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Abstract. At Eurocrypt 2017 the first secret-key distinguisher for 5-round AES
- based on the “multiple-of-8” property - has been presented. Although it allows
to distinguish a random permutation from an AES-like one, it seems rather hard
to implement a key-recovery attack different than brute-force like using such a
distinguisher.
In this paper we introduce “Mixture Differential Cryptanalysis” on round-reduced AES-
like ciphers, a way to translate the (complex) “multiple-of-8” 5-round distinguisher
into a simpler and more convenient one (though, on a smaller number of rounds).
Given a pair of chosen plaintexts, the idea is to construct new pairs of plaintexts by
mixing the generating variables of the original pair of plaintexts. Here we theoretically
prove that for 4-round AES the corresponding ciphertexts of the original pair of
plaintexts lie in a particular subspace if and only if the corresponding pairs of
ciphertexts of the new pairs of plaintexts have the same property. Such secret-key
distinguisher - which is independent of the secret-key, of the details of the S-Box
and of the MixColumns matrix (except for the branch number equal to 5) - can be
used as starting point to set up new key-recovery attacks on round-reduced AES.
Besides a theoretical explanation, we also provide a practical verification both of the
distinguisher and of the attack.
As a second contribution, we show how to combine this new 4-round distinguisher
with a modified version of a truncated differential distinguisher in order to set up new
5-round distinguishers, that exploit properties which are independent of the secret
key, of the details of the S-Box and of the MixColumns matrix. As a result, while a
“classical” truncated differential distinguisher exploits the probability that a couple of
texts satisfies or not a given differential trail independently of the others couples, our
distinguishers work with sets of N � 1 (related) couples of texts. In particular, our
new 5-round AES distinguishers exploit the fact that such sets of texts satisfy some
properties with a different probability than a random permutation.
Even if such 5-round distinguishers have higher complexity than e.g. the “multiple-
of-8” one present in the literature, one of them can be used as starting point to set
up the first key-recovery attack on 6-round AES that exploits directly a 5-round
secret-key distinguisher. The goal of this paper is indeed to present and explore new
approaches, showing that even a distinguisher like the one presented at Eurocrypt -
believed to be hard to exploit - can be used to set up a key-recovery attack.
Keywords: AES · Secret-Key Distinguisher · Key-Recovery Attack · Mixture Differ-
ential Cryptanalysis · Truncated Differential · Subspace Trail Cryptanalysis
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1 Introduction
Block ciphers are certainly among the most important cryptographic primitives. They
are designed by iterating an efficiently implementable round function many times in the
hope that the resulting composition behaves like a randomly drawn permutation. In the
compromise, a round function is iterated enough times to make sure that any symmetries
and structural properties that might exist in the round function vanish.

One of the most important tools that a cryptanalyst has at hand when trying to evaluate
the security of ciphers or hash functions is - without doubt - differential cryptanalysis.
Since its conception by Biham and Shamir [BS90, BS91] in their effort to break the Data
Encryption Standard (DES), it has been successfully applied in many cases such that any
modern cipher is expected to have strong security arguments against this attack.

The methodology of differential cryptanalysis has been extended several times with a
number of attack vectors, most importantly truncated differentials [Knu95], impossible dif-
ferentials [Knu98, BBS99], higher-order differentials [Knu95], boomerang attacks [Wag99]
and differential-linear attacks [LH94].

With today’s knowledge, designing a secure block cipher is a problem that is largely
considered solved. Especially with the AES we have at hand a very well analyzed and
studied cipher that, after more than 20 years of investigation still withstands all cryptana-
lytic attacks. However, new results on the AES still appear regularly, especially within
the last couple of years (e.g. polytopic cryptanalysis [Tie16], “multiple-of-8” distinguisher
[GRR17a] and yoyo distinguisher [RBH17]). While those papers do not pose any practical
thread to the AES, they do give new insights into the internals of what is arguably the
cipher that is responsible for the largest fraction of encrypted data worldwide.

“Multiple-of-8” distinguisher [GRR17a] proposed at Eurocrypt 2017 by Grassi, Rech-
berger and Rønjom is the first 5-round secret-key distinguisher for AES that exploits a
property which is independent of the secret key and of the details of the S-Box. This dis-
tinguisher is based on a new structural property for up to 5 rounds of AES: by appropriate
choices of a number of input pairs it is possible to make sure that the number of times that
the difference of the resulting output pairs lie in a particular subspace is always a multiple
of 8. This distinguisher allows to distinguish an AES permutation from a random one with
a success probability greater than 99% using 232 chosen texts and a computational cost
of 235.6 look-ups. On the other hand, as this distinguisher is based on a property of the
whole state in the output of AES, it makes it challenging to convert it into a key-recovery
attack over more rounds, since e.g. it requires guessing the whole subkey in the last round.

In this paper we introduce “mixture differential cryptanalysis” on round-reduced
AES-like ciphers, a way to translate the (complex) “multiple-of-8” 5-round distinguisher
[GRR17a] into a simpler and more convenient one (though, on a smaller number of rounds).
As we are going to show, such new proposed technique leads to a new distinguisher and
key-recovery attacks on 4- and 5-round AES (respectively) with data and computational
complexity similar than other attacks in literature. As second contribution, we show
how to extend such distinguisher to 5 rounds, combining the 4-round mixture differential
distinguisher with a modified version of a truncated differential distinguisher. As a result,
even if the obtained 5-round secret-key distinguishers have higher data and computational
complexities than other ones present in the literature (e.g. [GRR17a]), one of them allows
to set up the first 6 rounds key-recovery attack on AES that exploits directly a 5-round
secret-key distinguisher (which exploits a property which is independent of the secret key).

Such distinguishers and attacks - fully practically verified - are also general enough to
be applied to any AES-like cipher, and they might be valuable as a reference framework.
In particular, many constructions employ reduced round AES as part of their design
(e.g. among many others, AEGIS [WP] - one of the finalist of the on-going CAESAR
competition [CAE] - uses five AES round-functions in the state update functions). Reduced
versions of AES have nice and well-studied properties that can be favorably as components
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of larger designs (see for instance Simpira [GM16]). As a result, distinguishers and attacks
on round-reduced AES can be also useful in analyzing those primitives. To give a concrete
example, in [BEK16] authors exploit - in a new way - known properties of round-reduced
AES to set up a new attack on ELmD [DN], another finalist of the on-going CAESAR
competition.

Related Work
To the best of our knowledge, the concept of mixture differential cryptanalysis is new and
has not been used in cryptanalysis before. Nonetheless there are other works that share
some similarities with mixture differential cryptanalysis.

Before going on, as first thing we recall the notion of secret-key distinguisher, one of
the weakest attacks that can be launched against a secret-key cipher. In this attack, there
are two oracles: one that simulates the cipher for which the cryptographic key has been
chosen at random and one that simulates a truly random permutation. The adversary can
query both oracles and her task is to decide which oracle is the cipher and which is the
random permutation. The attack is considered to be successful if the number of queries
required to make a correct decision is below a well defined level.

Differential Attacks. Differential attacks [BS90] exploit the fact that couples of
plaintexts with certain differences yield other differences in the corresponding ciphertexts
with a non-uniform probability distribution. The resulting pair of differences is called a
differential. Such a property can be used both to distinguish a cipher permutation from a
random one, and to recover the secret key. Possible variants of this attack/distinguisher are
the truncated differential attack [Knu95], in which the attacker considers only part of the
difference between pairs of texts (i.e. a differential attack where only part of the difference
in the ciphertexts can be predicted), and impossible differential attack [Knu98, BBS99], in
which the attacker considers differential with zero-probability.

In the original version of differential cryptanalysis [BS90], a unique differential is
exploited. A generalization of such attack is multiple differential cryptanalysis [BG11],
where several input differences are considered together and the corresponding output
differences can be different from an input difference to another, that is the set of considered
differentials has no particular structure.

The common feature of all these distinguishers/attacks is the fact that - in all these
cases - the attacker focuses on the probability that a single pair of plaintexts with a certain
input difference yield other difference in the corresponding pair of ciphertexts, working
independently on each pair of texts.

Recent Results. Recently, new differential distinguishers have been proposed in the
literature, precisely the polytopic cryptanalysis [Tie16] at Eurocrypt 2016 and the yoyo
distinguisher on SPN constructions [RBH17] at Asiacrypt 2017, which present an important
difference with respect to the previously recalled attacks. Instead of working on each
couple1 of two (plaintext, ciphertext) pairs independently of the others as in the previous
scenario, in these cases the attacker works on the relations that hold among the couples of
pairs of texts. In other words, given a couple of two (plaintext, ciphertext) pairs with a
certain input/output differences, one focuses and studies how such couple influences other
couples of two (plaintext, ciphertext) pairs to satisfy particular input/output differences.

More precisely, polytopic cryptanalysis is similar to multiple differential cryptanalysis.
However, as opposed to assuming independence of the differentials (which does not hold in
general, as showed in [Mur11]), the authors explicitly take their correlation into account

1Notation: we use the term “pair" to denote a plaintext and its corresponding ciphertext. A “couple"
denotes a set of two such pairs.
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Table 1: Secret-Key Distinguishers for round-reduced AES. The complexity is measured
in minimum number of chosen plaintexts/ciphertexts (CP/CC) or/and adaptive chosen
plaintexts/ciphertexts (ACP/ACC) which are needed to distinguish the AES permutation
from a random one with probability higher than 95% (all distinguishers work both in
the encryption and in the decryption mode). Time complexity is measured in equivalent
encryptions (E), memory accesses (M) or XOR operations (XOR) - using the common
approximation 20 M ≈ 1 Round of Encryption. The distinguisher of this paper is in bold.

Property Rounds Data Cost Ref.
Yoyo Game 4 2 CP + 2 ACC 2 XOR [RBH17]

Impossible Differential 4 216.25 CP 222.3 M ≈ 216 E [BK01]
Mixture Diff. 4 217 CP 223.1 M ≈ 216.75 E Sect. 5

Integral 4 232 CP 232 XOR [DKR97]
Multiple-of-8 4 233 CP 240 M ≈ 233.7 E [GRR17a]

Yoyo 5 212 CP + 225.8 ACC 224.8 XOR [RBH17]
Multiple-of-8 5 232 CP 235.6 M ≈ 229 E [GRR17a]
Variance Diff. 5 234 CP 237.6 M ≈ 231 E [GR18]
Truncated Diff. 5 248.96 CP 252.6 M ≈ 246 E [GR18]

Prob. Mixture Diff. 5 252 CP 271.5 M ≈ 264.9 E Sect. 7
Threshold M.D. 5 289 CP 298.1 M ≈ 291.5 E Sect. 9.1

Imp. Mixture Diff. 5 282 CP 297.8 M ≈ 291.1 E Sect. 9.2
Prob. Mixture Diff.: Probabilistic Mixture Differential, Imp. Mixture Diff.: Impossible

Mixture Differential, Threshold M.D.: Threshold Mixture Differential

and use it in their framework, considering interdependencies between larger sets of texts
and as they traverse through the cipher.

The strategy exploited by the yoyo game on SPN constructions proposed at Asiacrypt
2017 is similar to the one that we are going to exploit to set up our new distinguisher. Given
a pair of chosen plaintexts and the corresponding ciphertexts, the attacker constructs new
pair of ciphertexts related to the other ones by linear and differential relations. Authors
prove that the corresponding new pair of plaintexts of this new second pair of ciphertexts
satisfies - with prob. 1 - a difference related “in some sense” to the input difference of the
original pair of plaintexts, independently of the secret-key. This allows to distinguish e.g.
round-reduced AES from a random permutation, or to set up key-recovery attack.

Our Contribution
“Mixture Differential Cryptanalysis” on 4-round AES

As first contribution, in this paper we present “mixture differential cryptanalysis” on
4-round AES. This 4-round secret-key distinguisher - proposed in Sect. 5 - is similar in
nature to polytopic cryptanalysis and the yoyo distinguishers just recalled.

Given plaintexts in the same coset of a subspace C, the attacker first divides the couples
of two (plaintext, ciphertext) pairs into sets of N ≥ 2 non-independent couples. These
sets are defined such that particular relationships (that involve differential and linear
relationships) hold among the plaintexts of the couples that belong to the same set. Due
to the particular way - explained in detail the following - in which these sets are defined,
we call our new technique as Mixture Differential Cryptanalysis. As already pointed out,
the way in which these sets are constructed resemble the “multiple-of-8” distinguisher
[GRR17a] recently proposed at Eurocrypt 2017.
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Figure 1: New Differential Secret-Key Distinguishers for round-reduced AES. Consider
N (plaintext, ciphertext) pairs (a). In a “classical" differential attack (b), one works
independently on each couple of two (plaintext, ciphertext) pairs and exploits the probability
that it satisfies a certain differential trail. In our attack (c), one divides the couples into
non-random sets, and exploits particular relationships (based on differential trails) that
hold among the couples that belong to the same set in order to set up a distinguisher.

Such sets have the property that the two ciphertexts of a certain couple belong to
the same coset2 of a particular subspaceM if and only if the two ciphertexts of all the
other couples in that set have the same property. In other words, it is not possible that
two ciphertexts of some couples belong to the same coset ofM, and that two ciphertexts
of other couples don’t have this property. Since this last event can occur for a random
permutation, it is possible to distinguish 4-round AES from a random permutation.

In more detail and referring to Fig. 1, given n chosen (plaintext, ciphertext) pairs, in
a “classical” (differential) attack one works on each couple of two (plaintext, ciphertext)
pairs independently of the others - case (b). In our distinguishers/attacks instead, one first
divides the couples in (non-random) sets of N ≥ 2 couples - case (c), and then she works
on each set of couples independently of the other sets, exploiting the property just given.

We remark that our new mixture differential distinguisher is independent of the secret
key (and of the key-schedule), of the details of the S-Box and of the MixColumns matrix.
Such distinguisher works both in the encryption and in the decryption process, and it is
general enough to be applied to any AES-like cipher. Compared to the yoyo distinguisher
proposed at Asiacrypt 2017 that requires adaptive chosen plaintexts/ciphertexts, ours
requires only chosen plaintexts. A complete and detailed comparison among our new
proposed distinguisher and the other ones present in the literature is proposed in Sect. 5.3.

Properties exploited by the new proposed 5-round Secret-Key Distinguishers

Using the previous 4-round distinguisher as starting point, we present three different
properties that can be exploited to distinguish 5-round AES from a random permutation.
Given a set of N ≥ 2 non-independent couples of two (plaintext, ciphertext) pairs, it is
possible to prove the following:

Probabilistic Mixture Differential: consider the number of sets for which two ciphertexts
of at least one couple belong to the same coset of particular subspaceM; if the sets
are properly defined, then this number of sets is (a little) lower for 5-round AES
than for a random permutation (details are given in Sect. 7);

Threshold Mixture Differential: consider the number of sets with the following property:
the number of couples for which the two ciphertexts belong to the same coset of a
particular subspaceM is higher than a certain threshold Z ∈ N; if this number Z
and the sets are properly defined, then this number of sets is higher for 5-round AES
than for a random permutation (details are given in Sect. 9.1);

2A pair of texts has a certain difference if and only if the texts belong to the same coset of a particular
subspace X .
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Table 2: Comparison of Attacks on round-reduced AES-128. Data complexity is measured
in number of required chosen plaintexts/ciphertexts (CP/CC) and/or adaptive chosen
plaintexts/ciphertexts (ACP/ACC). Time complexity is measured in round-reduced AES
encryption equivalents (E) - the number in the brackets denotes the pre-computation cost
(if not negligible). Memory complexity is measured in texts (16 bytes). RDist denotes the
number of rounds of the secret-key distinguisher exploited to set up the attack. Attack
presented in this paper is in bold.

Attack Rounds Data Computation Memory RDist Ref.
MitM 5 8 CP 264 256 - [Der13, Sec. 7.5.1]

Imp. Polytopic 5 15 CP 270 241 3 [Tie16]
Partial Sum 5 28 CP 238 small 4 [Tun12]
Integral (EE) 5 211 CP 245.7 small 3 [DR02]
Yoyo Game 5 211.3 ACC 231 small 4 [RBH17]

Imp. Differential 5 231.5 CP 233 (+ 238) 238 4 [BK01]
Integral (EE) 5 232 CP 225.4 25 4 App. F
Integral (EB) 5 233 CP 237.7 232 4 [DR02]
Mixture Diff. 5 233.6 CP 233.3 234 4 Sect. 6

MitM 6 28 CP 2106.2 2106.2 - [DF13]
Partial Sum 6 232 CP 242 240 4 [Tun12]
Integral 6 235 CP 269.7 232 4 [DR02]

Prob. Mix Diff. 6 272.8 CP 2105 233 5 Sect. 8
Imp. Differential 6 291.5 CP 2122 289 4 [CKK+02]

MitM: Meet-in-the-Middle, EE: Extension at End, EB: Extension at Beginning

Impossible Mixture Differential: if the sets are properly defined, for 5-round AES there
exists at least one set for which the two ciphertexts of each couple in that set don’t
belong to the same coset of a particular subspace M; in contrast, for a random
permutation, for each set there exists at least one couple for which the two ciphertexts
belong to the same coset of a particular subspaceM (details are given in Sect. 9.2).

New Key-Recovery Attack on round-reduced AES-128

Finally, we show that mixture differential cryptanalysis and the previous distinguishers
are not only theoretically intriguing, but indeed relevant for practical cryptanalysis. In
particular, in Sect. 6 we propose an attack on 5-round AES that exploits the distinguisher
on 4 rounds proposed in Sect. 5. Such attack has then been improved in [BODK+18],
becoming the one with the lowest computational cost among the attacks currently present
in the literature (that don’t use adaptive chosen plaintexts/ciphertexts).

In this attack, the attacker chooses plaintexts in the same coset of a particular subspace
D which is mapped after one round into a coset of another subspace C. Using the mixture
differential distinguisher just introduced and the facts that

• the way in which the couples of two (plaintext, ciphertext) pairs are divided in sets
depends on the (partially) guessed key

• the behavior of a set for a wrongly guessed key is (approximately) the same as the
case of a random permutation,

she can filter wrong candidates of the key, and finally finds the right one.
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Using a similar strategy, in Sect. 8 we propose the first 6 rounds key-recovery attack
on AES that exploits directly a 5-round secret-key distinguisher, namely the 5-round
“probabilistic mixture differential” distinguisher (which is based on a property which is
independent of the secret key).

Generic Considerations

Before we go on, we do some preliminary considerations about our work, in particular
about the fact that our distinguishers and key-recovery attacks presented in this paper
have higher complexities than the ones currently present in the literature.

Even if all the attacks on AES-like ciphers currently present in the literature are
constantly improved, they seem not be able to break full-AES - with the only exception
of the Biclique attack [BKR11], which can be considered as brute force3. Thus, besides
improving the known attacks present in the literature, we believe that it is important and
crucial to propose new ideas and techniques. Even if they are not initially competitive,
they can provide new directions of research and can lead to new competitive attacks. To
provide a first example, consider the impossible differential attack on AES. When it was
proposed in 2001 by Biham and Keller [BK01], it could attack (“only”) 5 rounds of AES
and it was not competitive with respect to others attacks, as the integral one. It took
approximately 6 years before that such attack was extended and set up against 7-round
AES-128 [ZWF07], becoming one of the few attacks (together with Meet-in-the-Middle
[DFJ13]) on such number of rounds. Another concrete example regards the “Mixture
Differential Cryptanalysis” proposed here. In [BODK+18], authors combine such attack
with several other techniques in order to obtain (1st) the best known-key recovery attack
on 5-round AES and (2nd) the best known attacks which use practical amounts of data
and memory on 7-round AES, breaking the record for such attacks which was obtained 18
years ago by the classical Square Attack.

We believe that similar considerations can be done for the attacks/distinguisher pro-
posed in this paper. In particular, we are able to show for the first time that even a
distinguisher of the type [GRR17a] - believed to be hard to exploit - can be used to set
up key-recovery attacks, which potentially opens up the way for new and interesting
applications in cryptanalysis.

2 Preliminary - Description of AES
The Advanced Encryption Standard [DR02] is a Substitution-Permutation network that
supports key sizes of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal
state represented by a 4× 4 matrix of bytes seen as values in the finite field F256, defined
using the irreducible polynomial x8 + x4 + x3 + x+ 1. Depending on the version of AES,
Nr rounds are applied to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and
Nr = 14 for AES-256. An AES round applies four operations to the state matrix:

• SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times in
parallel on each byte of the state (provides non-linearity in the cipher);

• ShiftRows (SR) - cyclic shift of each row (i-th row is shifted by i bytes to the left);

• MixColumns (MC) - multiplication of each column by a constant 4× 4 invertible
matrix over the field GF (28) (together with the ShiftRows operation, it provides
diffusion in the cipher);

• AddRoundKey (ARK) - XORing the state with a 128-bit subkey.
3The biclique attack on 10-round AES-128 requires 288 chosen texts and it has a computational cost of

approximately 2126.2 encryptions.
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One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in
the last round the MixColumns operation is omitted.

Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an intermediate
state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte in the row i and in the
column j. We denote by kr the subkey of the r-th round (where k0 is the secret key for
AES-128). If only one subkey is used (e.g. the first subkey k0), then we denote it by k
to simplify the notation. Finally, we denote by R one round4 of AES, while we denote r
rounds of AES by Rr. As last thing, in the paper we often use the term “partial collision”
(or “collision”) when two texts belong to the same coset of a given subspace X .

3 Subspace Trails
Let F denote a round function in an iterative block cipher and let V ⊕ a denote a coset of
a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is an invariant coset of
the subspace V for the function F . This concept can be generalized to trails of subspaces
[GRR17b], which has been recently introduced as generalization of the invariant subspace
cryptanalysis.
Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r + 1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai, there exist ai+1 such that F (Vi ⊕ ai) ⊆
Vi+1⊕ai+1, then (V1, V2, ..., Vr+1) is subspace trail of length r for the function F . If all the
previous relations hold with equality, the trail is called a constant-dimensional subspace
trail.

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) = Vt+1 ⊕ at+1. We refer to [GRR17b] for more details about the concept of
subspace trails. Our treatment here is however meant to be self-contained.

3.1 Subspace Trails of AES
Here we recall the subspace trails of AES presented in [GRR17b], working with vectors and
vector spaces over F4×4

28 . For the following, we denote by {e0,0, ..., e3,3} the unit vectors of
F4×4

28 (e.g. ei,j has a single 1 in row i and column j). We recall that given a subspace X ,
the cosets X ⊕ a and X ⊕ b (where a 6= b) are equal (that is X ⊕ a ≡ X ⊕ b) if and only if
a⊕ b ∈ X .
Definition 2. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =
{

x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
Definition 3. The diagonal spaces Di and the inverse-diagonal spaces IDi are defined as
Di = SR−1(Ci) and IDi = SR(Ci).

For instance, D0 and ID0 correspond to symbolic matrices

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


4Sometimes we use the notation Rk instead of R to highlight the round key k.
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for each x1, x2, x3, x4 ∈ F28 .

Definition 4. The i-th mixed spaces Mi are defined asMi = MC(IDi).

For instance,M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2

 .
Definition 5. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI andMI be defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [GRR17b]5:

• for any coset DI ⊕ a there exists unique b ∈ C⊥I such that R(DI ⊕ a) = CI ⊕ b;

• for any coset CI ⊕ a there exists unique b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

Theorem 1 ([GRR17b]). For each I and for each a ∈ D⊥I , there exist unique b ∈ C⊥I and
c ∈M⊥I (which depend on a and on the secret key k) such that

R2(DI ⊕ a) = R(CI ⊕ b) =MI ⊕ c. (1)

We refer to [GRR17b] for a complete proof of the Theorem. Moreover, note that if X
is a generic subspace, X ⊕ a is a coset of X and x and y are two elements of the (same)
coset X ⊕ a, then x⊕ y ∈ X . It follows that:

Lemma 1 ([GRR17b]). For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (2)

We finally recall that for each I, J ⊆ {0, 1, 2, 3}:

MI ∩ DJ = {0} if and only if |I|+ |J | ≤ 4, (3)

as demonstrated in [GRR17b]. It follows that:

Proposition 1 ([GRR17b]). Let I, J ⊆ {0, 1, 2, 3} such that |I| + |J | ≤ 4. For all x, y
with x 6= y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ) = 0. (4)

We remark that all these results can be re-described using a more “classical” truncated
differential notation6, as formally pointed out in [BLN17]. To be more concrete, if two
texts t1 and t2 are equal except for the bytes in the i-th diagonal7 for each i ∈ I, then they
belong to the same coset of DI . A coset of DI corresponds to a set of 232·|I| texts with |I|
active diagonals. Again, two texts t1 and t2 belong to the same coset ofMI if the bytes
of their difference MC−1(t1 ⊕ t2) in the i-th anti-diagonal for each i /∈ I are equal to zero.
Similar considerations hold for the column space CI and the inverse-diagonal space IDI .

