.

Finally, we would like to comment on the work of [9], which is a follow-up
paper to [10]. In [10], the authors discuss an application of homomorphic encryp-
tion to consumption prediction in smart grids using a technique called Group
Method of Data Handling (GMDH), and in [9] improve the results using a new
Non-Integral Base Non-Adjacent Form encoder for rational numbers: essentially,
this technique allows the use of a smaller plaintext coefficient modulus t, which
results in an overall performance improvement compared to simpler rational

5 In this section, all estimates of the security level λ were obtained using the LWE
estimator [3] of Albrecht et al. (commit ee94f7e).

30

number encoding methods. The GMDH “network” that they use has three hid-
den layers, resulting in a circuit of depth 4. They choose to use parameters
n = 4096, q ≈ 2186, σ = 102, which are estimated to have λ ≈ 75 bits of security
against the attack of [1]. With the new scheme, we can comfortably evaluate such
circuits with n = 4096 and q ≈ 2116. This parameter set implies an estimated
security level of λ ≈ 120, which would likely be required in realistic implemen-
tations of the protocol. Due to the smaller q we have, our ciphertexts are also
smaller by nearly 40%, which will result in an overall run-time improvement.

Acknowledgements

We thank the anonymous reviewers for helpful comments on a previous version
of this work.

References

[1] Martin R. Albrecht. On dual lattice attacks against small-secret LWE and pa-
rameter choices in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, volume 10211
of Lecture Notes in Computer Science, pages 103–129, 2017.

[2] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-
stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding
schemes. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptol-
ogy - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of Lec-
ture Notes in Computer Science, pages 153–178. Springer, 2016.

[3] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[4] Diego F. Aranha and Alfred Menezes, editors. Progress in Cryptology - LATIN-
CRYPT 2014 - Third International Conference on Cryptology and Information
Security in Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised
Selected Papers, volume 8895 of Lecture Notes in Computer Science. Springer,
2015.

[5] Seiko Arita and Shota Nakasato. Fully homomorphic encryption for point num-
bers. Cryptology ePrint Archive, Report 2016/402, 2016. http://eprint.iacr.

org/2016/402.
[6] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela

Jäschke, Christian A. Reuter, and Martin Strand. A guide to fully homomorphic
encryption. Cryptology ePrint Archive, Report 2015/1192, 2015. http://eprint.
iacr.org/2015/1192.

[7] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A full rns
variant of fv like somewhat homomorphic encryption schemes. In Selected Areas
in Cryptography-SAC, 2016.

[8] Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang Zhou. Op-
timization of bootstrapping in circuits. In Philip N. Klein, editor, Proceedings

31

http://eprint.iacr.org/2016/402
http://eprint.iacr.org/2016/402
http://eprint.iacr.org/2015/1192
http://eprint.iacr.org/2015/1192

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2423–
2433. SIAM, 2017.

[9] Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter Castryck, Ilia Iliashenko,
and Frederik Vercauteren. Faster homomorphic function evaluation using non-
integral base encoding. Cryptology ePrint Archive, Report 2017/333, 2017. http:
//eprint.iacr.org/2017/333.

[10] Joppe W. Bos, Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren.
Privacy-friendly forecasting for the smart grid using homomorphic encryption
and the group method of data handling. In Marc Joye and Abderrahmane Nitaj,
editors, Progress in Cryptology - AFRICACRYPT 2017 - 9th International Con-
ference on Cryptology in Africa, Dakar, Senegal, May 24-26, 2017, Proceedings,
volume 10239 of Lecture Notes in Computer Science, pages 184–201, 2017.

[11] Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private predictive analysis
on encrypted medical data. Journal of biomedical informatics, 50:234–243, 2014.

[12] Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael Naehrig. Improved
security for a ring-based fully homomorphic encryption scheme. In Martijn Stam,
editor, Cryptography and Coding - 14th IMA International Conference, IMACC
2013, Oxford, UK, December 17-19, 2013. Proceedings, volume 8308 of Lecture
Notes in Computer Science, pages 45–64. Springer, 2013.

[13] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Safavi-Naini and Canetti [52], pages 868–886.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, Inno-
vations in Theoretical Computer Science 2012, Cambridge, MA, USA, January
8-10, 2012, pages 309–325. ACM, 2012.

[15] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013.

[16] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In Rafail Ostrovsky, editor, IEEE 52nd Annual Sym-
posium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011, pages 97–106. IEEE Computer Society, 2011.

[17] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
Ring-LWE and security for key dependent messages. In Phillip Rogaway, editor,
Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lec-
ture Notes in Computer Science, pages 505–524. Springer, 2011.

[18] Michael Brenner and Kurt Rohloff, editors. Proceedings of WAHC’17 - 5th Work-
shop on Encrypted Computing and Applied Homomorphic Cryptography, April
2017.

[19] Hao Chen, Kim Laine, and Rachel Player. Simple Encrypted Arithmetic Library
- SEAL. In Brenner and Rohloff [18].

[20] Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim. Faster bootstrapping
of FHE over the integers. Cryptology ePrint Archive, Report 2017/079, 2017.
http://eprint.iacr.org/2017/079.

[21] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU
problems and cryptanalysis of the GGH multilinear map without a low-level en-
coding of zero. LMS Journal of Computation and Mathematics, 19(A):255?266,
2016.

