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Abstract. At Eurocrypt 2017 the first secret-key distinguisher for 5-round AES
has been presented. Although it allows to distinguish a random permutation from
an AES-like one, it seems (rather) hard to exploit such a distinguisher in order to
implement a key-recovery attack different than brute-force like.
In this paper, we propose new secret-key distinguishers for 4 and 5 rounds of AES
that exploit properties which are independent of the secret key and of the details
of the S-Box. While the 4-round distinguisher exploits in a different way the same
property presented at Eurocrypt 2017, the new proposed 5-round ones are obtained
by combining our new 4-round distinguisher with a modified version of a truncated
differential distinguisher. As a result, while a “classical” truncated differential
distinguisher exploits the probability that a couple of texts satisfies or not a given
differential trail independently of the others couples, our distinguishers work with
sets of N � 1 (related) couples of texts. In particular, our new 5-round AES
distinguishers exploit the fact that such sets of texts satisfy some properties with a
different probability than a random permutation.
Even if such 5-round distinguishers have higher complexity than the one present in the
literature, one of them can be used as starting point to set up the first key-recovery
attack on 6-round AES that exploits directly a 5-round secret-key distinguisher. The
goal of this paper is indeed to present and explore new approaches, showing that even
a distinguisher like the one presented at Eurocrypt - believed to be hard to exploit -
can be used to set up a key-recovery attack.
Keywords: AES · Secret-Key Distinguisher · Key-Recovery Attack · Truncated
Differential · Subspace Trail Cryptanalysis
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Figure 1: New Differential Secret-Key Distinguishers up to 5 rounds of AES. Consider
N (plaintext, ciphertext) pairs (a). In a “classical" differential attack (b), one works
independently on each couple of two (plaintext, ciphertext) pairs and exploits the probability
that it satisfies a certain differential trail. In our attack (c), one divides the couples into
non-random sets, and exploits particular relationships (based on differential trails) that
hold among the couples that belong to the same set in order to set up a distinguisher.

1 Introduction
One of the weakest attacks that can be launched against a secret-key cipher is a secret-key
distinguisher. In this attack, there are two oracles: one that simulates the cipher for
which the cryptographic key has been chosen at random and one that simulates a truly
random permutation. The adversary can query both oracles and her task is to decide
which oracle is the cipher and which is the random permutation. The attack is considered
to be successful if the number of queries required to make a correct decision is below a
well defined level.

At Eurocrypt 2017, Grassi, Rechberger and Rønjom [GRR17a] presented the first
5-round secret-key distinguisher for AES which exploits a property which is independent
of the secret key (i.e. it isn’t a key-recovery attack) and of the details of the S-Box.
This distinguisher is based on a new structural property for up to 5 rounds of AES: by
appropriate choices of a number of input pairs it is possible to make sure that the number
of times that the difference of the resulting output pairs lie in a particular subspace is
always a multiple of 8. This distinguisher allows to distinguish an AES permutation from
a random one with a success probability greater than 99% using 232 chosen texts and
a computational cost of 235.6 look-ups. Later, at Asiacrypt 2017, Rønjom, Bardeh and
Helleseth [RBH17] presented new secret-key distinguishers for 3- to 6-round AES, which
are based on the “yoyo-game” and which are independent of the secret key and of the
details of the S-Box. The proposed 5-round yoyo distinguisher requires approximately
225.8 adaptive chosen-ciphertexts, while the 6-round one requires an impractical amount of
2122.8 adaptive chosen plaintexts/ciphertexts.

On the other hand, no key-recovery attack on 6- or more round AES that exploit these
distinguishers have been presented yet.

1.1 New Class of Secret-Key Distinguisher up to 5-round AES
In this paper, we present new secret-key distinguishers for 4- and 5-round AES which
exploit in a different way the property presented at Eurocrypt 2017 [GRR17a]. Such
distinguishers - presented in detail in Sect. 5 and 6 - can be seen as a generalization of
“classical" truncated differential attacks, as introduced by Knudsen in [Knu95].

Differential attacks exploit the fact that couples of plaintexts with certain differences
yield other differences in the corresponding ciphertexts with a non-uniformity probability
distribution. Such a property can be used both to distinguish an AES permutation from
a random one, and to recover the secret key. A variant of this attack/distinguisher is
the truncated differential attack [Knu95], in which the attacker considers only part of
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Table 1: Secret-Key Distinguishers for AES. The complexity is measured in minimum
number of chosen plaintexts CP or/and chosen ciphertexts CC which are needed to
distinguish the AES permutation from a random one with probability higher than 95%.
Time complexity is measured in equivalent encryptions (E), memory accesses (M) or XOR
operations (XOR) - using the common approximation 20 M ≈ 1 Round of Encryption.
The distinguishers of this paper are in bold.

Property Rounds Data (CP/CC) Cost Ref.
Impossible Differential 4 216.25 222.3 M ≈ 216 E [BK01]
Diff. Structural 4 217 223.1 M ≈ 216.75 E Sect. 5

Integral 4 232 232 XOR [DKR97]
Diff. Structural 4 233 240 M ≈ 233.7 E [GRR17a]
Diff. Structural 5 232 235.6 M ≈ 229 E [GRR17a]

Prob. Diff. Struc. 5 252 271.5 M ≈ 264.9 E Sect. 6 - App. C.2
Imp. Diff. Struc. 5 282 297.8 M ≈ 291.2 E Sect. 8.2
“HN” Diff. Struc. 5 289 298.1 M ≈ 291.5 E Sect. 8.1

Prob. Diff. Struc.: Probabilistic Differential Structure, Imp. Diff. Struc.: Impossible
Differential Structure, “HN” Diff. Struc.: “High Number” Differential Structure

the difference between pairs of texts, i.e. a differential attack where only part of the
difference in the ciphertexts can be predicted. We emphasize that in these cases the
attacker focuses on the probability that a single pair of plaintexts with certain difference
yield other difference in the corresponding pair of ciphertexts, working independently on
each pair of texts.

Our new distinguishers proposed in this paper are also differential in nature. However,
instead of working on each couple1 of two (plaintext, ciphertext) pairs independently of the
others as in the previous case, in our case one works on the relations that hold among the
couples. In other words, given a couple of two (plaintext, ciphertext) pairs with a certain
input/output differences, one focuses and studies how such couple influences other couples
of two (plaintext, ciphertext) pairs to satisfy particular input/output differences.

Referring to Fig. 1, given n chosen (plaintext, ciphertext) pairs, in a “classical” attack
one works on each couple independently of the others - case (b). In our distinguish-
ers/attacks, one first divides the couples in (non-random) sets of N ≥ 2 couples - case (c).
These sets are defined such that particular relationships (that involve differential trails
and linear relationships) hold among the plaintexts of the couples that belong to the same
set. The properties of these sets used to set up the distinguishers/attacks are briefly listed
in the following. We remark that all the following properties are independent of the secret
key, of the details of the S-Box and of the MixColumns matrix.

4-round Secret-Key Distinguisher. Our 4-round secret-key distinguisher proposed
in Sect. 5 exploits the following property. Given a set of N ≥ 2 non-independent couples
of two (plaintext, ciphertext) pairs, then two ciphertexts of a certain couple belong to
the same coset2 of a particular subspace M if and only if the two ciphertexts of all
the other couples in that set have the same property. In other words, it is not possible
that two ciphertexts of some couples belong to the same coset of M, and that two ci-
phertexts of other couples don’t have this property. Since this last event can occur for a

1Notation: we use the term “pair" to denote a plaintext and its corresponding ciphertext. A “couple"
denotes a set of two such pairs.

2A pair of texts has a certain difference if and only if the texts belong to the same coset of a particular
subspace X .
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Table 2: Comparison of attacks on round-reduced AES-128. Data complexity is measured
in number of required chosen plaintexts/ciphertexts (CP/CC). Time complexity is measured
in round-reduced AES encryption equivalents (E) - the number in the brackets denotes
the precomputation cost (if not negligible). Memory complexity is measured in texts (16
bytes). RDist denotes the number of rounds of the secret-key distinguisher exploited to set
up the attack. Attacks presented in this paper are in bold.

Attack Rounds Data Computation Memory RDist Ref.
MitM 5 8 264 256 - [Der13, Sec. 7.5.1]

Imp. Polytopic 5 15 270 241 3 [Tie16]
Partial Sum 5 28 238 small 4 [Tun12]
Integral (EE) 5 211 245.7 small 4 [DR02]

Imp. Differential 5 231.5 233 (+ 238) 238 4 [BK01]
Integral (EB) 5 233 237.7 232 4 [DR02]
Diff. Struc. 5 233.6 233.3 234 4 Sect. 5.3 - App. B.2

MitM 6 28 2106.2 2106.2 - [DF13]
Partial Sum 6 232 242 240 4 [Tun12]
Integral 6 235 269.7 232 4 [DR02]

Prob. Diff. Struc. 6 272.8 2105 233 5 Sect. 7
Imp. Differential 6 291.5 2122 289 4 [CKK+02]

MitM: Meet-in-the-Middle, EE: Extension at End, EB: Extension at Beginning

random permutation, it is possible to distinguish 4-round AES from a random permutation.

5-round Secret-Key Distinguishers. Using the previous 4-round distinguisher as
starting point, we present three different properties that can be exploited to distinguish
5-round AES from a random permutation. As before, given a set of N ≥ 2 non-independent
couples of two (plaintext, ciphertext) pairs, it is possible to prove the following:

1. consider the number of sets for which two ciphertexts of at least one couple belong to
the same coset of particular subspaceM; if the sets are properly defined, then this
number of sets is (a little) lower for 5-round AES than for a random permutation
(all details are given in Sect. 6);

2. consider the number of sets with the following property: the number of couples for
which the two ciphertexts belong to the same coset of a particular subspaceM is
higher than a certain number Z ∈ N; if this number Z and the sets are properly
defined, then this number of sets is higher for 5-round AES than for a random
permutation (all details are given in Sect. 8.1);

3. if the sets are properly defined, for 5-round AES there exists at least one set for
which the two ciphertexts of each couple in that set don’t belong to the same coset of
a particular subspaceM; in contrast, for a random permutation, for each set there
exists at least one couple for which the two ciphertexts belong to the same coset of a
particular subspaceM (all details are given in Sect. 8.2).

1.2 New Key-Recovery Attacks on 5- and 6-round AES-128
Even if our 5-round secret-key distinguishers have higher data and computational complex-
ities than the one presented in [GRR17a], the first one allows to set up the first 6 rounds
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key-recovery attack on AES that exploits directly a 5-round secret-key distinguisher (which
exploits a property which is independent of the secret key). In particular, we propose in
Sect. 5.3 an attack on 5-round AES that exploits the distinguisher on 4 rounds proposed
in Sect. 5 (with the lowest computational cost among the attacks currently present in the
literature), while in Sect. 7 we propose the first attack on 6 rounds of AES that exploits
the distinguisher on 5 rounds presented in Sect. 6. The idea of both these attacks is to
choose plaintexts in the same coset of a particular subspace D which is mapped after one
round into a coset of C. Using the distinguishers just introduced and the facts that

• the way in which the couples of two (plaintext, ciphertext) pairs are divided in sets
depends on the (partially) guessed key

• the behavior of a set for a wrongly guessed key is (approximately) the same of the
case of a random permutation

it is possible to deduce the right key.

Generic Considerations. Before we go on, we would like to do some preliminary
considerations about our work, in particular about the fact that our distinguishers and key-
recovery attacks presented in this paper have higher complexities than the ones currently
present in the literature.

Even if all the attacks on AES-like ciphers currently present in the literature are
constantly improved, they seem not be able to break full-AES - with the only exception
of the Biclique attack [BKR11], which can be considered as brute force3. Thus, besides
improving the known attacks present in the literature, we believe that it is important and
crucial to propose new idea and techniques. Even if they are not initially competitive,
they can provide new directions of research and can lead to new competitive attacks. Only
to provide an example, consider the impossible differential attack on AES. When it was
proposed in 2001 by Biham and Keller [BK01], it was an attack on (“only”) 5 rounds of
AES and it was not competitive with respect to others attacks, as the integral one. It took
approximately 6 years before that such attack was extended and set up against 7-round
AES-128 [ZWF07], becoming one of the few attacks (together with Meet-in-the-Middle
[DFJ13]) on such number of rounds.

We believe that similar considerations can be done for the attacks/distinguisher pro-
posed in this paper. In particular, our main contribution is to show for the first time
that even a distinguisher of the type [GRR17a] - believed to be hard to exploit - can be
used to set up key-recovery attacks, and which opens up the way for new and interesting
applications in cryptanalysis.

2 Preliminary - Description of AES
The Advanced Encryption Standard [DR02] is a Substitution-Permutation network that
supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal
state as a 4×4 matrix of bytes as values in the finite field F256, defined using the irreducible
polynomial x8 + x4 + x3 + x+ 1. Depending on the version of AES, Nr round are applied
to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. An
AES round applies four operations to the state matrix:

• SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times in
parallel on each byte of the state (provides non-linearity in the cipher);

• ShiftRows (SR) - cyclic shift of each row (i-th row is shifted by i bytes to the left);
3The biclique attack on 10-round AES-128 requires 288 chosen texts and it has a computational cost of

approximately 2126.2 encryptions.
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• MixColumns (MC) - multiplication of each column by a constant 4× 4 invertible
matrix over the field GF (28) (together with the ShiftRows operation, it provides
diffusion in the cipher);

• AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in
the last round the MixColumns operation is omitted.

Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an intermediate
state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte in the row i and in the
column j. We denote by kr the key of the r-th round, where k0 is the secret key. If only
the key of the final round is used, then we denote it by k to simplify the notation. Finally,
we denote by R one round4 of AES, while we denote r rounds of AES by Rr. As last
thing, in the paper we often use the term “partial collision” (or “collision”) when two texts
belong to the same coset of a given subspace X .

3 Subspace Trails
Let F denote a round function in a iterative block cipher and let V ⊕ a denote a coset
of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is an invariant
coset of the subspace V for the function F . This concept can be generalized to trails of
subspaces [GRR17b], which has been recently introduced at FSE 2017 as generalization of
the invariant subspace cryptanalysis.

Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r + 1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique) ai+1 ∈ V ⊥i+1
such that F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, ..., Vr+1) is subspace trail of length r
for the function F . If all the previous relations hold with equality, the trail is called a
constant-dimensional subspace trail.

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) = Vt+1 ⊕ at+1. We refer to [GRR17b] for more details about the concept of
subspace trails. Our treatment here is however meant to be self-contained.

3.1 Subspace Trails of AES
In this section, we recall the subspace trails of AES presented in [GRR17b], working with
vectors and vector spaces over F4×4

28 . For the following, we denote by {e0,0, ..., e3,3} the
unit vectors of F4×4

28 (e.g. ei,j has a single 1 in row i and column j). We recall that given a
subspace X , the cosets X ⊕a and X ⊕b (where a 6= b) are equivalent (that is X ⊕a ∼ X ⊕b)
if and only if a⊕ b ∈ X .

Definition 2. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =
{

x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
4Sometimes we use the notation Rk instead of R to highlight the round key k.
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Definition 3. The diagonal spaces Di and the inverse-diagonal spaces IDi are defined as
Di = SR−1(Ci) and IDi = SR(Ci).

For instance, D0 and ID0 correspond to symbolic matrices

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


for each x1, x2, x3, x4 ∈ F28 .

Definition 4. The i-th mixed spaces Mi are defined asMi = MC(IDi).

For instance,M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2

 .
Definition 5. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI andMI defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [GRR17b]:

• for any coset DI ⊕ a there exists unique b ∈ C⊥I such that R(DI ⊕ a) = CI ⊕ b;

• for any coset CI ⊕ a there exists unique b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

Theorem 1 ([GRR17b]). For each I and for each a ∈ D⊥I , there exists one and only one
b ∈M⊥I (which depends on a and on the secret key k) such that

R2(DI ⊕ a) =MI ⊕ b. (1)

We refer to [GRR17b] for a complete proof of the Theorem. Observe that if X is a
generic subspace, X ⊕ a is a coset of X and x and y are two elements of the (same) coset
X ⊕ a, then x⊕ y ∈ X . It follows that:

Lemma 1 ([GRR17b]). For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (2)

We finally recall that for each I, J ⊆ {0, 1, 2, 3}:

MI ∩ DJ = {0} if and only if |I|+ |J | ≤ 4, (3)

as demonstrated in [GRR17b]. It follows that:

Proposition 1 ([GRR17b]). Let I, J ⊆ {0, 1, 2, 3} such that |I| + |J | ≤ 4. For all x, y
with x 6= y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ) = 0. (4)

We remark that all these results can be re-described using a more “classical” truncated
differential notation5, as formally pointed out in [BLN17]. To be more concrete, if two

5Our choice to use the subspace trail notation in order to present our new distinguishers and key-recovery
attacks is motivated by the fact that it allows to describe them in a more formal way than using the
“classical" notation.
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texts t1 and t2 are equal expect for the bytes in the i-th diagonal6 for each i ∈ I, then they
belong in the same coset of DI . A coset of DI corresponds to a set of 232·|I| texts with |I|
active diagonals. Again, two texts t1 and t2 belong in the same coset ofMI if the bytes of
their difference MC−1(t1 ⊕ t2) in the i-th anti-diagonal for each i /∈ I are equal to zero.
Similar considerations hold for the column space CI and the inverse-diagonal space IDI .

We finally introduce some notations that we largely use in the following.

Definition 6. Given two different texts t1, t2 ∈ F4×4
28 , we say that t1 ≤ t2 if t1 = t2

or if there exists i, j ∈ {0, 1, 2, 3} such that (1) t1k,l = t2k,l for all k, l ∈ {0, 1, 2, 3} with
k+ 4 · l < i+ 4 · j and (2) t1i,j < t2i,j . Moreover, we say that t1 < t2 if t1 ≤ t2 (with respect
to the definition just given) and t1 6= t2.

Definition 7. Let X be one of the previous subspaces, that is CI , DI , IDI orMI . Let
x0, ..., xn ∈ F4×4

28 be a basis of X - i.e. X ≡ 〈x0, x1, ..., xn〉 where n = 4 · |I| - s.t. xi < xi+1
for each i = 0, ..., n− 1. Let t be an element of an arbitrary coset of X , that is t ∈ X ⊕ a
for arbitrary a ∈ X⊥. We say that t is “generated” by the generating variables (t0, ..., tn) -
for the following, t ≡ (t0, ..., tn) - if and only if

t ≡ (t0, ..., tn) iff t = a⊕
n⊕
i=0

ti · xi.

As an example, let X = M0 ≡ 〈MC(e0,0),MC(e3,1),MC(e2,2),MC(e1,3)〉, and let
p ∈M0 ⊕ a. Then p ≡ (p0, p1, p2, p3) if and only if

p ≡ p0 ·MC(e0,0)⊕ p1 ·MC(e1,3)⊕ p2 ·MC(e2,2)⊕ p3 ·MC(e3,1)⊕ a. (5)

Similarly, let X = C0 ≡ 〈e0,0, e1,0, e2,0, e3,0〉, and let p ∈ C0 ⊕ a. Then p ≡ (p0, p1, p2, p3) if
and only if p ≡ a⊕ p0 · e0,0 ⊕ p1 · e1,0 ⊕ p2 · e2,0 ⊕ p3 · e3,0.

3.2 Intersections of Subspaces and Useful Probabilities
Here we list some useful probabilities largely used in the following7. For our goal, we
focus on the mixed spaceM, but the same results can be easily generalized for the other
subspaces D, C, ID. A complete proof of the following probabilities is provided in App. A.

Let I, J ⊆ {0, 1, 2, 3}. We first recall that a random element x belongs to the subspace
MI with probability Prob(x ∈ MI) ' 2−32·(4−|I|). Moreover, as shown in details in
[GRR17b], given two random elements x 6= y in the same coset ofMI , they belong after
one round to the same coset ofMJ with probability:

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) ' (28)−4·|I|+|I|·|J|.

By definition, it’s simple to observe thatMI ∩MJ =MI∩J (whereMI ∩MJ = {0}
if I ∩ J = ∅). Thus, the probability p|I| that a random text x belongs to the subspaceMI

for a certain I ⊆ {0, 1, 2, 3} with |I| = l fixed is well approximated by

p|I| ≡ Prob(∃I |I| = l s.t. x ∈MI) = (−1)|I| ·
3∑

i=4−|I|

(−1)i ·
(

4
i

)
· 2−32·i. (6)

6The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such
that r − c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the elements that lie on row
r and column c such that r + c = i mod 4.

7We mention that the following probabilities are “sufficiently good” approximations for the target of
the paper, that is the errors of these approximations can be considered negligible for the target of this
paper. For a complete discussion, we refer to App. A.
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Let x, y be two random elements with x 6= y. Assume there exists I ⊆ {0, 1, 2, 3} such
that x⊕ y ∈MI and x⊕ y /∈ML. The probability p|J|,|I| that there exists J ⊆ {0, 1, 2, 3}
- with |J | = l fixed - such that R(x)⊕R(y) ∈MJ is well approximated by

p|J|,|I| ≡ Prob(∃J |J | = l s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

= (−1)|J| ·
3∑

i=4−|J|

(−1)i ·
(

4
i

)
· 2−8·i·|I|.