We finally introduce some notation that we largely use in the following.
5Remark. Observe that DI⊕D⊥I = CI⊕C⊥I = IDI⊕ID⊥I =MI⊕M⊥I = F4×4

28 for each I ⊆ {0, 1, 2, 3}.
As a result, the complements of the subspaces CI , DI , IDI ,MI are simply the (respective) orthogonal
complements C⊥I , D⊥I , ID

⊥
I ,M

⊥
I .6Our choice to use the subspace trail notation to present our new distinguisher and attack is motivated

by the fact that it allows to describe them in a more formal way than using the “classical" notation.
7The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such

that r − c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the elements that lie on row
r and column c such that r + c = i mod 4.
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Definition 6. Given two different texts t1, t2 ∈ F4×4
28 , we say that t1 ≤ t2 if t1 = t2

or if there exists i, j ∈ {0, 1, 2, 3} such that (1) t1k,l = t2k,l for all k, l ∈ {0, 1, 2, 3} with
k+ 4 · l < i+ 4 · j and (2) t1i,j < t2i,j . Moreover, we say that t1 < t2 if t1 ≤ t2 (with respect
to the definition just given) and t1 6= t2.

Definition 7. Let X be one of the previous subspaces, that is CI , DI , IDI orMI . Let
x0, ..., xn−1 ∈ F4×4

28 be a basis of X - i.e. X ≡ 〈x0, x1, ..., xn−1〉 where n = 4 · |I| - s.t.
xi < xi+1 for each i = 0, ..., n − 1. Let t be an element of an arbitrary coset of X , that
is t ∈ X ⊕ a for arbitrary a. We say that t is “generated” by the generating variables
(t0, ..., tn−1) - for the following, t ≡ (t0, ..., tn−1) - if and only if

t ≡ (t0, ..., tn−1) iff t = a⊕
n−1⊕
i=0

ti · xi.

As an example, let X = M0 ≡ 〈MC(e0,0),MC(e3,1),MC(e2,2),MC(e1,3)〉, and let
p ∈M0 ⊕ a. Then p ≡ (p0, p1, p2, p3) if and only if

p ≡ p0 ·MC(e0,0)⊕ p1 ·MC(e1,3)⊕ p2 ·MC(e2,2)⊕ p3 ·MC(e3,1)⊕ a. (5)

Similarly, let X = C0 ≡ 〈e0,0, e1,0, e2,0, e3,0〉, and let p ∈ C0 ⊕ a. Then p ≡ (p0, p1, p2, p3) if
and only if p ≡ a⊕ p0 · e0,0 ⊕ p1 · e1,0 ⊕ p2 · e2,0 ⊕ p3 · e3,0.

3.2 Intersections of Subspaces and Useful Probabilities
Here we list some useful probabilities largely used in the following8. For our goal, we
focus on the mixed spaceM, but the same results can be easily generalized for the other
subspaces D, C, ID. A proof of the following probabilities is provided in App. A.1.

Let I, J ⊆ {0, 1, 2, 3}. We first recall that a random element x belongs to the subspace
MI with probability Prob(x ∈ MI) ' 2−32·(4−|I|). Moreover, as shown in detail in
[GRR17b], given two random elements x 6= y in the same coset ofMI , they belong after
one round to the same coset ofMJ with probability:

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) ' (28)−4·|I|+|I|·|J|.

By definition, it’s simple to observe thatMI ∩MJ =MI∩J (whereMI ∩MJ = {0}
if I ∩ J = ∅). Thus, the probability p|I| that a random text x belongs to the subspaceMI

for a certain I ⊆ {0, 1, 2, 3} with |I| = l fixed is well approximated by

p|I| ≡ Prob(∃I |I| = l s.t. x ∈MI) = (−1)|I| ·
3∑

i=4−|I|

(−1)i · c|I|,i ·
(

4
i

)
· 2−32·i. (6)

where c2,3 = 3 and c|I|,i = 1 for {|I|, i} 6= {2, 3}.
Let x, y be two random elements with x 6= y. Assume there exists I ⊆ {0, 1, 2, 3} such

that x ⊕ y ∈ MI (x ⊕ y /∈ ML for each L s.t. |L| < |I|). The probability p|J|,|I| that
there exists J ⊆ {0, 1, 2, 3} - with |J | = l fixed - such that R(x) ⊕ R(y) ∈ MJ is well
approximated by

p|J|,|I| ≡ Prob(∃J |J | = l s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

= (−1)|J| ·
3∑

i=4−|J|

(−1)i · c|J|,i ·
(

4
i

)
· 2−8·i·|I|.

(7)

8We mention that the following probabilities are “sufficiently good” approximations for the target of
the paper, that is the errors of these approximations can be considered negligible for the target of this
paper. For a complete discussion, we refer to App. A.1.
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where c2,3 = 3 and c|J|,i = 1 for {|J |, i} 6= {2, 3}.
Assume that x ⊕ y /∈ MI for each I ⊆ {0, 1, 2, 3}. Then, the probability p̂|J|,3 that

∃J ⊆ {0, 1, 2, 3} with |J | = l fixed such that R(x)⊕R(y) ∈MJ is well approximated by

p̂|J|,3 ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) =
p|J| − p|J|,3 · p3

1− p3
. (8)

Finally, assume that x⊕ y /∈MI for each I ⊆ {0, 1, 2, 3}. Then, the probability that
∃J ⊆ {0, 1, 2, 3} with |J | = l fixed and with |I|+ |J | ≤ 4 such that R2(x)⊕R2(y) ∈MJ

is well approximated by

p̃|J|,3 ≡ Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI) =
p|J|

1− p3
. (9)

Note that the inequality9 p̂|J|,3 < p|J| < p̃|J|,3 holds for each J .
To provide a numerical example, if |I| = |J | = 3 the previous probabilities are well

approximated by

p3 = 2−30 − 3 · 2−63 + 2−94

p3,3 = 2−22 − 3 · 2−47 + 2−70

p̂3,3 = 2−30 − 2 043 · 2−63 + 390 661 · 2−94 + ...

where p3 and p̂3,3 are usually approximated by 2−30 and p3,3 by 2−22.

4 “Multiple-of-8” Secret-Key Distinguisher for 5-round AES
The starting point of our secret-key distinguisher is the property proposed and exploited
in [GRR17a] to set up the first 5-round secret-key distinguisher of AES (independent of
the secret key). For this reason, in this section we recall the main idea of that paper, and
we refer to [GRR17a] for a complete discussion.

Consider a set of plaintexts in the same coset of the diagonal space DI , that is 232·|I|

plaintexts with |I| active diagonals, and the corresponding ciphertexts after 5 rounds. The
5-round AES distinguisher proposed in [GRR17a] exploits the fact that the number of
different pairs of ciphertexts that belong to the same coset ofMJ for a fixed J (that is, the
number of different pairs of ciphertexts that are equal on |J | fixed anti-diagonals, omitting
the final MixColumns operation) is always a multiple of 8 with probability 1 independently
of the secret key, of the details of the S-Box and of the MixColumns matrix. In more
details, given a set of plaintexts/ciphertexts (pi, ci) for i = 0, ..., 232·|I| − 1 (where all the
plaintexts belong to the same coset of DI), the number of different pairs10 of ciphertexts
(ci, cj) that satisfy ci⊕ cj ∈MJ for a certain fixed J ⊂ {0, 1, 2, 3} has the special property
to be a multiple of 8 with prob. 1. Since for a random permutation the same number
doesn’t have any special property (e.g. it has the same probability to be even or odd),
this allows to distinguish 5-round AES from a random permutation.

Since each coset of DI is mapped into a coset ofMI after 2 rounds with prob. 1 - see
Theorem 1 - and vice-versa, in order to prove the result given in [GRR17a] it is sufficient
to show that given plaintexts in the same coset ofMI , then the number of collisions after
one round in the same coset of DJ is a multiple of 8 (see [GRR17a] for details).

Theorem 2 ([GRR17a]). LetMI and DJ be the subspaces defined as before for certain
fixed I and J with 1 ≤ |I| ≤ 3 . Given an arbitrary coset of MI - that is MI ⊕ a for a

9Since p|J|,3 > p|J|, it follows that p̂|J|,3 ≡
p|J|−p|J|,3·p3

1−p3
<

p|J|−p|J|·p3
1−p3

= p|J|.
10Two pairs (ci, cj) and (cj , ci) are considered equivalent.
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fixed a ∈ M⊥I , let (pi, ci) for i = 0, ..., 232·|I| − 1 be the 232·|I| plaintexts in MI ⊕ a (i.e.
pi ∈MI ⊕ a for each i) and the corresponding ciphertexts after 1 round (i.e. ci = R(pi)).

The number n of different pairs of ciphertexts (ci, cj) for i 6= j such that ci ⊕ cj ∈ DJ
(i.e. ci and cj belong to the same coset of DJ) is always a multiple of 8 with prob. 1.

We refer to [GRR17a] for a detailed proof, and we limit here to recall and to highlight
the main concepts that are useful for the following.

Without loss of generality (w.l.o.g.), we focus on the case |I| = 1 and we assume
I = {0}. Given two texts p and q inM0 ⊕ a, by definition there exist p0, p1, p2, p3 ∈ F28

and q0, q1, q2, q3 ∈ F28 such that

p = a⊕


2 · p0 p1 p2 3 · p3

p0 p1 3 · p2 2 · p3

p0 3 · p1 2 · p2 p3

3 · p0 2 · p1 p2 p3

 , q = a⊕


2 · q0 q1 q2 3 · q3

q0 q1 3 · q2 2 · q3

q0 3 · q1 2 · q2 q3

3 · q0 2 · q1 q2 q3


where 2 ≡ 0x02 and 3 ≡ 0x03, or equivalently p ≡ (p0, p1, p2, p3) and q ≡ (q0, q1, q2, q3) -
see (5). As first thing, we recall that if 1 ≤ r ≤ 3 generating variables are equal, then the
two texts cannot belong to the same coset of DJ for |J | ≤ r after one round - this is due
to the branch number of the MixColumns matrix (which is 5).

Case: Different Generating Variables. If the two texts p and q defined as before
are generated by different variables (i.e. pi 6= qi for each i = 0, ..., 3), then they can belong
to the same coset of DJ for a certain J with |J | ≥ 1 after one round. It is possible to prove
that p ≡ (p0, p1, p2, p3) and q ≡ (q0, q1, q2, q3) satisfy R(p)⊕R(q) ∈ DJ for |J | ≥ 1 if and
only if others pairs of texts generated by different combinations of the previous variables
have the same property. A formal statement is provided in Lemma 2.

Lemma 2. Let p and q be two different elements in MI ⊕ a (i.e. a coset of MI) for
I ⊆ {0, 1, 2, 3} and |I| = 1, with p ≡ (p0, p1, p2, p3) and q ≡ (q0, q1, q2, q3), such that
pi 6= qi for each i = 0, ..., 3. Independently of the secret key, of the details of the S-Box
and of the MixColumns matrix, R(p) and R(q) belong to the same coset of a particular
subspace DJ for J ⊆ {0, 1, 2, 3} (that is R(p)⊕R(q) ∈ DJ) if and only if the pairs of texts
inMI ⊕ a generated by the following combinations of variables

1. (p0, p1, p2, p3) and (q0, q1, q2, q3); 2. (q0, p1, p2, p3) and (p0, q1, q2, q3);
3. (p0, q1, p2, p3) and (q0, p1, q2, q3); 4. (p0, p1, q2, p3) and (q0, q1, p2, q3);
5. (p0, p1, p2, q3) and (q0, q1, q2, p3); 6. (q0, q1, p2, p3) and (p0, p1, q2, q3);
7. (q0, p1, q2, p3) and (p0, q1, p2, q3); 8. (q0, p1, p2, q3) and (p0, q1, q2, p3).

have the same property.

Case: Equal Generating Variables. Similar results can be obtained if one or two
variables are equal. For the following, we focus on the case in which two variables are
equal (the case of one equal variable is analogous).

Lemma 3. Let p and q be two different elements inMI⊕a for I ⊆ {0, 1, 2, 3} and |I| = 1,
with p ≡ (p0, p1, p2, p3) and q ≡ (q0, q1, q2, q3), such that pi 6= qi for i = 0, 1 and pi = qi

for i = 2, 3 (similar for the other cases). Independently of the secret key, of the details
of the S-Box and of the MixColumns matrix, R(p) and R(q) belong to the same coset of
a particular subspace DJ for J ⊆ {0, 1, 2, 3} if and only if the pairs of texts in MI ⊕ a
generated by the following combinations of variables

1. (p0, p1, z, w) and (p0, p1, z, w); 2. (p0, q1, z, w) and (q0, p1, z, w);

where z and w can take any possible value in F28 , have the same property.
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Case |I| = 2 and |I| = 3. Finally, we mention that similar considerations can be done
for the cases |I| ≥ 2. W.l.o.g consider |I| = 2 and assume I = {0, 1} (the other cases are
analogous). Given two texts p and q in the same coset ofMI , that isMI ⊕ a for a given
a ∈ M⊥I , there exist p′0, p

′′

0 , p
′
1, p

′′

1 , p
′
2, p

′′

2 , p
′
3, p

′′

3 ∈ F28 and q′0, q
′′

0 , q
′
1, q

′′

1 , q
′
2, q

′′

2 , q
′
3, q

′′

3 ∈ F28

such that:

p = a⊕MC ·


p′0 p

′′

1 0 0
p
′′

0 0 0 p′3
0 0 p′2 p

′′

3
0 p′1 p

′′

2 0

 , q = a⊕MC ·


q′0 q

′′

1 0 0
q
′′

0 0 0 q′3
0 0 q′2 q

′′

3
0 q′1 q

′′

2 0

 .
As for the case |I| = 1, the idea is to consider all the possible combinations of the
variables p0 ≡ (p′0, p

′′

0 ), p1 ≡ (p′1, p
′′

1 ), p2 ≡ (p′2, p
′′

2 ), p3 ≡ (p′3, p
′′

3 ) and q0 ≡ (q′0, q
′′

0 ), q1 ≡
(q′1, q

′′

1 ), q2 ≡ (q′2, q
′′

2 ), q3 ≡ (q′3, q
′′

3 ). In other words, the idea is to consider variables in
(F28)2 ≡ F28 × F28 and not in F28 . For |I| = 3, the idea is to work with variables in (F28)3.

For the following, given texts in the same cosets of CI orMI for I ⊆ {0, 1, 2, 3}, we
recall that the number of couples of texts with n “equal generating variable(s) in (F28)|I|”
(as just defined) for 0 ≤ n ≤ 3 is given by(

4
n

)
· 232·|I|−1 · (28·|I| − 1)4−n (10)

as proved in App. A.1.

Why is it (rather) hard to set up key-recovery attacks that exploit such distinguisher?

Given this 5-round distinguisher, a natural question regards the possibility to exploit it in
order to set up a key-recovery attack on 6-round AES-128 which is better than a brute
force one. A possible way is the following. Consider 232 chosen plaintexts in the same coset
of a diagonal space Di, and the corresponding ciphertexts after 6 rounds. A possibility
is to guess the final key, decrypt the ciphertexts and check if the number of collisions in
the same coset ofMJ is a multiple of 8. If not, the guessed key is wrong. However, since
a coset of MJ is mapped into the full space, it seems hard to check this property one
round before without guessing the entire key. It follows that it is rather hard to set up
an attack different than a brute force one that exploits directly the 5-round distinguisher
proposed in [GRR17a]. For comparison, note that such a problem doesn’t arise for the
other distinguishers for up to 4-round AES (e.g. the impossible differential or the integral
ones) present in the literature, for which it is sufficient to guess only part of the secret key
in order to verify if the required property is satisfied or not.

5 New 4-round Secret-Key Distinguisher for AES
In this section, we re-exploit the property proposed in [GRR17a] to set up a new 4-round
secret-key distinguisher for AES. Before we go into the details, we present the general idea.

As we have just seen, given 232 plaintexts in the same coset of MI for |I| = 1 and
the corresponding ciphertexts after 1 round, that is (pi, ci) for i = 0, ..., 232 − 1 where
pi ∈MI ⊕ a and ci = R(pi), then the number n of different pairs of ciphertexts (ci, cj) for
i 6= j that satisfy ci ⊕ cj ∈ DJ is always a multiple of 8. This is due to the fact that if
one pair of texts belong to the same coset of DJ after one round, then other pairs of texts
have the same property.

Thus, consider a pair of plaintexts p1 and p2 such that the corresponding texts after
one round belong (or not) to the same coset of DJ . As we have seen, there exist other
pairs of plaintexts p̂1 and p̂2 whose ciphertexts after one round have the same property.
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The crucial point is that the pairs (p1, p2) and (p̂1, p̂2) are not independent in the sense
that the variables that generate the first pair of texts are the same that generate the other
pairs, but in a different combination. The idea is to exploit this property in order to set
up a new distinguisher for round-reduced AES. In other words, instead of limiting to count
the number of collisions and check that it is a multiple of 8 as in [GRR17a], the idea is
to check if these relationships between the variables that generate the plaintexts (whose
ciphertexts belong or not the same coset of a given subspaceMJ) hold or not.

5.1 Mixture Differential Distinguisher for 4-round AES
A formal description of the proposed Mixture Differential Distinguisher for 4-round AES
is given in the following Lemma11.

Lemma 4. Given the subspace C0 ∩ D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two plaintexts p1

and p2 in the same coset (C0 ∩ D0,3)⊕ a generated by p1 ≡ (z1, w1) and p2 ≡ (z2, w2). Let
p̂1, p̂2 ∈ (D0,3 ∩ C0)⊕a be two other plaintexts generated by p̂1 ≡ (z1, w2) and p̂2 ≡ (z2, w1).
The following event

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̂1)⊕R4(p̂2) ∈MJ

holds with prob. 1 for 4-round AES, independently of the secret key, of the details of the
S-Box and of the MixColumns matrix (except for the branch number equal to 5).

Since for a random permutation the same event happens with approximately probability
2−32·(4−|J|) - i.e close to 0 (note that this probability is maximized by |J | = 3), it is possible
to exploit this fact to set up a 4-round distinguisher. Due to the fact that the variables
of p1 and p2 are “mixed” in order to generate p̂1 and p̂2, we name this distinguisher as
Mixture Differential distinguisher.

5.1.1 Proof using the “super-Sbox” Notation

As first thing, we prove the previous result using the “super-Sbox” notation - introduced
in [DR06] by the designers of AES, where

super-Sbox(·) = S-Box ◦ARK ◦MC ◦ S-Box(·) (11)

Consider two pairs of texts (p1, p2) and (p̂1, p̂2) in a coset of C0 ∩ D0,3 - that is(
C0 ∩ D0,3

)
⊕a for a fixed a, such that

pi ≡ a⊕


zi 0 0 0
wi 0 0 0
0 0 0 0
0 0 0 0

 and p̂i ≡ a⊕


zi 0 0 0
w3−i 0 0 0

0 0 0 0
0 0 0 0


for i = 1, 2, that is pi ≡ (zi, wi) and p̂i ≡ (zi, w3−i).

The goal is to prove that

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̂1)⊕R4(p̂2) ∈MJ .

Since Prob(R2(x) ⊕ R2(y) ∈ MI |x ⊕ y ∈ DI) = 1 (see (2)), this is equivalent to prove
that

R2(p1)⊕R2(p2) ∈ DJ if and only if R2(p̂1)⊕R2(p̂2) ∈ DJ .
11We mention that the result proposed in Lemma 4 is already included - as a special case - in the results

proposed in Theorem 3.
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First of all, observe that p1 ⊕ p2 ∈
(
C0 ∩ D0,3

)
⊆ D0,3, and that R2(p1)⊕R2(p2) ∈M0,3.

SinceM0,3 ∩ DJ 6= {0} if and only if |J | = 3 (see (3) for details), R2(p1)⊕R2(p2) ∈ DJ
can occur if and only if |J | = 3.

As it is well known, 2-round encryption can be rewritten using the super-Sbox notation

R2(·) = ARK ◦MC ◦ SR ◦ super-Sbox ◦ SR(·).

Since ShiftRows and MixColumns operations are linear, it is sufficient to prove that

super-Sbox(q1)⊕ super-Sbox(q2) ∈ WJ iff super-Sbox(q̂1)⊕ super-Sbox(q̂2) ∈ WJ

where

qi = SR(pi) ≡ SR(a)⊕


zi 0 0 0
0 0 0 wi

0 0 0 0
0 0 0 0

 and q̂i = SR(p̂i) ≡ SR(a)⊕


zi 0 0 0
0 0 0 w3−i

0 0 0 0
0 0 0 0


for i = 1, 2 (note that SR(D0,3 ∩ C0) = C0,3 ∩ ID0 by definition) and where the subspace
WJ is defined as

WJ := SR−1 ◦MC−1(DJ). (12)
Since each column of q1 and q2 depends on different and independent variables, since the
super-Sbox works independently on each column and since the XOR-sum is commutative,
it follows that

super-Sbox(q1)⊕ super-Sbox(q2) = super-Sbox(q̂1)⊕ super-Sbox(q̂2)

which implies the thesis.

5.1.2 Data and Computational Cost

Data Cost. Since a coset of C0 ∩ D0,3 contains 216 plaintexts, it is possible to construct
215 · (216 − 1) ' 231 different couples. For our goal, we consider only the pairs of texts
p1 ≡ (z1, w1) and p2 ≡ (z2, w2) with different generating variables, that is z1 6= z2 and
w1 6= w2 (if z1 = z2 or w1 = w2, then p1 ⊕ p2 ∈

(
C0 ∩ Dk

)
⊆ Dk for a certain k ∈ {0, 3},

which implies that R4(p1)⊕R4(p2) /∈MJ for each J due to Prop. 1). Using formula (10),
the number of pairs with two different generating variables is given by 215 ·(28−1)2 ' 230.989.
As we have just seen, only half of them - that is, 229.989 - are independent.

In order to distinguish 4-round AES from a random permutation, one has to check that

c1 ⊕ c2 = R4(p1 ≡ (z1, w1)
)
⊕R4(p2 ≡ (z2, w2)

)
∈MJ

if and only if

ĉ1 ⊕ ĉ2 = R4(p̂1 ≡ (z1, w2)
)
⊕R4(p̂2 ≡ (z2, w1)

)
∈MJ .

If this property is not satisfied for at least one couple, then it is possible to conclude that
the analyzed permutation is a random one.

Given a random permutation Π(·), what is the probability that c1⊕c2 ≡ Π(p1)⊕Π(p2) ∈
MJ and ĉ1 ⊕ ĉ2 ≡ Π(p̂1)⊕Π(p̂2) /∈MJ - or vice-versa - for a certain J ⊂ {0, 1, 2, 3} with
|J | = 3? Since there are 4 different indexes J with |J | = 3 and since Prob(t ∈ MJ) =
2−32·(4−|J|), this event happens with probability (approximately) equal to

2 · 4 · 2−32 · (1− 2−32) ' 2−29.

As a result, in order to distinguish a random permutation from 4-round AES with probability
higher than pr, it is sufficient that the previous event occurs for at least one couple of
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Data: 2 cosets of D0,3 ∩ C0 (e.g. (C0 ∩ D0,3)⊕ ai for a0, a1 ∈ (D0,3 ∩ C0)⊥) and
corresponding ciphertexts after 4 rounds

Result: 0 ≡ Random permutation or 1 ≡ 4-round AES - Prob. 95%
for each coset (D0,3 ∩ C0)⊕ ax for x = 0, 1 do

for each I ⊆ {0, 1, 2, 3} with |I| = 3 do
let (pi, ci) for i = 0, ..., 216 − 1 be the 216 (plaintexts, ciphertexts) of
(D0,3 ∩ C0)⊕ ax;
re-order this set of elements w.r.t. the partial order � described in Def. 10
s.t. ck � ck+1 for each k; // � depends on I
i← 0;
while i < 216 − 1 do

j ← i;
while cj ⊕ cj+1 ∈MI do

j ← j + 1;
end
for each k from i to j do

for each l from k + 1 to j do
given pk ≡ (z1, w1) and pl ≡ (z2, w2), let q1 ≡ (z1, w2) and
q2 ≡ (z2, w1) in (D0,3 ∩ C0)⊕ ai;
if R4(q1)⊕R4(q2) /∈MI // Remember that R4(pk)⊕R4(pl) ∈MI

then
return 0. // Random permutation

end
end

end
i← j + 1;

end
end

end
return 1. // 4-round AES permutation - Prob. 95%

Algorithm 1: Secret-Key Distinguisher for 4-round of AES.

two pairs of texts with probability higher than pr (in order to recognize the random
permutation). It follows that one needs approximately n different independent pairs of
texts such that pr ≥ 1− (1− 2−29)n, that is

n ≥ log(1− pr)
log(1− 2−29) ≈ −229 · log(1− pr).

