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Abstract. Cryptographic implementations are vulnerable to Side Chan-
nel Analysis (SCA), where an adversary exploits physical phenomena
such as the power consumption to reveal sensitive information. One of the
most widely studied countermeasures against SCA are masking schemes.
A masking scheme randomizes intermediate values thereby making phys-
ical leakage from the device harder to exploit. Central to any masking
scheme is the use of randomness, on which the security of any masked
algorithm heavily relies. But since randomness is very costly to pro-
duce in practice, it is an important question whether we can reduce the
amount of randomness needed while still guaranteeing standard secu-
rity properties such as ¢t-probing security introduced by Ishai, Sahai and
Wagner (CRYPTO 2003). In this work we study the question whether
internal randomness can be re-used by several gadgets, thereby reducing
the total amount of randomness needed. We provide new techniques for
masking algorithms that significantly reduce the amount of randomness
and achieve better overall efficiency than known constructions for values
of t that are most relevant for practical settings.

1 Introduction

Masking schemes are one of the most common countermeasures against physi-
cal side-channel attacks, and have been studied intensively in the last years by
the cryptographic community (see, e.g., [15,17,10,9,18,7,12] and many more).
Masking schemes prevent harmful physical side-channel leakage by concealing
all sensitive information by encoding the computation carried out on the de-
vice. The most widely studied masking scheme is the Boolean masking [7, 15],
which encodes each intermediate value produced by the computation using an
n-out-of-n secret sharing. That is, a bit b is mapped to a bit string (by,...,by,)
such that b; is random subject to the constraint that >, b; = b (where the sum
is taken in the binary field). To mask computation, the designer of a masking
scheme then has to develop masked operations (so-called gadgets) that enable
to compute with encodings in a secure way. The security of masking schemes is
typically analyzed by carrying out a security proof in the t-probing model [15],
where an adversary that learns up to t intermediate values gains no information
about the underlying encoded secret values.



While due to the linearity of the encoding function protecting linear oper-
ations is easy, the main challenge is to develop secure masked non-linear op-
erations, and in particular a masked version of the multiplication operation.
To this end, the masked multiplication algorithm internally requires additional
randomness to securely carry out the non-linear operation in the masked do-
main. Indeed, it was shown by Belaid et al. [4] that any ¢-probing secure masked
multiplication requires internally O(t) fresh randomness. Notice that complex
cryptographic algorithms typically consists of many non-linear operations that
need to be masked, and hence the amount of randomness needed to protect the
entire computation grows not only with the probing parameter ¢, but also with
the number of operations that are used by the algorithm. Concretely, the most
common schemes for masking the non-linear operation require O(¢?) randoms,
and algorithms such as a masked AES typically require hundreds of masked
multiplication operations.

Unfortunately, the generation and usage of randomness is very costly in prac-
tice, and typically requires to run a TRNG or PRNG. In fact, generating the
randomness and shipping it to the place where it is needed is one of the main
challenge when masking schemes are implemented in practice. There are two
possibilities in which we can save randomness when masking algorithms. The
first method is in spirit of the work of Belaid et al. [4] who design masked
non-linear operations that require less randomness. However, as discussed above
there are natural lower bounds on the amount of randomness needed to securely
mask the non-linear operation (in fact, the best known efficient masked multi-
plication still requires O(#?) randomness). Moreover, such an approach does not
scale well, when the number of non-linear operations increases. Indeed, in most
practical cases the security parameter ¢ is relatively small (typically less than
10), while most relevant cryptographic algorithms require many non-linear op-
erations. An alternative approach is to amortize randomness by re-using it over
several masked operations. This is the approach that we explore in this work,
which despite being a promising approach has gained only very little attention
in the literature so far.

On amortizing randomness. At first sight, it may seem simple to let masked op-
erations share the same randomness. However, there are two technical challenges
that need to be addressed to make this idea work. First, we need to ensure that
when randomness is re-used between multiple operations it does not cancel out
accidentally during the masked computation. As an illustrative example suppose
two secret bits a and b are masked using the same randomness r. That is, a is
encoded as (a+r,r) and b is encoded as (b+r,r) (these may, for instance, be out-
puts of a masked multiplication). Now, if at some point during the computation
the algorithm computes the sum of these two encodings, then the randomness
cancels out, and the sensitive information a+b can be attacked (i.e., it is not pro-
tect by any random mask). While this issue already occurs when ¢ = 1, i.e., the
adversary only learns one intermediate value, the situation gets much more com-
plex when t grows and we want to reduce randomness between multiple masked
operations. In this case, we must guarantee that the computation happening in



the algorithm does not cancel out the randomness, but also we need to ensure
that any set of ¢ intermediate values produced by the masked algorithm does
not allow the adversary to cancel out the (potentially shared) randomness. Our
main contribution is to initiate the study of masking schemes where multiple
gadgets share randomness, and show that despite the above challenges amor-
tizing randomness over multiple operations is possible and can lead in certain
cases to significantly more efficient masked schemes. We provide a more detailed
description of our main contributions in the next section.

1.1  Owur contributions

Re-using randomness for t > 1. We start by considering the more challenging
case when t > 1, i.e., when the adversary is allowed to learn multiple intermediate
values. As a first contribution we propose a new security notion of gadgets that
we call +-~SCR which allows multiple gadgets (or blocks of gadgets) to securely
re-use randomness. We provide a composition result for our new notion and show
sufficient requirements for constructing gadgets that satisfy our new notion. To
this end, we rely on ideas that have been introduced in the context of threshold
implementations [6].

