
Blockcipher-based MACs: Beyond the Birthday
Bound without Message Length

Yusuke Naito

Mitsubishi Electric Corporation, Kanagawa, Japan
Naito.Yusuke@ce.MitsubishiElectric.co.jp

Abstract. We present blockcipher-based MACs (Message Authentica-
tion Codes) that have beyond the birthday bound security without mes-
sage length in the sense of PRF (Pseudo-Random Function) security.
Achieving such security is important in constructing MACs using block-
ciphers with short block sizes (e.g., 64 bit).
Luykx et al. (FSE 2016) proposed LightMAC, the first blockcipher-based
MAC with such security and a variant of PMAC, where for each n-bit
blockcipher call, an m-bit counter and an (n−m)-bit message block are
input. By the presence of counters, LightMAC becomes a secure PRF up
to O(2n/2) tagging queries. Iwata and Minematsu (TOSC 2016, Issue 1)
proposed Ft, a keyed hash function-based MAC, where a message is input
to t keyed hash functions (the hash function is performed t times) and
the t outputs are input to the xor of t keyed blockciphers. Using the
LightMAC’s hash function, Ft becomes a secure PRF up to O(2tn/(t+1))
tagging queries. However, for each message block of (n − m) bits, it
requires t blockcipher calls.
In this paper, we improve Ft so that a blockcipher is performed only once
for each message block of (n −m) bits. We prove that our MACs with
t ≤ 7 are secure PRFs up to O(2tn/(t+1)) tagging queries. Hence, our
MACs with t ≤ 7 are more efficient than Ft while keeping the same level
of PRF-security.

Keyword: MAC, blockcipher, PRF, PRP, beyond the birthday bound,
message length, counter.

1 Introduction

A MAC (Message Authentication Code) is a fundamental symmetric-key primi-
tive that produces a tag to authenticate a message. MACs are often realized by
using a blockcipher so that these become secure PRFs (Pseudo-Random Func-
tions) under the standard assumption that the underlying keyed blockciphers
are pseudo-random permutations. Hence, in security proofs, these are replaced
with random permutations. The advantage of PRF-security is commonly mea-
sured by using the parameters: n the block length, q the total number of tagging
queries, ℓ the maximum message length (in blocks) of each query and σ the to-
tal message length (in blocks) of all queries. Many blockcipher-based MACs are

provided with the so-called birthday security. The basic birthday bound looks
like O(ℓ2q2/2n) or O(σ2/2n).

Blockcipher-based MACs are mainly categorized into CBC-type MACs and
PMAC-type ones. These MACs are constructed from two functions: hash and
finalization functions, where a hash function produces a fixed length hash value
from an arbitrary length message; a finalization function produces a tag from a
hash value. CBC-type MACs [2, 8, 16, 21, 31, 32] use hash functions that iterate
a keyed blockcipher. The PRF-security bound becomes the birthday one due to
the collision in the chaining values. PMAC-type MACs [9, 35] use hash functions
using a keyed blockcipher parallelly. The following figure shows the structure
of PMAC1, where EK is a keyed blockcipher (K is a secret key), M1,M2,M3

and M4 are n-bit message blocks and multiplications are performed over the
multiplication subgroup of GF (2n). For collision inputs to the keyed blockcipher,
the outputs are canceled out before the finalization function. Hence, the collision
might trigger a distinguishing attack. By the birthday analysis for the input
collision, the PRF-security bound becomes the birthday one.

M1 M2

2�L � 22
�L � �

EK EK

�

EK

� T

23
�L

M3 M4

EK

3 �23
�L

EK

0

L

� �

���� ������	�
���

MACs with Beyond the Birthday Bound Security. The birthday bound
security may not be enough for blockciphers with short block sizes such as Triple-
DES and lightweight blockciphers, as mentioned in [7]. Hence, designing a MAC
with beyond the birthday bound (BBB) security is an important research of MAC
design. Such MACs contribute not only to blockciphers with short block sizes
but also to the longevity of 128-bit blockciphers.

Yasuda proposed a CBC-type MAC, called SUM-ECBC [38], and a PMAC-
type one, called PMAC Plus [39]. He proved that the PRF-security bounds become
O(ℓ3q3/22n). Later, Zhang et al. proposed a CBC-type MAC, called 3kf9 [42]
that is more efficient than SUM-ECBC. These hash functions have a double
length (2n bit) internal state and produce a 2n-bit value. These finalization
functions have the xor of two keyed blockciphers that generates a tag from a
2n-bit hash value. By the double length internal state, the influences of ℓ and q
on the bounds are weakened.

Yasuda designed a PMAC-type MAC, called PMAC with Parity [40], with
the aim of weakening the influence of ℓ. He proved that the PRF-security bound
becomes O(q2/2n + ℓqσ/22n). Later, Zhang proposed a PMAC-type MAC with
better efficiency, called PMACX [43]. Luykx et al. proposed a PMAC-type MAC,

2

Table 1. The numbers of tagging queries of changing a key and the times.

PMAC Plus LightMAC F2 (t = 2) F3 (t = 3) F4 (t = 4) · · ·
Queries 229 222 236 243 247 · · ·
Times 13 hrs 12 min 274 days 96 years 1539 years · · ·

called LightMAC [26]. LightMAC is the counter-based construction that is used
in the XOR MAC [1] and the protected counter sum [6]. LightMAC can be
seen as a counter-based PMAC in which (i)m∥Mi is input to the i-th keyed
blockcipher call, where (i)m is the m-bit binary representation of i and Mi is the
i-th message block of n−m bits. By the presence of counters, the input collision
can be avoided, thereby the influence ℓ can completely be removed. They proved
that the PRF-security bound becomes O(q2/2n), namely, LightMAC is a secure
PRF up to O(2n/2) tagging queries.

Recently, Iwata and Minematsu proposed MACs with beyond the O(2n/2)-
security, called Ft [17]. Ft is based on t keyed hash functions HL1 , . . . , HLt and t
keyed blockciphers EK1

, . . . , EKt
, where L1, . . . , Lt are hash keys. For a message

M , the tag is defined as Ft(M) =
⊕t

i=1 EKi
(Si) where Si = HLi

(M). They
proved that the PRF-security bound becomes O(qt+1 · ϵt) as long as the keyed
hash functions are ϵ-almost universal. They pointed out that the hash function
of LightMAC is a O(1/2n)-almost universal hash function, and adopting it as
these hash functions, the PRF-security bound becomes O(qt+1/2tn). Namely, it
is a secure PRF up to O(2tn/(t+1)) tagging queries.

Why BBB-Security without Message Length? We explain the importance
of achieving BBB-security without message length. Here we consider the follow-
ing example: the block length n = 64, the message length 215 bits (4 Kbytes), and
the threshold 1/220 (a key is changed when the security bound equals the thresh-
old). The message length is the case of HTTPS connection given in [7] and the
threshold is given in [26]. We define the counter size as m = n/3 (rounded to the
nearest multiple of 8) (in this case, n = 64 and m = 24). Putting these param-
eters into security bounds of PMAC Plus (O(ℓ3q3/22n)), LightMAC (O(q2/2n)),
and Ft using LightMAC (O(qt+1/2tn)), a key is changed after the tagging queries
given in Table 1 (Line with “Queries”). Then, we consider the case that 2900 tag-
ging queries of message length 4 Kbytes per second can be made. This example
is the case of HTTPS connection given in [7]. In this case, a key is changed after
the times given in Table 1 (Line with “Times”). Note that the security bound
of PMAC Plus depends on the message length, thereby increasing the length de-
creases the time. As shown Table 1, PMAC Plus and LightMAC require a rekeying
within a day, whereas Ft does not require such frequent rekeyings.

Question. As mentioned above, achieving BBB-security without message length
is important for blockciphers with short block sizes, and Ft using LightMAC
achieves such security. However, it is inefficient because for each input block

3

Table 2. Comparison of our MACs and other BBB-secure MACs. Column “#
bits/BCs” refers to the number of bits of input message processed per blockcipher
call. Column “# BCs in FF” refers to the number of blockcipher calls in a finalization
function. Ft uses the hash function of LightMAC. LightMAC Plus2 has the condition
t ≤ 7.

Scheme # keys # bits/BC # BCs in FF Security Ref.

PMAC Plus 3 n 2 O(ℓ3q3/22n) [39]

LightMAC 2 n−m 1 O(q2/2n) [26]

Ft 2t (n−m)/t t O(qt+1/2tn) [17]

LightMAC Plus 3 n−m 2 O(q3/22n) This paper

LightMAC Plus2 t+ 3 n−m t+ 2 O(qt+1/2tn + ϵ) This paper

(i)m∥Mi it requires t blockcipher calls. It is roughly t times slower than Light-
MAC. Therefore, the main question of this paper is: can we design more efficient
MACs than Ft while keeping O(2tn/(t+1))-security?