For pr = 95%, one needs approximately n ≥ 230.583 different independent pairs of texts,
that is approximately 2 different cosets C0 ∩ D0,3 for a total data cost of 216 · 2 = 217

chosen plaintexts.

Computational Cost. We limit here to report the computational cost of the distinguisher,
and we refer to App. B for all the details. In order to implement the distinguisher, the
idea is to re-order the ciphertexts using a particular partial order � as defined in Def. 10,
and to work in the way described in Algorithm 1.

Instead of checking the previous property for all possible couples of texts, the idea is
to check it only for the couples of texts for which the two ciphertexts belong to the same
coset ofMJ . In other words, if c1 ⊕ c2 ∈MJ , then one checks that ĉ1 ⊕ ĉ2 ∈MJ (prob.
1 for 4-round AES vs prob. 2−32 for a random permutation). Instead, if c1 ⊕ c2 /∈ MJ ,
then one doesn’t check that ĉ1 ⊕ ĉ2 /∈MJ . Note that the probability of this last event is
very close for the AES and for the random permutation (prob. 1 for 4-round AES vs prob.
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1− 2−32 for a random permutation). In other words, checking that “if c1 ⊕ c2 ∈MJ then
ĉ1 ⊕ ĉ2 ∈MJ” is sufficient to distinguish 4-round AES from a random permutation.

The reason of this strategy is that it allows to save and minimize the computational cost,
which is well approximated by 223.09 table look-ups, or approximately 216.75 four-round
encryptions (assuming12 20 table look-ups ≈ 1 round of encryption), where we limit to
remember that the cost to re-order a set of n texts w.r.t. a given partial order is

O(n · logn) table look-ups.

Definition 8. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3} \ I. Let t1, t2 ∈ F4×4
28

with t1 6= t2. Text t1 is less or equal than text t2 w.r.t. the partial order � (i.e. t1 � t2) if
and only if one of the two following conditions is satisfied (indexes are taken modulo 4):

• there exists j ∈ {0, 1, 2, 3} s.t. MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i < j and
MC−1(t1)j,l−j < MC−1(t2)j,l−j ;

• MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i = 0, ...., 3, and MC−1(t1) < MC−1(t2)
where < is defined in Def. 6.

5.1.3 Practical Verification

Using a C/C++ implementation13, we have practically verified the distinguishers just
described both for full size AES and a small scale variant of AES, as presented in [CMR05].
While for full size AES each word is composed of 8 bits, in the small scale variant each
word is composed of 4 bits (we refer to [CMR05] for a complete description of this small
scale AES). We highlight that the previous results hold exactly in the same way also for
this small scale variant of AES, since the previous argumentation is independent of the
fact that each word of AES is of 4 or 8 bits.

The distinguisher just presented works in the same way for full and small scale AES,
and it is able to distinguish AES from a random permutation using 2 · (28)2 = 217 chosen
plaintexts in the first case and 2 · (24)2 = 29 in the second one (i.e. 2 cosets of C0 ∩ D0,3,
each one of size 216 and 28 respectively for full and small scale AES14) as expected. For full
size AES, while the theoretical computational cost is of 223 table look-ups, the practical
one is on average 222 in the case of a random permutation and 224 in the case of an AES
permutation. We emphasize that for a random permutation, it is sufficient to find one
couple of two pairs of texts that doesn’t satisfy the required property (to recognize the
random permutation). In the case of the AES permutation, the difference between the
theoretical and the practical cases (i.e. a factor 2) is due to the fact that the cost of the
merge sort algorithm is O(n · logn) and by the definition of the big O(·) notation15.

For the small scale AES, using 2 different initial cosets of C0 ∩ D0,3, the theoretical
computational cost is well approximated by 2 · 4 · 28 · (log 28 + 1) ' 214.2 table look-ups.
The practical cost is approximately 213.5 for the case of a random permutation and 215 for
the AES case.

12We highlight that even if this approximation is not formally correct - the size of the table of an S-Box
look-up is lower than the size of the table used for ours distinguisher, it allows to give a comparison
between our distinguishers and the others currently present in the literature. This approximation is largely
used in the literature.

13The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/
Distinguisher_5RoundAES

14Following the same analysis proposed in Sect. 5.1, here we show that 2 initial cosets are necessary to
set up the attack also for the small scale case. Using the same notation of Sect. 5.1.1, the probability that
R4(p1)⊕R4(p2) ∈MJ and R4(p̂1)⊕R4(p̂2) /∈MJ (or vice-versa) for a (small scale) random permutation
is 2 · 4 · 2−16 · (1− 2−16) = 2−13. It follows that one needs n ≥ 214.583 different independent pairs of texts
to set up the attack with probability higher than 95%, that is approximately 2 different cosets C0 ∩ D0,3

(note that for each coset it is possible to construct 1
2 ·
(28

2

)
≈ 214 independent pairs of texts).

15A similar difference among the theoretical and the practical cases was present also in [GRR17a].
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5.2 Generic Mixture Differential Distinguishers for 4-round AES
Using results presented in [GRR17a] and recalled in detail in Sect. 4, it is possible to set
up alternative 4-round “mixture differential” distinguishers also for any pair of plaintexts
p1 and p2 that have different generating variables or that belong to the same coset of
a subspace CI for each I ⊆ {0, 1, 2, 3}. For sake of simplicity, we don’t list all possible
cases, but we limit to (formally) present two cases that are used to set up new secret-key
distinguishers - see Sect. 7 for details - and new key-recovery attacks for AES - see Sect. 6.
The proof of the following distinguishers is based on the one just proposed, adapted to the
analyzed case. As before, also the following distinguishers work in both the decryption
and encryption direction16.

Starting Point for 5-round Distinguisher proposed in Sect. 7. As first case,
we present a generalization of the result proposed in Lemma 4.

Theorem 3. Given the subspace C0 ∩ D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two plaintexts p1

and p2 in the same coset (C0 ∩ D0,3)⊕ a generated by p1 ≡ (z1, w1) and p2 ≡ (z2, w2). Let
p̃1, p̃2 ∈ C0 ⊕ a be two other plaintexts generated by

p̃1 ≡ (z1, w1, x, y), p̃2 ≡ (z2, w2, x, y) or p̃1 ≡ (z1, w2, x, y), p̃2 ≡ (z1, w2, x, y)

where x and y can take any possible value in F28 . The following event

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̃1)⊕R4(p̃2) ∈MJ

holds with prob. 1 for 4-round AES, independently of the secret key, of the details of the
S-Box and of the MixColumns matrix (except for the branch number equal to 5).

The proof of this result is equivalent to the one proposed in Sect. 5.1.1. In particular,
let q1 = SR(p1) and q2 = SR(p2) as before. If a column of q1 is equal to the corresponding
column of q2, it follows that the difference super-Sbox(q1)⊕super-Sbox(q2) is independent
of the value of such column. As a result, the difference R2(p1)⊕R2(p2) is independent of
the generating variables which are equal for p1 and p2. It follows that

R2(p1)⊕R2(p2) = R2(p̃1 ≡ (z1, w1, x, y))⊕R(p̃2 ≡ (z2, w2, x, y)) =
= R2(p̃1 ≡ (z1, w2, x, y))⊕R(p̃2 ≡ (z2, w1, x, y)),

which implies the result since Prob(R2(x)⊕R2(y) ∈MJ |x⊕ y ∈ DJ) = 1.
Such result is the starting point for new 5-round secret-key distinguisher of AES, as

proposed in Sect. 7. We finally emphasize that the previous result is based on Lemma 3
(proposed in [GRR17a]).

Starting Point for Key-Recovery Attack of Sect. 6. As second case, we consider
two plaintexts in a coset of C0 (or more generally CI for |I| = 1) generated by different
generating variables.

Theorem 4. Given the subspace C0 ≡ 〈e0,0, e1,0, e2,0, e3,0〉, consider two plaintexts p1 and
p2 in the same coset C0⊕ a generated by p1 ≡ (x1, y1, z1, w1) and p2 ≡ (x2, y2, z2, w2). Let
p̃1, p̃2 ∈ C0 ⊕ a be two other plaintexts generated by

1. (x2, y1, z1, w1) and (x1, y2, z2, w2); 2. (x1, y2, z1, w1) and (x2, y1, z2, w2);
3. (x1, y1, z2, w1) and (x2, y2, z1, w2); 4. (x1, y1, z1, w2) and (x2, y2, z2, w1);
5. (x2, y2, z1, w1) and (x1, y1, z2, w2); 6. (x2, y1, z2, w1) and (x1, y2, z1, w2);
7. (x2, y1, z1, w2) and (x1, y2, z2, w1).

16This is due to the fact that such distinguishers re-exploit the one proposed in [GRR17a], which has
the property to work in both directions.
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The following event

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̃1)⊕R4(p̃2) ∈MJ

holds with prob. 1 for 4-round AES, independently of the secret key, of the details of the
S-Box and of the MixColumns matrix (except for the branch number equal to 5).

The proof of this result is equivalent to the one proposed in Sect. 5.1.1. In particular, let
q1 = SR(p1) and q2 = SR(p2) as before. Since (1st) the super-Sbox(·) works independently
on each column of q1 and q2, (2nd) the columns of q1 and q2 depend on different and
independent variables and (3rd) the XOR sum is commutative, it follows that

super-Sbox(q1)⊕ super-Sbox(q2) = super-Sbox(q̃1)⊕ super-Sbox(q̃2)

where q̃i = SR(p̃i) and where p̃i are defined as before. Thus, R2(p1)⊕R2(p2) = R2(p̃1)⊕
R2(p̃2), which implies the result since Prob(R2(x)⊕R2(y) ∈MJ |x⊕ y ∈ DJ) = 1.

Such result is used in Sect. 6 to set up a new key-recovery attack on 5-round AES. We
finally emphasize that the previous result is based on Lemma 2 (proposed in [GRR17a]).

5.3 Comparison with Other 4-round Secret-Key Distinguishers
Here we highlight the major differences with respect to the other 4-round AES secret-
key distinguishers present in the literature. Omitting the integral one (which exploits a
completely different property), we focus on the impossible and the truncated differential
distinguishers, on the polytopic cryptanalysis, on the “multiple-of-8” distinguisher (adapted
- in a natural way - to the 4-round case) and on the yoyo distinguisher.

Impossible Differential. The impossible differential distinguisher is based on Prop. 1, that
is it exploits the property that MI ∩ DJ = {0} for |I| + |J | ≤ 4. In our case, we
consider plaintexts in the same coset of C0 ∩ DI ⊆ DI where |I| ≥ 2 (e.g. I = {0, 3})
and looks for collisions inMJ with |J | = 3. Since |I|+ |J | ≥ 5, the property exploited
by the impossible differential distinguisher cannot be applied here.

Truncated Differential. The truncated differential distinguisher has instead some aspects
in common with our distinguisher. In this case, given pairs of plaintexts with certain
difference on certain bytes (i.e. that belong to the same coset of a subspace X ), one
considers the probability that the corresponding ciphertexts belong to the same coset
of a subspace Y. For 2-round AES it is possible to exploit truncated differential
trails with probability 1, while for the 3-round case there exist truncated differential
trails with probability lower than 1 but higher than for the random case17 (in both
cases, X ≡ DI and Y ≡MJ).
Our distinguisher works in a similar way and exploits a similar property. However,
instead of working with a single couple of texts independently of the others, in our
distinguisher one basically considers sets of 2 “non-independent” couples of texts
and exploits the relationships that hold among the couples of texts that belong to
the same set.

Polytopic Cryptanalysis. Polytopic cryptanalysis [Tie16] has been introduced by Tiessen
at Eurocrypt 2016, and it can be viewed as a generalization of standard differential
cryptanalysis. Consider a set of d ≥ 2 couples of plaintexts (p0, p0 ⊕ α1), (p0, p0 ⊕
α2), ...(p0, p0⊕αd) with one plaintext in common (namely p0), called d-poly. The idea
of polytopic cryptanalysis is to exploit the probability that the input set of differences

17For 3-round AES it holds that Prob(R3(x)⊕R3(y) ∈ MJ |x⊕ y ∈ DI) =
(
28·|I|

)−4+|J|
, while for a

random permutation Π(·) it holds that Prob(Π(x)⊕Π(y) ∈MJ |x⊕ y ∈ DI) =
(
232
)−4+|J|

.
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α ≡ (α1, α2, ..., αd) is mapped into an output set of differences β ≡ (β1, β2, ..., βd)
after r rounds. If this probability18 - which depends on the S-Box details - is different
from the corresponding probability in the case of a random permutation, it is possible
to set up distinguishers or key-recovery attacks. Impossible polytopic cryptanalysis
focuses on the case in which the probability of the previous event is zero. In [Tie16],
an impossible 8-polytopic is proposed for 2-round AES, which allows to set up
key-recovery attacks on 4- and 5-round AES.
Our proposed distinguisher works in a similar way, since also in our case we con-
sider sets of “non-independent” couples of texts and we focus on the input/output
differences. However, instead of working with a set of couples of plaintexts with
one plaintext in common, we consider sets of couples of texts for which particular
relationships between the generating variables of the texts hold. Moreover, instead
of considering the probability that “generic” input differences α are mapped into
output differences β, the way in which the texts are divided in sets guarantees
the two ciphertexts of all couples satisfy or not an output (truncated) difference
independently of the S-Box details (that is, it is not possible that some of them satisfy
this output difference and some others not).

“Multiple-of-8” Distinguisher. The “multiple-of-8” distinguisher [GRR17a] can be adapted
to the 4-round case, e.g. considering plaintexts in the same coset of CJ , counting
the number of collisions of the ciphertexts in the same coset ofMI and checking
if it is (or not) a multiple of 8. Since our distinguisher exploits more information
(that is, the relationships that hold among the generating variables of the couples of
plaintexts in the same set, beside the fact that the previous number is a multiple
of 8), its data and computational costs are lower than [GRR17a], in particular 217

chosen plaintexts/ciphertexts instead of 233 and approximately 223 table look-ups
instead of 240.

Yoyo Distinguisher. The basic idea exploited by the yoyo distinguisher [RBH17] proposed
at Asiacrypt 2017 is similar to the one exploited by our distinguisher. Consider
4-round AES, where the initial and the final ShiftRows and the final MixColumns
operations are omitted19. Given a pair of plaintexts in the same coset of a column
space CI - that is p1, p2 ∈ CI ⊕ a, consider the corresponding ciphertexts c1 and c2

after 4 rounds. In the yoyo game, the idea is to construct a new pair of ciphertexts ĉ1

and ĉ2 by swapping the columns of c1 and c2. E.g., if ci ≡ (ci0, ci1, ci2, ci3) for i = 1, 2
where cij denotes the j-th column of ci, one can define the new pair of ciphertexts as
ĉ1 ≡ (c2

0, c
1
1, c

1
2, c

1
3) and ĉ2 ≡ (c1

0, c
2
1, c

2
2, c

2
3). As proved in [RBH17], the corresponding

plaintexts p̂1 = R−4(ĉ1) and p̂2 = R−4(ĉ2) belong to the same coset of CI with prob.
1 for 4-round AES (that is, p̂1⊕ p̂2 ∈ CI with prob. 1), while this happens with prob.
2−32·(4−|I|) for a random permutation.
Our distinguisher and the yoyo one are very similar. Both ones exploit particular
relationships that hold among the generating variables of a pair of texts and particular
properties which depend on such relations to distinguish 4-round AES from a random
permutation. However, we emphasize that while the yoyo distinguisher requires
adaptive chosen ciphertexts in order to construct new pairs of texts related to the
original one, in our case such new pairs of texts are constructed directly from the
chosen plaintexts. In other words, ours distinguisher doesn’t require adaptive chosen
plaintexts/ciphertexts.

18We mention that the probability of polytopic trails is usually much lower than the probability of trails
in differential cryptanalysis, that is simple polytopic cryptanalysis can not in general outperform standard
differential cryptanalysis - see Sect. 2 of [Tie16] for details.

19The distinguisher works as well also in the case in which these linear operations are not omitted. We
refer to [RBH17] for all the details.
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6 New Key-Recovery Attack on 5-round AES
The modified version of the previous 4-round secret-key distinguisher proposed in Sect.
5.2 can be used as starting point to set up a new (practical verified) key-recovery attack
on 5-round AES.

W.l.o.g. consider two plaintexts p1 and p2 in the same coset of D0, e.g. D0 ⊕ a
for a ∈ D⊥0 , such that pi = xi · e0,0 ⊕ yi · e1,1 ⊕ zi · e2,2 ⊕ wi · e3,3 ⊕ a or equivalently
pi ≡ (xi, yi, zi, wi). By Theorem 1, there exists b ∈ C⊥0 such that

R(pi) =


x̂i 0 0 0
ŷi 0 0 0
ẑi 0 0 0
ŵi 0 0 0

⊕ b ≡MC ·


S-Box(xi ⊕ k0,0) 0 0 0
S-Box(yi ⊕ k1,1) 0 0 0
S-Box(zi ⊕ k2,2) 0 0 0
S-Box(wi ⊕ k3,3) 0 0 0

⊕ b
for i = 1, 2, that is

R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) ≡ x̂i · e0,0 ⊕ ŷi · e1,0 ⊕ ẑi · e2,0 ⊕ ŵi · e3,0 ⊕ b.

The idea is to filter wrongly guessed keys of the first round by exploiting the previous
distinguisher.

In particular, given plaintexts in the same coset of D0, the idea of the attack is simply
to guess 4 bytes of the first diagonal of the secret key k, that is ki,i for each i ∈ {0, 1, 2, 3},
to (partially) compute Rk(p1) and Rk(p2) and to exploit the following consideration: if
the guessed key is the right one, then

R4[Rk(p1)
]
⊕R4[Rk(p2)

]
∈MJ

if and only if there exist other pairs of texts Rk(q1) and Rk(q2) with the same property,
that is

R4[Rk(q1)
]
⊕R4[Rk(q2)

]
∈MJ

where Rk(q1) and Rk(q2) are defined by a different combination of the generating variables
of Rk(p1) and Rk(p2). If this property is not satisfied and due to the distinguisher just
proposed, then it is possible to claim that the guessed key is a wrong candidate. As we
are going to show, this attack works because the variables that define the (other) pairs of
texts Rk(q1) and Rk(q2) depend on the guessed key (besides on the texts p1 and p2).

Details of the Attack

In the following we give all the details of the attack. As for the distinguisher just presented,
consider a pair of texts p1 and p2 in the same coset of D0 such that

• c1 ⊕ c2 ≡ R5(p1)⊕R5(p2) ∈MJ (observe that this condition is independent of the
(partially) guessed key);

• R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) for i = 1, 2 as before, s.t. x̂1 6= x̂2, ŷ1 6= ŷ2, ẑ1 6= ẑ2 and
ŵ1 6= ŵ2.

For completeness, we emphasize that the attack works even if one or two generating
variables of R(p1) and R(p2) are equal (e.g. if two generating variables are equal, in the
following it is sufficient to exploit Lemma 3 instead of Lemma 2). We limit to discuss
the case in which the generating variables are all different only for sake of simplicity, and
since this is the event that happens with highest probability (the probability that all the
generating variables are different is [(256 · 255)/2562]4 = 2554

2564 ' 98.45%). Due to the
definition of x̂i, ŷi, ẑi, ŵi

[x̂i, ŷi ẑi ŵi]T ≡MC·[S-Box(xi⊕k0,0), S-Box(yi⊕k1,1), S-Box(zi⊕k2,2), S-Box(wi⊕k3,3)]T ,
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note that the second condition depends on the (partially) guessed key.
Given p1 and p2 as before, we have to define Rk(q1) and Rk(q2) in order to set up the

distinguisher. Using Lemma 2 and the “super-Sbox” argumentation given in Sect. 5.1.1,
it is possible to construct 7 different pairs of - intermediate - texts Rk(q1) and Rk(q2) in
C0 ⊕ b defined by the following combinations of generating variables

1. (x̂2, ŷ1, ẑ1, ŵ1) and (x̂1, ŷ2, ẑ2, ŵ2); 2. (x̂1, ŷ2, ẑ1, ŵ1) and (x̂2, ŷ1, ẑ2, ŵ2);
3. (x̂1, ŷ1, ẑ2, ŵ1) and (x̂2, ŷ2, ẑ1, ŵ2); 4. (x̂1, ŷ1, ẑ1, ŵ2) and (x̂2, ŷ2, ẑ2, ŵ1);
5. (x̂2, ŷ2, ẑ1, ŵ1) and (x̂1, ŷ1, ẑ2, ŵ2); 6. (x̂2, ŷ1, ẑ2, ŵ1) and (x̂1, ŷ2, ẑ1, ŵ2);
7. (x̂2, ŷ1, ẑ1, ŵ2) and (x̂1, ŷ2, ẑ2, ŵ1)

that must satisfy the required property

R4[Rk(p1)
]
⊕R4[Rk(p2)

]
∈MJ iff R4[Rk(q1)

]
⊕R4[Rk(q2)

]
∈MJ .

Using this observation, it is possible to filter all the wrong keys. Again, since R5(p1)⊕
R5(p2) ∈MJ , all these pairs of - intermediate - texts (Rk(q1), Rk(q2)) must belong to the
same coset ofMJ after 4 rounds if the guessed key is the right one. If this property is not
satisfied, then one can simply deduce that the guessed key is wrong (for a wrong guessed
key, the behavior is similar to the one of a random permutation).

Why does the attack work? Wrong-Key Randomization Hypothesis! One
of the assumption required by the proposed attack is the “wrong-key randomization
hypothesis”. This hypothesis states that when decrypting one or several rounds with a
wrong key guess creates a function that behaves like a random function. For our setting,
we formulate it as following:

Wrong-key randomization hypothesis. When the pairs of - intermediate - texts Rk(q1)
and Rk(q2) are generated using a wrongly guessed key, the probability that the
resulting pairs of ciphertexts satisfy the required property is equal to the probability
given for the case of a random permutation.

In the following we show that such assumption holds. The crucial point is that the new
pairs of texts Rk(q1) and Rk(q2) (and the way in which they are constructed) depend on
the guessed key.

In the proposed attack, the wrong-key randomization hypothesis follows immediately
from the definition of the generating variables and from the fact that the S-Box is a
non-linear operation. To have more evidence of this fact, let k be the secret key and k̃ be
a guessed key. Given Rk(p1) ≡ (x1, y1, z1, w1) and Rk(p2) ≡ (x2, y2, z2, w2) in C0 ⊕ b as
before, the generating variables of Rk̃(q1) ≡ (x̃1, ỹ1, z̃1, w̃1) and Rk̃(q2) ≡ (x̃2, ỹ2, z̃2, w̃2)
in C0 ⊕ b are given by

x̃i

ỹi

z̃i

w̃i

 = MC ◦ S-Box ◦



k̃0,0 ⊕ k0,0
k̃1,1 ⊕ k1,1
k̃2,2 ⊕ k2,2
k̃3,3 ⊕ k3,3

⊕ S-Box−1 ◦MC−1 ◦


xh

yj

zk

wl




for certain h, j, k, l ∈ {1, 2}. For a wrongly guessed key k̃ 6= k, the relations among the
generating variables [x̃i, ỹi, z̃i, w̃i] = [xh, yj , zk, wl] do not hold20. It follows that if k 6= k̃,
then the attacker is considering random pairs of texts, which implies that the required
property is - in general - not satisfied (as for the case of a random permutation).