Finding blocks of gadgets for re-using randomness. Our technique for sharing
randomness between multiple gadgets requires to structure a potentially complex
algorithm into so-called blocks, where the individual gadgets in these blocks share
their randomness. We devise a simple tool that depending on the structure of
the algorithm identifies blocks which can securely share randomness. Our tool
follows a naive brute-force approach, and we leave it as an important question
for future work to develop more efficient tools for identifying blocks of gadgets
that are suitable for re-using randomness.

Re-using randomness for t = 1. We design a new scheme that achieves security
against one adversarial probe and requires only 2 randoms for arbitrary com-
plex masked algorithms. Notice that since randomness can cancel out when it is
re-used such a scheme needs to be designed with care, and the security analysis
cannot rely on a compositional approach such as the 1-SNI property [2].} Addi-
tionally, we provide a counterexample that securing arbitrary computation with
only one random is not possible if one aims for a general countermeasure.

Implementation results. We finally complete our analysis with a case study by
applying our new countermeasures to masking the AES algorithm. Our analysis
shows that for orders up to t = 5 (resp. t = 7 for a less efficient TRNG) we
can not only significantly reduce the amount of randomness needed, but also
improve on efficiency. We also argue that if we could not use a dedicated TRNG
(which would be the case for most inexpensive embedded devices), then our

! The compositional approach of Barthe et al. [2] requires that all gadgets use inde-
pendent randomness



new countermeasure would outperform state-of-the-art solutions even up to t =
21. We leave it as an important question for future research to design efficient
masking schemes with shared randomness when ¢ > 21.

1.2 Related work

Despite being a major practical bottleneck, there has been surprisingly little
work on minimizing the amount of randomness in masking schemes. We already
mentioned the work of Belaid et al. [4], which aim on reducing the amount of
randoms needed in a masked multiplication. Besides giving lower bounds on the
minimal amount needed to protect a masked multiplication, the authors also
give new constructions that reduce the concrete amount of randomness needed
for a masked multiplication. However, the best known construction still requires
randomness that is quadratic in the security parameter. Another approach for
reducing the randomness complexity of first-order threshold implementations of
Keccak was also investigated in [5].

From a practical point of view, the concept of "recycled” randomness was
briefly explored in [1]. The authors practically evaluated the influence of reusing
some of the masks on their case studies and concluded that in some cases the
security was reduced. However, these results do not negatively reflect on our
methodology as their reuse of randomness lacked a formal proof of security.

From a theoretical point of view it is known that any circuit can be masked
using polynomial in ¢ randoms (and hence the amount of randoms needed is in-
dependent from the size of the algorithm that we want to protect). This question
was studied by Ishai et al. [14]. The constructions proposed in these works rely
on bipartite expander graphs and are mainly of interests as feasibility results
(i.e., they become meaningful when ¢ is very large), while in our work we focus
on the practically more relevant case when t takes small values.

Finally, we want to conclude by mentioning that while re-using randoms
is not a problem for showing security in the ¢-probing model, and hence for
security with respect to standard side-channel attacks, it may result in schemes
that are easier to attack by so-called horizontal attacks [3]. Our work opens up
new research directions for exploring such new attack vectors.

2 Preliminaries

In this section we recall basic security notions and models that we consider in
this work. In the following we will use bold and lower case to indicate vectors
and bold and upper case for matrices.

2.1 Private Circuits

The concept of private circuits was introduced in the seminal work of Ishai et al.
[15]. We start by giving the definition of deterministic and randomized circuit, as
provided by Ishai et al. A deterministic circuit C is a direct acyclic graph whose



vertices are Boolean gates and whose edges are wires. A randomized circuit is
a circuit augmented with random-bit gates. A random-bit gate is a gate with
fan-in 0 that produces a random bit and sends it along its output wire; the
bit is selected uniformly and independently. As pointed out in [14], a t-private
circuit is a randomized circuit which transforms a randomly encoded input into
a randomly encoded output while providing the guarantee that the joint values
of any ¢ wires reveal nothing about the input. More formally a private circuit is
defined as follows.

Definition 1 (Private circuit [14]). A private circuit for f : F3'* — Fg™ is
defined by a triple (I,C,0O), where

— I:F0% — F2 is a randomized input encoder;

— C' is a randomized Boolean circuit with input in Fg”, output in IF;%” and
uniform randomness r € Fy

- 0: F?" — F5' is an output decoder

C is said to be a t-private implementation of f with encoder I and decoder O if
the following requirements hold:

— Correctness: For any input w € F5'* we have Pr[O(C(I(w), p)) = f(w)] = 1,
where the probability is over the randomness of I and p;

— Privacy: For any w,w’ € F,,, and any set P of t wires (also called probes) in
C, the distributions Cp(I(w), p) and Cp(I(w'),p) are identical, where Cp
denotes the set of ¢ values on the wires from P (also called intermediate
values).

The goal of a t-limited attacker, i.e. an attacker who can probe at most ¢t wires,
is then to find a set of probes P and two values w,w’ € F5' such that the
distributions Cp(I(w), p) and Cp(I(w’), p) are not the same.

Privacy of a circuit is defined by showing the existence of a simulator, which
can simulate the adversary’s observations without having access to any internal
values of the circuit.