(7)

Assume that x ⊕ y /∈ MI for each I ⊆ {0, 1, 2, 3}. Then, the probability p̂|J|,3 that
∃J ⊆ {0, 1, 2, 3} with |J | = l fixed such that R(x)⊕R(y) ∈MJ is well approximated by

p̂|J|,3 ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) =
p|J| − p|J|,3 · p3

1− p3
. (8)

Finally, assume that x⊕ y /∈MI for each I ⊆ {0, 1, 2, 3}. Then, the probability that
∃J ⊆ {0, 1, 2, 3} with |J | = l fixed and with |I|+ |J | ≤ 4 such that R2(x)⊕R2(y) ∈MJ

is well approximated by

p̃|J|,3 ≡ Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI) =
p|J|

1− p3
. (9)

Note that the inequality8 p̂|J|,3 < p|J| < p̃|J|,3 holds for each J .
To provide an example, if |I| = |J | = 3 the previous probabilities are well approximated

by

p3 = 2−30 − 3 · 2−63 + 2−94

p3,3 = 2−22 − 3 · 2−47 + 2−70

p̂3,3 = 2−30 − 2 043 · 2−63 + 390 661 · 2−94 + ...

where p3 and p̂3,3 are usually approximated by 2−30 and p3,3 by 2−22.

4 5-round Secret-Key Distinguisher proposed in [GRR17a]
The starting point of our secret-key distinguisher is the property proposed and exploited
in [GRR17a] to set up the first 5-round secret-key distinguisher of AES (independent of
the secret key). For this reason, in this section we recall the main idea of that paper, and
we refer to [GRR17a] for a complete discussion.

Consider a set of plaintexts in the same coset of the diagonal space DI , that is 232·|I|

plaintexts with |I| active diagonals, and the corresponding ciphertexts after 5 rounds. The
5-round AES distinguisher proposed in [GRR17a] exploits the fact that the number of
different pairs of ciphertexts that belong to the same coset ofMJ for a fixed J (that is,
the number of different pairs of ciphertexts that are equal in |J | fixed anti-diagonals, if
the final MixColumns operation is omitted) is always a multiple of 8 with probability
1 independently of the secret key, of the details of the S-Box and of the MixColumns
matrix. In more details, given a set of plaintexts/ciphertexts (pi, ci) for i = 0, ..., 232·|I| − 1
(where all the plaintexts belong to the same coset of DI), the number of different pairs9

of ciphertexts (ci, cj) that satisfy ci ⊕ cj ∈MJ for a certain fixed J ⊂ {0, 1, 2, 3} has the
special property to be a multiple of 8 with prob. 1. Since for a random permutation the
same number doesn’t have any special property (e.g. it has the same probability to be
even or odd), this allows to distinguish 5-round AES from a random permutation.

8Since p|J|,3 > p|J|, it follows that p̂|J|,3 ≡
p|J|−p|J|,3·p3

1−p3
<

p|J|−p|J|·p3
1−p3

= p|J|.
9Two pairs (ci, cj) and (cj , ci) are considered equivalent.
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Since each coset of DI is mapped into a coset ofMI after 2 rounds with prob. 1 - see
Theorem 1 - and viceversa, in order to prove the result given in [GRR17a] it is sufficient
to show that given plaintexts in the same coset ofMI , then the number of collisions after
one round in the same coset of DJ is a multiple of 8 (see [GRR17a] for details).

Theorem 2 ([GRR17a]). LetMI and DJ be the subspaces defined as before for certain
fixed I and J with 1 ≤ |I| ≤ 3 . Given an arbitrary coset of MI - that is MI ⊕ a for a
fixed a ∈M⊥I , consider all the 232·|I| plaintexts and the corresponding ciphertexts after 1
round, that is (pi, ci) for i = 0, ..., 232·|I| − 1 where pi ∈MI ⊕ a and ci = R(pi).

The number n of different pairs of ciphertexts (ci, cj) for i 6= j such that ci ⊕ cj ∈ DJ
(i.e. ci and cj belong to the same coset of DJ) is always a multiple of 8 with prob. 1.

We refer to [GRR17a] for a detailed proof, and we limit here to recall and to highlight
the main concepts that are useful for the following.

Without loss of generality (w.l.o.g.), we focus on the case |I| = 1 and we assume
I = {0}. Given two texts p1 and p2 inM0⊕a, by definition there exist x1, y1, z1, w1 ∈ F28

and x2, y2, z2, w2 ∈ F28 such that

p1 = a⊕


2 · x1 y1 z1 3 · w1

x1 y1 3 · z1 2 · w1

x1 3 · y1 2 · z1 w1

3 · x1 2 · y1 z1 w1

 , p2 = a⊕


2 · x2 y2 z2 3 · w2

x1 y2 3 · z2 2 · w2

x2 3 · y2 2 · z2 w2

3 · x2 2 · y2 z2 w2


where 2 ≡ 0x02 and 3 ≡ 0x03, or equivalently pi ≡ (xi, yi, zi, wi) for i = 1, 2 - see (5). As
first thing, we recall that if 1 ≤ r ≤ 3 generating variables are equal, then the two texts
can not belong to the same coset of DJ for |J | ≤ r after one round - this is due to the
branch number of the MixColumns matrix (which is 5).

Case: Different Generating Variables. If the two texts p1 and p2 defined as before
have different generating variables (e.g. x1 6= x2, y1 6= y2, ...), then they can belong to the
same coset of DJ for a certain J with |J | ≥ 1 after one round. It is possible to prove that
p1 ≡ (x1, y1, z1, w1) and p2 ≡ (x2, y2, z2, w2) satisfy R(p1)⊕R(p2) ∈ DJ for |J | ≥ 1 if and
only if others pairs of texts generated by different combinations of the previous variables
have the same property. A formal statement is given in the following Lemma 2.

Lemma 2. Let p and q be two different elements in MI ⊕ a - a coset of MI - for
I ∈ {0, 1, 2, 3} and |I| = 1, with p ≡ (p0, p1, p2, p3) and q ≡ (q0, q1, q2, q3), such that
pi 6= qi for each i = 0, ..., 3. Independently of the secret key and of the details of the S-Box,
R(p) and R(q) belong to the same coset of a particular subspace DJ for J ⊆ {0, 1, 2, 3} if
and only if the pairs of texts inMI⊕a generated by the following combinations of variables

1. (p0, p1, p2, p3) and (q0, q1, q2, q3); 2. (q0, p1, p2, p3) and (p0, q1, q2, q3);
3. (p0, q1, p2, p3) and (q0, p1, q2, q3); 4. (p0, p1, q2, p3) and (q0, q1, p2, q3);
5. (p0, p1, p2, q3) and (q0, q1, q2, p3); 6. (q0, q1, p2, p3) and (p0, p1, q2, q3);
7. (q0, p1, q2, p3) and (p0, q1, p2, q3); 8. (q0, p1, p2, q3) and (p0, q1, q2, p3).

have the same property.

Case: Equal Generating Variables. Similar results can be obtained if one or two
variables are equal. For the following, we focus on the case in which two variables are
equal (the case of one equal variable is analogous).

Lemma 3. Let p and q be two different elements in MI ⊕ a - a coset of MI - for
I ∈ {0, 1, 2, 3} and |I| = 1, with p ≡ (p0, p1, p2, p3) and q ≡ (q0, q1, q2, q3), such that
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pi 6= qi for i = 0, 1 and pi = qi for i = 2, 3 (similar for the other cases). Independently
of the secret key and of the details of the S-Box, R(p) and R(q) belong to the same coset
of a particular subspace DJ for J ⊆ {0, 1, 2, 3} if and only if the pairs of texts inMI ⊕ a
generated by the following combinations of variables

1. (p0, p1, z, w) and (p0, p1, z, w); 2. (p0, q1, z, w) and (q0, p1, z, w);

where z and w can take any possible value in F28 , have the same property.

For the following, given texts in the same cosets of CI orMI for I ⊆ {0, 1, 2, 3}, we
recall that the number of couples of texts with n equal generating variable(s) for 0 ≤ n ≤ 3
is given by (

4
n

)
· 232·|I|−1 · (28·|I| − 1)4−n (10)

as proved in App. A.

Case |I| = 2 and |I| = 3. For the following, we mention that similar considerations
can be done for the cases |I| ≥ 2. W.l.o.g consider |I| = 2 and assume I = {0, 1}
(the other cases are analogous). Given two texts p1 and p2 in the same coset of MI ,
that is MI ⊕ a for a given a ∈ M⊥I , there exist x0, x1, y0, y1, z0, z1, w0, w1 ∈ F28 and
x′0, x

′
1, y
′
0, y
′
1, z
′
0, z
′
1, w

′
0, w

′
1 ∈ F28 such that:

p1 = a⊕MC ·


x0 y0 0 0
x1 0 0 w0
0 0 z0 w1
0 y1 z1 0

 , p2 = a⊕MC ·


x′0 y′0 0 0
x′1 0 0 w′0
0 0 z′0 w′1
0 y′1 z′1 0

 .
As for the case |I| = 1, the idea is to consider all the possible combinations of the variables
x ≡ (x0, x1), y ≡ (y0, y1), z ≡ (z0, z1), w ≡ (w0, w1) and x′ ≡ (x′0, x′1), y′ ≡ (y′0, y′1), z′ ≡
(z′0, z′1), w′ ≡ (w′0, w′1). In other words, the idea is to consider variables in F2

28 ≡ F28 × F28

and not in F28 . For |I| = 3, the idea is similar, working with variables in F3
28 .

Why is it (rather) hard to set up key-recovery attacks that exploit such distinguisher?

Given this 5-round distinguisher, a natural question regards the possibility to exploit it in
order to set up a key-recovery attack on 6-round AES-128 which is better than a brute
force one. A possible way is the following. Consider 232 chosen plaintexts in the same coset
of a diagonal space Di, and the corresponding ciphertexts after 6 rounds. A possibility
is to guess the final key, decrypt the ciphertexts and check if the number of collisions in
the same coset ofMJ is a multiple of 8. If not, the guessed key is wrong. However, since
a coset of MJ is mapped into the full space, it seems hard to check this property one
round before without guessing the entire key. It follows that it is rather hard to set up
an attack different than a brute force one that exploits directly the 5-round distinguisher
proposed [GRR17a]. For comparison, note that such a problem doesn’t arise for the other
distinguishers up to 4-round AES (e.g. the impossible differential or the integral ones), for
which it is sufficient to guess only part of the secret key in order to verify if the required
property is satisfied or not.

5 New 4-round Secret-Key Distinguisher for AES
As first thing, we re-exploit the property proposed in [GRR17a] to set up a new 4-round
secret-key distinguisher for AES. Before we go into the details, we present the general idea.

As we have just seen, given 232 plaintexts in the same coset of MI for |I| = 1 and
the corresponding ciphertexts after 1 round, that is (pi, ci) for i = 0, ..., 232 − 1 where
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pi ∈ MI ⊕ a and ci = R(pi), then the number n of different pairs of ciphertexts (ci, cj)
for i 6= j such that ci ⊕ cj ∈ DJ is always a multiple of 8. This is due to the fact that if
one pair of texts belong to the same coset of DJ after one round, then other pairs of texts
have the same property.

Thus, consider a pair of plaintexts p1 and p2 such that the corresponding texts after one
round belong (or not) to the same coset of DJ . As we have seen, there exist other pairs of
plaintexts p̂1 and p̂2 whose ciphertexts after one round have the same property. The pairs
(p1, p2) and (p̂1, p̂2) are not independent in the sense that the variables that generate the
first pair of texts are the same that generate the other pairs, but in a different combination.
The idea is to exploit this property in order to set up new distinguishers for round-reduced
AES. In other words, instead of limiting to count the number of collisions and check that
it is a multiple of 8 as in [GRR17a], the idea is to check if these relationships between the
variables that generate the plaintexts (whose ciphertexts belong or not the same coset of a
given subspaceMJ) hold or not.

5.1 A New Distinguisher for 4-round AES
Given the subspace C0 ∩ D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two plaintexts p1 and p2 in the
same coset of C0 ∩ D0,3 ⊕ a generated by p1 ≡ (z1, w1) and p2 ≡ (z2, w2). It is possible to
prove that for 4-round AES and for each fixed J ⊆ {0, 1, 2, 3}, the following event holds
with probability 1

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̂1)⊕R4(p̂2) ∈MJ

where p̂1, p̂2 ∈ D0,3 ∩ C0 ⊕ a are generated by p̂1 ≡ (z1, w2) and p̂2 ≡ (z2, w1). For a
random permutation, the same event happens with approximately probability 2−32·(4−|J|),
i.e strictly less than 1 (note that this probability is maximized by |J | = 3). The difference
in the probabilities of this event can be used to set up a 4-round distinguisher.

Similar results can be obtained considering different subspaces CI ∩DK for |I| = 1 and
|K| = 2. As we are going to show in the following, we emphasize that such distinguisher
works in both the decryption and encryption direction (that is, it is possible to use either
chosen plaintexts or chosen ciphertexts).

5.1.1 Proof using the “super-Sbox” Notation

As first thing, we prove the previous result using the “super-Sbox” notation - introduced
in [DR06] by the designers of AES, where

super-Sbox(·) = S-Box ◦ARK ◦MC ◦ S-Box(·) (11)

Consider two pairs of texts (p1, p2) and (p̂1, p̂2) in a coset of C0∩D0,3 - that is C0∩D0,3⊕a
for a fixed a, such that

pi ≡ a⊕


zi 0 0 0
wi 0 0 0
0 0 0 0
0 0 0 0

 and p̂i ≡ a⊕


zi 0 0 0
w3−i 0 0 0

0 0 0 0
0 0 0 0


for i = 1, 2, that is pi ≡ (zi, wi) and pi ≡ (zi, w3−i).

The goal is to prove that

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̂1)⊕R4(p̂2) ∈MJ .

Since Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1 (see (2)), this is equivalently to prove
that

R2(p1)⊕R2(p2) ∈ DJ if and only if R2(p̂1)⊕R2(p̂2) ∈ DJ .
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First of all, observe that p1 ⊕ p2 ∈ D0,3 and thatM0,3 ∩ DJ 6= {0} if and only if |J | = 3
(see (3) for details). Thus, R2(p1)⊕R2(p2) ∈ DJ can happen if and only if |J | = 3.

As it is well known, 2-round encryption can be rewritten using the super-Sbox notation

R2(·) = ARK ◦MC ◦ SR ◦ super-Sbox ◦ SR(·).

Since ShiftRows and MixColumns operations are linear, it follows that

super-Sbox(q1)⊕ super-Sbox(q2) ∈ WJ iff super-Sbox(q̂1)⊕ super-Sbox(q̂2) ∈ WJ

where

qi ≡ SR(a)⊕


zi 0 0 0
0 0 0 wi

0 0 0 0
0 0 0 0

 and q̂i ≡ SR(a)⊕


zi 0 0 0
0 0 0 w3−i

0 0 0 0
0 0 0 0


for i = 1, 2 (observe that SR(D0,3 ∩ C0) = C0,3 ∩ ID0 by definition) and

WJ := SR−1 ◦MC−1(DJ). (12)

Observe that each column of q1 and q2 depends on different and independent variables.
Moreover, remember that the super-Sbox works independently on each column. Since the
XOR sum is commutative and working independently on each column, it follows that

super-Sbox(q1)⊕ super-Sbox(q2) = super-Sbox(q̂1)⊕ super-Sbox(q̂2)

which implies the thesis.
For the following, it is important to observe that if a column of q1 is equal to the

corresponding column of q2, then the difference super-Sbox(q1)⊕ super-Sbox(q2) is inde-
pendent of the value of such column. In more details, given p1 and p2 in C0 ∩ D0,3 ⊕ a as
before, observe that

super-Sbox◦SR(p1)⊕super-Sbox◦SR(p2) = super-Sbox◦SR(p̃1)⊕super-Sbox◦SR(p̃2)

for each p̃1, p̃2 in C0 ⊕ a where

p̃1 ≡ (z1, w1, x, y), p̃2 ≡ (z2, w2, x, y) or p̃1 ≡ (z1, w2, x, y), p̃2 ≡ (z1, w2, x, y)

for all x and y in F28 .
Finally, using the same argumentation, similar results can be easily obtained in the

case in which all the generating variables of two texts p1, p2 ∈ C0 ⊕ a are different or/and
in the case in which only one generating variable is equal. In the same way, similar results
hold for the case of two texts p1, p2 ∈ CI ⊕ a for |I| ≥ 2.

5.1.2 Data and Computational Cost

Data Cost. Since a coset of C0 ∩ D0,3 contains 216 plaintexts, it is possible to construct
215 · (216 − 1) ' 231 different pairs. As we have just seen, only half of them (that is
214 · (216 − 1) ' 230) are independent. For our goal, we consider only the pairs of texts
p1 ≡ (z1, w1) and p2 ≡ (z2, w2) with different generating variables, that is z1 6= z2 and
w1 6= w2 (note that if z1 = z2 or w1 = w2, then the two texts belong to the same coset of
Di; it follows that after four rounds they can not belong to the same coset ofMJ for each
J due to Prop. 1). Using formula (10), the number of pairs with two different generating
variable is given by 215 · (28 − 1)2 ' 230.989, where only 229.989 of them are independent.
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In order to distinguish 4-round AES from a random permutation, one has to check that

c1 ⊕ c2 = R4(p1 ≡ (z1, w1)
)
⊕R4(p2 ≡ (z2, w2)

)
∈MJ

if and only if

ĉ1 ⊕ ĉ2 = R4(p̂1 ≡ (z1, w2)
)
⊕R4(p̂2 ≡ (z2, w1)

)
∈MJ .

If this property is not satisfied for at least one set, then it is possible to conclude that the
analyzed permutation is a random one.

Consider now the case of a random permutation Π(·). What is the probability that
c1 ⊕ c2 ≡ Π(p1)⊕Π(p2) ∈MJ and ĉ1 ⊕ ĉ2 ≡ Π(p̂1)⊕Π(p̂2) /∈MJ - or viceversa - for a
certain J ⊂ {0, 1, 2, 3} with |J | = 3? By simple computation and since there are 4 different
J with |J | = 3, this happens with probability approximately equal to

2 · p3 · (1− 2−32) ' 2 · 4 · 2−32 · (1− 2−32) ' 2−29,

where p3 is defined as in (6). As a result, in order to distinguish a random permutation
from an AES one with probability higher than pr, it is sufficient that the previous property
is not satisfied for at least a couple of two pairs of texts with probability higher than pr
(in order to recognize the random permutation). It follows that one needs approximately
n different independent pairs of texts such that pr ≥ 1− (1− 2−29)n, that is

n ≥ log(1− pr)
log(1− 2−29) ≈ −229 · log(1− pr).

For pr = 95%, one needs approximately n ≥ 230.583 different independent pairs of texts,
that is approximately 2 different cosets C0 ∩ D0,3 for a total data cost of 216 · 2 = 217

chosen plaintexts.

Computational Cost. We limit here to report the computational costs of the distin-
guisher, and we refer to App. B.1 for all the details. In order to implement the distinguisher,
the idea is to re-order the ciphertexts using a particular partial order � as defined in Def. 8,
and to work in the way described in Algorithm 1. Instead to check the previous property for
all possible pairs of texts, the idea is to check it only for the pairs of texts for which the two
ciphertexts belong in the same coset ofMJ . In other words, we check that ĉ1 ⊕ ĉ2 ∈MJ

only if c1 ⊕ c2 ∈MJ . This method allows to minimize the computational cost, which is
well approximated by 223.09 table look-ups, or approximately 216.75 four-round encryptions
(assuming10 20 table look-ups ≈ 1 round of encryption), where we limit to remember that
the cost to re-order a set of n texts w.r.t. a given partial order is

O(n · logn) table look-ups.

Definition 8. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3} \ I. Let t1, t2 ∈ F4×4
28

with t1 6= t2. Text t1 is less or equal than text t2 w.r.t. the partial order � (i.e. t1 � t2) if
and only if one of the two following conditions is satisfied (indexes are taken modulo 4):

• there exists j ∈ {0, 1, 2, 3} s.t. MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i < j and
MC−1(t1)j,l−j < MC−1(t2)j,l−j ;

• MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i = 0, ...., 3, and MC−1(t1) < MC−1(t2)
where < is defined in Def. 6.

10We highlight that even if this approximation is not formally correct - the size of the table of an S-Box
look-up is lower than the size of the table used for our proposed distinguisher, it allows to give a comparison
between our distinguishers and the others currently present in the literature. This approximation is largely
used in the literature.
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Data: 2 cosets of D0,3 ∩ C0 (e.g. D0,3 ∩ C0 ⊕ ai for a0, a1 ∈ (D0,3 ∩ C0)⊥) and
corresponding ciphertexts after 4 rounds

Result: 0 ≡ Random permutation or 1 ≡ 4-round AES - Prob. 95%
for each coset of D0,3 ∩ C0 do

for each I ⊆ {0, 1, 2, 3} with |I| = 3 do
let (pi, ci) for i = 0, ..., 216 − 1 be the 216 (plaintexts, ciphertexts) of
D0,3 ∩ C0 ⊕ ai;

re-order this set of elements w.r.t. the partial order � described in Def. 8 s.t.
ck � ck+1 for each k; // � depends on I
i← 0;
while i < 216 − 1 do

j ← i;
while cj ⊕ cj+1 ∈MI do

j ← j + 1;
end
for each k from i to j do

for each l from k + 1 to j do
given pk ≡ (z1, w1) and pl ≡ (z2, w2), let q1 ≡ (z1, w2) and
q2 ≡ (z2, w1) in D0,3 ∩ C0 ⊕ ai; // Note that
R4(pk)⊕R4(pl) ∈MI

if R4(q1)⊕R4(q2) /∈MI then
return 0. // Random permutation

end
end

end
i← j + 1;

end
end

end
return 1. // 4-round AES permutation - Prob. 95%

Algorithm 1: Secret-Key Distinguisher for 4-round of AES.