20Note that if k = k̃, then x̃i = xh, ỹi = yj , z̃i = zk and w̃i = wl (which implies that the required
property is satisfied) as expected.
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Data: 1 coset of D0 (e.g. D0 ⊕ a for a ∈ D⊥0 ) and corresponding ciphertexts after 5
rounds - more generally a coset of Di for i ∈ {0, 1, 2, 3}

Result: 4 bytes of the secret key - (k0,0, k1,1, k2,2, k3,3)
let (pi, ci) for i = 0, ..., 232 − 1 be the 232 (plaintexts, ciphertexts) of D0 ⊕ a;
do

find indexes j and h s.t. cj ⊕ ch ∈MI ;
for each one of the 232 combinations of k̂ = (k0,0, k1,1, k2,2, k3,3) do

(partially) compute Rk̂(pj) and Rk̂(ph);
flag ← 0;
for each couple (q1, R5(q1)) and (q2, R5(q2)) where Rk̂(q1) and Rk̂(q2) are
constructed by a different combination of the generating variables of Rk̂(pj)
and Rk̂(ph) do
if R5(q1)⊕R5(q2) /∈MI then

flag ← 1;
next combination of (k0,0, k1,1, k2,2, k3,3);

end
end
if flag = 0 then

identify (k0,0, k1,1, k2,2, k3,3) as candidate of the key;
end

end
while more than a single candidate of the key is found - Repeat the procedure for
different indexes j, h (and I) // usually not necessary - only one candidate is found;
return (k0,0, k1,1, k2,2, k3,3)

Algorithm 2: 5-round AES Key-Recovery Attack. The attack exploits the 4-round
distinguisher presented in Sect. 5.2. For sake of simplicity, in this pseudo-code we limit
to describe the attack of 4 bytes - 1 diagonal of the secret key (the same attack can be
used to recover the entire key).

Before going on, we emphasize that this result also implies the impossibility to set up a
5-round distinguisher similar to the one just presented in this section choosing plaintexts in
the same coset of a diagonal space DI instead of a column space CI . Indeed, given p1 and p2

as before in the same coset of DI (instead of CI), since the key k is secret and the S-Box is
non-linear, there is no way to find p̂1 and p̂2 in the coset of DI s.t. R5(p1)⊕R5(p2) ∈MJ

if and only if R5(p̂1)⊕R5(p̂2) ∈MJ without guessing the secret key.

6.1 Data and Computational Costs
Data Cost. First of all, since the cardinality of a coset of DI for |I| = 1 is 232 and since
Prob(t ∈ MJ) = 4 · 2−32 = 2−30 for |J | = 3, the average number of collisions for each
coset of DI is approximately 2−30 ·

(232

2
)
' 2−30 · 263 ' 233, so it’s very likely that two

(plaintexts, ciphertexts) pairs (p1, c1) and (p2, c2) exist such that c1 ⊕ c2 ∈ MJ and for
which the two plaintexts have different generating variables.

Given a couple of plaintexts p1 and p2 for which the corresponding ciphertext c1 and
c2 belong to the same coset ofMJ , consider the other 7 couples of plaintexts q1 and q2

defined as before (that is, such that R(q1) and R(q2) are defined by a different combination
of the generating variables of R(p1) and R(p2)). For a wrong key, the probability that the
two ciphertexts of each one of the other 7 couples belong to the same coset ofMJ for a
fixed J (that is, the probability that a wrong key passes the test) is (2−32)7 = 2−224.

Since there are 232 − 1 wrong candidates for the diagonal of the key, the probability
that at least one of them passes the test is approximately 1− (1− 2−224)232−1 ' 2−192.
Thus, one couple of plaintexts p1 and p2 (for which the corresponding ciphertexts belong
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to the same coset ofMJ ) together with the corresponding other 7 couples of texts q1 and
q2 are (largely) sufficient to discard all the wrong candidates for a diagonal of the key.
Actually, in general only two different couples q1 and q2 (that is, two couples of texts
given by two different combinations of the generating variables) are sufficient to discard
all the wrong candidates, so it is not necessary to consider all the 7 pairs of texts q1 and
q2. Indeed, given two couples, the probability that at least one wrong key passes the
test is approximately 1− (1− 2−32·2)232−1 ' 2−32 � 1, which means that all the wrong
candidates are discarded with high probability.

As a result, the attack requires 233.6 chosen plaintexts.

Computational Cost. Each coset of DI with |I| = 1 is composed of 232 texts, thus
on average 263 ·2−32 = 231 different pairs of ciphertexts belong to the same coset ofMJ for
a fixed J with |J | = 3. However, it is sufficient to find one collision in order to implement
the attack and to find the key.

In order to find it, the best strategy is to re-order the ciphertexts with respect to the
partial order � and then to work on consecutive elements, as done in Sect. 5.1.2. For each
initial coset of DI and for a fixed J , the cost to re-order the ciphertexts with respect to
the partial order � (forMJ with J fixed - |J | = 3) and to find a collision is approximately
of 232 · (log 232 + 1) = 237 table look-ups.

When such a collision is found, one has to guess 4 bytes of the key and to construct -
at least - two other different couples given by a different combination of the generating
variables of R(p1) and R(p2) (observe that the condition x̂1 6= x̂2, ŷ1 6= ŷ2, ẑ1 6= ẑ2 and
ŵ1 6= ŵ2 is satisfied with probability (255/256)4 ≈ 1). In order to perform this step
efficiently, the idea is to re-order - and to store separately a second copy of - the (plaintexts,
ciphertexts) pairs w.r.t. the partial order ≤ as defined in Def. 6 s.t. pi ≤ pi+1 for each i.
Using the same strategy proposed for the 4-round distinguisher (see App. B for all details),
this allows to construct these two new different couples (and to check if the corresponding
ciphertexts satisfy or not the required property) with only 4 table look-ups. As a result,
the cost of this step is of 232 · 2 · 4 = 235 S-Box and of 232 · 4 = 234 table look-ups.

It follows that the cost to find one diagonal of the key is well approximated by 235 S-Box
look-ups and 237.17 table look-ups, that is approximately 230.95 five-round encryptions.
The idea is to use this approach for three different diagonals, and to find the last one
by brute force. As a result, the total computational cost is of 232 + 3 · 230.95 = 233.28

five-round encryptions, while the data cost is of 3 · 232 = 233.6 chosen plaintexts.

Summary. As a result, the attack - practical verified on a small scale AES - requires
233.6 chosen plaintexts and has a computational cost of 233.28 five-round encryptions. The
pseudo-code of the attack is given in Algorithm 2. We remark for completeness that
the same attack works also in the decryption/reverse direction, using chosen ciphertexts
instead of plaintexts.

6.2 Practical Verification
Using a C/C++ implementation, we have practically verified the attack just described21 on
the small scale AES [CMR05]. We emphasize that since the proposed attack is independent
of the fact that each word of AES is composed of 4 or 8 bits, our verification on the small
scale variant of AES is strong evidence for it to hold for the real AES.

Practical Results. For simplicity, we limit to report the result for a single diagonal of
the key. First of all, a single coset of a diagonal space Di is largely sufficient to find one

21The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/
Distinguisher_5RoundAES
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diagonal of the key. In more detail, given two (plaintexts, ciphertexts) pairs (p1, c1) and
(p2, c2), then other two different couples q1 and q2 (out of the seven possible ones) are
sufficient to discard all the wrong candidates of the diagonal of the key, as predicted.

About the computational cost, the theoretical cost for the small scale AES case is well
approximated by 4 · 216 · (log 216 + 1) + 216 · 4 = 221 table look-ups and 216 · 4 · 3 = 219.6

S-Box look-ups, for a total of 219.6 + 221 = 221.5 table look-ups (assuming that the cost
of 1 S-Box look-up is approximately equal to the cost of 1 table look-up). The average
practical computational cost is of 221.5 table look-ups, approximately the same as the
theoretical one.

7 A new 5-round Secret-Key Distinguisher for AES
Using the 4-round distinguisher just presented in Theorem 3 as starting point, we propose a
way to extend it by 1 round at the end. As a result, we are able to set up a new probabilistic
5-round secret-key distinguisher for AES which exploits a property which is independent of
the secret key, of the details of the S-Box and of the MixColumns matrix (expect for the
branch number equal to 5). Even if such a distinguisher has higher complexity than the
deterministic one presented in [GRR17a], it can be used to set up a key-recovery attack
on 6-round AES (better than a brute-force one) exploiting a distinguisher of the type
[GRR17a] - believed to be hard to exploit. As a result, this is the first key-recovery attack
for 6-round AES set up by a 5-round secret-key distinguisher for AES. For completeness,
since the 4-round distinguisher works also in the decryption direction, this new 5-round
distinguisher - and the corresponding 6-round key-recovery attack - can also be set up in
the reverse direction (i.e. using chosen ciphertexts instead of plaintexts).

7.1 5-round Probabilistic Mixture Differential Secret-Key Distinguisher
Given n (plaintexts, ciphertexts) pairs, the idea is to divide them in sets such that particular
relations hold among the variables that define the plaintexts that lie in the same set (similar
to before). The distinguisher that we are going to present exploits the following property:

• consider the number of sets for which two ciphertexts of at least one couple lie in
the same subspace MJ for |J | = 3 (in other words, the number of sets for which
two ciphertexts of at least one couple are equal in one anti-diagonal - if the final
MixColumns operation is omitted). If the sets are properly defined, it is possible to
prove that this number of sets is a little lower for 5-round AES than for a random
permutation, independently of the secret key.

This property allows to set up a new distinguisher which is independent of the secret key,
of the details of the S-Box and of the MixColumns matrix, and a new key-recovery attack
on 6-round. In the following, we give all the details.

7.1.1 Details of the 5-round “Probabilistic Mixture Diff.” Distinguisher

Consider 232 chosen plaintexts with one active column (4 active bytes), e.g. a coset of C0,
and the corresponding ciphertexts after 5-round. For each (x0, x1), (y0, y1) ∈ F2

28 such that
x0 6= y0 and x1 6= y1, let the set S0,1

(x0,x1),(y0,y0) of couples of plaintexts be defined as follows

S0,1
(x0,x1),(y0,y1) =

{
(p, q) ∈ F4×4

28 × F4×4
28

∣∣∣∣ p ≡ (x0, x1, A,B), q ≡ (y0, y1, A,B)

or p ≡(x0, y1, A,B), q ≡ (y0, x1, A,B) for each A,B ∈ F28

}
.
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In other words, the couples of plaintexts p, q ∈ C0 ⊕ a in S0,1
(x0,x1),(y0,y1) are of the form

p ≡ a⊕


x0 0 0 0
x1 0 0 0
A 0 0 0
B 0 0 0

 q ≡ a⊕


y0 0 0 0
y1 0 0 0
A 0 0 0
B 0 0 0

 ,
or

p ≡ a⊕


x0 0 0 0
y1 0 0 0
A 0 0 0
B 0 0 0

 q ≡ a⊕


y0 0 0 0
x1 0 0 0
A 0 0 0
B 0 0 0

 .
Similar definitions can be given for the set Si,j(x0,x1),(y0,y1) for i 6= j, where the active
bytes are in row i and j. Given 232 plaintexts as before, it is possible to construct

1
217 · 6 · 231 · (28 − 1)2 ' 232.574 different sets (the number of pairs of texts with 2 equal
generating variables is given by formula (10)), where each set contains exactly 217 different
couples of plaintexts (we emphasize that these couples of plaintexts are not independent,
in the sense that a particular relationship - among the generating variables - holds).

Consider n � 1 sets, and count the number of sets that contain at least one couple
of plaintexts for which the corresponding ciphertexts (generated by 5-round AES or by a
random permutation) belong to the same coset of a subspaceMJ for J ⊆ {0, 1, 2, 3} and
|J | = 3. As we are going to prove, this number is on average lower for AES than for a
random permutation, independently of the secret key, of the details of the S-Box and of
the MixColumns matrix. In more details, the numbers of sets that satisfy the required
property for 5-round AES - denoted by nAES - and for a random permutation - denoted
by nrand - are well approximated by

nAES ' n · pAES nrand ' n · prand

where

pAES ' 2−13 − 524 287 · 2−46 − 22 370 411 853 · 2−77︸ ︷︷ ︸
≈ 2.604 · 2−44

+...

prand ' 2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77︸ ︷︷ ︸
≈ 5.333 · 2−44

+...

Even if the difference between the two probabilities is small, it is possible to distinguish
the two cases with probability higher than 95% if the number n of sets Si,j(x0,x1),(y0,y1) - S
for simplicity - satisfies n ≥ 271.243.

In the following, we prove this result (which has been practically tested on a small
scale AES) and we give all the details about the data and the computational costs.

Similarity with “classical” Truncated Differential Attack. Before going on,
we emphasize the similarity with the 3-round distinguisher that exploits a truncated
differential trail. In that case, the idea is to count the number of pairs of texts that satisfies
the truncated differential trail. In particular, given pairs of plaintexts in the same coset of a
diagonal space Di, one counts the number of pairs for which the corresponding ciphertexts
belong in the same coset of a mixed spaceMJ for |J | = 3. Since the probability of this
event is higher for an AES permutation than for a random one22, one can distinguish
the two cases simply counting the number of pairs that satisfy the previous property.
The idea of our disitinguisher is similar. However, instead of working on single couples,

22As recalled in Sect. 3.2, this probability is approximately equal to 2−6 for the AES case and 2−30 for
the random case.
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one works with particular sets S of couples and counts the number of sets for which at
least one couple satisfies the (given) differential trail. Similar considerations hold for the
distinguisher proposed in Sect. 9.1.

7.1.2 Proof

Proof - 5-round AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 5-round AES. Our 5-round distinguisher is based on
Theorem 3. Given plaintexts in the same coset of C0 and for a fixed J ⊆ {0, 1, 2, 3}, each
set Si,j(x0,x1),(y0,y1) just defined has the following property after 4 rounds:

1. for each couple, the two texts after 4-round belong to the same coset ofMI ;

2. for each couple, the two texts after 4-round don’t belong to the same coset ofMI .

In other words, for a given set S(x0,x1),(y0,y1), it is not possible that the two texts of some -
not all - couples belong to the same coset ofMJ after 4-round and others not, while this
can happen for a random permutation.

What is the probability of the two previous events for an AES permutation? Given a
set Si,j(x0,x1),(y0,y1), the probability that the two texts of each couple belong to the same
coset ofMJ after 4-round is approximately 2−30.

To prove this fact, let the event Eri be defined as following.

Definition 9. Let J ⊆ {0, 1, 2, 3} be fixed. Given a set S(x0,x1),(y0,y1), we define Eri as the
event that the i-th couple of S(x0,x1),(y0,y1) for i = 1, 2, ..., 217 belong to the same coset of
MJ after r rounds.

For the following, let Eri be the complementary event of Eri . It follows that

Prob(E4
1 ∧ E4

2 ∧ ... ∧ E4
217) = Prob(E4

1 ) · Prob(E4
2 ∧ ... ∧ E4

217 | E4
1 ) =

= Prob(E4
1 ) ≡ p3 = 2−30 − 3 · 2−63 + 2−94,

where p3 is defined as in (6). Indeed, note that Prob(E4
i | E4

1 ) = 1 for each i = 2, ..., 217

since if two texts of one couple belong (or not) to the same coset ofMJ after 4 rounds,
then the texts of all the other couples have the same property. We remark again that this
is due to the way in which the sets S are defined/constructed.

Using these initial considerations as starting point, we analyze in detail our proposed
5-round distinguisher.

1st Case. As we have just seen, the two texts of all the couples of each set belong to
the same coset of a subspaceMI for |I| = 3 after 4-round with probability p3 ' 2−30. In
other words, on average there are 2−30 · n sets S such that the two texts of all the couples
belong to the same coset of a subspaceMJ for |J | = 3 after 4-round.

Let |J | = 3. Since Prob(R(x)⊕ R(y) ∈ MJ |x⊕ y ∈ MI) = p3,3 ' 2−22 (see (7) for
details) and since each set is composed of 217 different couples, the probability that the
two ciphertexts of at least one couple of S belong to the same coset ofMJ for |J | = 3
after 5 rounds is well approximated by

1−
(
1− p̂3,3

)217

= 1−
(

1− p3 · (1− p3,3)
1− p3

)217

= 2−13 − 526 327 · 2−46 + ...

where p̂3,3 is defined in (8).
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2nd Case. In the same way, the two texts of all the couples of each set don’t belong to
the same coset of a subspaceMJ for |J | = 3 after 4-round with probability 1−p3 ' 1−2−30.
In other words, on average there are (1− 2−30) · n sets S such that the two ciphertexts of
all the couples of each set don’t belong to the same coset of a subspaceMJ for |J | = 3
after 4-round.

Let |J | = 3. Since Prob(R(x)⊕ R(y) ∈ MJ |x⊕ y /∈ MI) = p̂3,3 ' 2−30 (see (8) for
details) and since each set is composed of 217 different couples, the probability that the
two texts of at least one couple of S belong to the same coset ofMJ for |J | = 3 after 5
rounds is well approximated by

1−
(
1− p3,3

)217

= 2−5 − 524 287 · 2−30 + 45 812 722 347 · 2−53 + ...

Final Result. The desired result is finally obtained using the law (or formula) of total
probability

Prob(A) =
∑
i

Prob(A |Bi) · Prob(Bi)

which holds for each event A such that
⋃
iBi is the sample space, i.e. the set of all the

possible outcomes.
Given a set S, the probability that two ciphertexts c1 and c2 of at least one couple

satisfy the required property (i.e. c1 ⊕ c2 ∈MJ for |J | = 3) is given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

217 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

217 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)217]
+p3 ·

[
1−

(
1− p3,3

)217
]
=

=2−13 − 524287 · 2−46 − 22 370 411 853 · 2−77︸ ︷︷ ︸
≈ 2.604 · 2−44

+...

(13)

for a certain i ∈ {1, ..., 217}. Note that Prob(E5
i ∧ E5

j ) = Prob(E5
i ) × Prob(E5

j ) since the
events E5

i and E5
j are independent for i 6= j.

Proof - Random Permutation

For a random permutation, given a set S defined as before, what is the probability that
two ciphertexts - generated by a random permutation - of at least one couple satisfy
the required property? By simple computation, such event occurs with (approximately)
probability

prand =1−
(
1− p3

)217

= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]217

=
=2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77︸ ︷︷ ︸

≈ 5.333 · 2−44

+... (14)

Remark. Before going on, we emphasize again that while a “classical” truncated
differential distinguisher counts the number of pairs of texts that satisfy a particular
differential trail, in our case we consider the number of sets of texts for which at least one
pair satisfies a particular differential trail. This implies a difference between the probabilities
that the previous event occurs for a random permutation - prand - and for 5-round AES -
pAES .
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7.2 Data and Computational Complexity
7.2.1 Data Complexity

First of all, given a single coset of a column space CI for |I| = 1, the number of different
couples with two equal generating variables is given by 6 · 216 · 215 · (28 − 1)2 ' 249.574

(see Eq. (10)), while the number of sets S that one can construct is well approximated by
249.574/217 ' 232.574.

As we have just said, the difference between the number of sets that satisfy the required
property for the AES case (i.e. nAES) and for the random case (i.e. nrand) is very small
compared to the total number nAES or nrand:

|nAES − nrand|
nAES

' |nAES − nrand|
nrand

� 1.

Since the difference between the two probabilities is very small, what is the minimum
number of sets S (or equivalently of cosets CI) to guarantee that the distinguisher works
with high probability? Our goal here is to derive a good approximation for the number of
initial cosets of CI that is sufficient to appreciate this difference with probability prob.

To solve this problem, note that given n sets S of 217 couples defined as before, the
distribution probability of our model is simply described by a binomial distribution. By
definition, a binomial distribution with parameters n and p is the discrete probability
distribution of the number of successes in a sequence of n independent yes/no experiments,
each of which yields success with probability p. In our case, given n sets S, each of them
satisfies or not the above property/requirement with a certain probability. Thus, this
model can be described using a binomial distribution. We recall that for a random variable
Z that follows the binomial distribution, that is Z ∼ B(n, p), the mean µ and the variance
σ2 are respectively given by µ = n · p and σ2 = n · p · (1− p).

To derive concrete numbers for our distinguisher and based on De Moivre-Laplace
theorem, we approximate the binomial distribution with a normal one. Moreover, we
can simply consider the difference of the two distributions, which is again a normal
distribution. That is, given X ∼ N (µ1, σ

2
1) and Y ∼ N (µ2, σ

2
2), then X −Y ∼ N (µ, σ2) =

N(µ1 − µ2, σ
2
1 + σ2

2). Indeed, in order to distinguish the two cases, note that it is sufficient
to guarantee that the number of sets that satisfy the required property in the random case
is higher than for the 5-round AES case. As a result, the mean µ and the variance σ2 of
the difference between the AES distribution and the random one are given by:

µ = n · |prand − pAES | σ2 = n ·
[
prand · (1− prand) + pAES · (1− pAES)

]
.

Since the probability density of the normal distribution is f(x | µ, σ2) = 1
σ
√

2π e
− (x−µ)2

2σ2 , it
follows that

prob =
0∫

−∞

1
σ
√

2π
e−

(x−µ)2

2σ2 dx =
−µ/σ∫
−∞

1√
2π

e−
x2
2 dx = 1

2

[
1 + erf

(
−µ
σ
√

2

)]
,

where erf(x) is the error function, defined as the probability of a random variable with
normal distribution of mean 0 and variance 1/2 falling in the range [−x, x]. We emphasize
that the integral is computed in the range (−∞, 0] since we work in the case in which the
number of sets with the required property for AES is lower than for the random case.

To have a probability of success higher than prob, the number of sets n has to satisfy:

n >
2 · [prand · (1− prand) + pAES · (1− pAES)]

(prand − pAES)2 ·
[
erfinv

(
2 · prob− 1

)]2
.
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where erfinv(x) is the inverse error function. For the case prand, pAES � 1, a good
approximation of n is given by23

n >
4 ·max(prand, pAES)

(prand − pAES)2 ·
[
erfinv

(
2 · prob− 1

)]2
. (15)

We emphasize that the formula given in (15) is equivalent to the one proposed by Matsui
in [Mat94] for the linear cryptanalysis case, which has been rigorously studied in the
literature (e.g. in [BJV04], [Sel08]). Without going into the details, in linear cryptanalysis
one has to construct “good” linear equations relating plaintext, ciphertext and key bits. In
order to find the secret key, the idea is to exploit the fact that such linear approximation
holds with probability 1/2 for a wrong key, while they hold with probability 1/2± ε for
the right key. Exploiting this (usually small) difference between the two probabilities, one
can discover the secret key. Note that also these events can be described by binomial
variables, that is B(n, 1/2) for a wrongly guessed key and B(n, 1/2±ε) for the right guessed
key, where n is the number of texts used. Our case is completely equivalent, since the
probability pAES for the AES case is related to the probability prand for the random case
by pAES = prand ± ε, for a small difference ε.

Data Cost. For a probability of success of approximately 95% and since |pAES −
prand| ' 2−41.01 and pAES ' prand ' 2−13, it follows that n must satisfy n > 271.243. Since
a single coset of CI for |I| = 1 contains approximately 232.574 different sets S, one needs
approximately 271.243 · 2−32.574 ' 238.669 different initial cosets of CI , that is approximately
238.669 · 232 ' 270.67 chosen plaintexts.

For completeness, we mention that it is possible to set up a modified version of this
distinguisher that requires lower data (and computational) cost(s). In particular, in App.
C.2 we show that a similar distinguisher can be set up using only 252 chosen plaintexts
in the same initial coset of CI with |I| = 2. Our choice to present a “less competitive”
distinguisher is due to the fact that it will be the starting point for a key-recovery attack
on 6-round, as shown in detail in the next section.

Remark – On the Approximation of a Binomial Distribution using a Normal
One. As well known, the binomial distribution is well approximated by a Poisson
distribution. However, we recall that a normal distribution is a valid approximation in
the case in which the skewness (i.e. the asymmetry) of the binomial distribution is close
to zero (see [Ser80] for more details). The skewness γ of a binomial distribution B(n, p)
is given by γ = 1−2p√

np(1−p)
, that is it is close to zero when p = 1/2 and/or n · p � 1.

Since we are working under the assumption n · p� 1, the normal distribution is a valid
approximation24.