Our Results. Firstly, we focus to design a MAC that is more efficient than
F2 and achieves the O(22n/3)-security. As the research direction from PMAC to
LightMAC, it is natural to consider a counter-based PMAC Plus. We call the resul-
tant scheme “LightMAC Plus.” Regarding the efficiency, LightMAC Plus requires
roughly one blockcipher call for each input block (i)m∥Mi, while F2 requires two
blockcipher calls. Hence, LightMAC Plus is more efficient than F2. Regarding the
PRF-security, by the presence of counters, the influence of ℓ can be removed. We
prove that the PRF-security bound becomes O(q3/22n), namely, LightMAC Plus

is a secure PRF up to O(22n/3) queries.

Next, we focus to design a MAC that is more efficient than Ft and achieves
O(2tn/(t+1))-security, where t ≥ 3. Regarding the hash function, we also use
that of LightMAC Plus. Hence, this hash function is roughly t times faster than
that of Ft. In order to ensure randomnesses of tags, we use the xor of t keyed
blockciphers. However, there is a gap between the output length of the hash
function (2n bit) and the input length of the xor function (tn bit). Therefore, we
propose a new construction that links between a 2n-bit output and a tn-bit input.
We call the resultant scheme “LightMAC Plus2”, and prove that if t ≤ 7, then the
PRF-security bound becomes O(qt+1/2tn + q2/22n), namely, it is a secure PRF
up to O(2tn/(t+1)) tagging queries. In the proof of LightMAC Plus2, we generalize
the hash function by an ϵ-almost universal one, and prove that if t ≤ 7, then the
PRF-security bound is O(qt+1/2tn + ϵ). We prove that the counter-based hash
function is O(q2/22n)-almost universal, which offers the PRF-security bound:
O(qt+1/2tn + q2/22n).

Finally, in Table 2, we compare our MACs with BBB-secure MACs PMAC Plus,
LightMAC, and Ft. These MACs are PMAC-type ones, and thus parallelizable.
We note that the PRF-security bound of LightMAC Plus2 is satisfied when t ≤ 7.
Proving the PRF-security with t > 7 is left as an open problem.

4

Related Works. The PRF-security bounds of CBC-type MACs and PMAC-
type MACs were improved to O(ℓq2/2n) [3, 28] and O(σq/2n) [30]. Luykx et al.
studied the influence of ℓ in the PMAC’s bound [25]. They showed that PMAC
with Gray code [9] may not achieve the PRF-security bound ofO(q2/2n). Gaži et al. [14]
showed that there exists an attack to PMAC with Gray code with the probabil-
ity of Ω(ℓq2/2n), and instead proved that PMAC with 4-wise independent masks
achieves the PRF-security bound of O(q2/2n), where the input masks are defined
by using 4 random values. Dodis and Steinberger [12] proposed a secure MAC
from unpredicable keyed blockciphers with beyond the birthday bound security.
Note that the security bound of their MAC includes the message length. Sev-
eral randomized MACs achieve beyond the birthday bound security [19, 20, 27].
These require a random value for each query, while our MACs are deterministic,
namely, a random value is not required.

Several compression function-based MACs achieve BBB security e.g., [13, 22,
37, 41]. Naito [29], List and Nandi [23], and Iwata et al. [18] proposed tweak-
able blockcipher-based MACs with BBB security. These MACs also employ the
counter-based PMAC Plus-style construction, where a counter is input as tweak.
Namely, in the security proofs, the power of a tweakable blockcipher is used (dis-
tinct tweaks offer distinct random permutations). On the other hand, our MACs
do not change the permutation in the hash function for each message block
and the permutations in the finalization function. Peyrin and Seurin proposed
a nonce-based and tweakable blockcipher-based MAC with BBB security [33].
Several Wegman-Carter-type MACs with BBB security were proposed e.g., [10,
11, 36]. These MACs use a random value or a nonce, whereas our MACs do not
require either of them.

Organization. In Section 2, we give notations and the definition of PRF-
security. In Section 3, we give the description of LightMAC Plus and the PRF-
security bound. In Section 4, we give the proof of the PRF-security. In Section 5,
we give the description of LightMAC Plus2 and the PRF-security bound. In Sec-
tion 6, we give the proof of the PRF-security. Finally, in Section 7, we improve
the efficiency of the hash function of LightMAC Plus2.

2 Preliminaries

Notation. Let {0, 1}∗ be the set of all bit strings. For a non-negative integer n,
let {0, 1}n be the set of all n-bit strings, and 0n the bit string of n-bit zeroes. For a
positive integer i, [i] := {1, 2, . . . , i}. For non-negative integers i,m with i < 2m,

(i)m denotes the m-bit binary representation of i. For a finite set X, x
$←− X

means that an element is randomly drawn from X and is assigned to x. For a
positive integer n, Perm(n) denotes the set of all permutations: {0, 1}n → {0, 1}n
and Func(n) denotes the set of all functions: {0, 1}∗ → {0, 1}n. For sets X and
Y , X ← Y means that Y is assigned to X. For a bit string x and a set X, |x| and
|X| denote the bit length of x and the number of elements in X, respectively.

5

S2

S1

�

P

�

2 2 2

P

�

� �

P

�

�

(1)m||M1 (2)m||M2 (l)m||Ml

P1

P2 � T

���� ������	�
���

Fig. 1. LightMAC Plus where P := EK , P1 := EK1 and P2 := EK2 .

Xs denotes the s-array cartesian power of X for a set X and a positive integer
s.

Let GF (2n) be the field with 2n points and GF (2n)∗ the multiplication sub-
group of GF (2n) which contains 2n − 1 points. We interchangeably think of a
point a in GF (2n) in any of the following ways: as an n-bit string an−1 · · · a1a0 ∈
{0, 1}n and as a formal polynomial an−1x

n−1 + · · ·+ a1x+ a0 ∈ GF (2n). Hence
we need to fix an irreducible polynomial a(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0.
This paper uses an irreducible polynomial with the property that the element
2 = x generates the entire multiplication group GF (2n)∗ of order 2n − 1. Ex-
amples of irreducible polynomial for n = 64 and n = 128 are given in [35]:
a(x) = x64 + x4 + x3 + x+ 1 and a(x) = x128 + x7 + x2 + x+ 1, respectively.

PRF-Security. We focus on the information-theoretic model, namely, all keyed
blockciphers are assumed to be random permutations, where a random permu-

tation is defined as P
$←− Perm(n). Through this paper, a distinguisher D is a

computationally unbounded algorithm. It is given query access to an oracle O,
denoted by DO. Its complexity is solely measured by the number of queries made
to its oracles. Let F [P] be a function using s permutations P = (P (1), . . . , P (s)).

The PRF-security of F [P] is defined in terms of indistinguishability between
the real and ideal worlds. In the real world, D has query access to F [P] for

P
$←− Perm(n)s. In the ideal world, it has query access to a random function R,

where a random function is defined as R $←− Func(n). After interacting with an
oracle O, D outputs y ∈ {0, 1}. This event is denoted by DO ⇒ y. The advantage
function is defined as

Advprf
F [P](D) = Pr

[
P

$←− Perm(n)s;DF [P] ⇒ 1
]
− Pr

[
R $←− Func(n);DR ⇒ 1

]
.

Note that the probabilities are taken over P,R and D.

6

Algorithm 1 LightMAC Plus

▶ Main Procedure LightMAC Plus[EK , EK1 , EK2](M)

1: (S1, S2)← Hash[EK](M)
2: T1 ← EK1(S1); T2 ← EK2(S2); T ← T1 ⊕ T2

3: return T

▶ Subroutine Hash[EK](M)

1: Partition M∥10∗ into n−m-bit blocks M1, . . . ,Ml; S1 ← 0n; S2 ← 0n

2: for i = 1, . . . , l do
3: Bi ← (i)m∥Mi; Ci ← EK(Bi); S1 ← S1 ⊕ Ci; S2 ← S2 ⊕ 2l−i · Ci

4: end for
5: return (S1, S2)

3 LightMAC Plus

3.1 Construction

Let {EK}K∈K ⊆ Perm(n) be a family of n-bit permutations (or a blockcipher)
indexed by the key space K, where k > 0 is the key length. Let m be the
counter size with m < n. Let K,K1,K2 ∈ K be three keys for E. For a message
M , the response of LightMAC Plus[EK , EK1 , EK2] is defined by Algorithm 1.
Fig. 1 illustrates the subroutine Hash[EK]. Here, M∥10∗ means that first 1 is
appended to M , and if the bit length of M∥1 is not a multiple of n−m bits, then
a sequence of the minimum number of zeros is appended to M∥1 so that the bit
length becomes a multiple of n −m bits. Note that M∥10∗ = M1∥M2∥ · · · ∥Ml

and ∀i ∈ [l] : |Mi| = n −m. By the counter size m and the padding value 10∗,
the maximum message length in bits is at most (2m − 1)× (n−m)− 1 bit.