5.1.3 Practical Verification

Using a C/C++ implementation11, we have practically verified the distinguisher just
described. In particular, we have verified the distinguisher both for “real” AES and a
small-scale variant of AES, as presented in [CMR05]. While for “real” AES each word is
composed of 8 bits, in the small-scale variant each word is composed of 4 bits (we refer
to [CMR05] for a complete description of this small-scale AES). We highlight that the
previous result holds exactly in the same way also for this small-scale variant of AES, since
the previous argumentation is independent of the fact that each word of AES is of 4 or 8
bits.

The distinguisher just presented works in the same way for real AES and small scale
AES, and it is able to distinguish AES from a random permutation using 217 chosen
plaintexts in the first case and 29 in the second one (i.e. 2 cosets of C0 ∩D0,3) as expected.
For real AES, while the theoretical computational cost is of 223 table look-ups, the practical
one is on average 222 in the case of a random permutation and 224 in the case of an AES
permutation. We emphasize that for a random permutation, it is sufficient to find one
couple of two pairs of texts that doesn’t satisfy the required property (in order to recognize
the random permutation). In the case of the AES permutation, the difference between the

11The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/
Distinguisher_5RoundAES
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theoretical and the practical cases (i.e. a factor 2) can be justified by the fact that the cost
of the merge sort algorithm is O(n · logn) and by the definition of the big O notation12.

For the small-scale AES, using 2 different initial cosets of C0 ∩ D0,3, the theoretical
computational cost is well approximated by 2 · 4 · 28 · (log 28 + 1) ' 214.2 table look-ups.
The practical cost is approximately 213.5 for the case of a random permutation and 215 for
the AES case.

5.2 Comparison with Other 4-round Secret-Key Distinguishers
Before we go on, we highlight the major differences with respect to the other 4-round
AES secret-key distinguishers present in the literature. Omitting the integral one (which
exploits a completely different property), we focus on the impossible and the truncated
differential distinguishers, on the polytopic cryptanalysis and on the distinguisher recently
proposed in [GRR17a] adapted - in a natural way - to the 4-round case.

Impossible Differential. The impossible differential distinguisher is based on Prop. 1, that
is it exploits the property that MI ∩ DJ = {0} for |I| + |J | ≤ 4. In our case, we
consider plaintexts in the same coset of C0 ∩ DI ⊆ DI where I = {0, 3} and looks
for collisions inMJ with |J | = 3. Since |I|+ |J | = 5, the property exploited by the
impossible differential distinguisher can not be applied here.

Truncated Differential. The truncated differential distinguisher has instead some aspects
in common with our distinguisher. In this case, given pairs of plaintexts with certain
difference on certain bytes (i.e. that belong to the same coset of a subspace X ), one
considers the probability that the corresponding ciphertexts belong to the same coset
of a subspace Y . For 2-round AES it is possible to exploit truncated differential trails
with probability 1, while for the 3-round case there exist truncated differential trails
with probability lower than 1 but higher than for the random case (in both cases,
X ≡ DI and Y ≡MJ ). To the best of our knowledge, no truncated differential trails
with probability higher than 0 (i.e. no impossible differential trails) on 4 or more
rounds AES exist in literature. Our proposed distinguisher works in a similar way
and exploits a similar property. However, instead of working with a single couple of
texts, in our distinguisher one basically considers set of 2 “non-independent” couples
of texts and exploits the relationships that hold among the couples of texts that
belong to the same set.

Polytopic Cryptanalysis. Polytopic cryptanalysis [Tie16] has been introduced by Tiessen
at Eurocrypt 2016, and it can be viewed as a generalization of standard differential
cryptanalysis. Consider a set of d ≥ 2 couples of plaintexts (p0, p0 ⊕ α1), (p0, p0 ⊕
α2), ...(p0, p0⊕αd) with one plaintext in common (namely p0), called d-poly. The idea
of polytopic cryptanalysis is to exploit the probability that the input set of differences
α ≡ (α1, α2, ..., αd) is mapped into an output set of differences β ≡ (β1, β2, ..., βd)
after r rounds. If this probability13 - which depends on the S-Box details - is different
than the corresponding probability in the case of a random permutation, it is possible
to set up distinguishers or key-recovery attacks. Impossible polytopic cryptanalysis
focuses on the case in which the probability of the previous event is zero. In [Tie16],
an impossible 8-polytopic is proposed for 2-round AES, which allows to set up
key-recovery attacks on 4- and 5-round AES. Our proposed distinguisher works in
a similar way, since also in our case we consider set of “non-independent” couples
of texts and we focus on the input/output differences. However, instead to work

12A similar difference among the theoretical and the practical cases was found also in [GRR17a].
13We mention that the probability of polytopic trails is usually much lower than the probability of trails

in differential cryptanalysis, that is simple polytopic cryptanalysis can not in general outperform standard
differential cryptanalysis - see Sect. 2 of [Tie16] for details.
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with a set of couples of plaintexts with one plaintext in common, we consider set of
couples of texts for which particular relationships between the generating variables
of the texts hold. Moreover, instead to consider the probability that “generic” input
differences α are mapped into output differences β, the way in which the texts are
divided in sets guarantees the two ciphertexts of all couples satisfy or not an output
(truncated) difference (that is, it is not possible that some of them satisfy this output
difference and some others not), independently of the S-Box details.

Eurocrypt 2017 Distinguisher [GRR17a]. Finally, the distinguisher proposed in [GRR17a]
can be adapted to the 4 rounds case, e.g. considering plaintexts in the same coset
of CJ , counting the number of collisions of the ciphertexts in the same coset ofMI

and checking if it is (or not) a multiple of 8. Since our distinguisher exploits more
information (i.e. the relationships that hold among the generating variable of the
couples of plaintexts in the same set, beside the fact that the previous number is a
multiple of 8), its data and computational costs are lower than [GRR17a], that is 217

chosen plaintexts/ciphertexts instead of 233 and approximately 223 table look-ups
instead of 240.

5.3 New Key-Recovery Attack on 5-round AES
The previous 4-round secret-key distinguisher can be used as starting point to set up a
new (practical verified) key-recovery attack on 5-round AES.

W.l.o.g. consider two plaintexts p1 and p2 in the same coset of D0, e.g. D0 ⊕ a
for a ∈ D⊥0 , such that pi = xi · e0,0 ⊕ yi · e1,1 ⊕ zi · e2,2 ⊕ wi · e3,3 ⊕ a or equivalently
pi ≡ (xi, yi, zi, wi). By Theorem 1, there exists b ∈ C⊥0 such that for i = 1, 2

R(pi) =


x̂i 0 0 0
ŷi 0 0 0
ẑi 0 0 0
ŵi 0 0 0

⊕ b ≡MC ·


S-Box(xi ⊕ k0,0) 0 0 0
S-Box(yi ⊕ k1,1) 0 0 0
S-Box(zi ⊕ k2,2) 0 0 0
S-Box(wi ⊕ k3,3) 0 0 0

⊕ b,
that is

R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) ≡ x̂i · e0,0 ⊕ ŷi · e1,0 ⊕ ẑi · e2,0 ⊕ ŵi · e3,0 ⊕ b.

The idea is to filter wrong guessed key of the first round by exploiting the previous
distinguisher.

In particular, given plaintexts in the same coset of D0, the idea of the attack is simply
to guess 4 bytes of the first diagonal of the secret key k, that is ki,i for each i ∈ {0, 1, 2, 3},
to (partially) compute Rk(p1) and Rk(p2) and to exploit the following consideration: if
the guessed key is the right one, then

R4[Rk(p1)
]
⊕R4[Rk(p2)

]
∈MJ

if and only if there exists other pairs of texts Rk(q1) and Rk(q2) with the same property,
that is

R4[Rk(q1)
]
⊕R4[Rk(q2)

]
∈MJ .

If this property is not satisfied, then it is possible to claim that the guessed key is a wrong
candidate for the key. As we are going to show, this attack works because the variables
that define the (other) pairs of texts Rk(q1) and Rk(q2) depend on the guessed key, besides
on the texts p1 and p2.
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5.3.1 Details of the Attack

In the following we give all the details of the attack. As for the distinguisher just presented,
consider a pair of texts p1 and p2 in the same coset of D0 such that

• c1 ⊕ c2 ≡ R5(p1)⊕R5(p2) ∈MJ (observe that this condition is independent of the
(partially) guessed key);

• R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) for i = 1, 2 as before, such that x̂1 6= x̂2, ŷ1 6= ŷ2, ẑ1 6= ẑ2 and
ŵ1 6= ŵ2.

Due to the definition of x̂i, ŷi, ẑi, ŵi

[x̂i, ŷi ẑi ŵi]T ≡MC·[S-Box(xi⊕k0,0), S-Box(yi⊕k1,1), S-Box(zi⊕k2,2), S-Box(wi⊕k3,3)]T ,

this second condition depends on the (partially) guessed key. However, observe that the
probability that all the generating variables are different is [(256 · 255)/2562]4 = 2554

2564 '
98.45%, that is approximately 1.

Given p1 and p2 as before, we have to define Rk(q1) and Rk(q2) in order to set up the
distinguisher. Using Lemma 2 and the “super-Sbox” argumentation given in Sect. 5.1.1, it
is possible to construct 7 different pairs of texts Rk(q1) and Rk(q2) in C0 ⊕ b defined by
the following combinations of generating variables

1. (x̂1, ŷ1, ẑ1, ŵ1) and (x̂2, ŷ2, ẑ2, ŵ2); 2. (x̂2, ŷ1, ẑ1, ŵ1) and (x̂1, ŷ2, ẑ2, ŵ2);
3. (x̂1, ŷ2, ẑ1, ŵ1) and (x̂2, ŷ1, ẑ2, ŵ2); 4. (x̂1, ŷ1, ẑ2, ŵ1) and (x̂2, ŷ2, ẑ1, ŵ2);
5. (x̂1, ŷ1, ẑ1, ŵ2) and (x̂2, ŷ2, ẑ2, ŵ1); 6. (x̂2, ŷ2, ẑ1, ŵ1) and (x̂1, ŷ1, ẑ2, ŵ2);
7. (x̂2, ŷ1, ẑ2, ŵ1) and (x̂1, ŷ2, ẑ1, ŵ2); 8. (x̂2, ŷ1, ẑ1, ŵ2) and (x̂1, ŷ2, ẑ2, ŵ1)

that must satisfy the required property

R4[Rk(p1)
]
⊕R4[Rk(p2)

]
∈MJ iff R4[Rk(q1)

]
⊕R4[Rk(q2)

]
∈MJ .

Using this observation, it is possible to filter all the wrong keys. Again, for the right
key, all these pairs of text must belong to the same coset of MJ after 4-round, since
R5(p1)⊕R5(p2) ∈MJ . If this property is not satisfied, then one can simply deduce that
the guessed key is wrong (for a wrong guessed key, the behavior is similar to the one of a
random permutation).

We emphasize that the way in which the new pairs of texts q1 and q2 are constructed
depends on the guessed key. This follows immediately by the definition of the generating
variables, where note that the S-Box is a non-linear operation. To have more evidence
of this fact, let k̃ the secret key and k a guessed key. Given Rk(p1) and Rk(p2) in C0 ⊕ b
as before, then q1 and q2 in D0 ⊕ a that satisfy the required property are given by a
combination of the following generating variables

x̃i

ỹi

z̃i

w̃i

 =


k0,0
k1,1
k2,2
k3,3

⊕ S-Box−1 ◦MC−1 ·


x̂i

ŷi

ẑi

ŵi

 =

=


k0,0
k1,1
k2,2
k3,3

⊕ S-Box−1 ◦MC−1 ·MC ·


S-Box(xi ⊕ k̃0,0)
S-Box(yi ⊕ k̃1,1)
S-Box(zi ⊕ k̃2,2)
S-Box(wi ⊕ k̃3,3)

 =


k0,0 ⊕ xi ⊕ k̃0,0
k1,1 ⊕ yi ⊕ k̃1,1
k2,2 ⊕ zi ⊕ k̃2,2
k3,3 ⊕ wi ⊕ k̃3,3


As a result, x̃i = xi, ỹi = yi, z̃i = zi and w̃i = wi (which implies that the required property
is satisfied) if and only if the guessed key is the right one. If k 6= k̃, then the required
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Data: 1 coset of D0 (e.g. D0 ⊕ a for a ∈ D⊥0 ) and corresponding ciphertexts after 5
rounds - more generally a coset of Di for i ∈ {0, 1, 2, 3}

Result: 4 bytes of the secret key - (k0,0, k1,1, k2,2, k3,3)
let (pi, ci) for i = 0, ..., 232 − 1 be the 232 (plaintexts, ciphertexts) of D0 ⊕ a;
re-order (and store) this set of elements w.r.t. the partial order ≤ defined in Def. 6
s.t. pi ≤ pi+1 for each i;
fix I ⊆ {0, 1, 2, 3} with |I| = 3 (e.g. I = {0, 1, 2}) - re-order (and store) this set of
elements w.r.t. � defined in Def. 8 s.t. ci � ci+1 for each i;
do

find indexes j and h s.t. (1) cj ⊕ ch ∈MI and (2) the generating variables of
Rk(pj) and Rk(ph) are different;
for each one of the 232 combinations of k̂ = (k0,0, k1,1, k2,2, k3,3) do

(partially) compute Rk̂(pj) and Rk̂(ph);
flag ← 0;
for each couple (q1, R5(q1)) and (q2, R5(q2)) where Rk̂(q1) and Rk̂(q2) are
constructed by a different combination of the generating variables of Rk̂(pj)
and Rk̂(ph) do
if R5(q1)⊕R5(q2) /∈MI then

flag ← 1;
next combination of (k0,0, k1,1, k2,2, k3,3);

end
end
if flag = 0 then

identify (k0,0, k1,1, k2,2, k3,3) as candidate of the key;
end

end
while more than a single candidate of the key is found - Repeat the procedure for
different indexes j, h (and I) // usually not necessary - only one
candidate is found;
return (k0,0, k1,1, k2,2, k3,3)

Algorithm 2: 5-round AES Key-Recovery Attack. The attack exploits the 4-round
distinguisher presented in Sect. 5. For sake of simplicity, in this pseudo-code we limit to
describe the attack of 4 bytes - 1 diagonal of the secret key. Exactly the same attack can
be used to recover the entire key.

property is - in general - not satisfied, since the attacker is using random pairs of texts
(that is, the relations among the generating variables don’t hold).

Before going on, we emphasize that this result also implies the impossibility to set up a
5-round distinguisher similar to the one just presented in this section choosing plaintexts
in the same coset of a diagonal space DI instead of a column space CI . Indeed, given p1

and p2 as before in the same coset of DI (instead of CI), since the key k is secret and
the S-Box is non-linear, there is no way to find p̂1 and p̂2 in the coset of DI such that
R5(p1)⊕R5(p2) ∈MJ if and only if R5(p̂1)⊕R5(p̂2) ∈MJ without guessing the secret key.

Does the Attack Works? First of all, since the cardinality of a coset of DI for |I| = 1
is 232 and since Prob(t ∈MJ) = p3 ' 2−30 for |J | = 3, the average number of collisions
for each coset of DI is approximately 2−30 ·

(232

2
)
' 2−30 · 263 ' 233, so it’s very likely that

two (plaintexts, ciphertexts) pairs (p1, c1) and (p2, c2) exist such that c1 ⊕ c2 ∈MJ and
for which the two plaintexts have different generating variables.

Given a pair of plaintexts p1 and p2 for which the corresponding ciphertext c1 and c2

belong to the same coset ofMJ , consider the other 7 pairs of plaintexts q1 and q2 defined
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as before (that is such that R(q1) and R(q2) are defined by a different combinations of the
generating variables of R(p1) and R(p2)). For a wrong key, the probability that the two
ciphertexts of each one of the other 7 couples belong to the same coset ofMJ for fixed J is
(2−32)7 = 2−224. In other words, the probability that a wrong key passes the test is 2−224.

Since there are 232−1 wrong candidates for the diagonal of the key, the probability that
at least one of them passes the test is approximately 1− (1− 2−224)232−1 ' 2−192. Thus,
one pair of plaintexts p1 and p2 (for which the corresponding ciphertexts belong to the same
coset ofMJ ) together with the corresponding other 7 pairs of texts q1 and q2 are (largely)
sufficient to discard all the wrong candidates for a diagonal of the key. Moreover, in general
only two different couples q1 and q2 (that is, two different combinations of the generating
variables) are sufficient to discard all the wrong candidates, that is it is not necessary to
consider all the 7 pairs of texts q1 and q2. Indeed, given two couples, the probability that
at least one wrong key passes the test is approximately 1− (1− 2−32·2)232−1 ' 2−32 � 1,
which means that all the wrong candidates are discarded with high probability.

5.3.2 Data and Computational Costs

The attack - practical verified on a small-scale AES - requires 233.6 chosen plaintexts
and has a computational cost of 233.28 five-round encryptions. The pseudo-code of the
attack is given in Algorithm 2, while we refer to App. B.2 for all the details (data and
computational costs have been derived using the same strategy proposed for the 4-round
distinguisher just presented).

5.3.3 Practical Verification

Using a C/C++ implementation, we have practically verified the attack just described on
the small-scale AES [CMR05]. We emphasize that since the proposed attack is independent
of the fact that each word of AES is composed of 4 or 8 bits, our verification on the small
scale variant of AES is strong evidence for it to hold for the real AES.

Practical Results. For simplicity, we limit to report the result for a single diagonal of
the key. First of all, a single coset of a diagonal space Di is largely sufficient to find one
diagonal of the key. In more detail, given two (plaintexts, ciphertexts) pairs (p1, c1) and
(p2, c2), then other two different couples q1 and q2 (out of the seven possible ones) are
sufficient to discard all the wrong candidates of the diagonal of the key, as predicted.

About the computational cost, the theoretical cost for the small-scale AES case is well
approximated by 4 · 216 · (log 216 + 1) + 216 · 4 = 221 table look-ups and 216 · 4 · 3 = 219.6

S-Box look-ups, for a total of 219.6 + 221 = 221.5 table look-ups (assuming that the cost of
1 S-Box look-up is approximately equal to the cost of 1 table look-up) - we refer to App.
B.2 for all the details. The average practical computational cost is of 221.5 table look-ups,
approximately the same of the theoretical one.

6 A new 5-round Secret-Key Distinguisher for AES
Using the 4-round distinguisher just presented as starting point, we propose a way to
extend it 1 round at the end. As a result, we are able to set up a new probabilistic 5-round
secret-key distinguisher for AES which exploits a property which is independent of the
secret key. Even if such a distinguisher has higher complexity than the deterministic one
presented in [GRR17a], it can be used to set up a key-recovery attack on 6-round AES
(better than a brute-force one) exploiting a distinguisher of the type [GRR17a] - believed
to be hard to exploit . As a result, this is the first key-recovery attack for 6-round AES
set up by a 5-round secret-key distinguisher for AES. For completeness, since the 4-round
distinguisher works also in the decryption direction, this new 5-round distinguisher and
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the 6-round attack can also be set up in the reverse direction (i.e. using chosen ciphertexts
instead of plaintexts).

6.1 5-round Secret-Key Distinguisher
Given n (plaintexts, ciphertexts) pairs, the idea is to divide them in sets such that particular
relations hold among the variables that define the plaintexts that lie in the same set (similar
to before). Then, one simply consider the number of sets for which two ciphertexts of
at least one couple lie in the same subspace MJ (in other words, the number of sets
for which two ciphertexts of at least one couple are equal in one anti-diagonal - if the
final MixColumns operation is omitted). If the sets are properly defined, it is possible
to prove that this number of sets is a little lower for 5-round AES than for a random
permutation, independently of the secret key. This allows to set up a new distinguisher
(which is independently of the secret key, of the details of the S-Box and of the MixColumns
matrix), and a new key-recovery attack on 6-round. In the following, we give all the details.

6.1.1 Details of the 5-round Distinguisher

Consider 232 chosen plaintexts with one active column (4 active bytes), e.g. a coset of C0,
and the corresponding ciphertexts after 5-round. For each (x0, x1), (y0, y1) ∈ F4

28 such that
x0 6= y0 and x1 6= y1, let the set S0,1

(x0,x1),(y0,y0) of pairs of plaintexts be defined as follows

S0,1
(x0,x1),(y0,y0) =

{
(p, q) ∈ F4×4

28 × F4×4
28

∣∣∣∣ p ≡ (x0, x1, A,B), q ≡ (y0, y1, A,B)

or p ≡(x0, y1, A,B), q ≡ (y0, x1, A,B) for each A,B ∈ F28

}
.