According to the description in [15], the input encoder I maps every input
value x into n binary values (r1,...,7,) called shares or mask, where the first
n—1 values are chosen at random and r,, = t®r1®- - -®r,_1. On the other hand,
the output decoder O takes the n bits yi,...,y, produced by the circuit and
decodes the values in y = y1 ® - - - Dy, In its internal working a private circuit is
composed by gadgets, namely transformed gates which perform functions which
take as input a set of masked inputs and output a set of masked outputs. In
particular, we distinguish between linear operations (e.g. XOR), which can be
performed by applying the operation to each share separately, and non-linear
functions (e.g. AND), which process all the shares together and make use of
additional random bits. A particular case of randomized gadget is the refreshing
gadget, which takes as input the sharing of a value z and outputs randomized
sharing of the same . Another interesting gadget is the multiplicative one, which
takes as input two values, say a and b shared in (a1, ..., a,) and (by,...,b,), and
outputs a value ¢ shared in (ci,...,¢,) such that @), ¢; = a-b. We indicate



in particular with g(z,r) a gadget which takes as input a value x and internally
uses a vector r of random bits, where r is of the form (rq,...,r,) and each r;
is the vector of the random bits involved in the computation of the i-th output
share. For example, referring to Algorithm 3, 1 is the vector (ri3,71,7s,7r7). In
the rest of the paper, if not needed otherwise, we will mainly specify a gadget
with only its random component 7, so it will be indicated as g(r). Moreover we
suppose that all the gadgets g(r) are such that every intermediate value used in
the computation of the i-th output share contains only random bits in r;.

The following definitions and lemma from [2] formalize t-probing security
with the notion of ¢-Non Interference and show that this is also equivalent to
the concept of simulatability.

Definition 2 ((S, £2)-Simulatability, (S, {2)-Non Interference). Let g be a
gadget with m inputs (a(l), ceey a(m)) each composed by n shares and {2 be a set
of t adversary’s observations. Let S = (S1,...,Sm) be such that S; C{1,...,n}
and |S;| <t for all i.

1. The gadget g is called (S, 2)-simulatable (or (S, $2)-SIM) if there exists

a simulator which, by using only (a(V,... ,a(m))‘s = (al(;z ey al(;n)) can
simulate the adversary’s view, where al(? = (agk))iegj.

2. The gadget g is called (S, {2)-Non Interfering (or (S,§2)-Nl) if for any
S0, 81 € (F5)™ such that 80, = 81, the adversary’s views of g respectively

on input so and sy are identical, i.e. g(So0)|, = g(81)|,,-

In the rest of the paper, when we will talk about simulatability of a gadget we
will implicitly mean that for every observation set {2 with |2| < ¢, where ¢ is
the security order, there exists a set S as in Definition 2 such that the gadget is
(S, 2)-SIM.

Lemma 1. For every gadget g with m inputs, set S = (S1,...,8m), with S; C
{1,...,n} and |S;| < t, and observation set 2, with |2| <t, g is (S, 2)-SIM if
and only if g is (S, £2)-NI, with respect to the same sets (S, §2).

Definition 3 (¢-NI). A gadget g is t-non-interfering (t-Nl) if and only if for
every observation set {2, with |2| < t, there exists a set S, with |S| < t, such
that g is (S, 2)-NI.

When applied to composed circuits, the definition of t—NI is not enough to guar-
antee the privacy of the entire circuit. Indeed, the notion of t—NI is not sufficient
to argue about secure composition of gadgets. In [2], Barthe et al. introduced
the notion of t—Strong Non-Interference (t-SNI), which allows for guaranteeing
a secure composition of gadgets.

Definition 4 (t—Strong Non-Interference). An algorithm A is t—Strong
Non-Interferent (t—SNI) if and only if for any set of t; probes on intermediate
values and every set of to probes on output shares with t1 + to < t, the totality
of the probes can be simulated by only t1 shares of each input.



Informally, it means that the simulator can simulate the adversary’s view, using
a number of shares of the inputs that is independent from the number of probed
output wires. An example of t~SNI multiplication algorithm is the famous ISW
scheme in Algorithm 1, introduced in [15] and proven to be t—SNI in [2], and
a t—SNI refreshing scheme is Algorithm 2, introduced in [10] by Duc et al. and
proven to be t—-SNI by Barthe et al. in [2].

Algorithm 1 ISW multiplication algorithm with n > 2 shares.

Input: shares (a;)1<i<n and (bi)i1<i<n, such that @, a; = a and @, b; = b.
Output: shares (¢i)1<i<n, such that @, ¢; = a-b.

for i=1tondo
for j=i¢+1tondo
$
Ti,5 < Fan;
L (Ti,j +a; © b]) + a;j - bi;
end for
end for
for i =1 ton do
Cit=ai-bi+370 ) i Tigs
end for

Algorithm 2 Refreshing R
Input: shares (a:)i1<i<n, such that @, a; = a; random shares (74;)1<i<n,i+1<j<n-
Output: shares (¢;)i1<i<n, such that @, c; = a.

for i =1 ton do
Ci = Q4
end for
for i =1 ton do
for j =i+ 1tondo
Ci =Ci +Tij
Cj; =Cj —Tiy
end for
end for

As pointed out in [18] and [9], secure multiplication schemes, like ISW, require
that the two masks in input are mutually independent. This condition is satisfied
in two cases: when at least one of the two inputs is taken uniformly at random or
when at least one of the two inputs is refreshed by means of a secure refreshing
using completely fresh and independent randomness, as shown in Algorithm 2.
In this paper, whenever we talk about independence of two inputs, we refer to
the mutual independence of the masks, as specified above.