7.2.2 Computational Complexity

Here we discuss the computational cost for the case of cosets of CI with |I| = 1. As for the
4-round distinguisher, a first possibility is to construct all the couples, to divide them in
sets S defined above, and to count the number of sets that satisfy the required property
working on each set separately. Since just the cost to construct all the couples given 238.67

cosets is approximately of 238.67 · 231 · (232− 1) ' 2101.67 table look-ups, we present a more
efficient way to implement the distinguisher. Before presenting the details, we highlight

23Observe: prand · (1− prand) + pAES · (1− pAES) < prand + pAES < 2 ·max(prand, pAES).
24We also highlight that such approximation is largely used in literature, especially in the case of linear

approximation as discussed in [Sel08] and in [SS16]. In particular, also in the case of linear cryptanalysis,
the common assumption is to approximate the binomial distributions by normal ones, under the assumption
that the skew is ≈ 0.
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Data: 232 plaintexts in 1 coset of C0 (e.g. C0 ⊕ a) and corresponding ciphertexts
after 5 rounds

Result: Number of sets S such that two ciphertexts of at least one couple of
plaintexts belong to the same coset ofMJ for a certain J with |J | = 3

Let A[0, ..., N − 1] be an array initialized to zero, where N = 3 · 215 · (28 − 1)2// A[i]
refers to the i-th set S
for each j from 0 to 3 let J = {0, 1, 2, 3} \ j (|J | = 3) do

let (pi, ci) for i = 0, ..., 232 − 1 be the (plaintexts, ciphertexts) in C0 ⊕ a;
re-order this set of elements w.r.t. the partial order � defined in Def. 10; // �
depends on J
i← 0;
while i < 232 − 1 do

j ← i;
while cj ⊕ cj+1 ∈MJ do

j ← j + 1;
end
for each k from i to j do

for each l from k + 1 to j do
if pk ⊕ pl ∈ DI for a certain |I| = 2 (pk and pl have two equal
generating variables) // necessary condition s.t. pk ⊕ pl ∈ Sx,y for
x, y ∈ {0, 1, 2, 3} with x 6= y then
A[ϕ(pk, pl)]← 1; // ϕ(pk, pl) defined in (16) returns the index of the
set Sx,y s.t. pk ⊕ pl ∈ Sx,y - this step can be improved if one considers
ordered plaintexts - see App. E for details

end
end

end
i← j + 1;

end
end
n←

∑N−1
i=0 A[i];

return n.
Algorithm 3: Given (plaintexts, ciphertexts) pairs in the same coset of C0, this algorithm
counts the number of sets S for which two ciphertext of at least one couple belong in the
same coset ofMJ for |J | = 3.

that the same analysis works also for modified version of the distinguisher proposed in
App. C.2. The computational cost of this modified version (that requires only 252 chosen
plaintexts) is well approximated by 271.5 table look-ups or equivalently 264.9 five-round
encryptions.

First of all, we introduce a partial order �.

Definition 10. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3}\I. Let t1, t2 ∈ F4×4
28

with t1 6= t2. Text t1 is less or equal than text t2 w.r.t. the partial order � (i.e. t1 � t2) if
and only if one of the two following conditions is satisfied (indexes are taken modulo 4):

• there exists j ∈ {0, 1, 2, 3} s.t. MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i < j and
MC−1(t1)j,l−j < MC−1(t2)j,l−j ;

• MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i = 0, ...., 3, and MC−1(t1) < MC−1(t2)
where < is defined in Def. 6.

Let J ⊆ {0, 1, 2, 3} with |J | = 3. First of all, one has to re-order the ciphertexts with
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respect to a partial order � just defined. The cost to re-order a set of n texts w.r.t. a
given partial order is O(n · logn) table look-ups.

For each coset of C0, given ordered (plaintexts, ciphertexts) and working only on consec-
utive ciphertexts, the idea is to count the number of collisions for each set Si,j(x0,x1),(y0,y1). In
more details, for each coset of C0 it is possible to construct N = 3 · 215 · (28 − 1)2 different
sets Si,j(x0,x1),(y0,y1) for each i, j ∈ {0, 1, 2, 3} with i 6= j and for each x0 6= y0 and x1 6= y1.
The idea is to consider a vector A[0, ..., N − 1] such that

A[x] =
{

1 if the x-th set S satisfies the required property;
0 otherwise

All details are given in the following – pseudo-code is given in Algorithm 3.
To set up the distinguisher, it is sufficient to define a function ϕ that returns the

index of a set Si,j(x0,x1),(y0,y1) (where i < j) in the vector A[0, ..., N − 1]. Assuming
x0 < y0 and x1 < y1 (note that a set S contains all plaintexts generated by different
combinations of these four variables, so this condition is always fulfilled), the function
ϕ(·) : (F28)4 × ({0, 1, 2, 3})2 → N can be defined as

ϕ(x0, x1, y0, y1, i, j) = 1 065 369 600× φ(i, j) + Φ(x0, x1, y0, y1) (16)

where 1 065 369 600 = 32 6402 (where 32 640 = 2n−1 · (2n− 1) for n = 8), where φ(0, 1) = 0,
φ(0, 2) = 1, φ(0, 3) = 2, φ(1, 2) = 3, φ(1, 3) = 4, φ(2, 3) = 5 and

Φ(x0, x1, y0, y1) =
[
x0 + y0 × (y0 − 1)

2

]
+32 640×

[
x1 + y1 × (y1 − 1)

2

]
where each value of x0, x1, y0, y1 ∈ F28 is replaced by its corresponding number in
{0, 1, ..., 255}. The previous formula for Φ is obtained by observing that

1. for a fixed y ≥ 1, there are exactly y different pairs (x, y) that satisfy x ≥ 0 and
x < y;

2. for a fixed z ≥ 1, there are exactly
∑z−1
i=1 i = z·(z−1)

2 different pairs (x, y) that satisfy
x, y ≥ 0 and x < y ≤ z.

3. given a pair (w, z) (where 0 ≤ w < z), there are exactly

w + z · (z − 1)
2

different pairs (x, y) that satisfy (1) y < z or (2) y = z and x ≤ w.

As a result, using Algorithm 3 to implement the distinguisher, the computational cost
is well approximated by

4·
[
232 · log(232) (re-ordering process) +

(
232 + 231) (access to (pi, ci) and to A[·] -

- increment number of collisions)
]
+ 1

218 · 6 · 2
16 · (28 − 1)2 (final “for”) ' 239.07

table look-ups for each initial coset, where
(232

2
)
· 2−32 ' 231 is the average number of

couples such that the two ciphertexts belong to the same coset ofMJ for J fixed with
|J | = 3. Since the attacker must use 238.66 different initial cosets to have a probability
of success higher than 95%, the total computational cost is of 239.07 · 238.66 = 277.73 table
look-ups, or equivalently 271.1 five-round encryptions.
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For completeness, we mention that the proposed implementation can be (in some
cases) slightly improved25. The idea - described in detail in App. E - is to order both
the ciphertexts and the plaintexts with respect to particular partial orders. As a result,
consider a set of ciphertexts ci, ci+1, ..., cj s.t. cl ⊕ ck ∈MJ for each i ≤ k, l ≤ j. Instead
of constructing all the possible pairs of plaintexts and to check if they belong to the same
coset of DI , the idea is to work with ordered plaintexts w.r.t. a partial order similar to �
as defined in Def. 10 s.t. two plaintexts are consecutive if they belong to the same coset of
DI . In this way, it is not necessary to construct all the possible pairs of plaintexts - as
also highlighted in Algorithm 3.

7.3 Practical Verification on small scale AES
In order to have a practical verification of the proposed distinguisher (and of the following
key-recovery attack), we have practically verified the probabilities pAES and prand given
above26. In particular, we verified them using a small scale AES, as proposed in [CMR05].
We emphasize that our verification on the small scale variant of AES is strong evidence
for it to hold for the real AES, since the strategy used to theoretically compute such
probabilities is independent of the fact that each word of AES is of 4 or 8 bits.

To compare the practical values with the theoretical ones, we list the theoretical
probabilities pAES and prand for the small scale case. First of all, for small scale AES
the probabilities p3 and p3,3 are respectively equal to p3 = 2−14 − 3 · 2−31 + 2−46 and
p3,3 = 2−10 − 3 · 2−23 + 2−34.

W.l.o.g. we used cosets of C0 to practically test the two probabilities. Using the
previous procedure and formula, the (approximately) probabilities that a set S satisfies the
required property for 5-round small scale AES and for the random case are respectively

pAES = 2−5 − 2 047 · 2−22 − 221 773 · 2−37︸ ︷︷ ︸
≈ 3.384 · 2−21

+...

prand = 2−5 − 2 047 · 2−22 + 698 027 · 2−37︸ ︷︷ ︸
≈ 10.651 · 2−21

+...

As a result, using formula (15) for prand ' pAES ' 2−5 and |prand − pAES | ' 2−17.19,
it follows that n ≥ 231.6 different sets S are sufficient to set up the distinguisher with
probability higher than 95%.

Note that for small scale AES, a single coset of C0 contains 216 (plaintexts, ciphertexts)
pairs, or approximately 215 · (216 − 1) ' 231 different couples. Since the number of couples
with two equal generating variables is given by 6 · 28 · 27 · (24 − 1)2 ' 225.4 (also tested by
computer test), it is possible to construct 3 · 27 · (24 − 1)2 = 86400 ' 216.4 sets S of 29

couples. As a result, it follows that 231.6 · 2−16.4 = 215.2 different initial cosets of C0 must
be used, for a cost of 247.2 chosen plaintexts.

For our tests, we used 216 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is not
fixed). For each coset, we have used Algorithm 3 to count the number of sets S that satisfy
the required property (i.e. the number of sets for which two ciphertexts of at least one
couple are in the same coset ofMJ for certain J with |J | = 3). As a result, for each initial
coset C0 the (average) theoretical number of sets S that satisfy the required property for
the random case - given by nTrand = 86 400 · prand - and the (average) practical one found
in our experiments - denoted by nPrand - are respectively:

nTrand ' 2 658.27 nPrand ' 2 658.23
25We highlight that the proposed improvement doesn’t affect the computational cost of the distinguisher

proposed in this section, but it is exploited e.g. for the ones proposed in Sect. 9.1 and in App. C.2.
26The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/

Distinguisher_5RoundAES
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Figure 2: Probabilistic distributions of the number of sets S that satisfy the required
property for 5-round small scale AES and for a random permutation - using 20 000 initial
cosets.

Similarly, the (average) theoretical number of sets S that satisfy the required property for
5-round small scale AES - given by nTAES = 86 400 · pAES - and the (average) practical
one found in our experiments - denoted by nPAES - are respectively:

nTAES ' 2 657.69 nPAES ' 2 657.65

In more details, the total numbers of sets S - for all the 216 different initial cosets of
C0 - that satisfy the required property for 5-round small scale AES and for a random
permutation are given by

nTrand ' 174 212 383 nTAES ' 174 174 372
nPrand ' 174 209 761 nPAES ' 174 171 751

Note that the numbers of sets found in our experiments are close to the theoretical ones,
and that the average number of sets for AES case is lower than for the random one, as
predicted.

For completeness, the probabilistic distributions of the number of collisions for the
AES and the random cases are given in Fig. 2. In both cases, the practical distribution
is obtained using 20 000 ≡ 214.3 initial cosets. It is possible to observe that e.g. the
theoretical variance matches the practical one in both cases.

8 Key-Recovery Attack on 6 rounds of AES-128
Using the previous distinguisher on 5-round AES (based on a property which is independent
of the secret key) as starting point, we propose the first key-recovery attack on 6 rounds of
AES that exploits a 5-round secret-key distinguisher. The strategy of the attack is similar
to the one largely exploited by linear and differential cryptanalysis.
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For the distinguisher just presented, the idea is to consider plaintexts in cosets of
CI for I ⊆ {0, 1, 2, 3} with |I| = 1, construct all the possible couples of two (plaintexts,
ciphertexts) pairs with two equal generating variables, divide them into sets S of 217

couples and count the number of sets for which two ciphertexts of at least one couple
belong to the same coset ofMJ for |J | = 3. To set up the key-recovery attack, the idea is
simply to start with cosets of DI for I ∈ {0, 1, 2, 3}, and to repeat the previous procedure
for each guessed combination of the I-th diagonal of the secret key. The crucial point
is that the guessed 4-bytes of the key influence the way in which the couples of texts are
divided into the sets S. As a consequence, if the 4 guessed bytes are wrong (i.e. different
from the right ones), the couples are divided into sets S in a random way.

As we are going to prove, for a wrongly guessed key the probability that a set S satisfies
the required property (that is, two ciphertexts of at least one couple belong to the same
coset ofMJ) is (approximately) equal to the probability of the random case prand, which
is higher than the probability pAES for the case of the right key. As a result, the number
of sets S for which two ciphertexts of at least one couple belong to the same coset ofMJ

for |J | = 3 is minimum for the right key. This allows to recover one diagonal of the secret
key. In the following we present all the details.

Key-Recovery Attack - Details

Consider texts in a coset of CI which is obtained by 1-round encryption of a coset of DI
with respect to a (partially) guessed key. Here we theoretically compute the probability
that a set S satisfies the required property (that is, two ciphertexts of at least one couple
belong to the same coset of MJ) when the guessed key is not the right one. In other
words, we are going to show that the behavior in the case of a wrongly guessed key (for
the following denoted by “AES with a wrong key”) is similar to the one of a random
permutation.

Observe that the main difference between “AES with a wrong key” and a random
permutation is given by the possibility in the first case to study the distribution of the
couples after each round - note that for a random permutation it is meaningless to consider
the distribution of the texts after (e.g.) one round. In particular, a coset of a diagonal
space DI is always mapped into a coset of a column space CI after one round independently
of the key. On the other hand, we stress that the way in which the couples are distributed
in the sets S depends on the guessed key.

Consider a key-recovery attack on 6-round AES

DI ⊕ a
R(·)−−−−−−−→

KeyGuess
5-round Secret-Key Distinguisher of Sect. 7︸ ︷︷ ︸⋃

(x,y)
Si,jx,y⊆CI⊕b

R(·)−−−−→
prob. 1

MI⊕c
R(·)−−→DJ⊕a′

R2(·)−−−−→
prob. 1

MJ⊕c′
R(·)−−→MK⊕c′′

and focus on the middle round MI ⊕ c
R(·)−−→ DJ ⊕ a′ for |I| = 1 and |J | = 3. Assume

the guessed key is wrong, and consider one set Si,j(x0,x1),(y0,y1). For this set, the number of
couples that belong to the same coset ofMJ after four rounds can take any possible value
between 0 and 217 (that is, 0, 1, 2, ... or 217). Indeed, since the couples are divided in sets
Si,j(x0,x1),(y0,y1) in a random way, it is not possible to guarantee that the number of couples
that belong to the same coset ofMJ after 4 rounds is only 0 or 217 (as for “AES with the
right key”).

Using the same calculation as before and for a wrongly guessed key, given a set
Si,j(x0,x1),(y0,y1), the probability pWrongKey

AES that two texts of at least one couple belong to
the same coset ofMK for a certain |K| = 3 after 6 rounds is given by

pWrongKey
AES =

217∑
n=0

(
217

n

)
· pn3 · (1− p3)217−n ·

[
1−

(
1− p3,3

)n
·
(

1− p3 · (1− p3,3)
1− p3

)217−n]
,
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which is well approximated by

pWrongKey
AES = 2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77 + ...

Note that this probability is approximately equal to the one of the random case (see (14)
for details), while we remember that the probability for “AES with the right key” is

pAES = 2−13 − 524 287 · 2−46 − 22 370 411 853 · 2−77 + ...

where the difference between these two probabilities is approximately |pWrongKey
AES −pAES | '

2−41.011.

Data and Computational Costs

Data Cost. Assume the goal is to discover the I-th diagonal of the key with proba-
bility higher than 95%. Equivalently, the goal is to guarantee that the number of sets
Si,j(x0,x1),(y0,y1) that satisfy the required property is the lowest one for the right key with
probability higher than 95%.

To compute the data cost, the idea is to use the same analysis proposed for the 5-round
distinguisher in Sect. 7.2. In particular, since there are 232 candidates for each diagonal
of the keys, one has to guarantee that the number of sets Si,j(x0,x1),(y0,y1) that satisfy the
previous required property is the lowest one for the right key with probability higher than
(0.95)2−32 (note that the 232 tests - one for each candidate - are all independent).

Using formula (15), one needs approximately 273.343 different sets Si,j(x0,x1),(y0,y1) for each
candidate of the i-th diagonal of the key. Since it is possible to construct approximately
3 ·215 · (28−1)2 ≈ 232.574 different sets for each initial coset of DI , one needs approximately
273.343 · 2−32.573 = 240.77 different initial cosets of DI to discover the I-th diagonal of
the key with probability higher than 95%, for a total cost of 240.77 · 232 = 272.77 chosen
plaintexts.

When one diagonal of the key is found27, due to the computational cost of this step we
propose to find the entire key (i.e. the other three diagonals) using a brute force attack.

Computational Cost. In order to implement the attack, the idea is to use Algorithm
3 for each possible guessed key in order to count the number of sets S that satisfy the
required property (i.e. two ciphertexts of at least one couple belong to the same coset
of MJ for a certain J with |J | = 3). Since this number of sets is higher for a wrongly
guessed key than for the right one, it is possible to recover the right candidate of the key.

An implementation of the attack is described by the pseudo-code given in Algorithm 4.
To compute the computational cost, it is sufficient to re-consider the cost of the 5-round
distinguisher. Given a coset of C0, the cost to count the number of sets S with the
required property is 239.1 table look-ups. This step is repeated for each one of the 232

(partially) guessed key and for each one of the 240.77 initial cosets of D0, for a cost of
239.05 · 240.77 · 232 = 2111.82 table look-ups. Moreover, one needs to partially compute
1-round encryption for each possible guessed key and for each initial coset, for a cost
of 4 · 232 · 240.77 · 232 = 2106.77 S-Box look-ups. As a result, the total cost to find one
diagonal of the key is well approximated by 2111.82 table look-ups, or equivalently 2104.92 six-
round encryptions (under the assumption 20 table/S-Box look-ups ≈ 1-round encryption).
The total cost to find the entire key (using brute force on the last three diagonal) is of
2104.92 + 296 = 2104.93 six-round encryptions.

As last thing, in App. C.3 we explain why it is not possible to set up the key-recovery
attack using cosets of DI with |I| = 2 instead of |I| = 1 (that is, why it is not possible to

27For completeness, we mention that it is possible to (slightly) reduce the data cost by relaxing the
property that the number of sets S that satisfy the required property is the lowest one for the right key.
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Data: 240.77 cosets of D0 (e.g. D0 ⊕ ai for ai ∈ D⊥0 ) and corresponding ciphertexts
after 6 rounds

Result: 4 bytes of the secret key - (k0,0, k1,1, k2,2, k3,3)
Let N [0, ..., 232 − 1] be an array initialized to zero; // N [k] denotes the number of sets
S that satisfy the required property for the key k

/* 1st Step: for each guessed key, count the number of sets S with the required property */
for each k̂ from (0x00, 0x00, 0x00, 0x00) to (0xff, 0xff, 0xff, 0xff) do

for each coset D0 ⊕ ai do
(partially) encrypt the 232 plaintexts w.r.t. the guessed key k̂;
use Algorithm 3 to count the number n of sets S that satisfy the required
property;
N [ψ(k̂)]← N [ψ(k̂)] + n; // where ψ(k̂ ≡ (k0, k1, k2, k3)) =

∑3
i=0 ki · 2

8·i

end
end
/* 2nd Step: look for the key for which number of sets S is minimum */
min← N [0]; // minimum number of sets
δ ← (0x00, 0x00, 0x00, 0x00);
for each k̂ from (0x00, 0x00, 0x00, 0x00) to (0xff, 0xff, 0xff, 0xff) do

if N [ϕ(k̂)] < min then
min← N [ϕ(k̂)];
δ ← k̂ ≡ (k0,0, k1,1, k2,2, k3,3);

end
end
return δ - candidate of (k0,0, k1,1, k2,2, k3,3)

Algorithm 4: 6-round key-recovery attack on AES exploiting a 5-round secret-key
distinguisher. The goal of the attack is to find 4 bytes of the secret key. The remaining
bytes (the entire key) are found by brute force.

exploit the modified version of the previous distinguisher proposed in App. C.2). Without
going into the details, one has to guess 64 bits of the key instead of 32 for the attack
that exploits the distinguisher proposed in App. C.2. As a consequence, this modified
attack requires approximately 288.1 chosen plaintexts (in 224.1 different initial cosets of
DI with |I| = 2) and it has a total computational cost of approximately 2176.2 six-round
encryptions, which is (much) higher than the cost of a brute force attack.

9 Other Secret-Key Distinguishers for 5-round AES
To conclude, we present other possible properties that are independent of the secret key
and that can be exploited to set up secret-key distinguishers for 5-round AES. Given sets of
(plaintexts, ciphertexts) pairs - defined in a similar way to the previous ones, it is possible
to exploit the following properties:

• consider the number of sets with the following property: the number of couples for
which the two ciphertexts belong to the same coset ofMI for |I| = 2 is higher than
a certain number Z ∈ N; if this number Z and the sets are properly defined, then
this number of sets is higher for 5-round AES than for a random permutation;

• if the sets are properly defined, for 5-round AES there exists at least one set for
which the two ciphertexts of each couple in that set don’t belong to the same coset
ofMI for each I with |I| = 3; in contrast, for a random permutation, for each set
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there exists at least one couple for which the two ciphertexts belong to the same
coset ofMI for |I| = 3.

In the following, we give all the details and a theoretical explanation of the previous
properties. We also highlight that these two distinguishers work both in the encryption
(i.e. using chosen plaintexts) and in the decryption direction (i.e. using chosen ciphertexts)

9.1 Threshold Mixture Differential Secret-Key Distinguisher
The first distinguisher that we are going to present exploits the following property:

• consider the number of sets Z with the following property: the number of couples for
which the two ciphertexts belong to the same coset ofMI for |I| = 2 is higher than
a certain threshold Z ∈ N; if this number Z and the sets Z are properly defined,
then this number of sets is higher for 5-round AES than for a random permutation.

As first thing, we define the sets Z(x,y) - where x = (x0, x1, ..., x7) and y = (y0, y1, ..., y7)
such that (x0, x1, x2, x3) 6= (y0, y1, y2, y3) and (x4, x5, x6, x7) 6= (y4, y5, y6, y7) - that we
are going to use

Z(x,y) ≡
{

(p, q) ∈ F4×4
28 × F4×4

28

∣∣ p = a⊕


x0 C E x7
x4 x1 F G
A x5 x2 H
B D x6 x3

 q = a⊕


y0 C E y7
y4 y1 F G
A y5 y2 H
B D y6 y3



or p = a⊕


x0 C E y7
y4 x1 F G
A y5 x2 H
B D y6 x3

 q = a⊕


y0 C E x7
x4 y1 F G
A x5 y2 H
B D x6 y3

 ∀A,B,C, ...,H ∈ F28

}

for a fixed a ∈ F4×4
28 . Each set contains 265 different couples of two (plaintext, ciphertext)

pairs, and it is possible to construct approximately 1
4 · (2

32 · (232 − 1))2 = 2126 different
sets.

To set up the distinguisher, consider (at least) 247 different sets Z (each one of 265

different couples), and count the number of sets with the following property: the number
of different couples for which the two ciphertexts belong to the same coset of MI for a
certain I with |I| = 2 is higher than a given number Z = 3 · 218 = 786 432. Independently
of the secret key, of the details of the S-Box and of the MixColumns matrix, it is possible
to prove that

• for 5-round AES, the number of sets Z with the required property is on average
higher than 216;

• for a random permutation, the number of sets Z with the required property is on
average lower than 211.415.

This allows to distinguish the two cases. All details are given in the following. We
emphasize that - for our goal - it is sufficient to prove that a lower bound of the number of
sets that satisfy the required property for the AES case is higher than an upper bound of
the corresponding number for the random permutation case.

9.1.1 Details and Proof

For the following, we recall the Chebyshev Inequality

Prob(|X − µ| ≥ k · σ) ≤ 1
k2 ∀k > 0

where X is a random variable with mean µ and variance σ2.
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Proof - AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 4-round AES. Our 5-round distinguisher is based on
Theorem 3. Given a set Z just defined, after 4-round encryption, only two events can
happen:

1. for each (p, q) ∈ Z, then R4(p)⊕R4(q) ∈MJ for a certain J ⊆ {0, 1, 2, 3};

2. for each (p, q) ∈ Z, then R4(p)⊕R4(q) /∈MJ for all J ⊆ {0, 1, 2, 3}.

Observe that p⊕ q ∈ D0,3 by definition, that is R2(p)⊕ R2(q) ∈ M0,3. Thus, the event
R4(p)⊕R4(q) ∈MJ can happen if and only if |J | = 3.

Moreover, as showed in Sect. 7.1.2, if |J | = 3 then the first event occurs with (approxi-
mately) prob. 2−30, while the second one occurs with (approximately) prob. 1− 2−30.

Proof. In order to obtain a lower bound for the AES case (and so the desired result),
it is sufficient to consider the first event, that is the set Z for which R4(p)⊕R4(q) ∈MJ

for all (p, q) ∈ Z and for |J | = 3. Given 247 initial sets Z, the average number of sets that
satisfy this property is 247 · p3 = 247 · (2−30 − 3 · 2−63 + 2−94) = 217 − 2−14 + 2−47 ' 217.