In other words, the pair of plaintexts p, q ∈ C0 ⊕ a in S0,1
(x0,x1),(y0,y0) can be of the form

p ≡ a⊕


x0 0 0 0
x1 0 0 0
A 0 0 0
B 0 0 0

 q ≡ a⊕


y0 0 0 0
y1 0 0 0
A 0 0 0
B 0 0 0

 ,
or

p ≡ a⊕


x0 0 0 0
y1 0 0 0
A 0 0 0
B 0 0 0

 q ≡ a⊕


y0 0 0 0
x1 0 0 0
A 0 0 0
B 0 0 0

 .
Similar definition can be given for the set Si,j(x0,x1),(y0,y0) for i 6= j, where the active
bytes are in row i and j. Given 232 plaintexts as before, it is possible to construct

1
217 · 6 · 231 · (28 − 1)2 ' 232.574 different sets (using formula (10) to count the number
of pairs of texts with 2 equal generating variables), where each set contains exactly 217

different pairs of plaintexts (we emphasize that these pairs of plaintexts are not independent,
in the sense that a particular relationship - among the generating variables - holds).

Consider n � 1 random sets, and count the number of sets for which there is at
least one pairs of plaintexts for which the corresponding ciphertexts (generated by 5-
round AES or by a random permutation) belong to the same coset of a subspaceMJ for
J ⊆ {0, 1, 2, 3}. As we are going to prove, this number is on average lower for AES than
for a random permutation, independently of the secret key, of the details of the S-Box and
of the MixColumns matrix. In more details, these numbers of sets that satisfy the required
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property for 5-round AES - denoted by nAES - and for a random permutation - denoted
by nrand - are well approximated by

nAES ' n · pAES nrand ' n · prand

where

pAES ' 2−13 − 524 287 · 2−46 − 22 370 411 853 · 2−77︸ ︷︷ ︸
≈ 2.604 · 2−44

+...

prand ' 2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77︸ ︷︷ ︸
≈ 5.333 · 2−44

+...

Even if this difference is small, it is possible to distinguish the two cases with probability
higher than 95% if the number n of sets Si,j(x0,x1),(y0,y0) (S for simplicity) satisfies n ≥ 271.243.

In the following, we prove this result (which has been practically tested on a small-scale
AES) and we give all the details about the data and the computational cost.

Similarity with “classical” Truncated Differential Attack. Before going on,
we emphasize the similarity with the 3-round distinguisher that exploits a truncated
differential trail. In that case, the idea is to count the number of pairs of texts that satisfies
the truncated differential trail. In particular, given pairs of plaintexts in the same coset of a
diagonal space Di, one counts the number of pairs for which the corresponding ciphertexts
belong in the same coset of a mixed spaceMJ for |J | = 3. Since the probability of this
event is higher for an AES permutation than for a random one14, one can distinguish the
two cases simply counting the number of pairs that satisfy the previous property. The
idea of our disitinguisher is similar. However, instead of working on single couples, one
works with particular sets S of couples and counts the number of sets for which at least
one couple satisfies the (given) differential trail.

6.1.2 Proof

Proof - 5-round AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 5-round AES. Our 5-round distinguisher is based on the
following property of the previous 4-round distinguisher. Given plaintexts in the same
coset of C0 and for a fixed J ⊆ {0, 1, 2, 3}, each set Si,j(x0,x1),(y0,y1) just defined has the
following property after 4 rounds:

1. for each couple, the two texts after 4-round belong to the same coset ofMI ;

2. for each couple, the two texts after 4-round don’t belong to the same coset ofMI .

In other words, for a given set S(x0,x1),(y0,y1), it is not possible that the two texts of some -
not all - couples belong to the same coset ofMJ after 4-round and others not, while this
can happen for a random permutation. The proof is equivalent to the one given in Sect.
5.1.1 and based on the “super-Sbox” notation.

What is the probability of the two previous events for an AES permutation? Given a
set Si,j(x0,x1),(y0,y1), the probability that the two texts of each couple belong to the same
coset ofMJ after 4-round is approximately 2−30.

Indeed, let the event Eri defined as following.
14As recalled in Sect. 3.2, this probability is approximately equal to 2−22 for the AES case and 2−30

for the random case.
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Definition 9. Let J ⊆ {0, 1, 2, 3} fixed. Given a set S(x0,x1),(y0,y1), we define Eri as the
event that the i-th couple of S(x0,x1),(y0,y1) for i = 1, 2, ..., 217 belong to the same coset of
MJ after r rounds.

For the following, let Eri be the complementary event of Eri . It follows that

Prob(E4
1 ∧ E4

2 ∧ ... ∧ E4
217) = Prob(E4

1 ) · Prob(E4
2 ∧ ... ∧ E4

217 | E4
1 ) =

= Prob(E4
1 ) ≡ p3 = 2−30 − 3 · 2−63 + 2−94,

where p3 is defined as in (6). Indeed, note that Prob(E4
i | E4

1 ) = 1 for each i = 2, ..., 217

since if two ciphertexts of one couple belong (or not) to the same coset ofMJ , then the
ciphertexts of all the other couples have the same property.

Using these initial considerations as starting point, we analyze in detail our proposed
5-round distinguisher.

1st Case. As we have just seen, the two ciphertexts of all the couples of each set belong
to the same coset of a subspaceMI for |I| = 3 after 4-round with probability p3 ' 2−30.
In other words, on average there are 2−30 · n sets S such that the two ciphertexts of all
the couples belong to the same coset of a subspaceMJ for |J | = 3 after 4-round.

Let |J | = 3. Since Prob(R(x)⊕ R(y) ∈ MJ |x⊕ y ∈ MI) = p3,3 ' 2−22 (see (7) for
details) and since each set is composed of 217 different couples, the probability that the
two ciphertexts of at least one couple of S belong to the same coset ofMJ for |J | = 3
after 5 rounds is well approximated by

1−
(
1− p̂3,3

)217

= 1−
(

1− p3 · (1− p3,3)
1− p3

)217

= 2−13 − 526 327 · 2−46 + ...

where p̂3,3 is defined in (8).

2nd Case. In the same way, the two ciphertexts of all the couples of each set don’t
belong to the same coset of a subspace MJ for |J | = 3 after 4-round with probability
1− p3 ' 1− 2−30. In other words, on average there are (1− 2−30) · n sets S such that the
two ciphertexts of all the couples of each set don’t belong to the same coset of a subspace
MJ for |J | = 3 after 4-round.

Let |J | = 3. Since Prob(R(x)⊕ R(y) ∈ MJ |x⊕ y /∈ MI) = p̂3,3 ' 2−30 (see (8) for
details) and since each set is composed of 217 different couples, the probability that the
two ciphertexts of at least one couple of S belong to the same coset ofMJ for |J | = 3
after 5 rounds is well approximated by

1−
(
1− p3,3

)217

= 2−5 − 524 287 · 2−30 + 45 812 722 347 · 2−53 + ...

Final Result. We finally obtain the desired result using the law (or formula) of total
probability

Prob(A) =
∑
i

Prob(A |Bi) · Prob(Bi)

which holds for each event A such that
⋃
iBi is the sample space, i.e. the set of all the

possible outcomes.
Given a set S, the probability that two ciphertexts c1 and c2 of at least one couple
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satisfy the required property (i.e. c1 ⊕ c2 ∈MJ for |J | = 3) is given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

217 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

217 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)217]
+p3 ·

[
1−

(
1− p3,3

)217
]
=

=2−13 − 524287 · 2−46 − 22 370 411 853 · 2−77︸ ︷︷ ︸
≈ 2.604 · 2−44

+...

(13)

for a certain i ∈ {1, ..., 217}. Note that Prob(E5
i ∧ E5

j ) = Prob(E5
i ) × Prob(E5

j ) since the
events E5

i and E5
j are independent for i 6= j.

Proof - Random Permutation

For a random permutation, given a set S defined as before, what is the probability that
two ciphertexts - generated by a random permutation - of at least one couple satisfy
the required property? By simple computation, such event occurs with (approximately)
probability

prand =1−
(
1− p3

)217

= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]217

=
=2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77︸ ︷︷ ︸

≈ 5.333 · 2−44

+... (14)

6.2 Data and Computational Complexity
Before going on, we emphasize again that while a “classical” truncated differential distin-
guisher counts the number of pairs of texts that satisfy a particular differential trail, in our
case we consider the number of sets of texts for which at least one pair satisfies a particular
differential trail. This choice allows to have a difference between the probabilities that the
previous event occurs for a random permutation prand and for 5-round AES pAES .

6.2.1 Data Complexity

Since the difference between the two probabilities is very small, what is the minimum
number of sets S (or equivalently of cosets CI) to guarantee that the distinguisher works
with high probability?

First of all, given a single coset of a column space CI for |I| = 1, the number of different
couples with two generating variables is given by 6 · 216 · 215 · (28 − 1)2 ' 249.574 (see
Eq. (10)), while the number of sets S that one can construct is well approximated by
3 · 215 · (28 − 1)2 ' 232.574.

As we have just said, the difference between the number of sets that satisfy the required
property for the AES case (i.e. nAES) and for the random case (i.e. nrand) is very small
compared to the total number nAES or nrand:

|nAES − nrand|
nAES

' |nAES − nrand|
nrand

� 1.

Thus, our goal is to derive a good approximation for the number of initial cosets of CI that
is sufficient to appreciate this difference with probability prob.

To solve this problem, note that given n sets S of 217 couples defined as before, the
distribution probability of our model is simply described by a binomial distribution. By
definition, a binomial distribution with parameters n and p is the discrete probability
distribution of the number of successes in a sequence of n independent yes/no experiments,

24



each of which yields success with probability p. In our case, given n sets S, each of them
satisfies or not the above property/requirement with a certain probability. Thus, this
model can be described using a binomial distribution. We recall that for a random variable
Z that follows the binomial distribution, that is Z ∼ B(n, p), the mean µ and the variance
σ2 are respectively given by µ = n · p and σ2 = n · p · (1− p).

To derive concrete numbers for our distinguisher, we approximate the binomial dis-
tribution with a normal one. Moreover, we can simply consider the difference of the two
distributions, which is again a normal distribution. That is, given X ∼ N (µ1, σ

2
1) and

Y ∼ N (µ2, σ
2
2), then X − Y ∼ N (µ, σ2) = N(µ1 − µ2, σ

2
1 + σ2

2). Indeed, in order to
distinguish the two cases, note that it is sufficient to guarantee that the number of sets
that satisfy the require property in the random case is higher than for 5-round AES. As a
result, the mean µ and the variance σ2 of the difference between the AES distribution and
the random one are given by:

µ = n · |prand − pAES | σ2 = n ·
[
prand · (1− prand) + pAES · (1− pAES)

]
.

Since the probability density of the normal distribution is f(x | µ, σ2) = 1
σ
√

2π e
− (x−µ)2

2σ2 , it
follows that

prob =
0∫

−∞

1
σ
√

2π
e−

(x−µ)2

2σ2 dx =
−µ/σ∫
−∞

1√
2π

e−
x2
2 dx = 1

2

[
1 + erf

(
−µ
σ
√

2

)]
,

where erf(x) is the error function, defined as the probability of a random variable with
normal distribution of mean 0 and variance 1/2 falling in the range [−x, x]. We emphasize
that the integral is computed in the range (−∞, 0] since we are interested in the case in
which the number of sets with the required property in the AES case is lower than in the
random case.

In order to have a probability of success higher than prob, the number of sets n has to
satisfy:

n >
2 · [prand · (1− prand) + pAES · (1− pAES)]

(prand − pAES)2 ·
[
erfinv

(
2 · prob− 1

)]2
.

where erfinv(x) is the inverse error function. For the case prand, pAES � 1, a good
approximation of n is given by15

n >
4 ·max(prand, pAES)

(prand − pAES)2 ·
[
erfinv

(
2 · prob− 1

)]2
. (15)

We emphasize that formula given in (15) is equivalent to the one proposed by Matsui
in [Mat94] for the linear cryptanalysis case, and so it has been rigorously studied in the
literature (e.g. in [BJV04], [Sel08]). Without going into the details, in linear cryptanalysis
one has to construct “good” linear equations relating plaintext, ciphertext and key bits. In
order to find the secret key, the idea is to exploit the fact that such linear approximation
holds with probability 1/2 for a wrong key, while they hold with probability 1/2± ε for the
right key. Exploiting this (usually small) difference between the two probabilities, one can
discover the secret key. Our case is completely equivalent, since the probability pAES of
the AES case is related to the probability prand of the random case by pAES = prand ± ε,
for a small difference ε.

Data Cost. For a probability of success of approximately 95%, since |pAES − prand| '
2−41.01 and pAES ' prand ' 2−13, it follows that n must satisfy n > 271.243. Since a

15Observe: prand · (1− prand) + pAES · (1− pAES) < prand + pAES < 2 ·max(prand, pAES).
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single coset of CI for |I| = 1 contains approximately 232.574 different sets S, one needs
approximately 271.243 · 2−32.574 ' 238.669 different initial cosets of CI , that is approximately
238.669 · 232 ' 270.67 chosen plaintexts.

For completeness, we mention that a modified version of this distinguisher requires
lower data (and computational) cost(s). In particular, in App. C.2 we show in detail
that a similar distinguisher can be set up using only approximately 252 chosen plaintexts
in the same initial coset of CI with |I| = 2. Our choice to present a “less competitive”
distinguisher is due to the fact that it will be the starting point for a key-recovery attack
on 6-round (more details on this fact are given in the next section).

6.2.2 Computational Complexity

Here we discuss the computational cost for the case of cosets of CI with |I| = 1. As for
the 4-round distinguisher, a first possibility is to construct all the couples, to divide them
in sets S defined above, and to count the number of sets that satisfy the above property
working on each set separately. Since just the cost to construct all the couples given 238.67

cosets is approximately of 238.67 · 231 · (232 − 1) ' 2101.67 table look-ups, we present a way
to implement the distinguisher in a more efficient way, similar to the one proposed for the
4-round distinguisher of Sect. 5. Before present the details, we highlight that the same
analysis works also for modified version of the distinguisher proposed in App. C.2. This
modified version requires only 252 chosen plaintexts and the computational cost is well
approximated by 271.5 table look-ups or equivalently 264.9 five-round encryptions.

Let J ⊆ {0, 1, 2, 3} with |J | = 3. As before, the idea is to re-order the ciphertexts with
respect to a partial order v defined in the following - Def. 10. For each coset of C0, given
ordered (plaintexts, ciphertexts) and working only on consecutive texts, the idea is to
count the number of collisions for each set Si,j(x0,x1),(y0,y1). In more details, for each coset
of C0 it is possible to construct N = 3 · 215 · (28 − 1)2 different sets Si,j(x0,x1),(y0,y1) for each
i, j ∈ {0, 1, 2, 3} with i 6= j and for each x0 6= y0 and x1 6= y1. Thus, the idea is to consider
a vector A[0, ..., N − 1] such that the i-th component of such vector contains the number
of different couples of a particular set S for which the two ciphertexts belong to the same
coset ofMJ for a certain J with |J | = 3. All the details are given in the following, while
the pseudo-code is given in Algorithm 3.

To set up the distinguisher, we must define the partial order v. The idea is to set up
a partial order that involve both the plaintexts and the ciphertexts. The goal is to have
the following order: if ciphertexts belong to the same coset ofMJ and the corresponding
plaintexts belong to the same coset of C0 ∩ DI for a certain |I| = 2 (which is a necessary
condition to belong to a set S), then they must be consecutive. The following partial order
v - for simplicity, we define v over the space IDJ (equivalent toMJ without the final
MixColumns) - satisfies these requests.

Definition 10. Consider a subspace IDI for I ⊆ {0, 1, 2, 3} for |I| = 3 s.t. l = {0, 1, 2, 3}\
I. Given two pairs of plaintexts/ciphertexts (p1, c1) and (p2, c2) s.t. p1 ⊕ p2 ∈ Ci for a
certain i ∈ {0, 1, 2, 3}, we say that

(p1, c1) v (p2, c2)

if the following conditions hold:

• there exists j ∈ {0, 1, 2, 3} s.t. c1
h,l−h = c2

h,l−h for all h < j and c1
j,l−j < c2

j,l−j ;

• if c1
i,l−i = c2

i,l−i for each i ∈ {0, 1, 2, 3} (that is, c1 ⊕ c2 ∈ IDI) and p1 ⊕ p2 /∈ DK for
each |K| = 2 (that is, p1 and p2 don’t belong to the same set S), then there exists
j ∈ {0, 1, 2, 3} s.t. p1

h,i = p2
h,i for all h < j and p1

j,i < p2
j,i;
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Data: 232 plaintexts in 1 coset of C0 (e.g. C0 ⊕ a) and corresponding ciphertexts
after 5 rounds

Result: Number of sets S with at least one couple of plaintexts for which the two
ciphertexts belong to the same coset ofMJ for a certain J with |J | = 3

Let A[0, ..., N − 1] be an array initialized to zero, where N = 3 · 215 · (28 − 1)2// A[i]
refers to the i-th set S
for each j from 0 to 3 let J = {0, 1, 2, 3} \ j (|J | = 3) do

let (pi, ci) for i = 0, ..., 232 − 1 be the (plaintexts, ciphertexts) in C0 ⊕ a;
re-order this set of elements w.r.t. the partial order v defined in Def. 10 (see
also Algorithm 4) s.t. (pi, ci) v (pi+1, ci+1) for each i; // v depends on J
i← 0;
while i < 232 − 1 do

j ← i;
while cj ⊕ cj+1 ∈MJ and pj ⊕ pj+1 ∈ DI for a certain |I| = 2 (pj and
pj+1 have two equal generating variables) // necessary condition s.t.
pj ⊕ pj+1 ∈ Sx,w for x,w ∈ {0, 1, 2, 3} with x 6= w do
j ← j + 1;

end
for each k from i to j do

for each l from k + 1 to j do
A[ϕ(pk, pl)]← A[ϕ(pk, pl)] + 1; // ϕ(pk, pl) defined in (16)
returns the index of the set Sx,w s.t. pk ⊕ pl ∈ Sx,w

end
end
i← j + 1;

end
end
n← 0;
for each i from 0 to N − 1 do

if A[i] 6= 0 then
n← n+ 1;

end
end
return n.

Algorithm 3: Given (plaintexts, ciphertexts) pairs in the same coset of C0, this algorithm
counts the number of sets S for which two ciphertext of at least one couple belong in the
same coset ofMJ for |J | = 3.

• if c1
i,l−i = c2

i,l−i for each i ∈ {0, 1, 2, 3} (that is, c1 ⊕ c2 ∈ IDI) and p1 ⊕ p2 ∈ DK for
a certain |K| = 2 (that is, p1 and p2 belong to the same set S), then c1 ≤ c2 with
respect to the partial order ≤ defined in Def. 6.

A pseudo-code that implements this partial order v is provided in Algorithm 4.

As second thing, we must define a function ϕ that returns a component of the vector
A[0, ..., N − 1] given a set Si,j(x0,x1),(y0,y1) (where i < j). First of all, assume that x0 < y0

and x1 < y1 (note that the set S contains all plaintexts given by different combina-
tions of these four variables, so this condition is always fulfilled). Thus, the function
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Data: Two pairs of texts (p1, c1) 6= (p2, c2) where p1 ⊕ p2 ∈ C0
Result: (p1, c1) v (p2, c2) or (p2, c2) v (p1, c1) w.r.t. ID{0,1,2,3}\l
for each j from 0 to 3 do

if c1
j,l−j < c2

j,l−j then
return (p1, c1) v (p2, c2)

end
if c2

j,l−j < c1
j,l−j then

return (p2, c2) v (p1, c1)
end

end
if p1 ⊕ p2 /∈ DJ for each J s.t. |J | = 2 then

for each j from 0 to 3 do
if p1

j,0 < p2
j,0 then

return (p1, c1) v (p2, c2)
end
if p2

j,0 < p1
j,0 then

return (p2, c2) v (p1, c1)
end

end
end
if c1 ≤ c2 w.r.t. ≤ defined in Def. 6 then

return (p1, c1) v (p2, c2)
end
else

return (p2, c2) v (p1, c1)
end

Algorithm 4:Given two pairs of texts (p1, c1) 6= (p2, c2), this algorithm returns (p1, c1) v
(p2, c2) or (p2, c2) v (p1, c1), where v is defined in Def. 10.

ϕ(·) : F28 × F28 × F28 × F28 × {0, 1, 2, 3} × {0, 1, 2, 3} → N is defined as16

ϕ(x0, x1, y0, y1, i, j) = 1 065 369 600φ(i,j) × Φ(x0, x1, y0, y1) (16)

where 1 065 369 600 ≡ 214 · (28− 1)2, where φ(0, 1) = 0, φ(0, 2) = 1, φ(0, 3) = 2, φ(1, 2) = 3,
φ(1, 3) = 4, φ(2, 3) = 5 and

Φ(x0, x1, y0, y1) =
[
(y0−x0− 1) + 511 · x0 − x2

0
2

]
+32 640 ·

[
(y1−x1− 1) + 511 · x1 − x2

1
2

]
where each value of F28 is replaced by its corresponding number in {0, 1, ..., 255}.