2.2 Threshold Implementation

As shown in [11] and [18], the probing model presented in the last section covers
attacks such as the High Order Differential Power Analysis (HO-DPA) attack.
The latter, introduced by Kocher et al. in [16], uses power consumption mea-
surements of a device to extract sensitive information of processed operations.
The following result from [6] specifies the relation between the order of a DPA
attack and the one of a probing attack.

Lemma 2 ([6]). The attack order in a Higher-order DPA corresponds to the
number of wires that are probed in the circuit (per unmasked bit).

Threshold Implementation (TI) schemes are a t—order countermeasure against
DPA attacks. It is based on secret sharing and multi party computation, and in
addition takes into account physical effects such as glitches.

In order to implement a Boolean function f : Fy' — F5', every input value
x has to be split into n shares (z1,...,2,) such that z = 1 & --- ® ,, using
the same procedure seen in private circuits. We denote with C' is the output
distribution f(X), where X is the distribution of the encoding of an input . The
function f is then shared in a vector of functions fi,..., f,, called component
functions, which must satisfy the following properties:

1. Correctness: f(z) =@, fi(z1,...,2,)

2. t— Non-Completeness: any combination of up to t component functions
fi of f must be independent of at least one input share x;.

3. Uniformity: the probability Pr(C = c|c = @], ¢;) is a fixed constant for
every ¢, where ¢ denotes the vector of the output shares.

The last property requires that the distribution of the output is always a random
sharing of the output, and can be easily satisfied by refreshing the output shares.

TT schemes are strongly related to private circuits. First, they solve a similar
problem of formalizing privacy against a t¢-limited attacker and moreover, as
shown in [17], the TI algorithm for multiplication is equivalent to the scheme
proposed by ISW.

We additionally point out that the T aforementioned properties imply sim-
ulatability of the circuit. Indeed, if a function f satisfies properties 1 and 2, then
an adversary who probes ¢ or fewer wires will get information from all but at
least one input share. Therefore, the gadget g implementing such a function is
t—NI and due to Lemma 1 is simulatable.

3 Probing security with common randomness

In this section we analyze privacy of a particular set of gadgets g1, ..., gq having
independent inputs, in which the random component is substituted by a set
of bits r = (r1,...,m) taken at random, but reused by each of the gadgets
g1,...,8q. In particular, we introduce a new security definition, which formalizes
the conditions needed in order to guarantee t-probing security in a situation
where randomness is shared among the gadgets.



Definition 5 (t-SCR). Let v be a set of random bits. We say that the gadgets
g1(r),...,g4(r) receiving each m inputs split into n shares are t—secure with
common randomness (t--SCR) if

1. their inputs are mutually independent;

2. for each set P; of t; probes on g; such that ), t; < t, the probes in P; can
be simulated by at most n — 1 shares of the input of g; and the simulation is
consistent with the shared random component.

Let us introduce some notation that we will use in the rest of the paper.
With the term block of gadgets we define a sub-circuit composed by gadgets,
with input an encoding of a certain x and output an encoding of y. Since our
analysis focuses on the randomness, when we refer to such a block we only
consider the randomized gadgets. In particular, we indicate a block of gadgets
as G(R) = {g1(r1),...,84(ra)}, where the g; represent the randomized gadgets
in the block and R = (ry,...,74) constitutes the total amount of randomness
used by G. We assume without loss of generality that the input of such a G is
the input of the first randomized gadget g;. Indeed, even if actually the first
gadget of the block was a non-randomized one (i.e. a linear gadget), then this
would change the actual value of the input, but not its properties related to
the independence. We call dimension of a block G the number of randomized
gadgets g; composing the block. In Figure 1 are represented IV blocks of gadgets
of dimension 4 each.

The following lemma gives a simple compositional result for multiple blocks
of gadgets, where each such block uses the same random component R. Slightly
informally speaking, let G; be multiple sets of gadgets, where all gadgets in G;
share the same randomness. Then, the lemma below shows that if the gadgets in
G; are t-SCR, then also the composition of the gadgets in all sets G; are t-SCR.
We underline that such a block constitutes itself a gadget. For simplicity, we
assume that the blocks of gadgets that we consider in the lemma below all have
the same dimension d. But our analysis can easily be generalized to a setting
where each block has a different dimension.

Lemma 3 (composition of t-SCR gadgets). For every d € N, consider

Gi(R)={g11(r1),...,81,4(ra)},...,Gn(R) = {gn1(T1),...,8n,a(ra)} N blocks
of gadgets sharing the same random component R = (r1,...,rq) and masking

their input into n shares. Suppose G; be t—NI for each i = 1,...,N. If for all

Jj=1...,d the gadgets g1 ;(r;),...,gn,;(rj) aret-SCR, then the blocks of gad-

gets {Gi1,...,Gn} are t-SCR.

Proof. First it is easy to see that, since g1,1,...,gn,1 are t-SCR then their in-
puts have independent masks and so the same holds for the inputs of blocks
G1,...,GN. Let us next discuss the second property given in the ¢~SCR defini-
tion. We can prove the statement with an inductive argument on the dimension
of the blocks.