3.2 Security

We prove the PRF-security of LightMAC Plus in the information-theoretic model,
namely, EK , EK1

and EK2
are replaced with random permutations P, P1 and P2,

respectively. The upper-bound of the PRF-security advantage is given below, and
the security proof is given in Section 4.

Theorem 1. Let D be a distinguisher making q tagging queries. Then we have

Advprf
LightMAC Plus[P,P1,P2]

(D) ≤ 2q2

22n
+

4q3

22n
.

4 Proof of Theorem 1

Let F = LightMAC Plus. In this section, we upper-bound the PRF-advantage

Advprf
F [P,P1,P2]

(D) =Pr[(P, P1, P2)
$←− Perm(n)3;DF [P,P1,P2] ⇒ 1]

− Pr[R $←− Func(n);DR ⇒ 1] .

7

Initialization

1: P
$←− Perm(n)

2: ∀i ∈ [2], Si ∈ {0, 1}n : Pi(Si)←⊥

Main Game: Upon the α-th query Mα do

1: (Sα
1 , S

α
2)← Hash[P](Mα)

2: If Sα
1 ∈ DomPα−1

1 and Sα
2 ∈ DomPα−1

2 then goto Case A
3: If (Sα

1 ∈ DomPα−1
1 and Sα

2 ̸∈ DomPα−1
2) or (Sα

1 ̸∈ DomPα−1
1 and Sα

2 ∈ DomPα−1
2)

then goto Case B
4: If Sα

1 ̸∈ DomPα−1
1 and Sα

2 ̸∈ DomPα−1
2 then goto Case C

5: return Tα

Fig. 2. Main Game.

Without loss of generality, we assume that D is deterministic and makes no
repeated query.

In this proof, we use the following notations. For α ∈ [q], values defined
at the α-th query are denoted by using the superscript character of α such
as Bα

i , C
α
i , S

α
i , etc, and the message length l at the α-th query is denoted by

lα. For α ∈ [q] and j ∈ [2], DomPα
j :=

∪α
δ=1{Sδ

j }, RngPα
j :=

∪α
δ=1{T δ

j } and

RngPα
j := {0, 1}n\RngPα

j .

4.1 Proof Strategy

This proof largely depends on the so-called game-playing technique [4, 5]. In this
proof, a random permutation P used in Hash is defined before starting the game,
whereas other random permutations P1 and P2 are realized by lazy sampling.
Before starting the game, for i ∈ [2], all responses of Pi are not defined, that
is, ∀Si ∈ {0, 1}n : Pi(Si) =⊥. When Pi(S

α
i) becomes necessary, if Pi(S

α
i) =⊥

(or Sα
i ̸∈ DomPα−1

i), then it is defined as Pi(S
α
i)

$←− RngPα−1
i , and otherwise,

Pi(S
α
i) is not updated.
The main game is given in Fig. 2, where there are three sub-cases (See lines 2-

4 in Fig. 2) and these procedures are defined in Fig. 3. The analysis of Case C
is based on the proofs of sum2 construction by Lucks [24] and SUM-ECBC by
Yasuda [38]. We say a set Fairα ⊆ ({0, 1}n)2 is fair if for each T ∈ {0, 1}n,

|{(T1, T2) ∈ Fairα | T1 ⊕ T2 = T}| = |Fair
α|

2n
.

Let Lα = RngPα−1
1 ×RngPα−1

2 . Lucks pointed out that at the α-th query, there
exists a set W ⊂ Lα of size at most (α− 1)2 such that Lα\W is fair. In Case C,
the fair set is defined as Fairα := Lα\W . Hence, the α-th output (Tα = Tα

1 ⊕Tα
2)

is uniformly random over {0, 1}n as long as (Tα
1 , T

α
2) ∈ Fairα. See Lemma 2 of

[24] or [38] for explicit constructions of fair sets.
Let bad = badA∨badB∨badC. By the fundamental lemma of game-playing [4,

5], we have

Advprf
F [P,P1,P2]

(D) ≤ Pr[bad] ≤ Pr[badA] + Pr[badB] + Pr[badC]. (1)

8

Case A:

1: If ¬bad then badA ← true

2: Tα $←− {0, 1}n

3: Tα
1 ← P1(S

α
1); T

α
2 ← P2(S

α
2); T

α ← Tα
1 ⊕ Tα

2 ▷ Removed in the ideal world

Case B: In the following procedure, Sα
j ∈ DomPα−1

j and Sα
j+1 ̸∈ DomPα−1

j+1 , where
j ∈ [2] and if j = 2 then j + 1 is regarded as 1.

1: Tα
j+1

$←− {0, 1}n
2: if Tα

j+1 ∈ RngPα−1
j+1 then

3: if ¬bad then badB ← true

4: Tα
j+1

$←− RngPα−1
j+1 ▷ Removed in the ideal world

5: end if
6: Pj+1(S

α
j+1)← Tα

j+1; T
α
j ← Pj(S

α
j); T

α ← Tα
1 ⊕ Tα

2

Case C:

1: Choose a fair set Fairα ⊆ RngPα−1
1 × RngPα−1

2

2: (Tα
1 , Tα

2)
$←− RngPα−1

1 × RngPα−1
2 ; Tα ← Tα

1 ⊕ Tα
2

3: if (Tα
1 , Tα

2) ̸∈ Fairα then
4: if ¬bad then badC ← true

5: (Tα
1 , Tα

2)
$←− Fairα; Tα ← Tα

1 ⊕ Tα
2 ▷ Removed in the real world

6: end if
7: P1(S

α
1)← Tα

1 ; P2(S
α
2)← Tα

2

Fig. 3. Case A, Case B and Case C.

Hereafter, we upper-bound Pr[badA], Pr[badB] and Pr[badC].

4.2 Upper-Bound of Pr[badA]

First we define the following event:

coll⇔ ∃α, β ∈ [q] with α ̸= β s.t. (Sα
1 , S

α
2) = (Sβ

1 , S
β
2).

Then we have

Pr[badA] ≤ Pr[coll] + Pr[badA|¬coll] .

By Propositions 1 and 2, we have

Pr[badA] ≤
2q2

22n
+

4
3q

3

22n
. (2)

Proposition 1. Pr[coll] ≤ 2q2

22n .

Proof. Lemma 1 shows the upper-bound of the probability that for distinct two
messages Mα,Mβ ∈ {0, 1}∗, Hash[P](Mα) = Hash[P](Mβ), which is at most

9

4/22n. The sum of the upper-bounds for all combinations of message pairs gives

Pr[coll] ≤
(
q

2

)
· 4

22n
≤ 2q2

22n
.

⊓⊔

Lemma 1. For distinct two messages Mα,Mβ ∈ {0, 1}∗, the probability that
Hash[P](Mα) = Hash[P](Mβ) is at most 4/22n.

Proof. Without loss of generality, we assume that lα ≤ lβ . Hash[P](Mα) =
Hash[P](Mβ) implies that

Sα
1 = Sβ

1 and Sα
2 = Sβ

2 ⇔
lα⊕
i=1

Cα
i ⊕

lβ⊕
i=1

Cβ
i︸ ︷︷ ︸

A3,1

= 0n and

lα⊕
i=1

2lα−i · Cα
i ⊕

lβ⊕
i=1

2lβ−i · Cβ
i︸ ︷︷ ︸

A3,2

= 0n. (3)

We consider the following three cases.

1.
(
lα = lβ

)
∧
(
∃a ∈ [lα] s.t. B

α
a ̸= Bβ

a

)
∧
(
∀i ∈ [lα]\{a} : Bα

i = Bβ
i

)
.

2.
(
lα = lβ

)
∧
(
∃a1, a2 ∈ [lα] s.t. B

α
a1
̸= Bβ

a1
∧Bα

a2
̸= Bβ

a2

)
3.
(
lα ̸= lβ

)
The first case is that there is just one position a where the inputs are distinct,
whereas the second case is that there are at least two positions a1, a2 where the
inputs are distinct. For each case, we upper-bound the probability that (3) is
satisfied.

– Consider the first case: ∃a ∈ [lα] s.t. B
α
a ̸= Bβ

a and ∀i ∈ [lα]\{a} : Bα
i = Bβ

i .

Since Bα
a ̸= Bβ

a ⇒ Cα
a ̸= Cβ

a and Bα
i = Bβ

i ⇒ Cα
i = Cβ

i , A3,1 ̸= 0n and
A3,2 ̸= 0n. Hence, the probability that (3) is satisfied is 0.