Given a set as before, what is the number of couples for which the two ciphertexts
belong to the same coset ofMI for |I| = 2 after 5-round? Considering sets Z that satisfy
the first event, since Prob(R(x)⊕R(y) ∈MI |x⊕ y ∈MJ) = p2,3 ' 3 · 2−47 (see (7) for
details) and since each set is composed of 265 different couples, the average number of
couples of ciphertexts that belong to the same coset ofMI after 5-round for |I| = 2 is
265 · 3 · 2−47 = 3 · 218 (which is equal to the number Z).

As we are going to show in the following, on average half of the previous sets satisfy
the required property (that is, that the number of couples of ciphertexts that belong to
MI is higher than Z). As a result, the average number of sets Z that satisfy the required
property is (higher28 than) 216.

Proof - Half of the Sets Z satisfy the Required Property. Working on sets Z for which
R4(p) ⊕ R4(q) ∈ MJ for all (p, q) ∈ Z and for |J | = 3, in order to prove the previous
result, we must show that on average half of the previous sets Z satisfy the required
property. To do this, note that the probabilistic distribution of the number of different
pairs of ciphertexts of a set Z that belong to the same coset ofMI is well described by a
binomial distribution29 B(n, p). In particular, if we limit to consider the sets Z for which
R4(p) ⊕ R4(q) ∈ MJ for all (p, q) ∈ Z and for |J | = 3, then the mean value is given by
µ = n · p2,3 = 3 · 218 and the variance is given by σ2 = n · p2,3 · (1− p2,3) = 3 · 218.

If the previous distribution is symmetric with respect to the mean value, given a set Z
as before, then the number of pairs for which the two ciphertexts are in the same coset of
MI is higher than µ = 3 · 218 = Z with probability 50%. A parameter that measures the
asymmetry of a probabilistic distribution is the skewness30, where the skewness is zero if
and only if the distribution is symmetric. For the particular case of a binomial distribution
B(n, p), the skewness is given by

γ = 1− 2 · p√
n · p · (1− p)

.

28Note that this is a lower bound, since we are considering only the sets Z s.t. R4(s)⊕R4(t) ∈MJ for
all (p, q) ∈ Z and for |J | = 3.

29We refer to Sect. 7.2.1 for a discussion of the binomial distribution. Observe that given a set Z with
n pairs, each of them satisfies or not the above property (the two ciphertexts belong to the same coset of
MI) with a certain probability.

30The skewness γ of a random variable X is defined as γ = E
[(

X−µ
σ

)3
]

= E[(X−µ)3]
(E[(X−µ)2])3/2 .
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Since in our case n = 265 and p = 3 ·2−47, it follows that the skewness is well approximated
by γ ' 2−9.8 ' 0.001128, which implies that the distribution is almost symmetric with
respect to the mean. By definition of positive skewness, it follows that the mass of the
(binomial) distribution is concentrated on the left of the mode (i.e. the value at which
its probability mass function takes its maximum value). For a binomial distribution
B(n, p), the mode is given by b(n + 1) · pc, that is the mode for our particular case is
b(265 + 1) · (3 · 2−47 − 3 · 2−70)c = 3 · 218 (equal to the mean value). As a result, given a
set Z, the probability of the event “the number of pairs for which the two ciphertexts are
in the same coset ofMI is higher than µ = 3 · 218 = Z” is at least 50%, that is 50% is a
lower bound for the required probability. This concludes the proof.

Proof - Random Permutation

As second thing, we prove the previous result for the case of a random permutation. Since
Prob(x ∈MI) = p2 ' 3 · 2−63 for |I| = 2, given a set of 265 pairs, the number of couples
that belong to the same coset ofMI for |I| = 2 is on average 3 · 2−63 · 265 = 12.

What is the probability that the previous number of couples that satisfy the required
property - denoted by X - is higher than Z = 3 · 218? To compute this probability, we
exploit (1) the Chebyshev Inequality and (2) the fact that probabilistic distribution of
the number of collisions of each set is well described by a binomial distribution B(µ, σ2)
with mean µ = 265 · p2 = 12 and variance σ2 = 265 · p2 · (1 − p2) = 12. Thus, using the
Chebyshev Inequality, it follows that

Prob(X ≥ Z = 3 · 218) = Prob(X − µ ≥ Z − µ) ≤ Prob(|X − µ| ≥ Z − µ) ≤ σ2

(Z − µ)2

where Z − µ > 0. It follows that the previous event occurs with probability less than
12/(3 · 218 − 12)2 ' 2−35.585.

As a result, given 247 sets Z and for a random permutation, the number of set Z with
the required property (i.e. for which the number of couples of ciphertexts that belong to the
same coset ofMI is higher than Z = 3 · 218) is on average less than 247 · 2−35.585 = 211.415.

9.1.2 Data and Computational Costs

In order to set up the distinguisher, one needs at least 247 different sets Z, each one of 265

different couples of two (plaintext, ciphertext) pairs. Given a set of 289 plaintexts of the
form 

A A A C
A cccaaaaa A A
A ccccaaaa C A
A A C C


where cccaaaaa denotes a byte with 5 active bits and 3 constant bits (similar for ccccaaaa),
then it is possible to construct 1

4 · (2
13 · (213 − 1)) · (212 · (212 − 1)) = 248 sets Z defined as

before. As a result, 289 chosen plaintexts are (largely) sufficient to set up the distinguisher.
What about the computational cost? The idea is to use Algorithm 3 modified as

proposed in App. E in order to implement the distinguisher, where the plaintexts and the
ciphertexts are re-order w.r.t. the partial order v as defined in Def. 11. It follows that
the computational cost is well approximated by

6 ·
[
289 · log 289 +

(
289 + 249)] + 248 ' 298.1 table look-ups

where
(289

2
)
·2−64 ·2−64 = 249 is the average number of couples such that the two ciphertexts

belong to the same coset ofMJ for a fixed J with |J | = 2 and the two plaintexts are in
the same coset of D0,3 (by definition of Z). Equivalently, the total computational cost is
well approximated by 291.5 five-round encryptions.
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9.2 Impossible Mixture Differential Secret-Key Distinguisher
The second distinguisher that we are going to present exploits the following property:

• if the sets Q are properly defined, for 5-round AES there exists at least one set for
which the two ciphertexts of each couple in that set don’t belong to the same coset
ofMI for each I with |I| = 3; in contrast, for a random permutation, for each set
there exists at least one couple for which the two ciphertexts belong to the same
coset ofMI for |I| = 3.

As first thing, we define the setsQ(x,y) - where x = (x0, x1, ..., x7) and y = (y0, y1, ..., y7)
such that xi 6= yi for each i - that we are going to use. Sets Q(x,y) are similar to the set Z
previously defined, with the only difference that in this case we consider all the possible
different combinations of these 16 variables. That is, a set Q(x,y) is defined as

Q(x,y) ≡
{

(p, q) ∈ F4×4
28 × F4×4

28

∣∣ p = a⊕


x0 0 C x7
x4 x1 0 0
A x5 x2 0
0 B x6 x3

 q = a⊕


y0 0 C y7
y4 y1 0 0
A y5 y2 0
0 B y6 y3



or p = a⊕


y0 0 C x7
x4 x1 0 0
A x5 x2 0
0 B x6 x3

 q = a⊕


x0 0 C y7
y4 y1 0 0
A y5 y2 0
0 B y6 y3

 or ... ∀A,B,C ∈ F28

}

where we emphasize that with respect to the previous set Z, here we consider all the
possible combinations of the 16 variables, that is we don’t limit to consider the combinations
of the two diagonals as before. As a result, since there are 224 different possible values of
A,B,C and since it is possible to consider 215 different combinations of x and y, each set
Q(x,y) is composed of 224 · 215 = 239 different couples of two (plaintext, ciphertext) pairs.
Moreover, it is possible to construct approximately 1

215 · 263 · (28 − 1)8 ' 2111.954 different
sets Q(x,y) just defined.

To set up the distinguisher, consider (at least) 3 · 296 different sets Q, each one of 239

different couples of two (plaintext, ciphertext) pairs, and check if there exists at least one
set Q for which the two ciphertexts of each couple don’t belong to the same coset ofMI

for |I| = 3 after 5-round. Independently of the secret key, of the details of the S-Box and
of the MixColumns matrix, it is possible to prove that

• for 5-round AES, there exists at least one set Q that satisfy the previous property
with approximately prob. 99.9995%;

• for a random permutation, for each set Q there exists at least one couple for which
the two ciphertexts belong to the same coset ofMI for |I| = 3 with prob. close to 1.

This allows to distinguish the two cases. In the following we present all the details.

Similarity with “classical” Impossible Differential Attack. Before going on,
note that this distinguisher on 5 rounds has something in common with the 4-round
distinguisher based on impossible differential trails first proposed by Biham and Keller in
[BK01], in the same way in which the 5-round distinguisher just presented in Sect. 7 has
something in common with the 3-round distinguisher based on the truncated differential
cryptanalysis. For an impossible differential trail, one exploits the fact that given two
plaintexts in the same coset of DI , then they don’t belong to the same coset of MJ

after four rounds for each I, J ∈ {0, 1, 2, 3} with |I| + |J | ≤ 4 (see Prop. 1), while this
happens with a probability different from zero for a random permutation. Here we use the
same technique, but working on sets of couples of texts and not on single couples of texts
independently of the others.
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9.2.1 Details and Proof

Proof - AES

Initial Considerations - 1-round AES. Our 5-round distinguisher is based on the
following property. Consider a set Q just defined. After 1-round encryption, only two
events can happen:

1. for each (p, q) ∈ Q, then R(p)⊕R(q) ∈ DJ for a certain J ⊆ {0, 1, 2, 3};

2. for each (p, q) ∈ Q, then R(p)⊕R(q) /∈ DJ for all J ⊆ {0, 1, 2, 3}.

Observe that p⊕ q /∈ CI for each I s.t. |I| ≤ 3, by definition. Since R(p)⊕R(q) /∈MI for
each I s.t. |I| ≤ 3, the event R(p)⊕R(q) ∈ DJ can occur for each |J | ≥ 1.

To prove the previous result, we exploit a strategy similar to the one proposed in Sect.
5.1.1 in order to prove the mixture differential distinguisher. To do this, note that

R(p)⊕R(q) ∈ DJ if and only if S-Box(p)⊕ S-Box(q) ∈ WJ

where WJ := SR−1 ◦MC−1(DJ), as defined in (12). Since the S-Box(·) works on each
byte independently of the others and since the XOR sum is commutative, it follows that

S-Box(p)⊕ S-Box(q) = S-Box(p′)⊕ S-Box(q′)

where the texts p′ and q′ are given by a different combinations of the generating variables
of the texts p and q.

For the following, we also recall that the first case occurs with approximately prob-
ability

( 4
|J|
)
· 2−32·(4−|J|), while the second one occurs with approximately probability

1−
( 4
|J|
)
· 2−32·(4−|J|) (as we have seen in Sect. 7.1.2).

Proof. To obtain the desired result, we focus on the first event only, that is R(p)⊕
R(q) ∈ DJ for all (p, q) ∈ Q and for |J | = 1. Since this event happens with prob. 2−94,
given 3 · 296 initial sets Q, then the average number of sets that satisfy this property is
3 · 296 · 2−94 = 12.

Due to Prop. 1, Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ ) = 0 if I, J ⊆ {0, 1, 2, 3} such
that |I| + |J | ≤ 4 and x 6= y. It follows that if R(p) ⊕ R(q) ∈ DJ for all (p, q) ∈ Q and
for |J | = 1, then R5(p) ⊕ R5(q) /∈ MI for all (p, q) ∈ Q and for |I| = 3. As a result, on
average 12 sets satisfy the required property.

In other words, what is the probability that at least one set Q satisfies the required
property? By simple computation, it is approximately

1− (1− 2−94)3·296
' 1− e−12 ≈ 99.9995%.

Proof - Random Permutation

As second thing, we prove the previous result for the case of a random permutation. The
goal is to show that for a random permutation, for each set there exists at least one couple
for which the two ciphertexts belong to the same coset ofMI for |I| = 3 for each set.

First of all, since Prob(x ∈ MI) = p3 ' 2−30 for |I| = 3, given a set of 239 couples,
the number of couples of ciphertexts that belong to the same coset ofMI for |I| = 3 is on
average 2−30 · 239 = 29 = 512.

What is the probability that for each set at least one couple for which the two ciphertexts
that belong to the same coset ofMI for |I| = 3? By simple computation[

1− (1− 2−30)239
]3·296

'
[
1− e−29

]3·296

' exp
(
− 1

2415.8

)
' 1.
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9.2.2 Data and Computational Costs

In order to set up the distinguisher, one needs at least 3 · 296 ' 297.6 different sets Q,
each one of 239 different couples of two (plaintext, ciphertext) pairs. Given a set of 282

plaintexts of the form 
A C A cccaaaaa
A A C C
A A A C
C A A cccaaaaa


where cccaaaaa denotes a byte with 5 active bits and 3 constant bits, then it is possible to
construct 1

215 · 258 · (28 − 1)6 · (25 − 1)2 = 2100.8 sets Q defined as before. As a result, 282

chosen plaintexts are (largely) sufficient to set up the distinguisher.
What about the computational cost? The idea is to use Algorithm 3 as described in

Sect. 7.2 to implement the distinguisher. It follows that the computational cost is well
approximated by

4 ·
[
282 · log 282 +

(
282 + 265)] + 3 · 296 ' 297.8 table look-ups

where
(282

2
)
· 2−96 = 265 is the average number of couples such that two ciphertexts are in

the same coset ofMJ for fixed J with |J | = 1. Equivalently, the total computational cost
is well approximated by 291.1 five-round encryptions.
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A Proof - Probabilities of Sect. 3.2
In this section, we prove the probabilities given in Sect. 3.2.

Let I, J ⊆ {0, 1, 2, 3}. We recall that

MI ∩MJ =MI∩J . (17)

whereMI ∩MJ = {0} if I ∩ J = ∅. Moreover, referring to [GRR17b], we recall that the
probability that a random text x belongs toMI is well approximated by Prob(x ∈MI) =
2−32·(4−|I|), while given two random texts x 6= y

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) = (28)−4·|I|+|I|·|J|.

Proposition 2. The probability p|I| that a random text x belongs to the subspaceMI for
a certain I ⊆ {0, 1, 2, 3} with |I| = l fixed is well approximated by

p|I| = Prob(∃I ⊆ {0, 1, 2, 3} |I| = l s.t. x ∈MI) = (−1)|I| ·
3∑

i=4−|I|

(−1)i ·c|I|,i ·
(

4
i

)
·2−32·i

where c2,3 = 3 and c|I|,i = 1 for {|I|, i} 6= {2, 3}.

Proof. By definition, given the events A1, ..., An in a probability space (Ω,F ,P) then:

Prob

( n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
I⊂{1,...,n}
|I|=k

Prob(AI)
)
,

where the last sum runs over all subsets I of the indexes 1, ..., n which contain exactly k
elements31 and

AI :=
⋂
i∈I

Ai

denotes the intersection of all those Ai with index in I.
Due to (17), it follows that for |I| = 1

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 1 s.t. x⊕ y ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=1

Prob(x⊕ y ∈MI) = 4 · 2−96.

For |I| = 3, the probability is given by:

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 3 s.t. x ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=3

Prob(x ∈MI)−
∑

I⊆{0,1,2,3}, |I|=2

Prob(x ∈MI)+

+
∑

I⊆{0,1,2,3}, |I|=1

Prob(x ∈MI) = 4 · 2−32 − 6 · 2−64 + 4 · 2−96,

31For example for n = 2, it follows that Prob(A1 ∪ A2) = Prob(A1) + Prob(A2)− P(A1 ∩ A2), while
for n = 3 it follows that Prob(A1 ∪ A2 ∪ A3) = Prob(A1) + Prob(A2) + Prob(A3) − Prob(A1 ∩ A2) −
Prob(A1 ∩A3)− Prob(A2 ∩A3) + Prob(A1 ∩A2 ∩A3).
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since given 4 different setsMI for |I| = 3 there are
(4

2
)

= 6 possible intersections of 2 sets
and

(4
3
)

= 4 possible intersections of 3 sets (all intersections are not empty).
Finally for |I| = 2

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 2 s.t. x⊕ y ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=2

Prob(x⊕ y ∈MI)−
∑

I⊆{0,1,2,3}, |I|=1

Prob(x⊕ y ∈MI) =

= 6 · 2−64 − 12 · 2−96,

since given 6 different setsMI for |I| = 2 there are
(6

2
)

= 15 possible intersections of 2 sets.
However, note that only 12 of them are not empty (sinceM0,1 ∩M2,3 =M0,2 ∩M1,3 =
M0,3 ∩M1,2 = ∅).

Since
(6

1
)

=
(4

2
)

= 6 and
(6

2
)
− 3 =

(4
3
)
· 3 = 12, we obtain the desired result.

Proposition 3. Let x, y be two random elements. Assume that there exists I ⊆ {0, 1, 2, 3}
such that x⊕ y ∈MI (x⊕ y /∈ML for all L ⊆ {0, 1, 2, 3} with |L| < |I|). The probability
that ∃J ⊆ {0, 1, 2, 3} with |J | = l fixed such that R(x)⊕R(y) ∈MJ is well approximated
by

p|J|,|I| ≡ Prob(∃J |J | = l s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

= (−1)|J| ·
3∑

i=4−|J|

(−1)i · c|J|,i ·
(

4
i

)
· 2−8·i·|I|.

where c2,3 = 3 and c|J|,i = 1 for {|J |, i} 6= {2, 3}.

Proof. As before, for |J | = 3:

Prob(∃J |J | = 3 s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

=
∑

J⊆{0,1,2,3}, |J|=3

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI)+

−
∑

J⊆{0,1,2,3}, |J|=2

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI)+

+
∑

J⊆{0,1,2,3}, |J|=1

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

=4 · 2−8·|I| − 6 · 2−16·|I| + 4 · 2−24·|I| =

= (−1)3 ·
3∑
i=1

(−1)i ·
(

4
i

)
· 2−8·i·|I|.

By simple computation, it is possible to obtain similar results for |J | = 2 and |J | = 1, that
is the thesis.

Proposition 4. Let x, y be two random elements such that x ⊕ y /∈ MI for each I ⊆
{0, 1, 2, 3}. Then, the probability that ∃J ⊆ {0, 1, 2, 3} for |J | = l fixed such that R(x)⊕
R(y) ∈MJ is well approximated by

p̂|J|,3 ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) =
p|J| − p|J|,3 · p3

1− p3
.

Proof. Let A and B be two events, and let C be the event such that A ∪C is equal to the
sample space and such that A ∩ C = ∅. By definition

Prob(B) = Prob(B |A) · Prob(A) + Prob(B |C) · Prob(C).
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Thus

p|J| ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ) =
= Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) · Prob(x⊕ y /∈MI ∀I)+
+Prob(∃J s.t. R(x)⊕R(y) ∈MJ | ∃I s.t. x⊕ y ∈MI) · Prob(∃I s.t. x⊕ y ∈MI).

Note that32

Prob(∃I s.t. x⊕ y ∈MI) = Prob

(
x⊕ y ∈

⋃
∀I⊆{0,1,2,3}

MI

)
=

=Prob
(
x⊕ y ∈

⋃
I⊆{0,1,2,3}, |I|=3

MI

)
≡ p3.

It follows that
p|J| = p|J|,3 · p3 + p̂|J|,3 · (1− p3),

that is the thesis.

Proposition 5. Let x and y such that x ⊕ y /∈ MI for each I ⊆ {0, 1, 2, 3}. Then, the
probability that ∃J ⊆ {0, 1, 2, 3} with |J | = l fixed and |I|+|J | ≤ 4 such that R2(x)⊕R2(y) ∈
MJ is well approximated by

p̃|J|,3 ≡ Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI) =
p|J|

1− p3
.

Proof. Remember that

Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ | ∃I s.t. x⊕ y /∈MI) = 0.

Since

Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ) =
= Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI ∀I) · Prob(x⊕ y /∈MI ∀I)+
+Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ | ∃I s.t. x⊕ y ∈MI) · Prob(∃I s.t. x⊕ y ∈MI)

and using the same argumentation as before, it follows that

p|J| = p̃|J|,3 · (1− p3),

that is the thesis.

A.1 How to Compute the Number of Pairs with n Equal Generating
Variables

Given texts in the same cosets of CI (and similar forMI) for I ⊆ {0, 1, 2, 3}, the number
of couples of texts with n equal “generating variable(s) in (F28)|I|” for 0 ≤ n ≤ 3 is given
by (

4
n

)
· 232·|I|−1 · (28·|I| − 1)4−n.

Here we prove this result.
W.l.o.g. consider for simplicity the case |I| = 1. First of all, note that there are

(4
n

)
different combinations of n ≤ 4 variables. If n ≥ 1, the n variables that must be equal for
the two texts of the couple can take (28)n different values. For each one of the remaining
4 − n variables, the variables must be different for the two texts of each couple. Thus,
these 4− n variables can take exactly

[
(28)4−n · (28− 1)4−n]/2 different values. The result

follows immediately. In particular, for |I| = 1 there are:
32If x⊕ y ∈MI for |I| < 3, then ∃J with |J | = 3 and I ⊆ J such that x⊕ y ∈MJ .
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• 263 · (28 − 1)4 couples for which the two texts have different generating variables;

• 233 · (28 − 1)3 couples for which the two texts have one equal generating variable;

• 3 · 232 · (28 − 1)2 couples for which the two texts have two equal generating variables;

• 233 · (28 − 1) couples for which the two texts have three equal generating variables.

Note that the total number of all the possible couples is 231 · (232 − 1).
The formula for the other cases is obtained in an analogous way.

Remark. The proposed formula is used in the context of the 5-round distinguisher
presented in [GRR17a], and for the distinguishers proposed in this paper. As explained in
Sect. 4, in these distinguishers we work with “generating variables” in (F28)|I|. If |I| = 1,
then this corresponds to work independently on each variable. In the other cases, this
means to work with sets of variables in (F28)|I| for |I| ≥ 2.

For example, given p1, p2 ∈ C0,1 ⊕ a s.t. pi = a ⊕
⊕3

j=0
⊕1

k=0 p
i
j,k · ej,k, one works

with the following sets of variables: (pi0,0, pi1,1), (pi1,0, pi2,1), (pi2,0, pi3,1), (pi3,0, pi0,1) (and not
independently on each variable).

As a result, this formula doesn’t apply if one works independently on each generating
variable also in the cases |I| ≥ 2, that is with generating variables in F28 also for |I| ≥ 2.
In this last case, the required formula becomes(

4
n

)
· 232·|I|−1 · (28 − 1)(4−n)·|I|.

(note that the two formulæ are identical only for |I| = 1).

A.2 Discussion about the Given Approximations
In Sect. 3.2, we list some useful probabilities largely used in the following. As we have
already said, all those probabilities are not the exact ones, but “good enough” approximations
useful for the target of the paper. Here we give more details about this statement.

As first thing, consider the following simple example. Consider the probability that
a pair of texts t1 and t2 belong to the same coset of MI . This probability is usually
approximated by Prob(x ∈ MI) = 2−32·(4−|I|). On the other hand, in order to set up a
(truncated) differential attack, one is interested to the case t1 6= t2 (equivalently, x 6= 0).
Thus, the “correct” probability should be

Prob(x ∈MI |x 6= 0) = 232·|I| − 1
2128 − 1 = 2−32·(4−|I|) − 2−128 + 2−128−32·(4−|I|) + ...

We also remark that it is important to have in mind that the assumption behind
the probabilities given in Sect. 3.2 is that the elements x and y are uniform distributed,
or (at least) very close to be uniform distributed. In particular, we emphasize that this
assumption is satisfied for all the events considered in this paper to set up distinguishers
and key-recovery attacks on 5- and 6-round AES.

To understand the importance of this assumption, consider the following example
regarding the 4-round AES impossible differential trail. Consider plaintexts in the same
coset of DI , and the corresponding ciphertexts after 4-round. It is well known that

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) = 0 ∀J s.t. |I|+ |J | ≤ 4.