— If d = 1, then by hypothesis {g1 1,...,9n,1} are t--SCR and then {G1,...,Gn}
are t—SCR.
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Fig. 1. A set of N blocks of gadgets with dimension d = 4 each.

—Ifd>1and {{g11,---,81,d-1},---{8N1s---,8N,a—1}} are t—-SCR, then by
hypothesis {g1,4,...,9n,a} are t-SCR. Now the following cases hold.

e The probes are placed on the {{g1,1,...,81,d-1}s---,{8N1,-- -, EN.d-1}}:
in this case, by the inductive hypothesis, the adversary’s view is simu-
latable in the sense of Definition 5 of t—SCR.

e The probes are placed on {g1,4, ..., 9gn,q}: in this case, since by hypothe-
sis {g1,d,---,9n,4} are t-SCR, the adversary’s view is simulatable in the
sense of Definition 5.

o A set of the probes P is placed on {g1,4,...,9n.a} and a set of probes
Q is placed on {{g1,1,---,81,a=1}s--->{8N1,---,8N,d—1}}: in this case,
since the probes in P and in Q use different random bits, they can be
simulated independently each other. The simulatability of the probes in
P according to Definition 5 is guaranteed by the t-~SCR of {g1.4, ..., 9n.d}
and the simulatability of the probes in Q is guaranteed by the t—SCR of

g1, 81,da-1}, - {gn1, - BNa—1} )

Therefore for the inductive step we conclude that for every dimension d of the
blocks G;, with i = 1,..., N, the set {Gi,...,Gn} is t-SCR. O

We point out that the t—SCR property itself is not sufficient for guaranteeing
also a sound composition. The reason for this is that t—~SCR essentially is only
t—NI. Therefore, when used in combination with other gadgets, a t~SCR scheme
needs additionally to satisfy the t~SNI property. We summarize this observation
in the following theorem which gives a global result for circuits designed in blocks
of gadgets sharing the same randomness.

Theorem 1. Let C be a circuit composed by N blocks of gadgets G1(R),...,Gn(R)
where G;(R) = {gi1(r1),...,8i.a(ra)} for each i = 1,...,N and with inputs
masked with n shares and such that the gadgets outside such blocks are either
linear or t-=SNI ones. If



— the outputs of G1,...,GN are independent
-Vij=1,...,N G; is t-SNI and
-Vij=1,...,d gij,...,9n; are t-SCR

then the circuit C is t—probing secure.

Proof. The proof of the theorem is straightforward. Indeed, Lemma 3 implies
that Gy,...,Gn are t—SCR. Moreover, we point out that the t~SNI of the G;, for
every ¢ = 1,..., N, and the independence of the outputs guarantees a secure
composition

— among the blocks G;
— of the G; with other randomized and ¢—SNI gadgets using fresh randomness
— of the G; with linear gadgets.

This is sufficient to prove that the circuit C is t probing secure. O

To sum up, we showed in this section that, under certain conditions, it is possible
to design a circuit which internally reuses the random bits involved and remains
probing secure. Therefore, if used in an appropriate way, this result allows us to
decrease the amount of randomness necessary in order to have a private circuit
(because all the blocks share the same randomness). Nevertheless, we remark
that, when designing such circuits, even if on the one hand the randomness
involved in the gadgets can be completely reused, we require on the other hand
additional refreshing schemes to guarantee the independence of the inputs and
outputs of each block. Notice that independence is needed for ensuring t—SCR
and, as recalled in Section 2.1, it is satisfied by refreshing via Algorithm 2.

For these reasons, in order to have an actual reduction in the amount of
randomness, it is needed to take a couple of precautions when structuring a
circuit into blocks of gadgets. First of all, it is necessary to construct these
blocks such that the number of the outputs which are inputs of other blocks do
not exceed the number of gadgets in the block; otherwise we would require more
randomness for refreshing than what was saved by the reusing of randomness
within the block. In addition, it is important to find a good trade-off between
the dimension of the blocks and the number of them in the circuit.

More formally speaking if IV is the number of randomized gadgets of the
original circuit, N¢ is the number of gadgets which use the same random bits in
the restructured circuit and Ny is the number of new refreshing schemes that we
need to add to it for guaranteeing the independence of the inputs of the blocks,
then the total saving in the randomness of the circuit is given by the difference
N —(N¢+ Ng). To illustrate how this quantity changes according to the different
dimension of the blocks let us take a look at some concrete cases. Suppose for
simplicity that each block of gadget has only one input and one output. If we
divide the circuit into many small blocks, then on the one hand we reuse a small
amount of randomness, and so N is smaller, on the other hand, since at every
block corresponds one output which needs to be refreshed before being input
of another block, the number of new randomness involved increases, and then



Npg is bigger. Otherwise, if the circuit is designed in few large blocks of gadgets,
then since we have fewer blocks, there are also fewer outputs to be refreshed,
therefore the amount of fresh randomness Ny is reduced. On the other hand,
more random bits are needed for refreshing for the common randomness in the
blocks, and so the amount N¢ increases. A more concrete example can be found
in Figures 2, 3 and 4, where the same circuit is structured in blocks of gadgets

in two different ways .

Fig. 2. The original circuit C composed by N = 12 randomized gadgets.