– Consider the second case: ∃a1, a2, . . . , aj ∈ [lα] with j ≥ 2 s.t. ∀i ∈ [j] :
Bα

ai
̸= Bβ

ai
. Note that Bα

ai
̸= Bβ

ai
⇒ Cα

ai
̸= Cβ

ai
. Eliminating the same

outputs between {Cα
i : 1 ≤ i ≤ lα} and {Cβ

i : 1 ≤ i ≤ lβ}, we have

A3,1 =

j⊕
i=1

(
Cα

ai
⊕ Cβ

ai

)
and A3,2 =

j⊕
i=1

2lα−ai ·
(
Cα

ai
⊕ Cβ

ai

)
.

Since in A3,1 and A3,2 there are at most lα + lβ outputs, the numbers of
possibilities for Cα

a1
and Cα

a2
are at least 2n−(lα+lβ−2) and 2n−(lα+lβ−1),

respectively. Fixing other outputs, the equations in (3) provide a unique
solution for Cα

a1
and Cα

a2
. As a result, the probability that (3) is satisfied is

at most 1/(2n − (lα + lβ − 2))(2n − (lα + lβ − 1)).

10

– Consider the third case. Without loss of generality, assume that lα < lβ .

Eliminating the same outputs between {Cα
i : 1 ≤ i ≤ lα} and {Cβ

i : 1 ≤ i ≤
lβ}, we have

A3,1 =

u⊕
i=1

Cα
ai
⊕

v⊕
i=1

Cβ
bi

,

where a1, . . . , au ∈ [lα] and b1, . . . , bv ∈ [lβ]. By lα < lβ , lβ ∈ {b1, . . . , bv}
and lβ ̸= 1. Since in A3,1 and A3,2 there are at most lα + lβ outputs, the

numbers of possibilities for Cβ
1 and Cβ

lβ
are at least 2n − (lα + lβ − 2) and

2n − (lα + lβ − 1), respectively. Fixing other outputs, the equations in (3)

provide a unique solution for Cβ
1 and Cβ

lβ
. As a result, the probability that

(3) is satisfied is at most 1/(2n − (lα + lβ − 2))(2n − (lα + lβ − 1)).

The above upper-bounds give

Pr
[
Hash[P](Mα) = Hash[P](Mβ)

]
≤ 1

(2n − (lα + lβ))2
≤ 4

22n
,

assuming lα + lβ ≤ 2n−1.
⊓⊔

Proposition 2. Pr[badA|¬coll] ≤
4
3 q

3

22n .

Proof. First, fix α ∈ [q] and β, γ ∈ [α−1] with β ̸= γ (from the condition ¬coll),
and upper-bound the probability that Sα

1 = Sβ
1 ∧ Sα

2 = Sγ
2 , which implies

lα−1⊕
i=1

Cα
i ⊕

lβ−1⊕
i=1

Cβ
i︸ ︷︷ ︸

A4,1

= 0n and

lα−1⊕
i=1

2lα−i · Cα
i ⊕

lγ−1⊕
i=1

2lγ−i · Cγ
i︸ ︷︷ ︸

A4,2

= 0n. (4)

Since Mα,Mβ and Mγ are distinct, there are at least two distinct outputs Cα,β

and Cα,γ where Cα,β appears in A4,1 and Cα,γ appears in A4,2. Fixing other
outputs in A4,1 and A4,2, the equations in (4) provide a unique solution for
Cα,β and Cα,γ . Since there are at most lα + lβ outputs in A4,1, the number of
possibilities for Cα,β is at least 2n− (lα+ lβ − 1). Since there are at most lα+ lγ
outputs in A4,2, the number of possibilities for Cα,γ is at least 2n− (lα+ lγ −1).
Hence, the probability that (4) is satisfied is at most

1

(2n − (lα + lβ − 1))(2n − (lα + lγ − 1))
≤ 4

22n
,

assuming lα + lβ − 1 ≤ 2n−1 and lα + lγ − 1 ≤ 2n−1.
Finally, we just run induces α, β, and γ to get

Pr[badA|¬coll] ≤
q∑

α=1

 ∑
β,γ∈[1,α−1] s.t. β ̸=γ

4

22n

 ≤ q∑
α=1

4(α− 1)2

22n
=

q−1∑
α=1

4α2

22n

≤ 4

22n
× q(q − 1)(2q − 1)

6
≤

4
3q

3

22n
.

11

⊓⊔

4.3 Upper-Bound of Pr[badB]

First, fix α ∈ [q] and j ∈ [2], and upper-bound the probability that D sets
badB at the α-th query, namely, Sα

j ∈ DomPα−1
j , Sα

j+1 ̸∈ DomPα−1
j+1 , and Tα

j+1 ∈
RngPα−1

j+1 . Note that if j = 2 then j + 1 is regarded as 1.

– Regarding Sα
j ∈ RngPα−1

j , fix β ∈ [α−1] and consider the case that Sα
j = Sβ

j .

Since Mα ̸= Mβ , there is an output Cα,β in {Cα
1 , . . . , C

α
lα
, Cβ

1 , . . . , C
β
lβ
} that

is distinct from other outputs. Fixing other outputs, Sα
j = Sβ

j provides a

unique solution for Cα,β . There are at most 2n− (lα+ lβ−1) possibilities for
Cα,β . Hence, the probability that Sα

j ∈ DomPα−1
j is at most |DomPα−1

j | ×
1/(2n − (lα + lβ − 1)) ≤ 2(α− 1)/2n, assuming lα + lβ − 1 ≤ 2n−1.

– Regarding Tα
j+1 ∈ RngPα−1

j+1 , Tα
j+1 is randomly drawn from {0, 1}n after

Sα
j ∈ RngPα−1

j and Sα
j+1 ̸∈ DomPα−1

j+1 are satisfied. In this case, Tα
j+1 is

defined independently from Sα
j and Sα

j+1. Since |RngP
α−1
j+1 | ≤ α − 1, this

probability that Tα
j+1 ∈ RngPα−1

j+1 is at most (α− 1)/2n.

Hence, the probability that D sets badB at the α-th query is upper-bounded by

the multiplication of the above probabilities, which is 2(α−1)2

22n .
Finally, we just run induces α and j to get

Pr[nosol] ≤
q∑

α=1

2∑
j=1

2(α− 1)2

22n
≤

4
3q

3

22n
. (5)

4.4 Upper-Bound of Pr[badC]

For each α ∈ [q], since
∣∣∣RngPα−1

1 × RngPα−1
2 \Fairα

∣∣∣ ≤ (α− 1)2, the probability

that (Tα
1 , T

α
2) ̸∈ Fairα is at most

(α− 1)2

(2n − (α− 1))2
≤ 4(α− 1)2

22n
,

assuming α− 1 ≤ 2n−1. Hence, we have

Pr[badC] ≤
q∑

α=1

4(α− 1)2

22n
=

q−1∑
α=1

4(α− 2)2

22n
≤

4
3q

3

22n
. (6)

4.5 Conclusion of Proof

Putting (2), (5) and (6) into (1) gives

Advprf
F [P,P1,P2]

(D) ≤ 2q2

22n
+

4
3 · q

3

22n
+

4
3q

3

22n
+

4
3q

3

22n
≤ 2q2

22n
+

4q3

22n
.

12

Algorithm 2 LightMAC Plus2[HKH
, EK0,1

, EK0,2
, EK1

, . . . , EKt
]

▶ Main Procedure LightMAC Plus2[HKH , EK0,1 , EK0,2 , EK1 , . . . , EKt](M)

1: (S1, S2)← HKH (M)
2: R1 ← EK0,1(S1); R2 ← EK0,2(S2); T ← 0n

3: for i = 1, . . . , t do
4: Xi ← R1 ⊕ 2i−1 ·R2; Yi ← EKi(Xi); T ← T ⊕ Yi

5: end for
6: return T

YtY2

�

2

P1

�

X1

Y1

�

�

2

P2

�

X2

P0,2

R1

R2

�

Pt

�

�

Xt

T

2
S2

S1 P0,1

Fig. 4. Finalization function of LightMAC Plus2, where P0,1 := EK0,1 , P0,2 :=
EK0,2 , P1 := EK1 , . . . , Pt := EKt .

5 LightMAC Plus2

5.1 Construction

Let K, KH and DomH be three non-empty sets. Let {EK}K∈K ⊂ Perm(n) be
a family of n-bit permutations (or a blockcipher) indexed by key space K. Let
{HKH

}KH∈KH
be a family of hash functions: DomH → {0, 1}2n indexed by key

space KH . Let m be the counter size with m < n. Let K0,1,K0,2,K1, . . . ,Kt ∈ K
be the E’s keys and KH ∈ KH the hash key. For a message M , the response
of LightMAC Plus2[HKH

, EK0,1 , EK0,2 , EK1 , . . . , EKt] is defined by Algorithm 2,
where |S1| = n and |S2| = n. The finalization function is illustrated in Fig. 4.

5.2 Almost Universal Hash Function

In the security proof, we assume that the hash function H is an almost universal
(AU) hash function. The definition is given below.