On the other hand, one can compute this probability using the probabilities given in Sect.
3.2. Assume for simplicity I fixed with |I| = 1. By Theorem 1, each coset of DI is mapped
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into a coset ofMI after 2-round. Moreover, remember that

Prob(R(x)⊕R(y) ∈MK |x⊕ y ∈MI) = (−1)|K| ·
3∑

i=4−|K|

(−1)i ·
(

4
i

)
· 2−8·i.

for each K. Thus

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) =

=
∑

K⊂{0,1,2,3}

Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕ y ∈ DI)×

× Prob(R3(x)⊕R3(y) ∈MK |x⊕ y ∈ DI)+
+Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) /∈MK∀K and x⊕ y ∈ DI)×

× Prob(R3(x)⊕R3(y) /∈MK∀K |x⊕ y ∈ DI).

If one approximates the probability Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕
y ∈ DI) with Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK), by simple computation
it follows that

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) ≈ 2−28 + 2−30 + ...

which is obviously wrong, since for all |I|+ |J | ≤ 4

Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕ y ∈ DI) =
= Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and R2(x)⊕R2(y) ∈ DI) = 0.

B 4-round Secret-Key Distinguisher for AES - Details
In this section, we give all the details about the computational cost of the 4-round secret-key
distinguisher for AES presented in Sect. 5. We refer to Sect. 5 for all the details about
the distinguisher.

Given 216 chosen plaintexts in the same coset of (C0 ∩ D0,3)⊕ a and the corresponding
ciphertexts, a first possibility is to construct all the possible pairs, to divide them in sets
S of non-independent pairs defined as

S =
{

(p1, p2), (p̂1, p̂2) ∈
(
C0∩D0,3 ⊕ a

)2
∣∣∣∣ [(p1 ≡ (x1, x2), c1 = R4(p1)

)
,
(
p2 ≡ (y1, y2),

c2 = R4(p1)
)]

;
[(
p̂1 ≡ (y1, x2), ĉ1 = R4(p̂1)

)
,
(
p̂2 ≡ (x1, y2), ĉ2 = R4(p̂2)

) ]}
,

where
(
C0 ∩ D0,3 ⊕ a

)2≡ ((C0 ∩ D0,3)⊕ a)× ((C0 ∩ D0,3)⊕ a), and to check for each set if
the required property is satisfied (or not).

The cost to check if the property

c1 ⊕ c2 ∈MJ if and only if ĉ1 ⊕ ĉ2 ∈MJ

is satisfied (or not) is equal to 2 XOR and 2 MixColumns operations33, which is negligible
with respect to the total cost to construct all the couples of two pairs of texts. For this
reason, we focus on the cost to construct the sets S. Using the previous strategy, since
the number of pairs is approximately 231 for each coset, the cost is of approximately
2 · 231 = 232 table look-ups.

33Given x, y, then x⊕ y ∈MI if and only if MC−1(x⊕ y) ∈ IDI for each I.
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In order to reduce the computational cost, a possibility is to re-order the ciphertexts
with respect to a partial order � as defined in Def. 10 (see also [GRR17a]). Note that
� depends on an index J . Using a merge-sort algorithm, the cost to re-order n texts is
of O(n · logn) table look-ups. When the ciphertexts have been re-ordered, it is no more
necessary to construct all the possible pairs and it is sufficient to work only on consecutive
texts with respect to �.

In more detail, first one stores all the plaintext/ciphertext pairs twice, (1) once in
which the plaintexts are ordered with respect to the partial order ≤ defined in Def. 6
and (2) once in which the ciphertexts are ordered with respect to the partial order �
defined in Def. 10. Then, working on this second set, one focuses only on consecutive
ciphertexts ci and ci+1 for each i, and checks if ci ⊕ ci+1 ∈ MJ or not. Assume that
ci ⊕ ci+1 ∈ MJ for a certain J fixed previously. The idea is to take the corresponding
plaintexts pi ≡ (x1, y1) and pi+1 ≡ (x2, y2), to construct the corresponding set S and
to check if the ciphertexts ĉ1 and ĉ2 of the corresponding plaintexts p̂1 ≡ (x1, y2) and
p̂2 ≡ (x2, y1) satisfy the condition ĉ1 ⊕ ĉ2 ∈ MJ for the same J . If not, by previous
observations one can simply deduce that this is a random permutation. Note that if there
are r consecutive ciphertexts ci, ci+1, ..., ci+r−1 such that cj ⊕ cl ∈MJ for i ≤ j, l < i+ r,
then one has to repeat the above procedure for all these

(
r
2
)

= r · (r− 1)/2 possible pairs34.
To optimize the computational cost, note that the plaintexts p̂1 and p̂2 are respectively

in positions x1 + 28 · y2 and x2 + 28 · y1 in the first set of plaintext/ciphertext pairs (i.e.
in the set where the plaintexts are ordered with respect to the partial order ≤). Thus, the
cost to get these two elements is only of 2 table look-ups. Moreover, we emphasize that it
is sufficient to work only on (consecutive) ciphertexts ci and cj such that ci ⊕ cj ∈ MJ .
Indeed, consider the case in which the two ciphertexts ci and cj don’t belong to the same
coset ofMJ , i.e. ci ⊕ cj /∈ MJ . If the corresponding ciphertexts ĉ1 and ĉ2 - defined as
before - don’t belong to the same coset ofMJ , then the property is (obviously) verified.
Instead if ĉ1 ⊕ ĉ2 ∈ MJ , then this case is surely analyzed. The pseudo-code of such
strategy can be found in Algorithm 1.

Using this procedure, the memory cost is well approximated by 4 · 217 · 16 = 223 bytes -
the same plaintext/ciphertext pairs in two different ways. The cost to order the ciphertexts
for each possible J with |J | = 3 and for each one of the two cosets is approximately of
2 · 4 · 216 · log 216 ' 223 table look-ups, while the cost to construct all the possible pairs of
consecutive ciphertexts is of 2 · 4 · 216 = 219 table look-ups. Since the probability that a
pair of ciphertexts belong to the same coset ofMJ for |J | = 3 is 2−30 and since each coset
contains approximately 231 different pairs, then one has to do on average 2 ·4 ·2−30 ·231 = 24

table look-ups in the plaintext/ciphertext pairs ordered with respect to the plaintexts.
Thus, the total cost of this distinguisher is well approximated by 223 + 219 + 16 ' 223.09

table look-ups, or approximately 216.75 four-round encryptions (using the approximation
20 table look-ups ≈ 1 round of encryption).

C Variants of the 5-round AES Secret-Key Distinguisher
of Sect. 7

In this section, we propose two variants of the 5-round secret-key distinguisher proposed in
Sect. 7. The second one is the most competitive distinguisher (from the point of view of
the data and the computational costs), but it can not be used for a key-recovery attacks,
as discuss in the following.

To set up the distinguisher, we must recall one result from [GRR17a]:

Theorem 5. Given the subspace C0∩D0,2,3 ≡ 〈e0,0, e1,0, e2,0〉 ⊆ C0, consider two plaintexts
p1 and p2 in the same coset of (C0 ∩ D0,2,3) ⊕ a generated by p1 ≡ (x1, y1, w1) and

34SinceMJ is a subspace, given a, b, c such that a⊕ b ∈MJ and b⊕ c ∈MJ , then a⊕ c ∈MJ .
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p2 ≡ (x2, y2, w2). Let p̂1, p̂2 ∈ (D0,2,3 ∩ C0)⊕ a be other two plaintexts generated by

1. (x1, y1, w1, z) and (x2, y2, w2, z); 2. (x2, y1, w1, z) and (x1, y2, w2, z);
3. (x1, y2, w1, z) and (x2, y1, w2, z); 4. (x1, y1, w2, z) and (x2, y2, w1, z).

where z can take any possible value in F28 . The following event

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̂1)⊕R4(p̂2) ∈MJ

holds with prob. 1 for 4-round AES, independently of the secret key, of the details of the
S-Box and of the MixColumns matrix.

In the following, we give all the details of the distinguisher.

C.1 First Variant of the 5-round Distinguisher of Sect. 7
C.1.1 Details of the Distinguisher

Consider 232 chosen plaintexts with one active column (4 active bytes), e.g. a coset of C0,
and the corresponding ciphertexts after 5-round. For each (x0, x1, x2), (y0, y1, y2) ∈ F6

28

such that xi 6= yi for each i = 0, 1, 2, let the set T 3
(x0,x1,x2),(y0,y0,y2) of pairs of plaintexts

be defined as follows

T 3
(x0,x1,x2),(y0,y1,y2) =

{
(p, q) ∈ F4×4

28 × F4×4
28

∣∣∣∣ p ≡ (x0, x1, x2, A), q ≡ (y0, y1, y2, A)

or p ≡ (y0, x1, x2, A), q ≡ (x0, y1, y2, A) or p ≡ (x0, y1, x2, A), q ≡ (y0, x1, y2, A)

or p ≡ (x0, x1, y2, A), q ≡ (y0, y1, x2, A) for each A ∈ F28

}
.

In other words, the pair of plaintexts p, q ∈ C0 ⊕ a can be of the form

p ≡ a⊕


x0 0 0 0
x1 0 0 0
x2 0 0 0
A 0 0 0

 q ≡ a⊕


y0 0 0 0
y1 0 0 0
y2 0 0 0
A 0 0 0

 ,
or

p ≡ a⊕


y0 0 0 0
x1 0 0 0
x2 0 0 0
A 0 0 0

 q ≡ a⊕


x0 0 0 0
y1 0 0 0
y2 0 0 0
A 0 0 0


and so on. Similar definitions can be given for the set T i(x0,x1,x2),(y0,y1,y2) for each i ∈
{0, 1, 2, 3}, where the constant bytes is in row i. Given 232 plaintexts as before, it is possible
to construct 1

210 · 4 · 231 · (28 − 1)3 ' 246.983 different sets (using formula (10) to count
the number of pairs of texts with 1 equal generating variable), where each set contains
exactly 210 different pairs of plaintexts (we emphasize that these pairs of plaintexts are not
independent, in the sense that a particular relationships among the generating variable
holds).

Consider n� 1 random sets, and count the number of sets for which two ciphertexts
(generated by 5-round AES or by a random permutation) of at least one pairs of plaintexts
belong to the same coset of a subspace MJ for J ⊆ {0, 1, 2, 3} and |J | = 3. As we are
going to prove, this number is on average lower for AES than for a random permutation,
independently of the secret key, of the details of the S-Box and of the MixColumns matrix.
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In more details, the numbers of sets for 5-round AES nAES and for a random permutation
nrand are well approximated by nAES ' n · pAES and nrand ' n · prand where

pAES ' 2−20 − 4095 · 2−53 − 529 370 445 · 2−84︸ ︷︷ ︸
≈ 3.945· 2−57

+ 374 996 306 937 593 · 2−117︸ ︷︷ ︸
≈ 2.665 · 2−70

+...

prand ' 2−20 − 4095 · 2−53 + 2 794 155 · 2−84︸ ︷︷ ︸
≈ 2.665 · 2−64

+...

Even if the difference between the two probabilities is small, it is possible to distinguish
the two cases with probability higher than 95% if n ≥ 292.246.

In the following, we prove this result (which has been practically tested on a small
scale AES) and we give all the details about the data and the computational cost.

C.1.2 Proof

Proof - 5-round AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 5-round AES. Our 5-round distinguisher is based on
Theorem 5. Given plaintexts in the same coset of C0 and for a fixed J ⊆ {0, 1, 2, 3}, each
set T(x0,x1,x2),(y0,y1,y2) just defined has the following property after 4 rounds:

1. for each couple, the two texts after 4-round belong to the same coset ofMI ;

2. for each couple, the two texts after 4-round don’t belong to the same coset ofMI .

In other words, for a given set T(x0,x1,x2),(y0,y1,y2), it is not possible that the two texts of
only some - not all - couples belong to the same coset ofMJ after 4-round, while this can
happen for a random permutation.

What is the probability of the two previous events for an AES permutation? As showed
in Sect. 7.1.2, given a set T(x0,x1,x2),(y0,y1,y2), the probability that the two texts of each
couple belong to the same coset ofMJ after 4-round is approximately p3 ' 2−30.

Using these initial considerations as starting point, we analyze in details our proposed
5-round distinguisher.

1st Case. As we have just seen, the two ciphertexts of each couple belong to the same
coset of a subspace MI for |I| = 3 after 4-round with probability p3 ' 2−30. In other
words, on average there are 2−30 · n sets T such that the two texts of each couple belong
to the same coset of a subspaceMJ for |J | = 3 after 4-round.

Let |J | = 3. Since Prob(R(x)⊕ R(y) ∈ MJ |x⊕ y ∈ MI) = p3,3 ' 2−22 (see (7) for
details) and since each set is composed of 210 different pairs, the probability that for at
least one pair of S, the two ciphertexts of at least one couple belong to the same coset
ofMJ for |J | = 3 after 5 rounds is well approximated by 1−

(
1− p̂3,3

)210

, where p̂3,3 is
defined in (8).

2nd Case. In the same way, the two ciphertexts of each couple don’t belong to the
same coset of a subspaceMJ for |J | = 3 after 4-round with probability 1− p3 ' 1− 2−30.
In other words, on average there are (1− 2−30) · n sets T such that the two texts of each
couple don’t belong to the same coset of a subspaceMJ for |J | = 3 after 4-round.

Let |I| = 3 and remember that Prob(R(x)⊕R(y) ∈MI |x⊕ y /∈MJ) = p̂3,3 ' 2−30

(see (8) for details). What is the probability that for at least one pair of S, the two cipher-
texts belong to the same coset of a subspaceMI after 5-round? By simple computation,
this happens with probability 1−

(
1− p3,3

)210

.
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Final Result. We finally obtain the desired result using the law (or formula) of total
probability Prob(A) =

∑
i Prob(A |Bi) · Prob(Bi) which holds for each event A such that⋃

iBi is the sample space, i.e. the set of all the possible outcomes.
Given a set T , the probability that the two ciphertexts of at least one couple of texts

satisfy the required property is given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

1024 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

1024 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)1024]
+p3 ·

[
1−

(
1− p3,3

)1024]
=

=2−20 − 4095 · 2−53 − 529 370 445 · 2−84︸ ︷︷ ︸
≈ 3.945· 2−57

+ 374 996 306 937 593 · 2−117︸ ︷︷ ︸
≈ 2.665 · 2−70

+...

for a certain i ∈ {1, ..., 210}. Note that Prob(E5
i ∧ E5

j ) = Prob(E5
i ) × Prob(E5

j ) since the
events E5

i and E5
j are independent for i 6= j.

Proof - Random Permutation

For a random permutation, what is the probability that the two ciphertexts (generated by
a random permutation) of at least one couple satisfy the required property? By simple
computation, such event occurs with (approximately) probability

prand =1−
(
1− p3

)1024= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]1024=

=2−20 − 4095 · 2−53 + 2 794 155 · 2−84︸ ︷︷ ︸
≈ 2.665 · 2−64

+...

C.1.3 Data and Computational Costs

Data Cost. In order to compute the data cost, we use the same argumentation of Sect.
7.2.1. Since |pAES − prand| ' 2−55.013 and pAES ' prand ' 2−20, it follows that n must
satisfy n > 292.246 for a probability of success of approximately 95%. Since a single
coset of CI for |I| = 1 contains approximately 246.983 different sets T , it follows that
292.246 · 2−46.983 ' 245.263 initial cosets of CI for |I| = 1 are sufficient, for a total data cost
of 232 · 245.263 ' 277.263 chosen plaintexts.

Computational Cost. About the computational cost, the idea is to exploit Algorithm 3
as defined in Sect. 7.2.2 and adapted to the sets T (observe that p⊕ q ∈ T iff p⊕ q ∈ DI
for |I| = 3). Working on a single coset of CI for |I| = 1, the cost to count the number of
sets T for which two ciphertexts of at least one pair of plaintexts belong to the same coset
ofMJ is

4·
[
232 · log(232) (re-ordering process) +

(
232 + 231) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+246.983 (final “for”) ' 246.99

table look-ups, where
(232

2
)
· 2−32 ' 231 is the average number of couples such that the

two ciphertexts belong to the same coset of MJ for a fixed J with |J | = 3. Since the
attacker must repeat this algorithm for each initial coset, the total computational cost is of
246.99 · 245.263 = 292.253 table look-ups, or equivalently 285.61 five-round encryptions.
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C.1.4 Practical Verification on small scale AES

In order to have a practical verification of the proposed distinguisher (and of the following
key-recovery attack), we have practically verified the probabilities pAES and prand given
above. In particular, we verified them using a small scale AES, proposed in [CMR05]. We
emphasize that our verification on the small scale variant of AES is strong evidence for it
to hold for the real AES, since the strategy used to theoretically compute such probabilities
is independent of the fact that each word of AES is of 4 or 8 bits.

Thus, in order to compare the practical values with the theoretical ones, we compute
the theoretical probabilities pAES and prand for the small scale case. First of all, for small
scale AES the probabilities p3 and p3,3 are respectively equal to p3 = 2−14− 3 · 2−31 + 2−46

and p3,3 = 2−10 − 3 · 2−23 + 2−34.

Practical Results. W.l.o.g. we used cosets of C0 to practically test the two probabilities.
Using the previous procedure and formula, (approximately) the probabilities that a set T
satisfies the required property for 5-round AES and the random case are respectively

pAES = 2−8 − 255 · 2−25 − 102 605 · 2−40 + ...

prand = 2−8 − 255 · 2−25 + 10 795 · 2−40 + ...

As a result, using formula (15) for prand ' pAES ' 2−8 and |prand − pAES | ' 2−23.21,
it follows that n ≥ 240.64 different sets T are sufficient to set up the distinguisher with
probability higher than 95%.

Since we work with small scale AES, a single coset of C0 contains 4 · 24 · 211 · (24− 1)3 '
229.71 couples for which the two plaintexts have only one different generating variable (also
tested by computer test). Thus, it is possible to construct 211 ·(24−1)3 = 6 912 000 ' 223.721

sets T such that all the generating variables of the couples of each of these sets are different.
As a result, it follows that 240.64 · 2−23.721 = 216.92 different initial cosets of C0 must be
used, for a cost of 238.566 chosen plaintexts.

For our tests, we used 217 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is not
fixed). For each coset we exploited Algorithm 3 to count the number of sets T that satisfy
the required property (i.e. the number of sets for which two ciphertexts of at least one
couple are in the same coset ofMJ for certain J with |J | = 3). As a result, for each initial
coset C0 the (average) theoretical numbers of sets T that satisfy the required property for
the random and the AES cases - given by nTX = 6 912 000 · pX - and the (average) practical
ones found in our experiments - denoted by nPX - are given are:

nTrand ' 26 497.54 nTAES ' 26 496.83
nPrand ' 26 497.57 nPAES ' 26 496.91

Note that these two numbers are close to the theoretical ones, and that the average number
of sets for AES case is lower than for the random one, as predicted.

C.2 Second Variant of the 5-round Distinguisher of Sect. 7
C.2.1 Details of the Distinguisher

Consider 264 chosen plaintexts with two active column (8 active bytes), e.g. a coset
of C0,1, and the corresponding ciphertexts after 5-round. For each (x,y) ∈ F6

28 × F6
28

where x = (x0, x1, x2, ..., x5) and y = (y0, y1, y2, ..., y5) such that (x0, x1) 6= (y0, y1),
(x2, x3) 6= (y2, y3) and (x4, x5) 6= (y4, y5), let the set T 3

(x,y) of pairs of plaintexts be defined
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as follows

T 3
(x,y) =

{
(p, q) ∈ F4×4

28 × F4×4
28 s.t. for each A,B ∈ F28 :

p ≡
(
(x0, x2, x3, A), (B, x1, x3, x5)

)
, q ≡

(
(y0, y2, y3, A), (B, y1, y3, y5)

)
or

p ≡
(
(y0, x2, x3, A), (B, y1, x3, x5)

)
, q ≡

(
(x0, y2, y3, A), (B, x1, y3, y5) or

p ≡
(
(x0, y2, x3, A), (B, x1, y3, x5)

)
, q ≡

(
(y0, x2, y3, A), (B, y1, x3, y5) or

p ≡
(
(x0, x2, y3, A), (B, x1, x3, y5)

)
, q ≡

(
(y0, y2, x3, A), (B, y1, y3, x5)

}
.

In other words, the pair of plaintexts p, q ∈ C0 ⊕ a can be of the form

p ≡ a⊕


x0 B 0 0
x2 x1 0 0
x4 x3 0 0
A x5 0 0

 q ≡ a⊕


y0 B 0 0
y2 y1 0 0
y4 y3 0 0
A y5 0 0

 ,
or

p ≡ a⊕


y0 B 0 0
x2 y1 0 0
x4 x3 0 0
A x5 0 0

 q ≡ a⊕


x0 B 0 0
y2 x1 0 0
y4 y3 0 0
A y5 0 0

 ,
and so on. Similar definitions can be given for the set T i(x,y) for each i ∈ {0, 1, 2, 3},
where the constant bytes is in the i-th diagonal. Given 264 plaintexts as before, it is
possible to construct 1

218 · 4 · 263 · (216 − 1)3 ' 295 different sets, where each set contains
exactly 218 different pairs of plaintexts (we emphasize that these pairs of plaintexts are not
independent, in the sense that a particular relationships among the generating variable
holds).

Consider n� 1 random sets, and count the number of sets for which two ciphertexts
(generated by 5-round AES or by a random permutation) of at least one couple of texts
belong to the same coset of a subspace MJ for J ⊆ {0, 1, 2, 3} and |J | = 3. As we are
going to prove, this number is on average lower for AES than for a random permutation,
independently of the secret key, of the details of the S-Box and of the MixColumns matrix.
In more details, the numbers of sets for 5-round AES nAES and for a random permutation
nrand are well approximated by nAES ' n · pAES and nrand ' n · prand where

pAES ' 2−12 − 1048575 · 2−45 + 46 884 625 075 · 2−76︸ ︷︷ ︸
≈ 2.73 · 2−42

+...

prand ' 2−12 − 1048575 · 2−45 + 183 251 413 675 · 2−76︸ ︷︷ ︸
≈ 10.667 · 2−42

+...

Even if the difference between the two probabilities is small, it is possible to distinguish
the two cases with probability higher than 95% if n ≥ 268.243.

In the following, we prove this result (which has been practically tested on a small
scale AES) and we give all the details about the data and the computational cost.

C.2.2 Proof

Proof - 5-round AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 5-round AES. Our 5-round distinguisher is based on
Theorem 5. Given plaintexts in the same coset of C0 and for a fixed J ⊆ {0, 1, 2, 3}, each
set T(x,y) just defined has the following property after 4 rounds:

56



1. for each couple, the two texts after 4-round belong to the same coset ofMI ;

2. for each couple, the two texts after 4-round don’t belong to the same coset ofMI .

In other words, for a given set T(x,y), it is not possible that the two texts of only some -
not all - couples belong to the same coset ofMJ after 4-round, while this can happen for
a random permutation.

What is the probability of the two previous events for an AES permutation? As showed
in Sect. 7.1.2, given a set T(x,y), the probability that the two texts of each couple belong
to the same coset ofMJ after 4-round is approximately p3 ' 2−30.

Using these initial considerations as starting point, we analyze in details our proposed
5-round distinguisher.

Proof - AES. Using the same computation as before, given a set T , the probability
that two ciphertexts of at least one couple satisfy the required property is given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

218 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

218 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)218]
+p3 ·

[
1−

(
1− p3,3

)218]
=

=2−12 − 1048575 · 2−45 + 46 884 625 075 · 2−76︸ ︷︷ ︸
≈ 2.73 · 2−42

+...

(18)

for a certain i ∈ {1, ..., 218}. Note that Prob(E5
i ∧ E5

j ) = Prob(E5
i ) × Prob(E5

j ) since the
events E5

i and E5
j are independent for i 6= j.

Proof - Random Permutation

For a random permutation, what is the probability that two ciphertexts (generated by
a random permutation) of at least one couple satisfy the required property? By simple
computation, such event occurs with (approximately) probability

prand =1−
(
1− p3

)218

= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]218

=
=2−12 − 1048575 · 2−45 + 183 251 413 675 · 2−76︸ ︷︷ ︸

≈ 10.667 · 2−42

+... (19)

C.2.3 Data and Computational Costs

Data Cost. In order to compute the data cost, we use the same argumentation of Sect.
7.2.1. Since |pAES − prand| ' 2−39.011 and pAES ' prand ' 2−12, it follows that n must
satisfy n > 268.243 for a probability of success of approximately 95%. Since a single coset
of CI for |I| = 2 contains approximately 295 different sets T , less than a single coset is
sufficient to implement the distinguisher. In particular, a set of the form

{
a⊕


x0 y1 0 0
z0 x1 0 0
w0 z1 0 0
y0 w1 0 0

 ∣∣∣∣∀x0, x1, y0, y1, z0, z1 ∈ F2
28 , ∀w0, w1 ∈ {0x00, 0x01, 0x02, 0x03}

}

for a certain constant a is sufficient to set up the distinguisher (note that this is a subset
of the coset C0,1 ⊕ a). Indeed, for such a set it is possible to construct approximately

1
218 · 3 · (248 · 42) · [(216 − 1)2 · (16 − 1)] ' 271.5 different sets T (remember that we are
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working with variables in F2
28), for a total of (28)6 · 42 ' 252 chosen plaintexts.