Cl
—He]
[ e
R
R
g1 G2 g3 <2}

Fig. 3. The circuit C’ representing C structured into 4 blocks of gadgets, where N =
12, N¢ = 3, Nr = 6 and the saving consists of 3 randomized gadgets.

g1 Go

Fig. 4. The circuit C” representing C structured into 2 blocks of gadgets, where N =
12, N¢ = 6, Nr = 2 and the saving consists of 4 randomized gadgets.

In Section 4, we will present a naive method to restructure a circuit in such a
way that these conditions are satisfied and in order to find an efficient grouping

in blocks of gadgets.



3.1 A t-SCR Multiplication Scheme

In this subsection, we introduce a multiplication scheme, which can be com-
bined with other gadgets sharing the same randomness and remains t~SCR. In
particular, our multiplication schemes are based on two basic properties (i.e.,
L%J—non—completeness and t-SNI) and we discuss how to construct instantia-
tions of our multiplication according to these properties.

First, we construct a multiplication scheme in accordance with |%|-non-
completeness. This process is similar to finding a L%J—order TI of the AND-
gate [17] or multiplication [8]. However, for our application we additionally
require that the number of output shares is equal to the number of input
shares. Most higher-order TT avoid this restriction with additional refreshing-
and compression-layers. Since the L%J -non-completeness should be fulfilled with-
out fresh randomness, we have to construct a | £ |-non-complete Mult : F§ — F
and cannot rely on compression of the output shares. Unfortunately, this is only
possible for very specific values of n. Due to this minor difference, we cannot
directly use the bounds from the original publications related to higher-order
TI. In the following, we derive an equation for n given an arbitrary ¢ for which
there exist a L%J-non—complete Mult.

Initially, due to the L%J -non-completeness the number of shares for which we
can construct a scheme with the above properties is given by

BJ-H—I:TL (1)

where [ denotes the number of input shares which are leaked by each of the
output shares, i.e., even the combination of | £ | output shares is still independent
t

of one input share. To construct a | £ |-non-complete multiplication, we need to

distribute (5) terms of the form a;b; + a;b; over n output shares, i.e., each
output share is made up of the sum of %‘1 terms. Each of these terms leaks
information about the tuples (a;,a;) and (b;, b;), and we assume the encodings
a and b are independent and randomly chosen. For a given [, the maximum
number of possible terms, which can be combined without leaking about more
than [ shares of a or b, is (1). The remaining a;b; are equally distributed over
the output shares without increasing . By combining these two observations, we
derive the relation
n—1 12—
5 =5 (2)
Based on Equation (1), the minimum number of shares for | £ |-non-completeness
isn=[%] 1+ 1. We combine this with Equation (2) and derive

n— BJ2+ BJ +1. 3)

We use Equation (3) to compute the number of shares for our +~SCR multipli-
cation scheme with ¢t > 3. For ¢ < 3, the number of shares is bounded by the
requirement for the multiplication to be t~SNI, i.e., n > t.



To achieve t—SCR, it is necessary to include randomness in the multiplica-
tn

tions. Initially, %5+ random components 7; need to be added for the multiplication
to be t~=SNI. A subset of ¢ random components is added to each output share
equally distributed over the sum, and each of these random bits is involved a sec-
ond time in the computation of a single different output share. This ensures the
simulatability of the gadget by using a limited number of input shares as required
by the definition of t+~SNI. In particular, the clever distribution of the random
bits allows to simulate the output probes with a random and independent value.
Furthermore, we include additional random elements rx;—; ..., which only occur
in one output share each and enable a simple simulation of the gadget even in

the presence of shared randomness.

The construction of a t—SCR multiplication scheme following the aforemen-
tioned guidelines is easy for small t. However, finding a distribution of terms that
fulfils L%J—non—completeness becomes a complex task due to the large number
of possible combinations for increasing t. For ¢t = 4, one possible t~SCR mul-
tiplication is defined in Algorithm 3 and it requires n = 7 shares. A complete
description of a multiplication algorithm for higher orders fulfilling the properties
aforementioned can be found in the full version of the paper.

Algorithm 3 Mult for order t = 4 with n = 7 shares.

Input: shares a1, ..., a7 such that € a; = a, shares b1, ...,br such that @b; =b
Output: shares c¢1,. .., c7 such that @c; =a-b

er = ((((((((rer + arbr) +713) + a1b2) + azbr) +71) + a1bs) + azbi) +75) + azbs) +
asba) +1r7) + 171);
c2 = ((((((((((((rez + asbs) + 714) + a1ba) + aabr) +72) + a1bs) +asbi) +79) + aabs) +
asba) +711) + rX2);
cs = (((((rzs + arbr) +18) +a1bs) + asb1) +r3) + a1br) + arb1) +r10) + asbr) +
arbe) + 12) + rI3);
ca = ((((((rza + a2b2) +19) + a2ba) + aab) +r4) + azbe) + asbz) +m11) + aabs) +
aebs) +13) + 1T4);
es = ((((((((((((rzs +asbs) +710) + azbs) +asba) +15) +azbr) +arba) +712) +asbr) +
arbs) +14) + rT5);
c6 = ((((((((((((rze +asbs) +711) + asba) +asbs) +16) +asbr) +arbs) +713) + asbr) +
arbs) +15) + r26);
cr = ((((((((((((7“$7+a6b6)+T12)+a3b5)—|—a5b3)+r7)+a3b5)+a6b3)+r14)+a5b6)+
agbs) + 16) + ra7);

Now we present the security analysis of this multiplication scheme and we
show that it can be securely composed with the refreshing scheme in Algorithm 2
in blocks of gadgets sharing the same random component. Due to size constraints,
we only give a sketch of the proof and refer to the full version of the paper for
the complete proof.