Definition 1. Let ϵ > 0. H is an ϵ-AU hash function if for any two distinct

messages M,M ′ ∈ DomH, Pr[KH
$←− KH ;HKH

(M) = HKH
(M ′)] ≤ ϵ.

5.3 Security

We prove the PRF-security of LightMAC Plus2 in the information-theoretic
model, where permutations EK0,1

, EK0,2
, EK1

, . . . , EKt−1
and EKt

are replaced

13

with random permutations P0,1, P0,2, P1, . . . , Pt−1 and Pt, respectively, and H

is assumed to be an ϵ-AU hash function, where a key is drawn as KH
$←− KH .

The upper-bound of the PRF-security advantage is given below, and the security
proof is given in Section 6.

Theorem 2. Assume that t ≤ 7. Let H is an ϵ-AU hash function. Let D be a
distinguisher making q tagging queries. Then we have

Advprf
LightMAC Plus2[HKH

,P0,1,P0,2,P1,...,Pt−1,Pt]
(D) ≤ 0.5q2ϵ+

2tqt+1

(2n − q)t
.

Define the hash function asHKH
:= Hash[P] (given in Algorithm 1). By Lemma 1,

Hash is a 4/22n-AU hash function, where KH = Perm(n) and KH = P . Hence,
combining Lemma 1 and Theorem 2, the following corollary is obtained.

Corollary 1. Let HKH
:= Hash[P]. Then we have

Advprf
LightMAC Plus2[HKH

,P0,1,P0,2,P1,...,Pt−1,Pt]
(D) ≤ 2q2

22n
+

2tqt+1

(2n − q)t
.

6 Proof of Theorem 2

Assume that t ≤ 7. Let F = LightMAC Plus2 and P = (P0,1, P0,2, P1, . . . , Pt).
In this section, we upper-bound the PRF-advantage

Advprf
F [HKH

,P](D) =Pr[P
$←− Perm(n)t+2;KH

$←− KH ;DF [HKH
,P] ⇒ 1]

− Pr[R $←− Func(n);DR ⇒ 1] .

Without loss of generality, we assume that D is deterministic and makes no
repeated query.

In this proof, we use the following notations. For α ∈ [q], values defined at the
α-th query are denoted by using the superscript of α such as Bα

i , C
α
i , S

α
i , etc, and

the message length l at the α-th query is denoted by lα. For α ∈ [q] and j ∈ [t],
DomPα

j :=
∪α

δ=1{Xδ
j }, RngPα

j :=
∪α

δ=1{Y δ
j } and RngPα

j := {0, 1}n\RngPα
j .

6.1 Proof Strategy

This proof uses the same strategy as in the proof of Theorem 1 (given in Sub-
section 4.1). In this proof, random permutations P0,1 and P0,2 are defined before
starting the game, whereas other random permutations are realized by lazy sam-
pling. The main game is given in Fig. 5, where there are three sub-cases defined
by inputs to random permutations Xα

1 , . . . , X
α
t (See lines 4-6 in Fig. 5). The

sub-cases are given in Fig. 6. Note that for i ∈ [t], “Xα
i is new” means that

Xα
i ̸∈ DomPα−1

i , and “Xα
i is not new” means that Xα

i ∈ DomPα−1
i .

14

Initialization

1: KH
$←− KH ; (P0,1, P0,2)

$←− Perm(n)2

2: ∀i ∈ [t], Xi ∈ {0, 1}n : Pi(Xi)←⊥

Main Game: Upon the α-th query Mα do

1: (Sα
1 , S

α
2)← HKH (Mα)

2: Rα
1 ← P0,1(S

α
1); R2 ← P0,2(S

α
2);

3: for i ∈ [t] do Xα
i = Rα

1 ⊕
(
2i−1 ·Rα

2

)
4: if all of Xα

1 , . . . , X
α
t are not new then goto Case A

5: if one of Xα
1 , . . . , X

α
t is new then goto Case B

6: if two ore more of Xα
1 , . . . , X

α
t are new then goto Case C

7: return Tα

Fig. 5. Main Game.

As is the case with the proof of Theorem 1, Case C uses a fair set for the xor
of s random permutations with s ≥ 2. For s random permutations Pa1

, . . . , Pas

at the α-th query, we say a set Fairα ⊆ ({0, 1}n)s is fair if for each T ∈ {0, 1}n,∣∣∣∣∣∣
(Ya1

, Ya2
, . . . , Yas

) ∈ Fairα

∣∣∣∣∣∣
⊕
i∈[s]

Yai
= T


∣∣∣∣∣∣ = |Fair

α|
2n

.

Let Lα := RngPα−1
a1 × RngPα−1

a2 × · · · × RngPα−1
as . Lucks [24] pointed out that

when s is even, there exists a set W ⊂ Lα of size at most (α − 1)s such that
Lα\W is fair, and when s is odd, there exists a set W ′ ⊂ ({0, 1}n)s of size at
most (α− 1)s with W ′ ∩Lα = ∅ such that W ′ ∪Lα is fair. See Lemma 2 of [24]
or [38] for explicit constructions of fair sets. In Case C, the fair set is defined as
Fairα := Lα\W when s is even; Fairα := Lα ∪W ′ when s is odd.

Let bad = badA ∨ badB ∨ badC. Then by the fundamental lemma of game-
playing [4, 5], we have

Advprf
F [P](D) ≤ Pr[bad] ≤ Pr[badA] + Pr[badB] + Pr[badC]. (7)

Hereafter, we upper-bound Pr[badA], Pr[badB] and Pr[badC].

6.2 Upper-Bound of Pr[badA]

First we define the following event:

coll⇔ ∃α, β ∈ [q] with α ̸= β s.t. (Sα
1 , S

α
2) = (Sβ

1 , S
β
2).

Then we have

Pr[badA] ≤ Pr[coll] + Pr[badA|¬coll] ,

Regarding Pr[coll], since H is an ϵ-AU hash function, the sum of ϵ for all
combinations of message pairs gives

Pr[coll] ≤
(
q

2

)
· ϵ ≤ 0.5q2ϵ .

15

Case A:

1: if ¬bad then badA ← true

2: Tα $←− {0, 1}n
3: for i ∈ [t] do Y α

i ← Pi(X
α
i)

4: Tα ←
⊕t

i=1 Y
α
i ▷ Removed in the ideal world

Case B: In the following procedure, Xα
a is new, and for all i ∈ [t]\{a} Xα

i is not new.

1: Y α
a

$←− {0, 1}n
2: if Y α

a ∈ RngPα−1
a then

3: if ¬bad then badB ← true

4: Y α
a

$←− RngPα−1
a ▷ Removed in the ideal world

5: end if
6: Pi(X

α
a)← Y α

a

7: for i ∈ [t]\{a} do Y α
i ← Pi(X

α
i)

8: Tα ←
⊕t

i=1 Y
α
i

Case C: In the following procedure, Xα
a1
, . . . , Xα

as
are new with a1, . . . as ∈ [t] and

other inputs are not new where s ≥ 2.

1: Lα ← RngPα−1
a1 × RngPα−1

a2 × · · · × RngPα−1
as

2: if s is even then
3: Choose a fair set Fairα ⊆ Lα; (Y α

a1
, Y α

a2
, . . . , Y α

as
)

$←− Lα

4: if (Y α
a1
, Y α

a2
, . . . , Y α

as
) ̸∈ Fairα then

5: if ¬bad then badC ← true

6: (Y α
a1
, Y α

a2
, . . . , Y α

as
)

$←− Fairα ▷ Removed in the real world

7: end if
8: end if
9: if s is odd then
10: Choose a fair set Fairα ⊇ Lα; (Y α

a1
, Y α

a2
, . . . , Y α

as
)

$←− Fairα

11: if (Y α
a1
, Y α

a2
, . . . , Y α

as
) ̸∈ Lα then

12: if ¬bad then badC ← true

13: (Y α
a1
, Y α

a2
, . . . , Y α

as
)

$←− Lα ▷ Removed in the ideal world

14: end if
15: end if
16: for i ∈ [s] do Pi(X

α
ai
)← Y α

ai

17: for i ∈ [t]\{a1, . . . , as} do Y α
i ← Pi(X

α
i)

18: Tα ←
⊕t

i=1 Y
α
i

Fig. 6. Case A, Case B and Case C.

16

Regarding Pr[badA|¬coll], for α ∈ [q], Lemma 2 gives the upper-bound of the

probability that all of Xα
1 , . . . , X

α
t are not new, which is

(
α−1
2n−q

)t
. Then, we run

the index α to get

Pr[badA|¬coll] ≤
q∑

α=1

(
α− 1

2n − q

)t

=

q−1∑
α=1

(
α

2n − q

)t

.