Using Algorithm 3 to implement the distinguisher, the computational cost is well
approximated by

4·
[
232 · log(232) (re-ordering process) +

(
232 + 217.585) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+ 1

218 · 6 · 2
16 · (28 − 1)2 (final “for”) ' 239.05

16Note that since x0 < y0 holds, it follows that x0 can not be equal to 0xFF . The number of different
pairs (x0, y0) that satisfy this condition is

∑255
i=0 i = 32 640. Indeed, if x0 = 0x0 then y0 can take 255

different values (all values expect 0), if x0 = 0x1 then y0 can take 254 different values (all values expect
0x0, 0x1) and so. Moreover, for a given z 6= 0x00, the number of different pairs (x, y) such that x < z and
y > x is equal to

∑255
i=256−z

i = 511·z−z2

2 .
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table look-ups for each initial coset, where
(232

2
)
· 2−32 · (6 · 2−16) ' 217.585 is the average

number of couples such that the two ciphertexts belong to the same coset ofMJ for J
fixed with |J | = 3 and the two plaintexts belong to the same coset of C0 ∩DI for a certain
I with |I| = 2 (necessary condition to belong to S previously defined). Since the attacker
must use 238.66 different initial cosets to have a probability of success higher than 95%, the
total computational cost is of 239.05 · 238.66 = 277.7 table look-ups, or equivalently 271.06

five-round encryptions.

6.3 Practical Verification on small-scale AES
In order to have a practical verification of the proposed distinguisher (and of the following
key-recovery attack), we have practically verified the probabilities pAES and prand given
above17. In particular, we verified them using a small-scale AES, as proposed in [CMR05].
We emphasize that our verification on the small-scale variant of AES is strong evidence
for it to hold for the real AES, since the strategy used to theoretically compute such
probabilities is independent of the fact that each word of AES is of 4 or 8 bits.

To compare the practical values with the theoretical ones, we list the theoretical
probabilities pAES and prand for the small-scale case. First of all, for small scale AES
the probabilities p3 and p3,3 are respectively equal to p3 = 2−14 − 3 · 2−31 + 2−46 and
p3,3 = 2−10 − 3 · 2−23 + 2−34.

W.l.o.g. we used cosets of C0 to practically test the two probabilities. Using the
previous procedure and formula, the (approximately) probabilities that a set S satisfies
the required property for 5-round AES and the random case are respectively

pAES = 2−5 − 2 047 · 2−22 − 221 773 · 2−37︸ ︷︷ ︸
≈ 3.384 · 2−21

+...

prand = 2−5 − 2 047 · 2−22 + 698 027 · 2−37︸ ︷︷ ︸
≈ 10.651 · 2−21

+...

As a result, using formula (15) for prand ' pAES ' 2−5 and |prand − pAES | ' 2−17.19,
it follows that n ≥ 231.6 different sets S are sufficient to set up the distinguisher with
probability higher than 95%.

Note that for small-scale AES, a single coset of C0 contains 216 (plaintexts, ciphertexts)
pairs, or approximately 215 · (216 − 1) ' 231 different couples. Since the number of couples
with two different generating variables is given by 6 · 28 · 27 · (24 − 1)2 ' 225.4 (also tested
by computer test), it is possible to construct 3 · 27 · (24 − 1)2 = 86400 ' 216.4 sets S of 29

couples. As a result, it follows that 231.6 · 2−16.4 = 215.2 different initial cosets of C0 must
be used, for a cost of 247.2 chosen plaintexts.

For our tests, we used 216 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is not
fixed). For each coset, we have used Algorithm 3 to count the number of sets S that satisfy
the required property (i.e. the number of sets for which two ciphertexts of at least one
couple are in the same coset ofMJ for certain J with |J | = 3). As a result, for each initial
coset C0 the (average) theoretical number of sets S that satisfy the required property for
the random case - given by nTrand = 86 400 · prand - and the (average) practical one found
in our experiments - denoted by nPrand - are respectively:

nTrand ' 2 658.27 nPrand ' 2 658.23

Similarly, the (average) theoretical number of sets S that satisfy the required property for
5-round AES - given by nTAES = 86 400 · pAES - and the (average) practical one found in

17The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/
Distinguisher_5RoundAES
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Figure 3: Probabilistic Distributions of the Number of Sets S that satisfy the required
property for 5-round AES and for a Random permutation - using 20 000 initial cosets.

our experiments - denoted by nPAES - are respectively:

nTAES ' 2 657.69 nPAES ' 2 657.65

In more details, the total numbers of sets S - for all the 216 different initial cosets of C0
- that satisfy the required property for 5-round AES and for a random permutation are
given by

nTrand ' 174 212 383 nTAES ' 174 174 372
nPrand ' 174 209 761 nPAES ' 174 171 751

Note that the numbers of sets found in our experiments are close to the theoretical ones,
and that the average number of sets for AES case is lower than for the random one, as
predicted.

For completeness, the probabilistic distributions of the number of collisions is given in
Fig. 2 for the AES case and in Fig. 3 for the random case. In both cases, the practical
distribution is obtained using 20 000 ≡ 214.3 initial cosets. It is possible to observe that
e.g. the theoretical variance matches the practical one in both cases.

7 Key-Recovery Attack on 6 rounds of AES-128
Using the previous distinguisher on 5-round AES (based on a property which is independent
of the secret key) as starting point, we propose the first key-recovery attack on 6 rounds of
AES that exploits a 5-round secret-key distinguisher. The strategy of the attack is similar
to the one largely exploited by linear and differential cryptanalysis.
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For the distinguisher just presented, the idea is to consider plaintexts in cosets of
CI for I ⊆ {0, 1, 2, 3} with |I| = 1, construct all the possible couples of two (plaintexts,
ciphertexts) pairs with two equal generating variables, divide them into sets S of 217

couples and count the number of sets for which at least one couple of ciphertexts belong to
the same coset ofMJ for |J | = 3. To set up the key-recovery attack, the idea is simply to
start with cosets of DI for I ∈ {0, 1, 2, 3}, and to repeat the previous procedure for each
guessed combination of the I-th diagonal of the secret key. As for the key-recovery on
5-round AES proposed in Sect. 5.3, these guessed 4-bytes of the key influence the way in
which the couples of texts are divided into the sets S. As a consequence, if the 4 guessed
bytes are wrong (i.e. different from the right ones), the couples are divided into sets S in
a random way.

As we are going to prove, for a wrong guessed key the probability that a set S satisfies
the required property (that is, two ciphertexts of at least one couple belong to the same
coset ofMJ) is (approximately) equal to the probability of the random case prand, which
is higher than the probability pAES for the case of the right key. As a result, the number
of sets S for which two ciphertexts of at least one couple belong to the same coset ofMJ

for |J | = 3 is minimum for the right key. This allows to recover one diagonal of the secret
key. In the following we present all the details.

Key-Recovery Attack - Details

Consider texts in a coset of CI which is obtained by 1-round encryption of a coset of DI
with respect to a (partially) guessed key. Here we theoretically compute the probability
that a set S satisfies the required property (that is, two ciphertexts of at least one couple
belong to the same coset of MJ) when the guessed key is not the right one. In other
words, we are going to show that the behavior in the case of a wrongly guessed key (for
the following denoted by “AES with a wrong key”) is similar to the one of a random
permutation.

Observe that the main difference between “AES with a wrong key” and a random
permutation is given by the possibility in the first case to study the distribution of the
couples after each round - note that for a random permutation it is meaningless to consider
the distribution of the texts after (e.g.) one round. In particular, a coset of a diagonal
space DI is always mapped into a coset of a column space CI after one round independently
of the key. On the other hand, we stress that the way in which the couples are distributed
in the sets S depends on the guessed key.

Consider a key-recovery attack on 6-round AES

DI ⊕ a
R(·)−−−−−−−→

KeyGuess
5-round Secret-Key Distinguisher of Sect. 6︸ ︷︷ ︸⋃

(x,y)
Si,jx,y⊆CI⊕b

R(·)−−−−→
prob. 1

MI⊕c
R(·)−−→DJ⊕a′

R2(·)−−−−→
prob. 1

MJ⊕c′
R(·)−−→MK⊕c′′

and focus on the middle round MI ⊕ c
R(·)−−→ DJ ⊕ a′ for |I| = 1 and |J | = 3. Assume

the guessed key is wrong, and consider one set Si,j(x0,x1),(y0,y1). For this set, the number of
couples that belong to the same coset ofMJ after four rounds can take any possible value
between 0 and 217 (that is, 0, 1, 2, ... or 217). Indeed, since the couples are divided in sets
Si,j(x0,x1),(y0,y1) in a random way, it is not possible to guarantee that the number of couples
that belong to the same coset ofMJ after 4 rounds is only 0 or 217 (as for “AES with the
right key”).

Using the same calculation as before and for a wrongly guessed key, given a set
Si,j(x0,x1),(y0,y1), the probability pWrongKey

AES that two texts of at least one couple belong to
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the same coset ofMK for a certain |K| = 3 after 6 rounds is given by

pWrongKey
AES =

217∑
n=0

(
217

n

)
· pn3 · (1− p3)217−n ·

[
1−

(
1− p3,3

)n
·
(

1− p3 · (1− p3,3)
1− p3

)217−n]
,

which is well approximated by

pWrongKey
AES = 2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77 + ...

Note that this probability is similar - but not exactly equal - to the one of the random
case (see (14) for details), while we remember that the probability for “AES with the right
key” is

pAES = 2−13 − 524 287 · 2−46 − 22 370 411 853 · 2−77 + ...

where the difference between these two probabilities is approximately |pWrongKey
AES −pAES | '

2−41.011.

Data and Computational Costs

Data Cost. Assume the goal is to discover the I-th diagonal of the key with proba-
bility higher than 95%. Equivalently, the goal is to guarantee that the number of sets
Si,j(x0,x1),(y0,y1) that satisfy the required property is the lowest one for the right key with
probability higher than 95%.

To compute the data cost, the idea is to use the same analysis proposed for the 5-round
distinguisher in Sect. 6.2. In particular, since there are 232 candidates for each diagonal
of the keys, one has to guarantee that the number of sets Si,j(x0,x1),(y0,y1) that satisfy the
previous required property is the lowest one for the right key with probability higher than
(0.95)2−32 (note that the 232 tests - one for each candidate - are all independent).

Using formula (15), one needs approximately 273.343 different sets Si,j(x0,x1),(y0,y1) for each
candidate of the i-th diagonal of the key. Since it is possible to construct approximately
3 ·215 · (28−1)2 ≈ 232.574 different sets for each initial coset of DI , one needs approximately
273.343 · 2−32.573 = 240.77 different initial cosets of DI to discover the I-th diagonal of
the key with probability higher than 95%, for a total cost of 240.77 · 232 = 272.77 chosen
plaintexts.

When one diagonal of the key is found, due to the computational cost of this step we
propose to find the entire key (i.e. the other three diagonals) using a brute force attack.

Computational Cost. In order to implement the attack, the idea is to use Algorithm
3 for each possible guessed key in order to count the number of sets S that satisfy the
required property. (i.e. two ciphertexts of at least one couple belong to the same coset of
MJ for a certain J with |J | = 3). Since this number of sets is higher for a wrong key than
for the right one, it is possible to recover the right candidate of the key.

An implementation of the attack is described by the pseudo-code given in Algorithm 5.
To compute the computational cost, it is sufficient to re-consider the cost of the 5-round
distinguisher. Given a coset of C0, the cost to count the number of sets S with the
required property is 239.1 table look-ups. This step is repeated for each one of the 232

(partially) guessed key and for each one of the 240.77 initial cosets of D0, for a cost of
239.05 · 240.77 · 232 = 2111.82 table look-ups. Moreover, one needs to partially compute
1-round encryption for each possible guessed key and for each initial coset, for a cost of
4 · 232 · 240.77 · 232 = 2106.77 S-Box look-ups. As a result, the total cost to find one diagonal
of the key is well approximated by 2111.82 table look-ups, or equivalently 2104.92 six-round
encryptions. The total cost to find the entire key (using brute force on the last three
diagonal) is of 2104.92 + 296 = 2104.93 six-round encryptions.
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Data: 240.77 cosets of D0 (e.g. D0 ⊕ ai for ai ∈ D⊥0 ) and corresponding ciphertexts
after 6 rounds

Result: 4 bytes of the secret key - (k0,0, k1,1, k2,2, k3,3)
Let N [0, ..., 232 − 1] be an array initialized to zero; // N [k] denotes the number
of sets S that satisfy the required property for the key k

/* 1st Step : for each guessed key, count the number of sets S with
the required property */

for each k̂ from 1 to 232 − 1 do
for each coset D0 ⊕ ai do

(partially) encrypt the 232 plaintexts w.r.t. the guessed key k̂;
use Algorithm 3 to count the number n of sets S that satisfy the required
property;
N [ψ(k̂)]← N [ψ(k̂)] + n; // ψ(k0, k1, k2, k3) = k0 + 28 · k1 + 216 · k2 + 224 · k3

end
end
/* 2nd Step : look for the key for which number of sets S is minimum

*/
min← N [0]; // minimum number of sets
δ ← (0x00, 0x00, 0x00, 0x00);
for each k̂ from 1 to 232 − 1 do

if N [ϕ(k̂)] < min then
min← N [ϕ(k̂)];
δ ← k̂ ≡ (k0,0, k1,1, k2,2, k3,3);

end
end
return δ - candidate of (k0,0, k1,1, k2,2, k3,3)

Algorithm 5: 6-round key-recovery attack on AES exploiting a 5-round secret-key
distinguisher. The goal of the attack is to find 4 bytes of the secret key. The remaining
bytes (the entire key) are found by brute force.

As last thing, in App. C.3 we explain why it is not possible to set up the key-recovery
attack using cosets of DI with |I| = 2 instead of |I| = 1 (that is, why it is not possible to
exploit the modified version of the previous distinguisher proposed in App. C.3). Without
going into the details, this is due to the computational cost, since this modified attack
requires approximately 288.1 chosen plaintexts (in 224.1 different initial cosets of DI with
|I| = 2) and it has a total computational cost of approximately 2176.2 six-round encryptions,
which is much higher than the cost of a brute force attack.

8 Other Secret-Key Distinguishers for 5-round AES
To conclude, we present other possible properties that are independent of the secret key
and that can be exploited to set up secret-key distinguishers for 5-round AES. Given sets
of (plaintexts, ciphertexts) pairs - defined similar to the previous ones, it is possible to
exploit the following properties:

• consider the number of sets with the following property: the number of couples for
which the two ciphertexts belong to the same coset of a particular subspaceM is
higher than a certain number Z ∈ N; if this number Z and the sets are properly
defined, then this number of sets is higher for 5-round AES than for a random
permutation;
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• if the sets are properly defined, for 5-round AES there exists at least one set for
which the two ciphertexts of each couple in that set don’t belong to the same coset of
a particular subspaceM; in contrast, for a random permutation, for each set there
exists at least one couple for which the two ciphertexts belong to the same coset of a
particular subspaceM.

In the following, we give all the details and a theoretical explanation of the previous
properties. Moreover, we highlight that both these two distinguishers work both in the
encryption (i.e. using chosen plaintexts) and in the decryption direction (i.e. using chosen
ciphertexts)

8.1 Sets with “High Number” of Collisions - Secret-Key Distinguisher
The first distinguisher that we are going to present exploits the following property:
• consider the number of sets Z with the following property: the number of couples
for which the two ciphertexts belong to the same coset of a particular subspace
M is higher than a certain number Z ∈ N; if this number Z and the sets Z are
properly defined, then this number of sets is higher for 5-round AES than for a
random permutation.

As first thing, we define the sets Z(x,y) - where x = (x0, x1, ..., x7) and y = (y0, y1, ..., y7)
such that (x0, x1, x2, x3) 6= (y0, y1, y2, y3) and (x4, x5, x6, x7) 6= (y4, y5, y6, y7) - that we
are going to use

Z(x,y) ≡
{

(p, q) ∈ F4×4
28 × F4×4

28

∣∣ p = a⊕


x0 C E x7
x4 x1 F G
A x5 x2 H
B D x6 x3

 q = a⊕


y0 C E y7
y4 y1 F G
A y5 y2 H
B D y6 y3



or p = a⊕


x0 C E y7
y4 x1 F G
A y5 x2 H
B D y6 x3

 q = a⊕


y0 C E x7
x4 y1 F G
A x5 y2 H
B D x6 y3

 ∀A,B,C, ...,H ∈ F28

}

for a fixed a ∈ F4×4
28 . Each set contains 265 different couples of two (plaintext, ciphertext)

pairs, and it is possible to construct approximately 1
4 · (2

32 · (232 − 1))2 = 2126 different
sets.

To set up the distinguisher, consider (at least) 247 different sets Z (each one of 265

different couples), and count the number of sets for which the number of different couples
of ciphertexts that belong to the same coset of MI for a certain I with |I| = 2 is higher
than a given number Z = 3 · 218 = 786 432. Independently of the secret key, of the details
of the S-Box and of the MixColumns matrix, it is possible to prove that
• for 5-round AES, the number of sets Z with the required property is on average
higher than 216;

• for a random permutation, the number of sets Z with the required property is on
average lower than 211.415.

This allows to distinguish the two cases. All details are given in the following.

8.1.1 Details and Proof

For the following, we recall the Chebyshev Inequality

Prob(|X − µ| ≥ k · σ) ≤ 1
k2 ∀k > 0

where X is a random variable with mean µ and variance σ2.
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Proof - AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 5-round AES. Our 5-round distinguisher is based on the
following property of the 4-round distinguisher initially proposed. Consider a set Z just
defined. Due to the “super-Sbox” explanation given in Sect. 5.1.1, after 4-round encryption,
only two events can happen:

1. for each (p, q) ∈ Z, then R4(p)⊕R4(q) ∈MJ for a certain J ⊆ {0, 1, 2, 3};

2. for each (p, q) ∈ Z, then R4(p)⊕R4(q) /∈MJ for all J ⊆ {0, 1, 2, 3}.

Observe that p⊕q ∈ D0,3 by definition, that is R2(p)⊕R2(q) ∈M0,3. Thus, R4(p)⊕R4(q) ∈
MJ can happen if and only if |J | = 3.

Moreover, as we have seen in Sect. 6.1.2, if |J | = 3 then the first case occurs with ap-
proximately probability 2−30, while the second one occurs with approximately probability
1− 2−30.

Proof. In order to obtain the desired result, it is sufficient to consider the first event,
that is R4(p) ⊕ R4(q) ∈ MJ for all (p, q) ∈ Z and for |J | = 3. Given 247 initial sets Z,
the average number of sets that satisfy this property is 247 · 2−30 = 217.

Given a set as before, what are the number of couples of ciphertexts that belong to
the same coset ofMI for |I| = 2 after 5-round? Since Prob(R(x)⊕R(y) ∈MI |x⊕ y ∈
MJ) = p2,3 ' 3 · 2−47 (see (7) for details) and since each set is composed of 265 different
couples, the average number of couples of ciphertexts that belong to the same coset ofMI

after 5-round for |I| = 2 is 265 · 3 · 2−47 = 3 · 218 (which is equal to the number Z).
As we are going to show, on average half of the previous sets satisfy the required

property (that is, that the number of couples of ciphertexts that belong toMI is higher
than Z). As a result, the average number18 of sets Z that satisfy the required property is
(higher than) 216.

Proof - Half of the Sets Z satisfy the Required Property. To prove the previous result,
we must show that on average half of the previous sets Z satisfy the required property.
To do this, note that the probabilistic distribution of the number of different pairs of
ciphertexts of a set Z that belong to the same coset ofMI is well described by a binomial
distribution B(n, p). Indeed, as described in details in Sect. 6.2, by definition a binomial
distribution with parameters n and p is the discrete probability distribution of the number
of successes in a sequence of n independent yes/no experiments, each of which yields
success with probability p. In our case, given a set Z with n pairs, each of them satisfies
or not the above property (the two ciphertexts belong to the same coset ofMI) with a
certain probability. If we limit to consider the sets Z for which R4(s)⊕R4(t) ∈MJ for
all (p, q) ∈ Z and for |J | = 3, then the mean value is given by µ = n · p2,3 = 3 · 218 and
the variance is given by σ2 = n · p2,3 · (1− p2,3) = 3 · 218.

If the previous distribution is symmetric with respect to the mean value, given a set Z,
the number of pairs for which the two ciphertexts are in the same coset ofMI is higher
than µ = 3 · 218 = Z with probability 50%. Thus, it is sufficient to show that the previous
distribution is (almost) symmetric with respect to the mean to get the desired result. A
parameter that measures the asymmetry of a probabilistic distribution is the skew19, where

18Note that this is a lower bound, since we are considering only the sets Z s.t. R4(s)⊕R4(t) ∈MJ for
all (p, q) ∈ Z and for |J | = 3.

19The skewness γ of a random variable X is defined as

γ = E

[(
X − µ
σ

)3
]

=
E
[
(X − µ)3

]
(E [(X − µ)2])3/2
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the skewness is zero if and only if the distribution is symmetric. For the particular case of
a binomial distribution B(n, p), the skewness is given by

γ = 1− 2 · p√
n · p · (1− p)

.

Since in our case n = 265 and p = 3 ·2−47, it follows that the skewness is well approximated
by γ ' 2−9.8 ' 0.001128, which implies that the distribution is almost symmetric with
respect to the mean.

Proof - Random Permutation

As second thing, we prove the previous result for the case of a random permutation. Since
Prob(x ∈MI) = p2 ' 3 · 2−63 for |I| = 2, given a set of 247 pairs, the number of couples
that belong to the same coset ofMI for |I| = 2 is on average 3 · 2−63 · 265 = 12.