32

http://eprint.iacr.org/2017/333
http://eprint.iacr.org/2017/333
http://eprint.iacr.org/2017/079

[22] Jung Hee Cheon, Jinhyuck Jeong, Joohee Lee, and Keewoo Lee. Privacy-
preserving computations of predictive medical models with minimax approxima-
tion and Non-Adjacent Form. In Brenner and Rohloff [18].

[23] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. Cryptology ePrint Archive,
Report 2016/421, 2016. http://eprint.iacr.org/2016/421.

[24] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, volume 10031 of Lecture Notes in Computer Science, pages
3–33, 2016.

[25] A. Costache, N.P. Smart, S. Vivek, and A. Waller. Fixed point arithmetic in SHE
scheme. Cryptology ePrint Archive, Report 2016/250, 2016. http://eprint.

iacr.org/2016/250.
[26] Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic

encryption scheme is best? In Sako [53], pages 325–340.
[27] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. Manual for using homomorphic encryption for bioinformatics.
Proceedings of the IEEE, 105(3):552–567, 2017.

[28] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryp-
tion in less than a second. In Elisabeth Oswald and Marc Fischlin, editors, Ad-
vances in Cryptology - EUROCRYPT 2015 - 34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 617–640. Springer, 2015.

[29] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.
iacr.org/2012/144.

[30] Matthias Geihs and Daniel Cabarcas. Efficient integer encoding for homomorphic
encryption via ring isomorphisms. In Aranha and Menezes [4], pages 48–63.

[31] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
169–178. ACM, 2009.

[32] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the
AES circuit. In Safavi-Naini and Canetti [52], pages 850–867.

[33] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-
22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 75–92. Springer, 2013.

[34] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. CryptoNets: Applying neural networks to encrypted
data with high throughput and accuracy. In Maria-Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pages 201–210. JMLR.org, 2016.

33

http://eprint.iacr.org/2016/421
http://eprint.iacr.org/2016/250
http://eprint.iacr.org/2016/250
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

[35] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory,
Third International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25,
1998, Proceedings, volume 1423 of Lecture Notes in Computer Science, pages 267–
288. Springer, 1998.

[36] Jeffrey Hoffstein and Joseph Silverman. Optimizations for NTRU. Public-
Key Cryptography and Computational Number Theory (Proceedings of the In-
ternational Conference organized by the Stefan Banach International Math-
ematical Center Warsaw, Poland, September 11-15, 2000), 2001. Avail-
able at: https://assets.securityinnovation.com/static/downloads/NTRU/

resources/TECH_ARTICLE_OPT.pdf.

[37] Angela Jäschke and Frederik Armknecht. Accelerating homomorphic computa-
tions on rational numbers. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve
Schneider, editors, Applied Cryptography and Network Security - 14th Interna-
tional Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings,
volume 9696 of Lecture Notes in Computer Science, pages 405–423. Springer, 2016.

[38] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: scalable
homomorphic implementation of encrypted data-classifiers. IEEE Transactions
on Computers, 65(9):2848–2858, 2016.

[39] Miran Kim and Kristin Lauter. Private genome analysis through homomorphic
encryption. Cryptology ePrint Archive, Report 2015/965, 2015. http://eprint.
iacr.org/2015/965.

[40] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in
Computer Science, pages 3–26, 2017.

[41] Kim Laine, Hao Chen, and Rachel Player. Simple Encrypted Arithmetic Library
- SEAL v2.2. Technical report, June 2017.

[42] Kristin E. Lauter, Adriana López-Alt, and Michael Naehrig. Private computation
on encrypted genomic data. In Aranha and Menezes [4], pages 3–27.

[43] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-
based encryption. In Aggelos Kiayias, editor, Topics in Cryptology - CT-RSA
2011 - The Cryptographers’ Track at the RSA Conference 2011, San Francisco,
CA, USA, February 14-18, 2011. Proceedings, volume 6558 of Lecture Notes in
Computer Science, pages 319–339. Springer, 2011.

[44] Adriana López-Alt and Michael Naehrig. Large integer plaintexts in ring-based
fully homomorphic encryption, 2014. Unpublished.

[45] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Sympo-
sium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 1219–1234. ACM, 2012.

[46] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. Journal of the ACM (JACM), 60(6):43, 2013.

[47] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe
cryptography. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the

34

https://assets.securityinnovation.com/static/downloads/NTRU/resources/TECH_ARTICLE_OPT.pdf
https://assets.securityinnovation.com/static/downloads/NTRU/resources/TECH_ARTICLE_OPT.pdf
http://eprint.iacr.org/2015/965
http://eprint.iacr.org/2015/965

Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-
30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages
35–54. Springer, 2013.

[48] Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier
Killijian, and Tancrède Lepoint. NFLlib: NTT-Based Fast Lattice Library. In Sako
[53], pages 341–356.

[49] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can homomor-
phic encryption be practical? In Christian Cachin and Thomas Ristenpart, editors,
Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011,
Chicago, IL, USA, October 21, 2011, pages 113–124. ACM, 2011.

[50] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM (JACM), 56(6):34, 2009.

[51] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[52] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Sci-
ence. Springer, 2012.

[53] Kazue Sako, editor. Topics in Cryptology - CT-RSA 2016 - The Cryptographers’
Track at the RSA Conference 2016, San Francisco, CA, USA, February 29 - March
4, 2016, Proceedings, volume 9610 of Lecture Notes in Computer Science. Springer,
2016.

[54] Nigel P Smart and Frederik Vercauteren. Fully homomorphic SIMD operations.
Designs, codes and cryptography, 71(1):57–81, 2014.

35

	High-Precision Arithmetic in Homomorphic Encryption