Finally we have

Pr[badA] ≤ 0.5q2ϵ+

q−1∑
α=1

(
α

2n − q

)t

. (8)

Lemma 2. Assume that coll does not occur. Fix α ∈ [q], s ≤ t and a1, a2, . . . , as ∈
[t] such that a1, a2, . . . , as are distinct. Then the probability that ∀i ∈ [s]: Xα

ai
is

not new, that is, ∃βi ∈ [α− 1] s.t. Xα
ai

= Xβi
ai

is at most
(

α−1
2n−q

)s
.

Proof. First, fix β1, . . . , βs ∈ [α− 1], and upper-bound the probability that

∀i ∈ [s] : Xα
ai
⊕Xβi

ai︸ ︷︷ ︸
A9

= 0n. (9)

By Lemma 3, we have only to consider the case where β1, . . . , βs are distinct.
Thus if α ≤ s, then this probability is 0. In the following, we consider the case:
α > s. Note that A9 is defined as

Xα
ai
⊕Xβi

ai
=
(
Rα

1 ⊕ 2ai−1 ·Rα
2

)
⊕
(
Rβi

1 ⊕ 2ai−1 ·Rβi

2

)
=
(
Rα

1 ⊕Rβi

1

)
⊕ 2ai−1 ·

(
Rα

2 ⊕Rβi

2

)
,

where Rα
1 = P0,1(S

α
1), R

α
2 = P0,2(S

α
2), R

βi

1 = P0,1(S
βi

1) and Rβi

2 = P0,2(S
βi

2).

Then, the number of independent random variables in {Rα
1 , R

β1

1 , . . . , Rβs

1 , Rα
2 , R

β1

2 ,

. . . , Rβs

2 } that appear in A9 is counted. Note that {Rα
1 , R

β1

1 , . . . , Rβs

1 } are inde-

pendently defined from {Rα
2 , R

β1

2 , . . . , Rβs

2 }.
First, the number of independent random variables in {Rβ1

1 , . . . , Rβs

1 } and

{Rβ1

2 , . . . , Rβs

2 } is counted. By ¬coll, for all i, j ∈ [s] with i ̸= j, (Sβi

1 , Sβi

2) ̸=
(S

βj

1 , S
βj

2), that is, (Rβi

1 , Rβi

2) ̸= (R
βj

1 , R
βj

2). Note that if there are z1 (resp., z2)

independent random variables in {Rβ1

1 , . . . , Rβs

1 } (resp., {Rβ1

2 , . . . , Rβs

2 }), then
the number of distinct pairs for (R1, R2) is z1 · z2 and the number of distinct
random variables is z1 + z2. If (z1 ≤ 2 ∧ z2 ≤ 2) or (z1 = 1 ∧ z2 ≤ 4), then
z1 · z2 ≤ z1 + z2, and if z1 = 2 and z2 = 3, then z1 + z2 = 5 < z1 · z2 = 6.
Since s ≤ z1 · z2, the sum of the numbers of independent random variables in
{Rβ1

1 , . . . , Rβs

1 } and in {Rβ1

2 , . . . , Rβs

2 } is at least min{5, s}.
By Lemma 4, we have only to consider the case that ∀i ∈ [s] : Rα

1 ̸=
Rβi

1 and Rα
2 ̸= Rβi

2 . Hence, the number of independent random variables in

17

{Rβ1

1 , . . . , Rβs

1 } and {R
β1

2 , . . . , Rβs

2 } is at least s ≤ min{5, s} + 2. By s ≤ t ≤ 7,
there are at least s independent random variables in A9.

Fixing other outputs in A9 except for the s outputs, the equations in (9)
provide a unique solution for the s outputs. The number of possibilities for the
s outputs are at least 2n − s. Hence, the probability that (9) is satisfied is at
most (1/(2n − s))s.

Finally, the probability that ∀i ∈ [s] : ∃βi ∈ [α− 1] s.t. Xα
ai

= Xβi
ai

is at most

(α− 1)s ·
(

1

2n − s

)s

≤
(

α− 1

2n − q

)s

.

⊓⊔

Lemma 3. Assume that coll does not occur. For α, β ∈ [q] with α ̸= β, if there

exists j ∈ [t] such that Xα
j = Xβ

j , then for all i ∈ [t]\{j}, Xα
i ̸= Xβ

i .

Proof. Assume that Xα
j = Xβ

j , which implies

Xα
j = Xβ

j ⇔ Rα
1 ⊕Rβ

1 = 2j−1 ·
(
Rα

2 ⊕Rβ
2

)
.

By ¬coll, Rα
1 ⊕Rβ

1 ̸= 0n and Rα
2 ⊕Rβ

2 ̸= 0n. Then, for any i ∈ [t]\{j}

Xα
i ⊕Xβ

i =
(
Rα

1 ⊕Rβ
1

)
⊕ 2i−1 ·

(
Rα

2 ⊕Rβ
2

)
=
(
2j−1 ⊕ 2i−1

)
·
(
Rα

2 ⊕Rβ
2

)
̸= 0n ,

namely, Xα
i ̸= Xβ

i .

⊓⊔

Lemma 4. For α, β ∈ [q] with α ̸= β, if (Rα
1 ̸= Rβ

1 ∧ Rβ
2 = Rβ

2) or (Rα
1 =

Rβ
1 ∧Rβ

2 ̸= Rβ
2), then for all i ∈ [t] Xα

i ̸= Xβ
i .

Proof. Let α, β ∈ [q] with α ̸= β. If Rα
1 ̸= Rβ

1 ∧Rβ
2 = Rβ

2 , then for any i ∈ [t],

Xα
i ⊕Xβ

i =
(
Rα

1 ⊕ 2i−1 ·Rα
2

)
⊕
(
Rβ

1 ⊕ 2i−1 ·Rβ
2

)
= Rα

1 ⊕Rβ
1 ̸= 0n.

If Rα
1 = Rβ

1 ∧Rβ
2 ̸= Rβ

2 , then for any i ∈ [t],

Xα
i ⊕Xβ

i =
(
Rα

1 ⊕ 2i−1 ·Rα
2

)
⊕
(
Rβ

1 ⊕ 2i−1 ·Rβ
2

)
= 2i−1 ·

(
Rα

2 ⊕ ·R
β
2

)
̸= 0n.

⊓⊔

18

6.3 Upper-Bound of Pr[badB]

First, fix α ∈ [q] and a ∈ [t], and upper-bound the probability that

Xα
a is new, ∀i ∈ [t]\{a} : Xα

i is not new︸ ︷︷ ︸
A10,2

, and Y α
a ∈ RngPα−1

a︸ ︷︷ ︸
A10,3

. (10)

Regarding A10,2, by Lemma 2, the probability that A10,2 is satisfied is at most(
α−1
2n−q

)t−1

. Regarding A10,3, since Y α
a is randomly drawn and |RngPα−1

a | ≤
α−1, the probability that A10,3 is satisfied is at most α−1

2n . Hence the probability
that (10) is satisfied is at most(

α− 1

2n − q

)t−1

· α− 1

2n
≤
(

α− 1

2n − q

)t

.

Finally, we run induces α and a to get

Pr[badB] ≤
q∑

α=1

t∑
a=1

(
α− 1

2n − q

)t

≤
q−1∑
α=1

t ·
(

α

2n − q

)t

. (11)

6.4 Upper-Bound of Pr[badC]

First, fix α ∈ [q], s ∈ {2, . . . , t} and a1, . . . , as ∈ [t] such that a1, . . . , as are
distinct, and consider the case that

Xα
a1
, . . . , Xα

as−1
and Xα

as
are new, ∀i ∈ [t]\{a1, . . . , as} : Xα

i is not new︸ ︷︷ ︸
A12,2

, and

(Y α
a1
, . . . , Y α

as−1
, Y α

as
) ̸∈ Fairα if s is even; (Y α

a1
, . . . , Y α

as−1
, Y α

as
) ̸∈ Lα if s is odd︸ ︷︷ ︸

A12,3

.

(12)

Regarding A12,2, by Lemma 2, the probability that A12,2 is satisfied is at most(
α−1
2n−q

)t−s

. Regarding A12,3, if s is even, then since |Lα\Fairα| ≤ (α − 1)s, the

probability that A12,3 is satisfied is at most
(

α−1
2n−q

)s
; if s is odd, then since

|Fairα\Lα| ≤ (α− 1)s, the probability that A12,3 is satisfied is at most
(

α−1
2n−q

)s
.

Hence, the probability that the conditions in (12) are satisfied is at most(
α− 1

2n − q

)t−s

·
(

α− 1

2n − q

)s

=

(
α− 1

2n − q

)t

.

Finally, we run induces α and s to get

Pr[badC] ≤
q∑

α=1

t∑
s=2

((
t

s

)
·
(

α− 1

2n − q

)t
)

=

t∑
s=2

(
t

s

)
·

(
q−1∑
α=1

(
α

2n − q

)t
)

. (13)

19

S2

S1

�

P

�

2 2 2

P

�

� �

P

�

�

(1)m||M1 (2)m||M2 (l-1)m||Ml-1 Ml

� �

�

2

Fig. 7. Hash∗.