What is the probability that the previous number is higher than Z = 3·218? To compute
this probability, we exploit (1) the Chebyshev Inequality and (2) the fact that probabilistic
distribution of the number of collisions of each set is well described by a binomial distribution
X ∼ B(µ, σ2) with mean µ = 265 · p2 = 12 and variance σ2 = 265 · p2 · (1− p2) = 12. Thus,
using the Chebyshev Inequality, it follows that

Prob(X ≥ Z = 3 · 218) = Prob(X − µ ≥ Z − µ) ≤ Prob(|X − µ| ≥ Z − µ) ≤ σ2

(Z − µ)2

where Z − µ > 0. It follows that the previous event occurs with probability less than
12/(3 · 218 − 12)2 ' 2−35.585.

As a result, for a random permutation, the number of set Z with the required property
(i.e. for which the number of couples of ciphertexts that belong to the same coset ofMI

is higher than Z = 3 · 218) is on average less than 247 · 2−35.585 = 211.415.

8.1.2 Data and Computational Costs

In order to set up the distinguisher, one needs at least 247 different sets Z, each one of 265

different couples of two (plaintext, ciphertext) pairs. Given a set of 289 plaintexts of the
form 

A A A C
A cccaaaaa A A
A ccccaaaa C A
A A C C


where cccaaaaa denotes a byte with 5 active bits and 3 constant bits (similar for ccccaaaa),
then it is possible to construct 1

4 · (2
13 · (213 − 1)) · (212 · (212 − 1)) = 248 sets Z defined as

before. As a result, 289 chosen plaintexts are (largely) sufficient to set up the distinguisher.
What about the computational cost? The idea is to use Algorithm 3 as described

in Sect. 6.2 to implement the distinguisher, where the partial order v defined in Def.
10 can be simply adapted for this case. It follows that the computational cost is well
approximated by

6 ·
[
289 · log 289 +

(
289 + 249)] + 248 ' 298.1 table look-ups

where
(289

2
)
·2−64 ·2−64 = 249 is the average number of couples such that the two ciphertexts

belong to the same coset ofMJ for a fixed J with |J | = 2 and the two plaintexts are in
the same coset of D0,3 (by definition of Z). Equivalently, the total computational cost is
well approximated by 291.43 five-round encryptions.
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8.2 Impossible Structural Differential - Secret-Key Distinguisher
The first distinguisher that we are going to present exploits the following property:

• if the sets Q are properly defined, for 5-round AES there exists at least one set for
which the two ciphertexts of each couple in that set don’t belong to the same coset of
a particular subspaceM; in contrast, for a random permutation, for each set there
exists at least one couple for which the two ciphertexts belong to the same coset of a
particular subspaceM.

As first thing, we define the setsQ(x,y) - where x = (x0, x1, ..., x7) and y = (y0, y1, ..., y7)
such that xi 6= yi for each i - that we are going to use. Such set is similar to the set Z
previously defined, with the only difference that in this case we consider all the possible
different combinations of these 16 variables. That is

Q(x,y) ≡
{

(p, q) ∈ F4×4
28 × F4×4

28

∣∣ p = a⊕


x0 0 C x7
x4 x1 0 0
A x5 x2 0
0 B x6 x3

 q = a⊕


y0 0 C y7
y4 y1 0 0
A y5 y2 0
0 B y6 y3



or p = a⊕


y0 0 C x7
x4 x1 0 0
A x5 x2 0
0 B x6 x3

 q = a⊕


x0 0 C y7
y4 y1 0 0
A y5 y2 0
0 B y6 y3

 or ... ∀A,B,C ∈ F28

}

As a result, since there are 224 different possible values of A,B,C and since it is possible to
consider 215 different combinations of x and y, each set Q(x,y) is composed of 224 ·215 = 239

different couples of two (plaintext, ciphertext) pairs. We emphasize that with respect to
the previous set Z, here we consider all the possible combinations of the 16 variables, that
is we don’t limit to consider the combinations of the two diagonals as before. Moreover, it
is possible to construct approximately 1

215 · 263 · (28 − 1)8 ' 2111.954 different sets Q(x,y)
just defined.

To set up the distinguisher, consider (at least) 3 · 296 different sets Q, each one of 239

different couples of two (plaintext, ciphertext) pairs, and check if there exists at least one
set Q for which the two ciphertexts of each couple don’t belong to the same coset ofMI

for |I| = 3 after 5-round. Independently of the secret key, of the details of the S-Box and
of the MixColumns matrix, it is possible to prove that

• for 5-round AES, there exists at least one set Q that satisfy the previous property
with approximately probability 99.9995%;

• for a random permutation, for each set Q there exists at least one couple for which
the two ciphertexts belong to the same coset ofMI for |I| = 3 with probability close
to 1.

This allows to distinguish the two cases. In the following we present all the details.
Before going on, note that this distinguisher on 5 rounds has something in common

with the 4-round distinguisher based on impossible differential trails first proposed by
Biham and Keller in [BK01], in the same way in which the 5-round distinguisher just
presented in Sect. 6 has something in common with the 3-round distinguisher based on
the truncated differential cryptanalysis. For an impossible differential trail, one exploits
the fact that given two plaintexts in the same coset of DI , then they don’t belong to the
same coset ofMJ after four rounds for each I, J ∈ {0, 1, 2, 3} with |I|+ |J | ≤ 4 (see Prop.
1), while this happens with a probability different from zero for a random permutation.
Here we use the same technique, but working on sets of pairs of texts and not on single
pairs of texts independently of the others.
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8.2.1 Details and Proof

Proof - AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 5-round AES. Our 5-round distinguisher is based on the
following property of the 4-round distinguisher initially proposed. Consider a set Q just
defined. Using an explanation similar to the one given in Sect. 5.1.1, after 1-round
encryption, only two events can happen:

1. for each (p, q) ∈ Q, then R(p)⊕R(q) ∈ DJ for a certain J ⊆ {0, 1, 2, 3};

2. for each (p, q) ∈ Q, then R(p)⊕R(q) /∈ DJ for all J ⊆ {0, 1, 2, 3}.

First of all, observe that p ⊕ q /∈ CI for each I s.t. |I| ≤ 3, by definition. Since
R(p)⊕R(q) /∈MI for each I s.t. |I| ≤ 3, the event R(p)⊕R(q) ∈ DJ can occur for each
|J | ≥ 1.

To prove the previous result, the idea is to use the same strategy based on the super-Sbox
proposed in Sect. 5.1.1. To do this, note that

R(p)⊕R(q) ∈ DJ if and only if S-Box(p)⊕ S-Box(q) ∈ WJ

where WJ = SR−1 ◦MC−1(DJ) (as defined in (12)). Since the S-Box(·) works on each
byte independently of the others and since the XOR sum is commutative, it follows that

S-Box(p)⊕ S-Box(q) = S-Box(p′)⊕ S-Box(q′)

where p′ and q′ are given by a different combinations of the generating variables of p and q.
For the following, we recall that the first case occurs with approximately proba-

bility
( 4
|J|
)
· 2−32·(4−|J|), while the second one occurs with approximately probability

1−
( 4
|J|
)
· 2−32·(4−|J|) (as we have seen in Sect. 6.1.2).

Proof. In order to obtain the desired result, we focus on the first event only, that is
R(p)⊕R(q) ∈ DJ for all (p, q) ∈ Q and for |J | = 1. Since this event happens with prob.
2−94, given 3 · 296 initial sets Q, then the average number of sets that satisfy this property
is 3 · 296 · 2−94 = 12.

Due to Prop. 1, Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ ) = 0 if I, J ⊆ {0, 1, 2, 3} such
that |I| + |J | ≤ 4 and x 6= y. It follows that if R(p) ⊕ R(q) ∈ DJ for all (p, q) ∈ Q and
for |J | = 1, then R5(p) ⊕ R5(q) ∈ MI for all (p, q) ∈ Q and for |I| = 3. As a result, on
average 12 sets satisfy the required property.

In other words, what is the probability that at least one set Q satisfies the required
property? By simple computation

1− (1− 2−94)12·294
' 1− e−12 ≈ 99.9995%.

Proof - Random Permutation

As second thing, we prove the previous result for the case of a random permutation. The
goal is to show that for a random permutation, there exists at least one couple for which
the two ciphertexts belong to the same coset ofMI for |I| = 3 for each set.

First of all, since Prob(x ∈ MI) = p3 ' 2−30 for |I| = 3, given a set of 239 couples,
the number of couples of ciphertexts that belong to the same coset ofMI for |I| = 3 is on
average 2−30 · 239 = 29 = 512.
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What is the probability that for each set at least one couple for which the two ciphertexts
that belong to the same coset ofMI for |I| = 3? By simple computation

[
1− (1− 2−30)239

]3·296

'
[
1− e−29

]3·296

'
[
1− 2−513.4

]297.6

= exp
(
− 1

2415.8

)
≈ 1.

8.2.2 Data and Computational Costs

In order to set up the distinguisher, one needs at least 3 · 296 ' 297.6 different sets Q,
each one of 239 different couples of two (plaintext, ciphertext) pairs. Given a set of 282

plaintexts of the form 
A C A cccaaaaa
A A C C
A A A C
C A A cccaaaaa


where cccaaaaa denotes a byte with 5 active bits and 3 constant bits, then it is possible to
construct 1

215 · 258 · (28 − 1)6 · (25 − 1)2 = 2100.8 sets Zdefined as before. As a result, 282

chosen plaintexts are (largely) sufficient to set up the distinguisher.
What about the computational cost? The idea is to use Algorithm 3 as described

in Sect. 6.2 to implement the distinguisher, where the partial order v defined in Def.
10 can be simply adapted for this case. It follows that the computational cost is well
approximated by

4 ·
[
282 · log 282 +

(
282 + 243)] + 3 · 296 ' 297.8 table look-ups

where
(282

2
)
· 2−96 · 2−24 = 243 is the average number of couples such that two ciphertexts

are in the same coset ofMJ for fixed J with |J | = 1 and the two plaintexts are in the
same coset of D0,3 (by definition of Q). Equivalently, the total computational cost is well
approximated by 291.1 five-round encryptions.
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A Proof - Probabilities of Sect. 3.2
In this section, we prove the probabilities given in Sect. 3.2.

Let I, J ⊆ {0, 1, 2, 3}. We recall that

MI ∩MJ =MI∩J . (17)

whereMI ∩MJ = {0} if I ∩ J = ∅. Moreover, referring to [GRR17b], we recall that the
probability that a random text x belongs toMI is well approximated by Prob(x ∈MI) =
2−32·(4−|I|), while given two random texts x 6= y

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) = (28)−4·|I|+|I|·|J|.

Proposition 2. The probability p|I| that a random text x belongs to the subspaceMI for
a certain I ⊆ {0, 1, 2, 3} with |I| = l fixed is well approximated by

p|I| = Prob(∃I ⊆ {0, 1, 2, 3} |I| = l s.t. x ∈MI) = (−1)|I| ·
3∑

i=4−|I|

(−1)i ·
(

4
i

)
· 2−32·i.

Proof. By definition, given the events A1, ..., An in a probability space (Ω,F ,P) then:

Prob

( n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
I⊂{1,...,n}
|I|=k

Prob(AI)
)
,

where the last sum runs over all subsets I of the indexes 1, ..., n which contain exactly k
elements20 and

AI :=
⋂
i∈I

Ai

denotes the intersection of all those Ai with index in I.
Due to (17), it follows that for |I| = 3:

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 3 s.t. x ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=3

Prob(x ∈MI)−
∑

I⊆{0,1,2,3}, |I|=2

Prob(x ∈MI)+

+
∑

I⊆{0,1,2,3}, |I|=1

Prob(x ∈MI) = 4 · 2−32 − 6 · 2−64 + 4 · 2−96,

while for |I| = 2

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 2 s.t. x⊕ y ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=2

Prob(x⊕ y ∈MI)−
∑

I⊆{0,1,2,3}, |I|=1

Prob(x⊕ y ∈MI) =

= 6 · 2−64 − 4 · 2−96,

20For example for n = 2, it follows that Prob(A1 ∪ A2) = Prob(A1) + Prob(A2)− P(A1 ∩ A2), while
for n = 3 it follows that Prob(A1 ∪ A2 ∪ A3) = Prob(A1) + Prob(A2) + Prob(A3) − Prob(A1 ∩ A2) −
Prob(A1 ∩A3)− Prob(A2 ∩A3) + Prob(A1 ∩A2 ∩A3).
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and finally for |I| = 1

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 1 s.t. x⊕ y ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=1

Prob(x⊕ y ∈MI) = 4 · 2−96,

that is the thesis.

Proposition 3. Let x, y be two random elements. Assume that there exists I ⊆ {0, 1, 2, 3}
such that x⊕ y ∈ MI . The probability that ∃J ⊆ {0, 1, 2, 3} with |J | = l fixed such that
R(x)⊕R(y) ∈MJ is well approximated by

p|J|,|I| ≡ Prob(∃J |J | = l s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

= (−1)|J| ·
3∑

i=4−|J|

(−1)i ·
(

4
i

)
· 2−8·i·|I|.

Proof. As before, for |J | = 3:

Prob(∃J |J | = 3 s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

=
∑

J⊆{0,1,2,3}, |J|=3

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI)+

−
∑

J⊆{0,1,2,3}, |J|=2

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI)+

+
∑

J⊆{0,1,2,3}, |J|=1

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

=4 · 2−8·|I| − 6 · 2−16·|I| + 4 · 2−24·|I| =

= (−1)3 ·
3∑
i=1

(−1)i ·
(

4
i

)
· 2−8·i·|I|.

By simple computation, it is possible to obtain similar results for |J | = 2 and |J | = 1, that
is the thesis.

Proposition 4. Let x, y be two random elements such that x ⊕ y /∈ MI for each I ⊆
{0, 1, 2, 3}. Then, the probability that ∃J ⊆ {0, 1, 2, 3} for |J | = l fixed such that R(x)⊕
R(y) ∈MJ is well approximated by

p̂|J|,3 ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) =
p|J| − p|J|,3 · p3

1− p3
.

Proof. Let A and B be two events, and let A⊥ such that A ∪A⊥ is equal to the sample
space. By definition

Prob(B) = Prob(B |A) · Prob(A) + Prob(B |A⊥) · Prob(A⊥).

Thus

p|J| ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ) =
= Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) · Prob(x⊕ y /∈MI ∀I)+
+Prob(∃J s.t. R(x)⊕R(y) ∈MJ | ∃I s.t. x⊕ y ∈MI) · Prob(∃I s.t. x⊕ y ∈MI).
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Note that21

Prob(∃I s.t. x⊕ y ∈MI) = Prob

(
x⊕ y ∈

⋃
∀I⊆{0,1,2,3}

MI

)
=

=Prob
(
x⊕ y ∈

⋃
I⊆{0,1,2,3}, |I|=3

MI

)
≡ p3.

It follows that
p|J| = p|J|,3 · p3 + p̂|J|,3 · (1− p3),

that is the thesis.

Proposition 5. Let x and y such that x ⊕ y /∈ MI for each I ⊆ {0, 1, 2, 3}. Then, the
probability that ∃J ⊆ {0, 1, 2, 3} with |J | = l fixed and |I|+|J | ≤ 4 such that R2(x)⊕R2(y) ∈
MJ is well approximated by

p̃|J|,3 ≡ Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI) =
p|J|

1− p3
.

Proof. Remember that

Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ | ∃I s.t. x⊕ y /∈MI) = 0.

Since

Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ) =
= Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI ∀I) · Prob(x⊕ y /∈MI ∀I)+
+Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ | ∃I s.t. x⊕ y ∈MI) · Prob(∃I s.t. x⊕ y ∈MI)

and using the same argumentation as before, it follows that

p|J| = p̃|J|,3 · (1− p3),

that is the thesis.

As last thing, we show that given texts in the same cosets of CI orMI for I ⊆ {0, 1, 2, 3},
the number of couples of texts with n equal generating variable(s) for 0 ≤ n ≤ 3 is given
by (

4
n

)
· 232·|I|−1 · (28·|I| − 1)4−n.

W.l.o.g. consider for simplicity the case |I| = 1. First of all, note that there are
(4
n

)
different combinations of n variables. If n ≥ 1, the n variables that must be equal for
the two texts of the couple can take (28)n different values. For each one of the remaining
4 − n variables, the variables must be different for the two texts of each couple. Thus,
these 4− n variables can take exactly

[
(28)4−n · (28− 1)4−n]/2 different values. The result

follows immediately. In particular, for |I| = 1 there are:

• 263 · (28 − 1)4 couples for which the two texts have different generating variables;

• 233 · (28 − 1)3 couples for which the two texts have one equal generating variable;

• 3 · 232 · (28 − 1)2 couples for which the two texts have two equal generating variables;

• 233 · (28 − 1) couples for which the two texts have three equal generating variables.

The other cases are analogous. Note that the total number of all the possible couples is
231 · (232 − 1).

21If x⊕ y ∈MI for |I| < 3, then ∃J with |J | = 3 and I ⊆ J such that x⊕ y ∈MJ .
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A.1 Discussion about the Given Approximations
In Sect. 3.2, we list some useful probabilities largely used in the following. As we have
already said, all those probabilities are not the exact ones, but “good enough” approximations
useful for the target of the paper. Here we give some more details about this statement.

As first thing, consider the following simple example. Consider the probability that
a pair of texts t1 and t2 belong to the same coset of MI . This probability is usually
approximated by Prob(x ∈ MI) = 2−32·(4−|I|). On the other hand, in order to set up a
(truncated) differential attack, one is interested to the case t1 6= t2 (equivalently, x 6= 0).
Thus, the “correct” probability should be

Prob(x ∈MI |x 6= 0) = 232·|I| − 1
2128 − 1 = 2−32·(4−|I|) − 2−128 + 2−128−32·(4−|I|) + ...

Another interesting example regards the 4-round AES impossible differential trail.
Consider plaintexts in the same coset of DI , and the corresponding ciphertexts after
4-round. It is well known that

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) = 0 ∀J s.t. |I|+ |J | ≤ 4.

On the other hand, we can compute this probability using the probabilities given in Sect.
3.2. Assume for simplicity I fixed with |I| = 1. By Theorem 1, each coset of DI is mapped
into a coset ofMI after 2-round. Thus, the probability that

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) = (−1)|J| ·
3∑

i=4−|J|

(−1)i ·
(

4
i

)
· 28·i.

Thus

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) =

=
∑

K⊂{0,1,2,3}

Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕ y ∈ DI)×

× Prob(R3(x)⊕R3(y) ∈MK |x⊕ y ∈ DI)+
+Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) /∈MK∀K and x⊕ y ∈ DI)×

× Prob(R3(x)⊕R3(y) /∈MK∀K |x⊕ y ∈ DI).

If one approximates the probability Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕
y ∈ DI) with Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK), by simple computation
it follows that

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) ≈ 2−28 + 2−30 + ...

which is obviously wrong. The error arises by the fact that the probability

Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕ y ∈ DI) =
= Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and R2(x)⊕R2(y) ∈ DI) = 0

for all |I|+ |J | ≤ 4, and not
(4
i

)
· 28·i·(4−|J|).

In other words, it is important to have in mind that the assumption behind the
probabilities given in Sect. 3.2 is that the elements x and y are uniform distributed, or (at
least) very close to be uniform distributed - as for the events considered in this paper to set
up distinguishers and key-recovery attacks on 5- and 6-round AES.

44



B Details - 4-round Secret-Key Distinguisher of Sect. 5
and 5-round Key-Recovery Attack of Sect. 5.3

B.1 4-round Secret-Key Distinguisher for AES - Details
In this section, we give all the details about the computational cost of the 4-round Secret-
Key Distinguisher for AES presented in Sect. 5. We refer to Sect. 5 for all the details
about the distinguisher.

Given 216 chosen plaintexts in the same coset of C0 ∩ D0,3 ⊕ a and the corresponding
ciphertexts, a first possibility is to construct all the possible pairs, to divide them in sets
S of non-independent pairs defined as

S =
{

(p1, p2) ∈
(
C0 ∩ D0,3 ⊕ a

)2
∣∣∣∣ [(p1 ≡ (x1, x2), c1 = R4(p1), (p2 ≡ (y1, y2), c2 = R4(p1))

]
;

[
(p̂1 ≡ (y1, x2), ĉ1 = R4(p̂1)), (p̂2 ≡ (x1, y2), ĉ2 = R4(p̂2))

]}
,

where
(
C0 ∩ D0,3 ⊕ a

)2≡ (C0 ∩ D0,3 ⊕ a)× (C0 ∩ D03 ⊕ a), and to check for each set if the
required property is satisfied (or not).

The cost to check if the property

c1 ⊕ c2 ∈MJ if and only if ĉ1 ⊕ ĉ2 ∈MJ

is satisfied (or not) is equal to 2 XOR and 2 MixColumns operation22, which is negligible
with respect to the total cost. For this reason, we focus on the cost to construct the sets
S. Using the previous strategy, since the number of pairs is approximately 231 for each
coset, the cost is of approximately 2 · 231 = 232 table look-ups.

In order to reduce the computational cost, a possibility is to re-order the ciphertexts
with respect to a partial order � as defined in Def. 8 (see also [GRR17a]). Note that
� depends on an index J . Using a merge-sort algorithm, the cost to re-order n texts is
of O(n · logn) table look-ups. When the ciphertexts have been re-ordered, it is no more
necessary to construct all the possible pairs and it is sufficient to work only on consecutive
texts with respect to �.