Lemma 4. Let Multy, ..., Multy be a set of N multiplication schemes as in
Algorithm 3, with outputs ¢V, ..., e¢™N). Suppose that the maskings of the inputs



are independent and uniformly chosen and that for k =1,..., N each Multy uses
the same random bits (Ti)i: Then Multy, ..., Multy are t-SCR and in

particular Mult is t~SNI.

1,...,tn/2"

Proof. In the first case, all probes are placed in the same Mult and it is sufficient
to show ¢-SNI of Mult. We indicate with p; ,, the m-th sum of the output ¢;. We
can classify the probes in the following groups.

) aib; +rk =:pia
) G, ]7al

) Tk

)plm+azbj =q
) Pom + 7k =18
(6) output shares ¢;

(1
(2
(3
(4
(5
6

Suppose an adversary corrupts at most ¢t wires wy,...,w;. We define two sets
I,J with |I] < n |J| < n such that the values of the wires wy, can be perfectly
simulated given the values (a;)ier , (bi)icJ.

The procedure to construct the sets is the following:

1. We first define a set K such that for all the probes containing a random bit
r, we add k to K.

2. Initially I, J are empty and the w; unassigned.

3. For every wire in the group (1), (2), (4) and (5) add ¢ to I and j to J.

Now we simulate the wires wy, using only the values (a;)icr and (b;);e.

— For every probe in group (2), then ¢ € I and ¢ € J and the values are
perfectly simulated.

— For every probe in group (3), i can be simulated as a random and indepen-
dent value.

— For every probe in group (1), if k ¢ K, we can assign a random independent
value to the probe, otherwise, if 7, has already been simulated we can simu-
late the probe by taking the r; previously simulated, simulating the shares
of a and b by using the needed indices in I and J and performing the inner
products and additions as in the real execution of the algorithm.

— For every probe in group (4) if p; ., was already probed, we can compute ¢
by using p;.,» and the needed indices of @ and b in I and J. Otherwise, we
can pick ¢ as a uniform and random value.

— For every probe in group (5), if p; ,, was already probed and k € K, we can
compute s by using p; ,, and the already simulated 7. Otherwise, we can
pick s as a uniform and random value.

Finally, we simulate the output wires ¢; in group (6) using only a number of
input shares smaller or equal to the number of internal probes. We have to take
into account two cases.

— If the attacker has already observed a partial value of the output shares,
we note that by construction, independently of the intermediate elements
probed, at least one of the r; does not enter into the computation of the
probed internal values and so ¢; can be simulated as a random value.



— If the adversary has observed all the partial sums of ¢;, then, since these
probes have been previously simulated, the simulator now add these simu-
lated values for reconstructing the c;.

— If no partial value fo ¢; has been probed. By definition, at least one of the
7k involved in the computation of ¢; is not used in any other observed wire.
Therefore, ¢; can be assigned to a random and independent value.

In the second case, the probes are placed into different Mult;. However, the
number of probes in one particular gadget does not exceed {%J In this case,
security is given by the L%J—non—completeness property of our multiplication
schemes.

In the third case, the number of probes for one Mult; does exceed L%J For
this, we base our proof strategy on the two observations. First, since all Mult;
share the same randomness, it is possible to probe the same final output share
¢; in two gadgets to remove all random elements and get information about
all the input shares used in the computation of ¢;. Secondly, a probe in any
intermediate sum of ¢; is randomized by rx;. Therefore, this probe can always
be simulated as uniform random if not another probe is placed on rx; or on a
different intermediate sum of ¢; (including in a different Mult;). Therefore, any
probe of an intermediate sum of ¢; can be reduced to a probe of the final output
share ¢;, since in the latter case one receives information about more or an equal
number of input shares with the same number of probes (i.e., two). Therefore,
to get information about the maximum number of input shares the probes need
to be placed in the same L%J output shares in two multiplications. Based on the
{%J—non—completeness, this can be easily simulated. The remaining probe, given
that t is odd, can be simulated as uniform random, since it is either

— an intermediate sum of an unprobed output share c;. This can be simulated
as uniform random due to the unprobed rxy.

— an unprobed output share ¢,. This can be also simulated as uniform random,
as by construction there is always at least one random element r; which is
not present in one of the L%J probed output shares.

For the special case of t < 4, it is possible to avoid the extra rxz; per out-
put share. This is based on the limited number of probes. For ¢ = 2, 1-non-
completeness (for the case of one probe in two multiplications) and ¢-SNI (for
the case of two probes in one multiplication) are sufficient to enable t-~-SCR. The
same applies to ¢t = 3 as for the last probe there is always one unknown random
r; masking any required intermediate sum. O

In the following lemma we show that the ¢-SNI refreshing scheme in Algo-
rithm 2 is also t-—~SCR. Due to size constraints, we again only provide a proof
sketch and refer to the full version of the paper for the complete proof.

Lemma 5. Let Ry,..., Ry be a set of N refreshing schemes, as in Algorithm
2, with inputs aV ...,a®™) and outputs ¢V ..., ™). Suppose that
(a‘z('l))i=1 e (agN))izl _,, are independent and randomly chosen maskings



of the input values and for k = 1,..., N each Ry uses the same random bits
(rw)i imlm Then Ry, ..., Ry are t-SCR.