6.5 Conclusion of Proof

Putting (8), (11) and (13) into (7) gives

Advprf
F [HKH

,P](D)

≤ 0.5q2ϵ+

q−1∑
α=1

(
α

2n − q

)t

+ t ·
q−1∑
α=1

(
α

2n − q

)t

+

t∑
s=2

(
t

s

)(q−1∑
α=1

(
α

2n − q

)t
)

≤ 0.5q2ϵ+

t∑
s=0

(
t

s

)
·

(
q−1∑
α=1

(
α

2n − q

)t
)

= 0.5q2ϵ+ 2t ·

(
q−1∑
α=1

(
α

2n − q

)t
)

= 0.5q2ϵ+

q−1∑
α=1

(
2α

2n − q

)t

≤ 0.5q2ϵ+
2tqt+1

(2n − q)t
,

where the last term uses the fact that
∑x

α=1 α
t ≤ xt+1 for x ≥ 1 and t ≥ 1.

7 Improving the Efficiency of Hash

In this section, we consider a hash function function Hash∗ with better efficiency
than Hash. Hash∗ is defined in Algorithm 3 and is illustrated in Fig. 7. Here,
M∥10∗ means that first 1 is appended to M , and if |M∥1| ≤ n, then a sequence
of the minimum number of zeros is appended to M∥1 so that the length in bits
becomes n bit; if |M∥1| > n, then a sequence of the minimum number of zeros is
appended to M∥1 so that the total length minus n becomes a multiple of n−m.

The difference between Hash and Hash∗ is that in Hash the last block message
Ml is input to EK , while in Hash∗ it is not input. Therefore, replacing Hash with
Hash∗, the efficiency of LightMAC Plus2 is improved.

In Lemma 5, the collision probability of Hash∗ is given, where EK is replaced
with a random permutation P . Combining Theorem 2 and Lemma 5 offers the
following corollary.

20

Algorithm 3 Hash∗[EK](M) = (S1, S2)

1: Partition M∥10∗ into n−m-bit blocks M1, . . . ,Ml−1 and n-bit block Ml

2: S1 ← 0n; S2 ← 0n

3: for i = 1, . . . , l − 1 do
4: Bi ← (1)m∥Mi; Ci ← EK(Bi); S1 ← S1 ⊕ Ci; S2 ← S2 ⊕ 2l−i · Ci

5: end for
6: S1 ← S1 ⊕Ml; S2 ← S2 ⊕Ml

7: return (S1, S2)

Corollary 2. Assume that t ≤ 7. Then we have

Advprf
LightMAC Plus2[Hash∗[P],P0,1,P0,2,P1,...,Pt−1,Pt]

(D) ≤ 2q2

22n
+

2tqt+1

(2n − q)t
.

Lemma 5. Let P
$←− Perm(n) be a random permutation. For distinct two mes-

sages Mα,Mβ ∈ {0, 1}∗, the probability that Hash∗[P](Mα) = Hash∗[P](Mβ) is
at most 4/22n.

Proof. In this proof, values defined from Mα (resp., Mβ) are denoted by using
the superscript of α (resp., β), length l of Mα (resp., Mβ) is denoted by lα (resp.,
lβ). Without loss of generality, we assume that lα ≤ lβ . H[P](Mα) = H[P](Mβ)
implies that

Sα
1 = Sβ

1 and Sα
2 = Sβ

2 ⇔
lα−1⊕
i=1

Cα
i ⊕

lβ−1⊕
i=1

Cβ
i︸ ︷︷ ︸

A14,1

= Zα,β and

lα−1⊕
i=1

2lα−i · Cα
i ⊕

lβ−1⊕
i=1

2lβ−i · Cβ
i︸ ︷︷ ︸

A14,2

= Zα,β (14)

where Zα,β = Mα
lα
⊕Mβ

lβ
. We consider the following six cases.

1.
(
lα = lβ = 1

)
2.
(
lα = lβ ̸= 1

)
∧
(
∀a ∈ [lα − 1] s.t. Bα

a = Bβ
a

)
∧
(
Mlα ̸= Mlβ

)
3.
(
lα = lβ ̸= 1

)
∧
(
∃a ∈ [lα − 1] s.t. Bα

a ̸= Bβ
a

)
∧(

∀i ∈ [lα − 1]\{a} : Bα
i = Bβ

i

)
.

4.
(
lα = lβ ̸= 1

)
∧
(
∃a1, a2 ∈ [lα − 1] s.t. Bα

a1
̸= Bβ

a1
∧Bα

a2
̸= Bβ

a2

)
5.
(
lα ̸= lβ

)
∧
(
lβ = 2

)
6.
(
lα ̸= lβ

)
∧
(
lβ ≥ 3

)
Note that by lα ≤ lβ , when lα ̸= lβ , lβ ̸= 1, thereby we do not have to consider

the case of
(
lα ̸= lβ

)
∧
(
lβ = 1

)
. The third case is that there is just one position

a where the inputs are distinct, whereas the fourth case is that there are at least
two positions a1, a2 where the inputs are distinct. For each case we evaluate the
probability that the equalities in (14) hold.

21

– Consider the first and second cases. In these cases, A14,1 = A14,2 = 0n and
Zα,β ̸= 0n. Hence (14) is not satisfied.

– Consider the third case. In this case, A14,1 = (Cα
a ⊕Cβ

a) ̸= 2lα−a ·(Cα
a ⊕Cβ

a) =
A14,2. Hence, in (14) is not satisfied.

– Consider the fourth case. First we eliminate the same outputs between
{Cα

i , 1 ≤ i ≤ lα − 1} and {Cβ
i , 1 ≤ i ≤ lβ − 1} from A14,1 and A14,2,

and then we have

A14,1 =

j⊕
i=1

(
Cα

ai
⊕ Cβ

ai

)
and A14,2 =

j⊕
i=1

2lα−ai ·
(
Cα

ai
⊕ Cβ

ai

)
,

where a1, . . . , aj ∈ [lα − 1] with j ≥ 2. Since in A14,1 and A14,2 there are
at most lα + lβ − 2 outputs, the numbers of possibilities for Cα

a1
and Cα

a2

are at least 2n − (lα + lβ − 3) and 2n − (lα + lβ − 4), respectively. Fixing
other outputs, the equations in (14) provide a unique solution for Cα

a1
and

Cα
a2
. Thus, the probability that (14) is satisfied is at most 1/(2n− (lα + lβ −

2))(2n − (lα + lβ − 3)).

– Consider the fifth case. In this case, lα = 1 and A14,1 = Cβ
1 ̸= 2 ·Cβ

1 = A14,2.
Hence (14) is not satisfied.

– Consider the sixth case. We eliminate the same outputs between {Cα
i : 1 ≤

i ≤ lα − 1} and {Cβ
i : 1 ≤ i ≤ lβ − 1} from A14,1. By lα < lβ , C

β
lβ

remains
in A14,1. Since in A14,1 and A14,2 there are at most lα + lβ − 2 outputs, the

numbers of possibilities for Cβ
lβ

and Cβ
1 are at least 2n − (lα + lβ − 3) and

2n − (lα + lβ − 4), respectively. Fixing other outputs, the equations in (14)

provide a unique solution for Cβ
lβ

and Cβ
1 . As a result, the probability of (14)

is at most 1/(2n − (lα + lβ − 3))(2n − (lα + lβ − 4)).