In more details, first one stores all the plaintext/ciphertext pairs twice, (1) once in
which the plaintexts are ordered with respect to the partial order ≤ defined in Def. 6
and (2) once in which the ciphertexts are ordered with respect to the partial order �
defined in Def. 8. Then, working on this second set, one focuses only on consecutive
ciphertexts ci and ci+1 for each i, and checks if ci ⊕ ci+1 ∈ MJ or not. Assume that
ci ⊕ ci+1 ∈ MJ for a certain J fixed previously. The idea is to take the corresponding
plaintexts pi ≡ (x1, y1) and pi+1 ≡ (x2, y2), to construct the corresponding set S and
to check if the ciphertexts ĉ1 and ĉ2 of the corresponding plaintexts p̂1 ≡ (x1, y2) and
p̂2 ≡ (x2, y1) satisfy the condition ĉ1 ⊕ ĉ2 ∈ MJ for the same J . If not, by previous
observations one can simply deduce that this is a random permutation. Note that if there
are r consecutive ciphertexts ci, ci+1, ..., ci+r−1 such that cj ⊕ cl ∈ MJ for i ≤ j, l < r,
then one has to repeat the above procedure for all these

(
r
2
)

= r · (r− 1)/2 possible pairs23.
To optimize the computational cost, note that the plaintexts p̂1 and p̂2 are respectively

in positions x1 + 28 · y2 and x2 + 28 · y1 in the first set of plaintext/ciphertext pairs (i.e.
in the set where the plaintexts are ordered with respect to the partial order ≤). Thus, the
cost to get these two elements is only of 2 table look-ups. Moreover, we emphasize that it
is sufficient to work only on (consecutive) ciphertexts ci and cj such that ci ⊕ cj ∈ MJ .
Indeed, consider the case in which the two ciphertexts ci and cj don’t belong to the same

22Given x, y, then x⊕ y ∈MI if and only if MC−1(x⊕ y) ∈ IDI for each I.
23SinceMJ is a subspace, given a, b, c such that a⊕ b ∈MJ and b⊕ c ∈MJ , then b⊕ c ∈MJ .
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coset ofMJ , i.e. ci ⊕ cj /∈ MJ . If the corresponding ciphertexts ĉ1 and ĉ2 - defined as
before - don’t belong to the same coset ofMJ , then the property is (obviously) verified.
Instead if ĉ1 ⊕ ĉ2 ∈ MJ , then this case is surely analyzed. The pseudo-code of such
strategy can be found in Algorithm 1.

Using this procedure, the memory cost is well approximated by 4 · 217 · 16 = 223 bytes -
the same plaintext/ciphertext pairs in two different ways. The cost to order the ciphertexts
for each possible J with |J | = 3 and for each one of the two cosets is approximately of
2 · 4 · 216 · log 216 ' 223 table look-ups, while the cost to construct all the possible pairs of
consecutive ciphertexts is of 2 · 4 · 216 = 219 table look-ups. Since the probability that a
pair of ciphertexts belong to the same coset ofMJ for |J | = 3 is 2−30 and since each coset
contains approximately 231 different pairs, then one has to do on average 2 ·4 ·2−30 ·231 = 24

table look-ups in the plaintext/ciphertext pairs ordered with respect to the plaintexts.
Thus, the total cost of this distinguisher is well approximated by 223 + 219 + 16 ' 223.09

table look-ups, or approximately 216.75 four-round encryptions (using the approximation
20 table look-ups ≈ 1 round of encryption).

B.2 Key-Recovery Attack on 5-round AES - Details
As we have seen in Sect. 5.3, the 4-round secret-key distinguisher of Sect. 5 can be used to
set up a key-recovery attack on 5-round AES. We refer to that section for all the details,
and we limit here to compute the data and the computational costs of the attack.

Consider two plaintexts in the same coset of D0 (i.e. D0 ⊕ a for a ∈ D⊥0 ), that is p1

and p2 such that pi ≡ (xi, yi, zi, wi) for i = 1, 2 or equivalently:

pi = xi · e0,0 ⊕ yi · e1,1 ⊕ zi · e2,2 ⊕ wi · e3,3 ⊕ a.

By Theorem 1, there exists b ∈ C⊥0 such that for i = 1, 2

R(pi) =


x̂i 0 0 0
ŷi 0 0 0
ẑi 0 0 0
ŵi 0 0 0

⊕ b ≡MMC ·


S-Box(xi ⊕ k0,0) 0 0 0
S-Box(yi ⊕ k1,1) 0 0 0
S-Box(zi ⊕ k2,2) 0 0 0
S-Box(wi ⊕ k3,3) 0 0 0

⊕ b,
i.e. R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) ≡ x̂i · e0,0 ⊕ ŷi · e1,0 ⊕ ẑi · e2,0 ⊕ ŵi · e3,0 ⊕ b. In order to use the
previous distinguisher, one has to check that R5(p1)⊕R5(p2) ∈MJ if and only if other
pairs of texts have the same property. In particular, given p1 and p2 defined as before such
that R5(p1) ⊕ R5(p2) ∈ MJ , it is possible to construct 7 different pairs of texts Rk(q1)
and Rk(q2) in C0 ⊕ b defined by the following combinations of generating variables

1. (x̂1, ŷ1, ẑ1, ŵ1) and (x̂2, ŷ2, ẑ2, ŵ2); 2. (x̂2, ŷ1, ẑ1, ŵ1) and (x̂1, ŷ2, ẑ2, ŵ2);
3. (x̂1, ŷ2, ẑ1, ŵ1) and (x̂2, ŷ1, ẑ2, ŵ2); 4. (x̂1, ŷ1, ẑ2, ŵ1) and (x̂2, ŷ2, ẑ1, ŵ2);
5. (x̂1, ŷ1, ẑ1, ŵ2) and (x̂2, ŷ2, ẑ2, ŵ1); 6. (x̂2, ŷ2, ẑ1, ŵ1) and (x̂1, ŷ1, ẑ2, ŵ2);
7. (x̂2, ŷ1, ẑ2, ŵ1) and (x̂1, ŷ2, ẑ1, ŵ2); 8. (x̂2, ŷ1, ẑ1, ŵ2) and (x̂1, ŷ2, ẑ2, ŵ1)

that must satisfy the required property

R4[Rk(p1)
]
⊕R4[Rk(p2)

]
∈MJ iff R4[Rk(q1)

]
⊕R4[Rk(q2)

]
∈MJ .

However, a problem arises: since the key k is secret and the S-Box is non-linear, there is
no way to find such q1 and q2 for which Rk(q1) and Rk(q2) are generated by the previous
combinations of variables without guessing any key material, if the plaintexts are in a coset
of a diagonal space DI instead of a column space CI . It follows that it is not possible to
extend the 4-round distinguisher of Sect. 5 simply considering plaintexts in a coset of DI
instead of CI .
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On the other hand, this allows to set up a new key-recovery attack on 5 rounds of
AES. Given plaintexts in the same coset of DI , consider two (plaintexts, ciphertexts) pairs
(p1, c1) and (p2, c2) such that the two ciphertexts belong to the same coset ofMJ for J
with |J | = 3 after five-round. Fixed I ∈ {0, 1, 2, 3}, the idea of the attack is to guess 4
bytes of the I-th diagonal of the secret key k, that is ki,i+I for each i = 0, 1, 2, 3, and
to (partially) compute Rk(p1) and Rk(p2). Let R(p̂i) ≡ (x̂i, ŷi, ẑi, ŵi) and assume that
x̂1 6= x̂2, ŷ1 6= ŷ2, ẑ1 6= ẑ2 and ŵ1 6= ŵ2. Due to Lemma 2 and due to the “super-Sbox”
argumentation given in Sect. 5.1.1, it is possible to show that c1 ⊕ c2 ∈MJ if and only if
other 7 different pairs of texts Rk(q1) and Rk(q2) in C0⊕b defined by different combinations
of the generating variables (x̂i, ŷi, ẑi, ŵi) have the same property. If this property is not
satisfied, then one simply deduces that the key is wrong. If more than one candidate of the
key passes the test, one can simply repeat it with other couples of plaintexts/ciphertexts
until all the wrong candidates are discarded.

Data and Computational Costs. Each coset of DI with |I| = 1 is composed of 232

texts, thus on average 263 · 2−32 = 231 different pairs of ciphertexts belong to the same
coset ofMJ for a fixed J with |J | = 3.

As we have just seen in Sect. 5.3, it is sufficient to find one collision in order to
implement the attack and to find the key. In order to find it, the best strategy is to re-
ordered the ciphertexts with respect to the partial order � and then to work on consecutive
elements. For each initial coset of DI and for a fixed J , the cost to re-order the ciphertexts
with respect to the partial order � (forMJ with J fixed - |J | = 3) and to find a collision
is approximately of 232 · (log 232 + 1) = 237 table look-ups.

When such a collision is found, one has to guess 4 bytes of the key and to consider (at
least) two different couples given by a different combinations of the generating variables
of R(p1) and R(p2) (observe that the condition x̂1 6= x̂2, ŷ1 6= ŷ2, ẑ1 6= ẑ2 and ŵ1 6= ŵ2

is satisfied with probability (255/256)4 ≈ 1). To perform this step efficiently, the idea is
re-order (and store separately) the (plaintexts, ciphertexts) pairs w.r.t. the partial order ≤
as defined in Def. 6 s.t. pi ≤ pi+1 for each i. Since the cost to construct these two different
couples is well approximated by 4 table look-ups, the cost of this step is of 232 · 2 · 4 = 235

S-Box and of 232 · 4 = 234 table look-ups.
Thus, the cost to find one diagonal of the key is well approximated by 235 S-Box

look-ups and 237.17 table look-ups, that is approximately 230.95 five-round encryptions.
The idea is to repeat this operation for three different diagonals, and to find the last one
by brute force. As a result, the total computational cost is of 232 + 3 · 230.95 = 233.28

five-round encryptions, while the data cost is of 3 · 232 = 233.6 chosen plaintexts.
Only for completeness, we highlight that the same attack works also in the decryp-

tion/reverse direction, using chosen ciphertexts instead of plaintexts.

C Possible Variants of the 5-round AES Secret-Key Dis-
tinguisher of Sect. 6

In this section, we propose two variants of the 5-round secret-key distinguisher proposed in
Sect. 6. The second one is the most competitive distinguisher (from the point of view of
the data and the computational costs), but it can not be used for a key-recovery attacks,
as discuss in the following.

To set up the distinguisher, we must recall one result from [GRR17a]:

Lemma 4. Let p and q be two different elements in MI ⊕ a - a coset of MI - for
I ∈ {0, 1, 2, 3} and |I| = 1, with p ≡ (p0, p1, p2, p3) and q ≡ (q0, q1, q2, q3), such that
pi 6= qi for each i = 0, 1, 2 and p3 = q3 (the other cases are analogous). Independently of
the secret key and of the details of the S-Box, R(p) and R(q) belong to the same coset of
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a particular subspace DJ for J ⊆ {0, 1, 2, 3} if and only if the pairs of texts in MI ⊕ a
generated by the following combinations of variables

1. (p0, p1, p2, z3) and (q0, q1, q2, z3); 2. (q0, p1, p2, z3) and (p0, q1, q2, z3);
3. (p0, q1, p2, z3) and (q0, p1, q2, z3); 4. (p0, p1, q2, z3) and (q0, q1, p2, z3).

where z3 can take any possible value in F28 , have the same property.

In the following, we give all the details of the distinguisher.

C.1 First Variant of the 5-round Distinguisher of Sect. 6
C.1.1 Details of the Distinguisher

Consider 232 chosen plaintexts with one active column (4 active bytes), e.g. a coset of C0,
and the corresponding ciphertexts after 5-round. For each (x0, x1, x2), (y0, y1, y2) ∈ F6

28

such that xi 6= yi for each i = 0, 1, 2, let the set T 3
(x0,x1,x2),(y0,y0,y2) of pairs of plaintexts

be defined as follows

T 3
(x0,x1,x2),(y0,y1,y2) =

{
(p, q) ∈ F4×4

28 × F4×4
28

∣∣∣∣ p ≡ (x0, x1, x2, A), q ≡ (y0, y1, y2, A)

or p ≡ (y0, x1, x2, A), q ≡ (x0, y1, y2, A) or p ≡ (x0, y1, x2, A), q ≡ (y0, x1, y2, A)

or p ≡ (x0, x1, y2, A), q ≡ (y0, y1, x2, A) for each A ∈ F28

}
.

In other words, the pair of plaintexts p, q ∈ C0 ⊕ a can be of the form

p ≡ a⊕


x0 0 0 0
x1 0 0 0
x2 0 0 0
A 0 0 0

 q ≡ a⊕


y0 0 0 0
y1 0 0 0
y2 0 0 0
A 0 0 0

 ,
or

p ≡ a⊕


y0 0 0 0
x1 0 0 0
x2 0 0 0
A 0 0 0

 q ≡ a⊕


x0 0 0 0
y1 0 0 0
y2 0 0 0
A 0 0 0


and so on. Similar definitions can be given for the set T i(x0,x1,x2),(y0,y1,y2) for each i ∈
{0, 1, 2, 3}, where the constant bytes is in row i. Given 232 plaintexts as before, it is possible
to construct 1

210 · 4 · 231 · (28 − 1)3 ' 246.983 different sets (using formula (10) to count
the number of pairs of texts with 1 equal generating variable), where each set contains
exactly 210 different pairs of plaintexts (we emphasize that these pairs of plaintexts are not
independent, in the sense that a particular relationships among the generating variable
holds).

Consider n� 1 random sets, and count the number of sets for which two ciphertexts
(generated by 5-round AES or by a random permutation) of at least one pairs of plaintexts
belong to the same coset of a subspaceMJ for J ⊆ {0, 1, 2, 3}. As we are going to prove,
this number is on average lower for AES than for a random permutation, independently of
the secret key, of the details of the S-Box and of the MixColumns matrix. In more details,
the numbers of sets for 5-round AES nAES and for a random permutation nrand are well
approximated by nAES ' n · pAES and nrand ' n · prand where

pAES ' 2−20 − 4095 · 2−53 − 529 370 445 · 2−84︸ ︷︷ ︸
≈ 3.945· 2−57

+ 374 996 306 937 593 · 2−117︸ ︷︷ ︸
≈ 2.665 · 2−70

+...

prand ' 2−20 − 4095 · 2−53 + 2 794 155 · 2−84︸ ︷︷ ︸
≈ 2.665 · 2−64

+...
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Even if this difference is small, it is possible to distinguish the two cases with probability
higher than 95% if n ≥ 292.246.

In the following, we prove this result (which has been practically tested on a small-scale
AES) and we give all the details about the data and the computational cost.

C.1.2 Proof

Proof - 5-round AES

As first thing, we prove the results just given, starting with the 5-round AES case.

Initial Considerations - 5-round AES. Our 5-round distinguisher is based on the
following property of the previous 4-round distinguisher. Given plaintexts in the same
coset of C0 and for a fixed J ⊆ {0, 1, 2, 3}, each set T(x0,x1,x2),(y0,y1,y2) just defined has the
following property after 4 rounds:

1. for each couple, the two texts after 4-round belong to the same coset ofMI ;

2. for each couple, the two texts after 4-round don’t belong to the same coset ofMI .

In other words, for a given set T(x0,x1,x2),(y0,y1,y2), it is not possible that the two texts of
only some - not all - couples belong to the same coset ofMJ after 4-round, while this can
happen for a random permutation. The proof is equivalent to the one given in Sect. 5.1.1
and based on the “super-Sbox” notation.

What is the probability of the two previous events for an AES permutation? As we
have seen in Sect. 6.1.2, given a set T(x0,x1,x2),(y0,y1,y2), the probability that the two texts
of each couple belong to the same coset ofMJ after 4-round is approximately p3 ' 2−30.

Using these initial considerations as starting point, we analyze in details our proposed
5-round distinguisher.

1st Case. As we have just seen, the two ciphertexts of each couple belong to the same
coset of a subspace MI for |I| = 3 after 4-round with probability p3 ' 2−30. In other
words, on average there are 2−30 · n sets T such that the two ciphertexts of each couple
belong to the same coset of a subspaceMJ for |J | = 3 after 4-round.

Let |J | = 3. Since Prob(R(x)⊕ R(y) ∈ MJ |x⊕ y ∈ MI) = p3,3 ' 2−22 (see (7) for
details) and since each set is composed of 210 different pairs, the probability that for at
least one pair of S, the two ciphertexts of at least one couple belong to the same coset
ofMJ for |J | = 3 after 5 rounds is well approximated by 1−

(
1− p̂3,3

)210

, where p̂3,3 is
defined in (8).

2nd Case. In the same way, the two ciphertexts of each couple don’t belong to the
same coset of a subspaceMJ for |J | = 3 after 4-round with probability 1− p3 ' 1− 2−30.
In other words, on average there are (1− 2−30) · n sets T such that the two ciphertexts of
each couple don’t belong to the same coset of a subspaceMJ for |J | = 3 after 4-round.

Let |I| = 3 and remember that Prob(R(x)⊕R(y) ∈MI |x⊕ y /∈MJ) = p̂3,3 ' 2−30

(see (8) for details). What is the probability that for at least one pair of S, the two cipher-
texts belong to the same coset of a subspaceMI after 5-round? By simple computation,
this happens with probability 1−

(
1− p3,3

)210

.

Final Result. We finally obtain the desired result using the law (or formula) of total
probability Prob(A) =

∑
i Prob(A |Bi) · Prob(Bi) which holds for each event A such that⋃

iBi is the sample space, i.e. the set of all the possible outcomes.
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Given a set T , the probability that the two ciphertexts of at least one couple of texts
satisfy the required property is given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

1024 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

1024 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)1024]
+p3 ·

[
1−

(
1− p3,3

)1024]
=

=2−20 − 4095 · 2−53 − 529 370 445 · 2−84︸ ︷︷ ︸
≈ 3.945· 2−57

+ 374 996 306 937 593 · 2−117︸ ︷︷ ︸
≈ 2.665 · 2−70

+...

for a certain i ∈ {1, ..., 210}. Note that Prob(E5
i ∧ E5

j ) = Prob(E5
i ) × Prob(E5

j ) since the
events E5

i and E5
j are independent for i 6= j.

Proof - Random Permutation

For a random permutation, what is the probability that the two ciphertexts (generated by
a random permutation) of at least one couple satisfy the required property? By simple
computation, such event occurs with (approximately) probability

prand =1−
(
1− p3

)1024= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]1024=

=2−20 − 4095 · 2−53 + 2 794 155 · 2−84︸ ︷︷ ︸
≈ 2.665 · 2−64

+...

C.1.3 Data and Computational Costs

Data Cost. In order to compute the data cost, we use the same argumentation of Sect.
6.2.1. Since |pAES − prand| ' 2−55.013 and pAES ' prand ' 2−20, it follows that n must
satisfy n > 292.246 for a probability of success of approximately 95%. Since a single
coset of CI for |I| = 1 contains approximately 246.983 different sets T , it follows that
292.246 · 2−46.983 ' 245.263 initial cosets of CI for |I| = 1 are sufficient, for a total data cost
of 232 · 245.263 ' 277.263 chosen plaintexts.

Computational Cost. About the computational cost, the idea is to exploit the re-
ordering Algorithm 4 as defined in Sect. 6.2.2. Working on a single coset of CI for |I| = 1,
the cost to count the number of sets T for which two ciphertexts of at least one pair of
plaintexts belong to the same coset ofMJ is

4·
[
232 · log(232) (re-ordering process) +

(
232 + 225) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+246.983 (final “for”) ' 246.99

table look-ups, where
(232

2
)
· 2−32 · (4 · 2−8) ' 225 is the average number of couples such

that the two ciphertexts belong to the same coset of MJ for a fixed J with |J | = 3
and the two plaintexts are in the same coset of C0 ∩ DI for a certain I with |I| = 3 (by
definition of T ). Since the attacker must repeat this algorithm for each initial coset, the
total computational cost is of 246.99 · 245.263 = 292.253 table look-ups, or equivalently 285.61

five-round encryptions.

C.1.4 Practical Verification on small-scale AES

In order to have a practical verification of the proposed distinguisher (and of the following
key-recovery attack), we have practically verified the probabilities pAES and prand given
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above. In particular, we verified them using a small-scale AES, proposed in [CMR05]. We
emphasize that our verification on the small-scale variant of AES is strong evidence for it
to hold for the real AES, since the strategy used to theoretically compute such probabilities
is independent of the fact that each word of AES is of 4 or 8 bits.

Thus, in order to compare the practical values with the theoretical ones, we compute
the theoretical probabilities pAES and prand for the small-scale case. First of all, for small
scale AES the probabilities p3 and p3,3 are respectively equal to p3 = 2−14− 3 · 2−31 + 2−46

and p3,3 = 2−10 − 3 · 2−23 + 2−34.

Practical Results. W.l.o.g. we used cosets of C0 to practically test the two probabilities.
Using the previous procedure and formula, (approximately) the probabilities that a set T
satisfies the required property for 5-round AES and the random case are respectively

pAES = 2−8 − 255 · 2−25 − 102 605 · 2−40 + ...

prand = 2−8 − 255 · 2−25 + 10 795 · 2−40 + ...