Computational Cost. About the computational cost, the idea is to exploit Algorithm
3 opportunely modified as proposed in App. E and adapted to the sets T in order to
implement the distinguisher, where the plaintexts and the ciphertexts are re-order w.r.t.
the partial order v defined in Def. 11. Using 252 chosen plaintexts in the same coset of CI
for |I| = 2, the cost to count the number of sets T for which two ciphertexts of at least
one pair of plaintexts belong to the same coset ofMJ is

42·
[
252 · log(252) (re-ordering process) +

(
252 + 257) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+271.5 (final “for”) ' 271.5

table look-ups, where
(252

2
)
· 2−32 · (4 · 2−16) ' 257 is the average number of couples such

that the two ciphertexts belong to the same coset ofMJ for a fixed J with |J | = 3 and the
two plaintexts are in the same coset of C0,1 ∩ DI for a certain I with |I| = 3 (by definition
of T ). Equivalently, the total cost is well approximated by 264.86 five-round encryptions.

About the computational cost, the idea is to exploit the re-ordering Algorithm 3 as
defined in Sect. 7.2.2 and adapted to the sets T

C.3 Key-Recovery Attack on 6-round AES of Sect. 8 - Chosen Plain-
texts in Cosets of DI with |I| = 2

Referring to the key-recovery attack on 6-round AES of Sect. 8, here we explain why it is
not possible to use cosets of DI with |I| = 2 for a key-recovery attack, focusing on the set
T just defined. As we have already said in Sect. 8, the problem regards the computational
cost (which is higher than the one of a brute force attack).

In this case and using the same strategy proposed in Sect. 8, since 264 different
combinations of 8 bytes of the key (i.e. 2 diagonals) must be tested, one has to use the
5-round distinguisher with a probability higher (0.95)2−64 . This requires approximately
2118.9 sets T for each guessed combination of the key. Since each coset of DI with |I| = 2
contains approximately 295 sets T , one needs approximately 2118.9 · 2−95 = 224.1 different
cosets of DI with |I| = 2, for a total cost of 224.1 · 264 = 288.1 chosen plaintexts.

On the other hand, using the algorithm described in Sect. 7.2.2 opportunely modified
as proposed in App. E (as just seen for the distinguisher), the cost to count the number of
sets T that satisfy the required property is

42·
[
264 · log(264) (re-ordering process) +

(
264 + 281) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+295 (final “for”) ' 295

table look-ups for each guessed key, where
(264

2
)
· 2−32 · (4 · 2−16) ' 281 is the average

number of couples such that the two ciphertexts belong to the same coset ofMJ for a fixed
J with |J | = 3 and the two plaintexts are in the same coset of C0,1 ∩ DI for a certain I
with |I| = 3 (by definition of T ). Since one has to repeat this process for 224.1 initial cosets
and since one has to partially encrypt each one of them, the total cost for each guessed key
is of 2119.1 table look-ups and 291.1 S-Box look-ups, that is 2112.2 six-round encryptions.
The total cost to find two diagonals of the key is 264 · 2112.2 = 2176.2 six-round encryptions.
If the last two diagonals are found by brute force, the total cost is well approximated by
264 + 2176.2 ' 2176.2 six-round encryptions, which is much higher than the brute force
attack.
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D Other Variants of the 5-round AES Secret-Key Distin-
guisher of Sect. 7

In this section, we propose a variant of the 5-round secret-key distinguisher proposed in
Sect. 7. Such a variant is competitive as the other distinguishers just presented, and
exploited the result of [GRR17a] recalled in Lemma 2.

D.1 Variant of the 5-round Distinguisher of Sect. 7
D.1.1 Details of the Used Property

Consider 232 chosen plaintexts with one active column (4 active bytes), e.g. a coset of C0,
and the corresponding ciphertexts after 5-round. For each (x0, x1, x2, x3), (y0, y1, y2, y3) ∈
F8

28 such that xi 6= yi for each i = 0, 1, 2, 3, let the set T (y0,y1,y2,y3)
(x0,x1,x2,x4) of pairs of plaintexts

be defined as follows

T (y0,y1,y2,y3)
(x0,x1,x2,x4) =

{
(p, q) ∈ F4×4

28 × F4×4
28

∣∣∣∣ p ≡ (x0, x1, x2, x3), q ≡ (y0, y1, y2, y3)

or p ≡ (y0, x1, x2, x3),≡ (x0, y1, y2, y3) or p ≡ (x0, y1, x2, x3),≡ (y0, x1, y2, y3)

or... or p ≡ (y0, x1, x2, y3), q ≡ (x0, y1, y2, x3)
}
.

In other words, the pair of plaintexts p, q ∈ C0 ⊕ a can be of the form

p ≡ a⊕


x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 q ≡ a⊕


y0 0 0 0
y1 0 0 0
y2 0 0 0
y3 0 0 0

 ,
or

p ≡ a⊕


y0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 q ≡ a⊕


x0 0 0 0
y1 0 0 0
y2 0 0 0
y3 0 0 0


and so on. Given 232 plaintexts as before, it is possible to construct 1

8 ·2
31 ·(28−1)4 ' 259.978

different sets (using formula (10) to count the number of pairs of texts with no equal
generating variables), where each set contains exactly 8 different pairs of plaintexts (we
emphasize that these pairs of plaintexts are not independent, in the sense that a particular
relationships among the generating variable holds).

Consider n� 1 random sets, and count the number of sets for which two ciphertexts
(generated by 5-round AES or by a random permutation) of at least one couple belong to
the same coset of a subspaceMJ for J ⊆ {0, 1, 2, 3} and |J | = 3. As we are going to prove,
this number is on average lower for AES than for a random permutation, independently of
the secret key, of the details of the S-Box and of the MixColumns matrix. In more details,
the numbers of sets for 5-round AES nAES and for a random permutation nrand are well
approximated by nAES ' n · pAES and nrand ' n · prand where

pAES ' 2−27 − 31 · 2−60 − 3 641 245 · 2−91︸ ︷︷ ︸
≈ 3.475 · 2−71

+ 20 628 528 753 · 2−124︸ ︷︷ ︸
≈ 2.4 · 2−91

+...

prand ' 2−27 − 31 · 2−60 + 155 · 2−91 + ...

Even if the difference between the two probabilities is small, it is possible to distinguish
the two cases with probability higher than 95% if n ≥ 2113.84.

In the following, we prove this result (which has been practically tested on a small
scale AES) and we give all the details about the data and the computational cost.
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D.1.2 Proof

As first thing, we prove the results just given. Since the proof is very similar to the ones
just given, we limit to give the final results.

Proof - 5-round AES. Using the same computation as before, given a set T , the
probability that two ciphertexts of at least one couple satisfy the required property is
given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

8 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

8 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)8]
+p3 ·

[
1−

(
1− p3,3

)8]
=

=2−27 − 31 · 2−60 − 3 641 245 · 2−91︸ ︷︷ ︸
≈ 3.475 · 2−71

+ 20 628 528 753 · 2−124︸ ︷︷ ︸
≈ 2.4 · 2−91

+...

for a certain i ∈ {1, ..., 8}.

Proof - Random Permutation. For a random permutation, what is the probability
that two ciphertexts (generated by a random permutation) of at least one couple satisfy
the required property? By simple computation, such event occurs with (approximately)
probability

prand =1−
(
1− p8

3
)
= 1−

[
1−

(
2−30 − 3 · 2−63 + 2−94)]8=

=2−27 − 31 · 2−60 + 155 · 2−91 + ...

D.1.3 Data and Computational Costs

Data Cost. In order to compute the data cost, we use the same argumentation of Sect.
7.2.1. Note that |pAES − prand| ' 2−69.204 and pAES ' prand ' 2−27. Using (15), it
follows that n must satisfy n > 2113.84 for a prob. of success higher than 95%. Since a
single coset of CI for |I| = 1 contains approximately 231 · (28 − 1)4 · 2−3 ' 259.978 different
sets T of eight couples, one needs approximately 2113.84 · 2−60 ' 253.84 different initial
cosets of CI , that is approximately 285.84 chosen plaintexts.

Equivalently, it is possible also possible to use cosets of CI for |I| = 2. In this case, a
single coset of CI for |I| = 2 contains approximately 263 · (216 − 1)4 · 2−3 ' 2124 different
sets T of eight couples. Thus, using a single coset of CI for |I| = 2, it is possible to
construct approximately 2124 different sets S of eight couples, which is more than one
needs to set up the distinguisher. It follows that 259 chosen plaintexts in the same coset of
CI with |I| = 2 (e.g. equivalent to the case of set T studied in details in Sect. C.2) are
sufficient to implement the distinguisher.

Computational Cost. About the computational cost, the idea is to exploit Algorithm 3
as defined in Sect. 7.2.2 and adapted to the sets T (observe that p⊕ q ∈ T iff p⊕ q /∈ DI
for each I s.t. |I| ≤ 3). Working with coset of CI for |I| = 1, the cost to count the number
of set T with the required property is

4·
[
232 · log(232) (re-ordering process) +

(
232 + 231) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+259.978 (final “for”) ' 259.98
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table look-ups. Since the attacker must repeat this algorithm for each initial coset, the
total computational cost is of 253.84 · 259.98 = 2113.82 table look-ups, or equivalently 2107.18

five-round encryptions.
Instead, using 259 chosen plaintexts in the same coset of CI for |I| = 2, the cost to

count the number of sets T for which two ciphertexts of at least one pair of plaintexts
belong to the same coset ofMJ is

4·
[
259 · log(259) (re-ordering process) +

(
259 + 285) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+2113.84 (final “for”) ' 2113.84

table look-ups (where the average number of collisions is
(259

2
)
· 2−32 = 285), or equivalently

2107.2 five-round encryptions.

D.2 Key-Recovery Attack on 6-round AES
For completeness, we show that also this distinguisher can be used to set up a key-recovery
attack on 6-round, as the one proposed in Sect. 8.

For this reason, we give the probability pWrongKey
AES that for a set T two texts of at least

one couple belong to the same coset ofMK for a certain |K| = 3 after six rounds, - when
the guessed key is wrong. Such probability is equal to

pWrongKey
AES =

8∑
n=0

(
8
n

)
· pn3 · (1− p3)8−n ·

[
1−

(
1− p3,3

)n
·
(

1− p3 · (1− p3,3)
1− p3

)8−n]
,

which is well approximated by

pWrongKey
AES = 2−27 − 31 · 2−60 − 3 989 · 2−91 + ...

Note that this probability is similar but not equal to the one of the random case (which is
prand = 2−27−31 ·2−60 +155 ·2−91 + ...), while we remember that the probability for “AES
with the right key” is pAES = 2−27 − 31 · 2−60 − 3 641 245 · 2−91 + ..., where the difference
between these two probabilities is approximately |pWrongKey

AES − pAES | ' 2−69.2053.

D.3 Practical Verification on small scale AES
In order to have a practical verification of the proposed distinguisher (and of the following
key-recovery attack), we have practically verified the probabilities pAES and prand given
above. In particular, we verified them using a small scale AES, proposed in [CMR05]. We
emphasize that our verification on the small scale variant of AES is strong evidence for it
to hold for the real AES, since the strategy used to theoretically compute such probabilities
is independent of the fact that each word of AES is of 4 or 8 bits.

Thus, in order to compare the practical values with the theoretical ones, we compute
the theoretical probabilities pAES and prand for the small scale case. First of all, for small
scale AES the probabilities p3 and p3,3 are respectively equal to p3 = 2−14− 3 · 2−31 + 2−46

and p3,3 = 2−10 − 3 · 2−23 + 2−34.

Practical Results. W.l.o.g. we used cosets of C0 to practically test the two probabil-
ities. Using the previous procedure and formula, the (approximately) probabilities that a
set T satisfies the required property for 5-round AES and the random case are respectively

pAES = 2−11 − 31 · 2−28 − 12 445 · 2−43︸ ︷︷ ︸
≈ 3.05 · 2−31

+ 4 848 753 · 2−60︸ ︷︷ ︸
≈ 37 · 2−43

+...

prand = 2−11 − 31 · 2−28 + 155 · 2−43 + ...
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As a result, using formula (15) for prand ' pAES ' 2−11 and |prand − pAES | ' 2−29.379, it
follows that n ≥ 250.194 different sets SC0⊕a are sufficient to set up the distinguisher with
probability higher than 95%.

Since we work with small scale AES, a single coset of C0 contains 216 (plaintexts,
ciphertexts) pairs, or approximately 215 · (216 − 1) ' 231 different couples. Since the
number of couples with different generating variables is given by 216 · (24 − 1)4 (also tested
by computer test), it is possible to construct 8−1 ·216 · (24−1)4 = 207 360 000 ' 227.628 sets
T such that all the generating variables of the couples of each of these sets are different.
As a result, it follows that 250.194 · 2−27.628 = 222.566 different initial cosets of C0 must be
used, for a cost of 238.566 chosen plaintexts.

For our tests, we used 223 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is not
fixed). For each coset we exploited Algorithm 3 to count the number of sets T that satisfy
the required property (i.e. the number of sets for which two ciphertexts of at least one
couple are in the same coset ofMJ for certain J with |J | = 3). As a result, for each initial
coset C0 the (average) theoretical numbers of sets T that satisfy the required property
for the random and the AES cases - given by nTX = 207 360 000 · pX - and the (average)
practical ones found in our experiments - denoted by nPX - are given are:

nTrand ' 101 226.057 nTAES ' 101 225.76
nPrand ' 101 226.105 nPAES ' 101 225.68

Note that these two numbers are close to the theoretical ones, and that the average number
of sets for AES case is lower than for the random one, as predicted.

E Different Implementation of the 5-round Distinguisher
proposed in Sect. 7.2.2

As we have already mention in Sect. 7.2.2, in some cases it is possible to improve the
implementation of the distinguisher (and so the total computational cost) by considering a
partial order v that involves both the plaintexts and the ciphertexts.

Let I, J ⊆ {0, 1, 2, 3} be fixed in advance, and assume for simplicity |J | = 3 (analogous
for the other cases). The idea is to set up a partial order v that involves both the plaintexts
and the ciphertexts in order to achieve the following order: if ciphertexts belong to the
same coset ofMJ and the corresponding plaintexts belong to the same coset of C0 ∩ DI
for a certain |I| (which is a necessary condition to belong to a set S/Z/T as defined
respectively in Sect. 7/Sect. 9.1/App. C.2), then they must be consecutive. The following
partial order v - for simplicity, we define v over the space IDJ (equivalent toMJ but
without the final MixColumns) - satisfies these requests.

Definition 11. Consider a subspace IDJ for J ⊆ {0, 1, 2, 3} for |J | = 3 s.t. l =
{0, 1, 2, 3} \ J , and a subspace DI for |I| = 2. Given two pairs of plaintexts/ciphertexts
(p1, c1) and (p2, c2) s.t. p1 ⊕ p2 ∈ Ci for a certain i ∈ {0, 1, 2, 3}, we say that

(p1, c1) v (p2, c2)

if the following conditions hold:

• if c1 ⊕ c2 /∈ IDJ , then there exists j ∈ {0, 1, 2, 3} s.t. c1
h,l−h = c2

h,l−h for all h < j

and c1
j,l−j < c2

j,l−j ;

• if c1 ⊕ c2 ∈ IDJ (i.e. c1
i,l−i = c2

i,l−i for each i ∈ {0, 1, 2, 3}) and p1 ⊕ p2 /∈ DI
(which implies p1 and p2 don’t belong to the same set S/Z/T ), then there exists
j ∈ {0, 1, 2, 3} s.t. p1

h,i = p2
h,i for all h < j and p1

j,i < p2
j,i (remember that p1⊕p2 ∈ Ci);
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Data: Two pairs of texts (p1, c1) 6= (p2, c2) where p1 ⊕ p2 ∈ Ci
Result: (p1, c1) v (p2, c2) or (p2, c2) v (p1, c1) w.r.t. DI (for the plaintexts - I

fixed) and ID{0,1,2,3}\l (for the ciphertexts - l fixed)
if c1 ⊕ c2 /∈ IDJ ≡ ID{0,1,2,3}\l then

for each j from 0 to 3 do
if c1

j,l−j < c2
j,l−j then

return (p1, c1) v (p2, c2)
end
if c2

j,l−j < c1
j,l−j then

return (p2, c2) v (p1, c1)
end

end
end
if p1 ⊕ p2 /∈ DI // remember that p1 ⊕ p2 ∈ Ci then

for each j /∈ I from 0 to 3 (I ⊆ {0, 1, 2, 3}) do
if p1

j,i < p2
j,i then

return (p1, c1) v (p2, c2)
end
if p2

j,i < p1
j,i then

return (p2, c2) v (p1, c1)
end

end
end
if c1 ≤ c2 w.r.t. ≤ defined in Def. 6 then

return (p1, c1) v (p2, c2)
end
else

return (p2, c2) v (p1, c1)
end

Algorithm 5:Given two pairs of texts (p1, c1) 6= (p2, c2), this algorithm returns (p1, c1) v
(p2, c2) or (p2, c2) v (p1, c1), where v is defined in Def. 11.

• if c1 ⊕ c2 ∈ IDI and p1 ⊕ p2 ∈ DI , then c1 ≤ c2 with respect to the partial order ≤
defined in Def. 6.

Pseudo-code provided in Algorithm 5 implements this partial order v.

Algorithm 6 is the modified version of Algorithm 3 proposed in Sect. 7.2.2, where we
exploit the partial order v just defined. To understand the main difference, consider for
simplicity the cases |J | = 3 and |I| = 2. For each J, I, the idea is to re-order (plaintext,
ciphertext) pairs with respect the partial order v just defined. As a result, consider a set
of ordered texts for which ciphertexts ci, ci+1, ..., cj s.t. cl ⊕ ck ∈MJ for each i ≤ k, l ≤ j.
Given the corresponding plaintexts, every pairs of them belong to the same coset of DI ,
and so to a particular set S. As a result, given a set of ordered ciphertexts ci, ci+1, ..., cj

as before, it is not necessary to check that the corresponding pairs of plaintexts belongs to
the same coset of DI or not.

On the other hand, we emphasize that this modified version doesn’t improve the total
cost of the distinguisher proposed in Sect. 7, but it is useful e.g. for the distinguishers
proposed in Sect. 9.1 and in App. C.2.
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Data: 232 plaintexts in 1 coset of C0 (e.g. C0 ⊕ a) and corresponding ciphertexts
after 5 rounds

Result: Number of sets S such that two ciphertexts of at least one couple of
plaintexts belong to the same coset ofMJ for a certain J with |J | = 3

Let A[0, ..., N − 1] be an array initialized to zero, where N = 3 · 215 · (28 − 1)2// A[i]
refers to the i-th set S
for each I ⊆ {0, 1, 2, 3} with |I| = 2 do

for each j from 0 to 3 let J = {0, 1, 2, 3} \ j (|J | = 3) do
let (pi, ci) for i = 0, ..., 232 − 1 be the (plaintexts, ciphertexts) in C0 ⊕ a;
re-order this set of elements w.r.t. the partial order v defined in Def. 11;// v
depends on I and on J
i← 0;
while i < 232 − 1 do

j ← i;
while cj ⊕ cj+1 ∈MJ and pj ⊕ pj+1 ∈ DI for a certain |I| = 2 (pj and
pj+1 have two equal generating variables) // necessary condition s.t.
pj ⊕ pj+1 ∈ Sx,y for x, y ∈ {0, 1, 2, 3} with x 6= y do
j ← j + 1;

end
for each k from i to j do

for each l from k + 1 to j do
A[ϕ(pk, pl)]← 1; // ϕ(pk, pl) defined in (16) returns the index of the
set Sx,y s.t. pk ⊕ pl ∈ Sx,y

end
end

end
i← j + 1;

end
end
n←

∑
iA[i];

return n.
Algorithm 6: This pseudo-code is a modified version of the one proposed in Algorithm
3 and exploits the partial order v defined in Def. 11. Given (plaintexts, ciphertexts)
pairs in the same coset of C0, this algorithm counts the number of sets S for which two
ciphertext of at least one couple belong in the same coset ofMJ for |J | = 3.

F Integral Attack on 5-round AES
Here we recall a strategy that allows to improve the computational cost of an integral
attack on 5-round AES. Such a strategy has been proposed by an anonymous reviewer35.

Integral Attack [DR02] on 5-round AES. It is well known that given 232 chosen
plaintexts with one active diagonal (i.e. a coset of a diagonal space DI ⊕ a), then the
XOR-sum of the corresponding texts after four encryption is equal 0 independently of the
value of the secret key, that is ⊕

pi∈DI⊕a

R4(pi) = 0

for each I ∈ {0, 1, 2, 3}.
Such a property can be used to set up an integral attack on 5-round AES, by guessing

- byte per byte - the final key and checking that the XOR-sum is equal to zero one round
35A similar strategy has also been exploited e.g. in [GR17] in order to set up a “known-key” distinguisher

for 12-round AES.
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Data: 232 texts pi ∈ DI ⊕ a for i = 0, ..., 232 − 1 and for I ∈ {0, 1, 2, 3}, and the
corresponding ciphertexts ci ≡ R5(pi)

Result: One byte of k - e.g. k0,0 - s.t.
⊕

i S-Box−1(ci0,0 ⊕ k0,0) = 0
Let A[0, ..., 28 − 1] an array initialized to zero;
for i from 0 to 232 − 1 do

A[ci0,0]← (A[ci0,0] + 1) mod 2; // A[x] denotes the value stored in the x-th address of
the array A

end
for k from 0x00 to 0xff do

x← 0;
for i from 0 to 255 do

x← x⊕A[i]· S-Box−1(i⊕ k); // A[i] can only be 0 or 1
end
if x = 0 then

identify k as candidate for k0,0;
end

end
return candidates for k0,0.

Algorithm 7: Integral attack on 5-round AES: working on each byte of the key indepen-
dently of the others, filter wrong key candidates using zero-sum property. Other bytes of
the key can be found in a similar way.

before. In particular, assume the final MixColumns is omitted, and let kj,l be the guessed
byte in row j and column l of the final subkey. Due to the previous property, such guessed
byte of the key is certainly wrong if⊕

pi∈DI⊕a

S-Box−1(cij,l ⊕ kj,l) 6= 0 (20)

where ci ≡ R5(pi) and I ∈ {0, 1, 2, 3}. By simple computation, the attack requires 232

chosen plaintexts and 16 · 28 · 232 = 244 S-Box operations, that is approximately 237.36

5-round encryptions (assuming 20 S-Box ≡ 1-round encryption).
Note that the probability that a wrong byte key satisfies the zero-sum property is 2−8.

As a result, if a wrong key survives the test, then it can simply filtered using a brute
force attack. Finally, if the final MixColumns is not omitted, one can simply repeat the
previous attack by swapping the final MixColumns operation and the final subkey (we
refer to [DR02] for more details) - remember that the MixColumns operation is linear.

Improved Integral Attack on 5-round AES. Here a way to improve the previous
attack is proposed. The crucial point is the following. Working at byte level, note that
Eq. (20) is the sum of 232 bytes. Since each byte can take “only” 28 different values, it
turns out that many bytes of the form S-Box−1(cij,l ⊕ kj,l) in (20) are equal. Thus, the
total computational cost can be reduced using a precomputation process, as showed in the
following.

The pseudo-code of the attack is given in Algorithm 7. Given 16 tables (one for each
byte of the state) of size 28 bits, for each ciphertext the idea is to record in each hash
table the value of the corresponding byte. The crucial point is that in order to compute
the XOR-sum (20), we are interested only in the parity of the number of times each value
appears. As a result, given a guessed byte of the key, the cost to check if the XOR-sum (20)
is zero or not is of 28 S-Box operations instead of 232. It follows that the overall cost is
dominated by the cost to prepare the array A[·]. It turns out that the attack requires 232

chosen plaintexts, 232 memory look-ups, that is approximately 225.4 5-round encryptions
(assuming 20 memory look-ups ≡ 1-round encryption) and 16 · 28 = 212 bits of memory.
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