Thus, we have

Pr
[
Hash∗[P](Mα) = Hash∗[P](Mβ)

]
≤ 1

(2n − (lα + lβ))2
≤ 4

22n
,

assuming lα + lβ ≤ 2n−1.
⊓⊔

References

1. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions. In: Coppersmith, D. (ed.)
Advances in Cryptology - CRYPTO ’95, 15th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 27-31, 1995, Proceedings.
Lecture Notes in Computer Science, vol. 963, pp. 15–28. Springer (1995)

2. Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In:
Desmedt, Y. (ed.) Advances in Cryptology - CRYPTO ’94, 14th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 21-25,
1994, Proceedings. Lecture Notes in Computer Science, vol. 839, pp. 341–358.
Springer (1994)

22

3. Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analyses for CBCMACs.
In: Shoup, V. (ed.) Advances in Cryptology - CRYPTO 2005: 25th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings. Lecture Notes in Computer Science, vol. 3621, pp. 527–545.
Springer (2005)

4. Bellare, M., Rogaway, P.: Code-Based Game-Playing Proofs and the Secu-
rity of Triple Encryption. Cryptology ePrint Archive, Report 2004/331 (2004),
http://eprint.iacr.org/2004/331

5. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for
Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June
1, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4004, pp. 409–426.
Springer (2006)

6. Bernstein, D.J.: How to Stretch Random Functions: The Security of Protected
Counter Sums. J. Cryptology 12(3), 185–192 (1999)

7. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
Collision attacks on HTTP over TLS and openvpn. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. pp. 456–467. ACM (2016)

8. Black, J., Rogaway, P.: CBC macs for arbitrary-length messages: The three-key
constructions. In: Bellare, M. (ed.) Advances in Cryptology - CRYPTO 2000, 20th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1880, pp.
197–215. Springer (2000)

9. Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication. In: Knudsen, L.R. (ed.) Advances in Cryptology - EURO-
CRYPT 2002, International Conference on the Theory and Applications of Cryp-
tographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Pro-
ceedings. Lecture Notes in Computer Science, vol. 2332, pp. 384–397. Springer
(2002)

10. Brassard, G.: On Computationally Secure Authentication Tags Requiring Short
Secret Shared Keys. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in
Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA, August
23-25, 1982. pp. 79–86. Plenum Press, New York (1982)

11. Cogliati, B., Seurin, Y.: EWCDM: An Efficient, Beyond-Birthday Secure, Nonce-
Misuse Resistant MAC. In: Robshaw and Katz [34], pp. 121–149

12. Dodis, Y., Steinberger, J.P.: Domain Extension for MACs Beyond the Birthday
Barrier. In: Paterson, K.G. (ed.) Advances in Cryptology - EUROCRYPT 2011 -
30th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 6632, pp. 323–342. Springer (2011)

13. Dutta, A., Nandi, M., Paul, G.: One-Key Compression Function Based MAC with
Security Beyond Birthday Bound. In: Liu, J.K., Steinfeld, R. (eds.) Information
Security and Privacy - 21st Australasian Conference, ACISP 2016, Melbourne,
VIC, Australia, July 4-6, 2016, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 9722, pp. 343–358. Springer (2016)

14. Gaži, P., Pietrzak, K., Rybar, M.: The Exact Security of PMAC. Cryptology ePrint
Archive, Report 2017/069 (2017), http://eprint.iacr.org/2017/069

23

15. Hong, S., Iwata, T. (eds.): Fast Software Encryption, 17th International Workshop,
FSE 2010, Seoul, Korea, February 7-10, 2010, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 6147. Springer (2010)

16. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.)
Fast Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden,
February 24-26, 2003, Revised Papers. Lecture Notes in Computer Science, vol.
2887, pp. 129–153. Springer (2003)

17. Iwata, T., Minematsu, K.: Stronger Security Variants of GCM-SIV. Cryptology
ePrint Archive, Report 2016/853, to appear at IACR Transactions on Symmetric
Cryptology, http://eprint.iacr.org/2016/853

18. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: A fast tweakable block
cipher mode for highly secure message authentication. In: Katz, J., Shacham, H.
(eds.) Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part III. Lecture Notes in Computer Science, vol. 10403, pp. 34–65. Springer (2017)

19. Jaulmes, É., Joux, A., Valette, F.: On the Security of Randomized CBC-MAC
Beyond the Birthday Paradox Limit: A New Construction. In: Daemen, J., Rij-
men, V. (eds.) Fast Software Encryption, 9th International Workshop, FSE 2002,
Leuven, Belgium, February 4-6, 2002, Revised Papers. Lecture Notes in Computer
Science, vol. 2365, pp. 237–251. Springer (2002)

20. Jaulmes, E., Lercier, R.: FRMAC, a Fast Randomized Message Au-
thentication Code. Cryptology ePrint Archive, Report 2004/166 (2004),
http://eprint.iacr.org/2004/166

21. Kurosawa, K., Iwata, T.: TMAC: two-key CBC MAC. In: Joye, M. (ed.) Topics in
Cryptology - CT-RSA 2003, The Cryptographers’ Track at the RSA Conference
2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings. Lecture Notes in
Computer Science, vol. 2612, pp. 33–49. Springer (2003)

22. Lee, J., Steinberger, J.P.: Multi-property-preserving Domain Extension Using
Polynomial-Based Modes of Operation. In: Gilbert, H. (ed.) Advances in Cryp-
tology - EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6110, pp. 573–596.
Springer (2010)

23. List, E., Nandi, M.: Revisiting Full-PRF-Secure PMAC and Using It for Beyond-
Birthday Authenticated Encryption. IACR Cryptology ePrint Archive 2016, 1174
(2016)

24. Lucks, S.: The Sum of PRPs Is a Secure PRF. In: Preneel, B. (ed.) Advances in
Cryptology - EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Pro-
ceeding. Lecture Notes in Computer Science, vol. 1807, pp. 470–484. Springer
(2000)

25. Luykx, A., Preneel, B., Szepieniec, A., Yasuda, K.: On the Influence of Message
Length in PMAC’s Security Bounds. In: Fischlin, M., Coron, J. (eds.) Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9665, pp.
596–621. Springer (2016)

26. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC Mode for Lightweight
Block Ciphers. In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9783, pp. 43–59. Springer (2016)

24

27. Minematsu, K.: How to Thwart Birthday Attacks against MACs via Small Ran-
domness. In: Hong and Iwata [15], pp. 230–249

28. Minematsu, K., Matsushima, T.: New Bounds for PMAC, TMAC, and XCBC.
In: Biryukov, A. (ed.) Fast Software Encryption, 14th International Workshop,
FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 4593, pp. 434–451. Springer (2007)

29. Naito, Y.: Full PRF-Secure Message Authentication Code Based on Tweakable
Block Cipher. In: Au, M.H., Miyaji, A. (eds.) Provable Security - 9th International
Conference, ProvSec 2015, Kanazawa, Japan, November 24-26, 2015, Proceedings.
Lecture Notes in Computer Science, vol. 9451, pp. 167–182. Springer (2015)

30. Nandi, M.: A unified method for improving PRF bounds for a class of blockcipher
based macs. In: Hong and Iwata [15], pp. 212–229

31. NIST: Recommendation for Block Cipher Modes of Operation: the CMAC Mode
for Authentication. SP 800-38B (2005)

32. Petrank, E., Rackoff, C.: CBC MAC for Real-Time Data Sources. J. Cryptology
13(3), 315–338 (2000)

33. Peyrin, T., Seurin, Y.: Counter-in-tweak: Authenticated encryption modes for
tweakable block ciphers. In: Robshaw and Katz [34], pp. 33–63

34. Robshaw, M., Katz, J. (eds.): Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part I, Lecture Notes in Computer Science, vol. 9814.
Springer (2016)

35. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. In: Lee, P.J. (ed.) Advances in Cryptology - ASIACRYPT
2004, 10th International Conference on the Theory and Application of Cryptology
and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings.
Lecture Notes in Computer Science, vol. 3329, pp. 16–31. Springer (2004)

36. Wegman, M.N., Carter, L.: New Hash Functions and Their Use in Authentication
and Set Equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

37. Yasuda, K.: A Double-Piped Mode of Operation for MACs, PRFs and PROs:
Security beyond the Birthday Barrier. In: Joux, A. (ed.) Advances in Cryptology
- EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5479, pp. 242–259. Springer
(2009)

38. Yasuda, K.: The Sum of CBC MACs Is a Secure PRF. In: Pieprzyk, J. (ed.) Topics
in Cryptology - CT-RSA 2010, The Cryptographers’ Track at the RSA Conference
2010, San Francisco, CA, USA, March 1-5, 2010. Proceedings. Lecture Notes in
Computer Science, vol. 5985, pp. 366–381. Springer (2010)

39. Yasuda, K.: A New Variant of PMAC: Beyond the Birthday Bound. In: Rogaway,
P. (ed.) Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 6841, pp. 596–609. Springer (2011)

40. Yasuda, K.: PMAC with Parity: Minimizing the Query-Length Influence. In:
Dunkelman, O. (ed.) Topics in Cryptology - CT-RSA 2012 - The Cryptographers’
Track at the RSA Conference 2012, San Francisco, CA, USA, February 27 - March
2, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7178, pp. 203–214.
Springer (2012)

41. Yasuda, K.: A Parallelizable PRF-Based MAC Algorithm: Well beyond the Birth-
day Bound. IEICE Transactions 96-A(1), 237–241 (2013)

25

42. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: Enhancing 3GPP-MAC beyond the
Birthday Bound. In: Wang, X., Sako, K. (eds.) Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6, 2012. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7658, pp. 296–312. Springer
(2012)

43. Zhang, Y.: Using an Error-Correction Code for Fast, Beyond-Birthday-Bound Au-
thentication. In: Nyberg, K. (ed.) Topics in Cryptology - CT-RSA 2015, The Cryp-
tographer’s Track at the RSA Conference 2015, San Francisco, CA, USA, April 20-
24, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9048, pp. 291–307.
Springer (2015)

26