As a result, using formula (15) for prand ' pAES ' 2−8 and |prand − pAES | ' 2−23.21,
it follows that n ≥ 240.64 different sets T are sufficient to set up the distinguisher with
probability higher than 95%.

Since we work with small-scale AES, a single coset of C0 contains 4 · 24 · 211 · (24− 1)3 '
229.71 couples for which the two plaintexts have only one different generating variable (also
tested by computer test). Thus, it is possible to construct 211 ·(24−1)3 = 6 912 000 ' 223.721

sets T such that all the generating variables of the couples of each of these sets are different.
As a result, it follows that 240.64 · 2−23.721 = 216.92 different initial cosets of C0 must be
used, for a cost of 238.566 chosen plaintexts.

For our tests, we used 217 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is not
fixed). For each coset we exploited Algorithm 3 to count the number of sets T that satisfy
the required property (i.e. the number of sets for which two ciphertexts of at least one
couple are in the same coset ofMJ for certain J with |J | = 3). As a result, for each initial
coset C0 the (average) theoretical numbers of sets T that satisfy the required property for
the random and the AES cases - given by nTX = 6 912 000 · pX - and the (average) practical
ones found in our experiments - denoted by nPX - are given are:

nTrand ' 26 497.54 nTAES ' 26 496.83
nPrand ' 26 497.57 nPAES ' 26 496.91

Note that these two numbers are close to the theoretical ones, and that the average number
of sets for AES case is lower than for the random one, as predicted.

C.2 Second Variant of the 5-round Distinguisher of Sect. 6

C.2.1 Details of the Distinguisher

Consider 264 chosen plaintexts with two active column (8 active bytes), e.g. a coset
of C0,1, and the corresponding ciphertexts after 5-round. For each (x,y) ∈ F6

28 × F6
28

where x = (x0, x1, x2, ..., x5) and y = (y0, y1, y2, ..., y5) such that (x0, x1) 6= (y0, y1),
(x2, x3) 6= (y2, y3) and (x4, x5) 6= (y4, y5), let the set T 3

(x,y) of pairs of plaintexts be defined
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as follows

T 3
(x,y) =

{
(p, q) ∈ F4×4

28 × F4×4
28 such that

p ≡
(
(x0, x2, x3, A), (B, x1, x3, x5)

)
, q ≡

(
(y0, y2, y3, A), (B, y1, y3, y5)

)
or

p ≡
(
(y0, x2, x3, A), (B, y1, x3, x5)

)
, q ≡

(
(x0, y2, y3, A), (B, x1, y3, y5) or

p ≡
(
(x0, y2, x3, A), (B, x1, y3, x5)

)
, q ≡

(
(y0, x2, y3, A), (B, y1, x3, y5) or

p ≡
(
(x0, x2, y3, A), (B, x1, x3, y5)

)
, q ≡

(
(y0, y2, x3, A), (B, y1, y3, x5)

for each A,B ∈ F28

}
.

In other words, the pair of plaintexts p, q ∈ C0 ⊕ a can be of the form

p ≡ a⊕


x0 B 0 0
x2 x1 0 0
x4 x3 0 0
A x5 0 0

 q ≡ a⊕


y0 B 0 0
y2 y1 0 0
y4 y3 0 0
A y5 0 0

 ,
or

p ≡ a⊕


y0 B 0 0
x2 y1 0 0
x4 x3 0 0
A x5 0 0

 q ≡ a⊕


x0 B 0 0
y2 x1 0 0
y4 y3 0 0
A y5 0 0

 ,
and so on. Similar definitions can be given for the set T i(x,y) for each i ∈ {0, 1, 2, 3},
where the constant bytes is in the i-th diagonal. Given 264 plaintexts as before, it is
possible to construct 1

218 · 4 · 263 · (216 − 1)3 ' 295 different sets, where each set contains
exactly 218 different pairs of plaintexts (we emphasize that these pairs of plaintexts are not
independent, in the sense that a particular relationships among the generating variable
holds).

Consider n� 1 random sets, and count the number of sets for which two ciphertexts
(generated by 5-round AES or by a random permutation) of at least one couple of texts
belong to the same coset of a subspaceMJ for J ⊆ {0, 1, 2, 3}. As we are going to prove,
this number is on average lower for AES than for a random permutation, independently of
the secret key, of the details of the S-Box and of the MixColumns matrix. In more details,
the numbers of sets for 5-round AES nAES and for a random permutation nrand are well
approximated by nAES ' n · pAES and nrand ' n · prand where

pAES ' 2−12 − 1048575 · 2−45 + 46 884 625 075 · 2−76︸ ︷︷ ︸
≈ 2.73 · 2−42

+...

prand ' 2−12 − 1048575 · 2−45 + 183 251 413 675 · 2−76︸ ︷︷ ︸
≈ 10.667 · 2−42

+...

Even if this difference is small, it is possible to distinguish the two cases with probability
higher than 95% if n ≥ 268.243.

In the following, we prove this result (which has been practically tested on a small-scale
AES) and we give all the details about the data and the computational cost.

C.2.2 Proof

Proof - 5-round AES

As first thing, we prove the results just given, starting with the 5-round AES case.
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Initial Considerations - 5-round AES. Our 5-round distinguisher is based on the
following property of the previous 4-round distinguisher. Given plaintexts in the same
coset of C0 and for a fixed J ⊆ {0, 1, 2, 3}, each set T(x,y) just defined has the following
property after 4 rounds:

1. for each couple, the two texts after 4-round belong to the same coset ofMI ;

2. for each couple, the two texts after 4-round don’t belong to the same coset ofMI .

In other words, for a given set T(x,y), it is not possible that the two texts of only some -
not all - couples belong to the same coset ofMJ after 4-round, while this can happen for
a random permutation. The proof is equivalent to the one given in Sect. 5.1.1 and based
on the “super-Sbox” notation.

What is the probability of the two previous events for an AES permutation? As we
have seen in Sect. 6.1.2, given a set T(x,y), the probability that the two texts of each couple
belong to the same coset ofMJ after 4-round is approximately p3 ' 2−30.

Using these initial considerations as starting point, we analyze in details our proposed
5-round distinguisher.

Proof - AES. Using the same computation as before, given a set T , the probability
that two ciphertexts of at least one couple satisfy the required property is given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

218 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

218 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)218]
+p3 ·

[
1−

(
1− p3,3

)218]
=

=2−12 − 1048575 · 2−45 + 46 884 625 075 · 2−76︸ ︷︷ ︸
≈ 2.73 · 2−42

+...

(18)

for a certain i ∈ {1, ..., 218}. Note that Prob(E5
i ∧ E5

j ) = Prob(E5
i ) × Prob(E5

j ) since the
events E5

i and E5
j are independent for i 6= j.

Proof - Random Permutation

For a random permutation, what is the probability that two ciphertexts (generated by
a random permutation) of at least one couple satisfy the required property? By simple
computation, such event occurs with (approximately) probability

prand =1−
(
1− p3

)218

= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]218

=
=2−12 − 1048575 · 2−45 + 183 251 413 675 · 2−76︸ ︷︷ ︸

≈ 10.667 · 2−42

+... (19)

C.2.3 Data and Computational Costs

Data Cost. In order to compute the data cost, we use the same argumentation of Sect.
6.2.1. Since |pAES − prand| ' 2−39.011 and pAES ' prand ' 2−12, it follows that n must
satisfy n > 268.243 for a probability of success of approximately 95%. Since a single coset
of CI for |I| = 2 contains approximately 295 different sets T , less than a single coset is
sufficient to implement the distinguisher. In particular, a set of the form

{
a⊕


x0 y1 0 0
z0 x1 0 0
w0 z1 0 0
y0 w1 0 0

 ∣∣∣∣∀x0, x1, y0, y1, z0, z1 ∈ F2
28 , ∀w0, w1 ∈ {0x00, 0x01, 0x02, 0x03}

}
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for a certain constant a is sufficient to set up the distinguisher (note that this is a subset
of the coset C0,1 ⊕ a). Indeed, for such a set it is possible to construct approximately

1
218 · 3 · (248 · 42) · [(216 − 1)2 · (16 − 1)] ' 271.5 different sets T (remember that we are
working with variables in F2

28), for a total of (28)6 · 42 ' 252 chosen plaintexts.

Computational Cost. About the computational cost, the idea is to exploit the re-
ordering Algorithm 4 as defined in Sect. 6.2.2. Using 252 chosen plaintexts in the same
coset of CI for |I| = 2, the cost to count the number of sets T for which two ciphertexts of
at least one pair of plaintexts belong to the same coset ofMJ is

4·
[
252 · log(252) (re-ordering process) +

(
252 + 257) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+271.5 (final “for”) ' 271.5

table look-ups, where
(252

2
)
· 2−32 · (4 · 2−16) ' 257 is the average number of couples such

that the two ciphertexts belong to the same coset ofMJ for a fixed J with |J | = 3 and the
two plaintexts are in the same coset of C0,1 ∩ DI for a certain I with |I| = 3 (by definition
of T ). Equivalently, the total cost is well approximated by 264.86 five-round encryptions.

C.3 Key-Recovery Attack on 6-round AES of Sect. 7 - Chosen Plain-
texts in Cosets of DI with |I| = 2

Referring to the key-recovery attack on 6-round AES of Sect. 7, here we explain why it is
not possible to use cosets of DI with |I| = 2 for a key-recovery attack, focusing on the set
T just defined. As we have already said in Sect. 7, the problem regards the computational
cost (which is higher than the one of a brute force attack).

In this case and using the same strategy of before, since 264 different combinations of 8
bytes of the key (i.e. 2 diagonals) must be tested, one has to use the 5-round distinguisher
with a probability higher (0.95)2−64 . This requires approximately 2118.9 sets T for each
guessed combination of the key. Since each coset of DI with |I| = 2 contains approximately
295 sets T , one needs approximately 2118.9 · 2−95 = 224.1 different cosets of DI with |I| = 2,
for a total cost of 224.1 · 264 = 288.1 chosen plaintexts.

On the other hand, using the algorithm described in Sect. 6.2.2, the cost to count the
number of sets T that satisfy the required property is

4·
[
264 · log(264) (re-ordering process) +

(
264 + 281) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+295 (final “for”) ' 295

table look-ups for each guessed key, where
(264

2
)
· 2−32 · (4 · 2−16) ' 281 is the average

number of couples such that the two ciphertexts belong to the same coset ofMJ for a fixed
J with |J | = 3 and the two plaintexts are in the same coset of C0,1 ∩ DI for a certain I
with |I| = 3 (by definition of T ). Since one has to repeat this process for 224.1 initial cosets
and since one has to partially encrypt each one of them, the total cost for each guessed key
is of 2119.1 table look-ups and 291.1 S-Box look-ups, that is 2112.2 six-round encryptions.
The total cost to find two diagonals of the key is 264 · 2112.2 = 2176.2 six-round encryptions.
If the last two diagonals are found by brute force, the total cost is well approximated by
264 + 2176.2 ' 2176.2 six-round encryptions, which is much higher than the brute force
attack.
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D Other Possible Variant of the 5-round AES Secret-Key
Distinguisher of Sect. 6

In this section, we propose a variant of the 5-round secret-key distinguisher proposed in
Sect. 6. Such a variant is competitive as the other distinguishers just presented, and
exploited the result of [GRR17a] recalled in Lemma 2.

D.1 Variant of the 5-round Distinguisher of Sect. 6
D.1.1 Details of the Distinguisher

Consider 232 chosen plaintexts with one active column (4 active bytes), e.g. a coset of C0,
and the corresponding ciphertexts after 5-round. For each (x0, x1, x2, x3), (y0, y1, y2, y3) ∈
F8

28 such that xi 6= yi for each i = 0, 1, 2, 3, let the set T (y0,y1,y2,y3)
(x0,x1,x2,x4) of pairs of plaintexts

be defined as follows

T (y0,y1,y2,y3)
(x0,x1,x2,x4) =

{
(p, q) ∈ F4×4

28 × F4×4
28

∣∣∣∣ p ≡ (x0, x1, x2, x3), q ≡ (y0, y1, y2, y3)

or p ≡ (y0, x1, x2, x3),≡ (x0, y1, y2, y3) or p ≡ (x0, y1, x2, x3),≡ (y0, x1, y2, y3)

or... or p ≡ (y0, x1, x2, y3), q ≡ (x0, y1, y2, x3)
}
.

In other words, the pair of plaintexts p, q ∈ C0 ⊕ a can be of the form

p ≡ a⊕


x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 q ≡ a⊕


y0 0 0 0
y1 0 0 0
y2 0 0 0
y3 0 0 0

 ,
or

p ≡ a⊕


y0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 q ≡ a⊕


x0 0 0 0
y1 0 0 0
y2 0 0 0
y3 0 0 0


and so on. Given 232 plaintexts as before, it is possible to construct 1

8 ·2
31 ·(28−1)4 ' 259.978

different sets (using formula (10) to count the number of pairs of texts with no equal
generating variables), where each set contains exactly 8 different pairs of plaintexts (we
emphasize that these pairs of plaintexts are not independent, in the sense that a particular
relationships among the generating variable holds).

Consider n� 1 random sets, and count the number of sets for which two ciphertexts
(generated by 5-round AES or by a random permutation) of at least one couple belong
to the same coset of a subspaceMJ for J ⊆ {0, 1, 2, 3}. As we are going to prove, this
number is on average lower for AES than for a random permutation, independently of the
secret key, of the details of the S-Box and of the MixColumns matrix. In more details,
the numbers of sets for 5-round AES nAES and for a random permutation nrand are well
approximated by nAES ' n · pAES and nrand ' n · prand where

pAES ' 2−27 − 31 · 2−60 − 3 641 245 · 2−91︸ ︷︷ ︸
≈ 3.475 · 2−71

+ 20 628 528 753 · 2−124︸ ︷︷ ︸
≈ 2.4 · 2−91

+...

prand ' 2−27 − 31 · 2−60 + 155 · 2−91 + ...

Even if this difference is small, it is possible to distinguish the two cases with probability
higher than 95% if n ≥ 2113.84.

In the following, we prove this result (which has been practically tested on a small-scale
AES) and we give all the details about the data and the computational cost.
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D.1.2 Proof

As first thing, we prove the results just given. Since the proof is very similar to the ones
just given, we limit to give the final results.

Proof - 5-round AES. Using the same computation as before, given a set T , the
probability that two ciphertexts of at least one couple satisfy the required property is
given by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

8 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

8 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)8]
+p3 ·

[
1−

(
1− p3,3

)8]
=

=2−27 − 31 · 2−60 − 3 641 245 · 2−91︸ ︷︷ ︸
≈ 3.475 · 2−71

+ 20 628 528 753 · 2−124︸ ︷︷ ︸
≈ 2.4 · 2−91

+...

for a certain i ∈ {1, ..., 8}.

Proof - Random Permutation. For a random permutation, what is the probability
that two ciphertexts (generated by a random permutation) of at least one couple satisfy
the required property? By simple computation, such event occurs with (approximately)
probability

prand =1−
(
1− p8

3
)
= 1−

[
1−

(
2−30 − 3 · 2−63 + 2−94)]8=

=2−27 − 31 · 2−60 + 155 · 2−91 + ...

D.1.3 Data and Computational Costs

Data Cost. In order to compute the data cost, we use the same argumentation of Sect.
6.2.1. Note that |pAES − prand| ' 2−69.204 and pAES ' prand ' 2−27. Using (15), it
follows that n must satisfy n > 2113.84 for a prob. of success higher than 95%. Since a
single coset of CI for |I| = 1 contains approximately 231 · (28 − 1)4 · 2−3 ' 259.978 different
sets T of eight couples, one needs approximately 2113.84 · 2−60 ' 253.84 different initial
cosets of CI , that is approximately 285.84 chosen plaintexts.

Equivalently, it is possible also possible to use cosets of CI for |I| = 2. In this case, a
single coset of CI for |I| = 2 contains approximately 263 · (216 − 1)4 · 2−3 ' 2124 different
sets T of eight couples. Thus, using a single coset of CI for |I| = 2, it is possible to
construct approximately 2124 different sets S of eight couples, which is more than one
needs to set up the distinguisher. It follows that 259 chosen plaintexts in the same coset of
CI with |I| = 2 (e.g. equivalent to the case of set T studied in details in Sect. C.2) are
sufficient to implement the distinguisher.

Computational Cost. About the computational cost, the idea is to exploit the re-
ordering Algorithm 4 as defined in Sect. 6.2.2. Working with coset of CI for |I| = 1, the
cost to count the number of set T with the required property is

4·
[
232 · log(232) (re-ordering process) +

(
232 + 231) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+259.978 (final “for”) ' 259.98

table look-ups. Since the attacker must repeat this algorithm for each initial coset, the
total computational cost is of 253.84 · 259.98 = 2113.82 table look-ups, or equivalently 2107.18

five-round encryptions.
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Instead, using 259 chosen plaintexts in the same coset of CI for |I| = 2, the cost to
count the number of sets T for which two ciphertexts of at least one pair of plaintexts
belong to the same coset ofMJ is

4·
[
259 · log(259) (re-ordering process) +

(
259 + 285) (access to (pi, ci) and to A[·] - increment

number of collisions)
]
+2113.84 (final “for”) ' 2113.84

table look-ups (where the average number of collisions is
(259

2
)
· 2−32 = 285), or equivalently

2107.2 five-round encryptions.

D.2 Key-Recovery Attack on 6-round AES
For completeness, we show that also this distinguisher can be used to set up a key-recovery
attack on 6-round, as the one proposed in Sect. 7.

For this reason, we give the probability pWrongKey
AES that for a set T two texts of at least

one couple belong to the same coset ofMK for a certain |K| = 3 after six rounds, - when
the guessed key is wrong. Such probability is equal to

pWrongKey
AES =

8∑
n=0

(
8
n

)
· pn3 · (1− p3)8−n ·

[
1−

(
1− p3,3

)n
·
(

1− p3 · (1− p3,3)
1− p3

)8−n]
,

which is well approximated by

pWrongKey
AES = 2−27 − 31 · 2−60 − 3 989 · 2−91 + ...

Note that this probability is similar but not equal to the one of the random case (which is
prand = 2−27−31 ·2−60 +155 ·2−91 + ...), while we remember that the probability for “AES
with the right key” is pAES = 2−27 − 31 · 2−60 − 3 641 245 · 2−91 + ..., where the difference
between these two probabilities is approximately |pWrongKey

AES − pAES | ' 2−69.2053.

D.3 Practical Verification on small-scale AES
In order to have a practical verification of the proposed distinguisher (and of the following
key-recovery attack), we have practically verified the probabilities pAES and prand given
above. In particular, we verified them using a small-scale AES, proposed in [CMR05]. We
emphasize that our verification on the small-scale variant of AES is strong evidence for it
to hold for the real AES, since the strategy used to theoretically compute such probabilities
is independent of the fact that each word of AES is of 4 or 8 bits.

Thus, in order to compare the practical values with the theoretical ones, we compute
the theoretical probabilities pAES and prand for the small-scale case. First of all, for small
scale AES the probabilities p3 and p3,3 are respectively equal to p3 = 2−14− 3 · 2−31 + 2−46

and p3,3 = 2−10 − 3 · 2−23 + 2−34.

Practical Results. W.l.o.g. we used cosets of C0 to practically test the two probabil-
ities. Using the previous procedure and formula, the (approximately) probabilities that a
set T satisfies the required property for 5-round AES and the random case are respectively

pAES = 2−11 − 31 · 2−28 − 12 445 · 2−43︸ ︷︷ ︸
≈ 3.05 · 2−31

+ 4 848 753 · 2−60︸ ︷︷ ︸
≈ 37 · 2−43

+...

prand = 2−11 − 31 · 2−28 + 155 · 2−43 + ...
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As a result, using formula (15) for prand ' pAES ' 2−11 and |prand − pAES | ' 2−29.379,
it follows that n ≥ 250.194 different sets T are sufficient to set up the distinguisher with
probability higher than 95%.

Since we work with small-scale AES, a single coset of C0 contains 216 (plaintexts,
ciphertexts) pairs, or approximately 215 · (216 − 1) ' 231 different couples. Since the
number of couples with different generating variables is given by 216 · (24 − 1)4 (also tested
by computer test), it is possible to construct 8−1 ·216 · (24−1)4 = 207 360 000 ' 227.628 sets
T such that all the generating variables of the couples of each of these sets are different.
As a result, it follows that 250.194 · 2−27.628 = 222.566 different initial cosets of C0 must be
used, for a cost of 238.566 chosen plaintexts.

For our tests, we used 223 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is not
fixed). For each coset we exploited Algorithm 3 to count the number of sets T that satisfy
the required property (i.e. the number of sets for which two ciphertexts of at least one
couple are in the same coset ofMJ for certain J with |J | = 3). As a result, for each initial
coset C0 the (average) theoretical numbers of sets T that satisfy the required property
for the random and the AES cases - given by nTX = 207 360 000 · pX - and the (average)
practical ones found in our experiments - denoted by nPX - are given are:

nTrand ' 101 226.057 nTAES ' 101 225.76
nPrand ' 101 226.105 nPAES ' 101 225.68

Note that these two numbers are close to the theoretical ones, and that the average number
of sets for AES case is lower than for the random one, as predicted.
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