Proof. Since according to Algorithm 2 every output share contains only one
single share of the input and since the inputs are encoded in n > t shares, it is
not possible to probe all of the input shares of one R; with ¢ probes. Therefore,
the simulation can be done easily. ad

We remark that, due to the use of n > t 4+ 1 shares in the multiplication al-
gorithm for order ¢ > 3, the refreshing scheme in Algorithm 2 makes use of a
not optimal amount of randomness, since it requires ”—22 random bits. We depict
in Algorithm 4 a more efficient refreshing scheme which uses only an random
bits. It essentially consist in multiplying the input value times 1, by means of

Algorithm 3 as subroutine. It is easy to see that the security of the scheme relies

Algorithm 4 Refreshing scheme with optimal amount of randomness

Input: shares a1, ..., a, such that @a; = a
Output: shares ci, ..., ¢, such that @ec; = a
for:=1ton do
U; = 1;
end for
if n is even then
Up, = 05
end if
(c1y...,¢n) = Mult(a, (u1,...,un));

on the security of the multiplication algorithm Mult, and therefore Algorithm 4
is t-SNI and it can securely share randomness with other multiplication gadgets.

An example of blocks of gadgets using multiplication and refreshing schemes
is given in Figure 5, where are depicted two blocks of gadgets of dimension 6
involving the multiplication scheme Mult and the refreshing R of Algorithm 2
secure even if sharing the same randomness.

4 A tool for general circuits

The results from the previous sections essentially show that it is possible to
transform a circuit C in another circuit C’ performing the same operation, but
using a reduced amount of randomness. To this end, according to Theorem 1,
it is sufficient to group the gadgets composing the circuit C in blocks G; sharing
the same component of random bits and having independent inputs, i.e. values
refreshed by Algorithm 2. As pointed out in Section 3, the actual efficiency of this
procedure is not straightforward, but it is given by the right trade off between
the dimension of the blocks and the number of extra refreshing schemes needed
in order to guarantee the independence of their inputs.
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Fig. 5. Two blocks of gadgets Gi, G2 composed by the same gadgets using the random
components r; with independent inputs x and y

In the following we give a tool, depicted in Algorithm 7, which allows to
perform this partitioning and amortize the randomness complexity of a given
circuit.

A circuit C is represented as a directed graph where the nodes constitute
the randomized gadgets and the edges are input or output wires of the related
gadget, according to the respective direction. In particular, if the same output
wire is used as input several time in different gates, it is represented with a
number of edges equivalent to the number of times it is used. The linear gates
are not represented. The last node is assigned to the label "End” and every
intersection node with parallel branches is marked as ”Stop”.

The idea at the basis of our algorithm is quite primitive. We empirically
noticed that for a circuit composed by N randomized gadgets a balanced choice
for the dimension of the blocks of gadgets can be the central divisors (di and ds
in the algorithms) of N, where if for instance N = 12 and then the vector of its
divisors is (1,2, 3,4, 6,12), with central divisors we identify the values 3 and 4.
Therefore, we aim at dividing the circuit in d; blocks of gadgets of dimension d5
(and vice versa). We start taking the fist d; nodes and we verify that the number
of outputs do not exceed the one of randomized gadgets in the block. Indeed,
if it would be so, since each output needs to be refreshed before being input of
another block, then the number of reused random bits is inferior to the one of
new random bits which need to be refreshed. In case the condition is not verified



the algorithm adds a new node, i.e. a new randomized gadget, to the block and
check again the property, until it is verified. Then it takes again the next d;
nodes and repeats the procedure. At last, we compare the saved randomness
respectively when the algorithm tries to divide the circuit in d; blocks and in ds
blocks and we output the transformed circuit with the best amortizing rate.

More technically, at first we give the subroutine in Algorithm 5, which chooses
two divisors of a given integer. With V' we indicate the vector composed by all
the divisors of a given number N (which in the partitioning algorithm will be
the number of the randomized gadgets of a circuit) and with |V| the length of
V, i.e. the number of its elements.

Algorithm 5 Divisors
Input: positive integer N
Output: divisors d; and da
V « divisors of N (by look up table);
n <« [V];
if n is even then

14 53
else

74— ”T_l;
end if
dy VM,
dy V[Z + 1};
return di,ds

Algorithm 6 constructs a block of gadgets G of dimension at least d, such that
the number of extra refreshing needed does not exceed the number of randomized
gadgets in the block. In the algorithm, the integers mgj ) and méj ) represent
respectively the number of output edges and the amount of nodes contained in

the block of gates G;.

The procedure Partition in Algorithm 7 partitions a circuit C in sub-circuits
G,; followed by a refreshing gate R per each output edge. In the algorithm,
O and M are two vectors such that the j-th position represents respectively
the number of output wires and the amount of nodes of the block G;. With
R it is indicated the refreshing scheme of Algorithm 2. The integers ng and
n’, count the total number of refreshing gadgets needed in the first and second
partition of C respectively. The integers ng and ng count the total number of
gadgets (multiplications and refreshing) which need to refresh the random bits
once in the circuit. The integers npor and n/.,p represent the total amount
of randomness needed, computed as the number of gadgets which need fresh
random bits once. By comparing these two values, the algorithm decides which
is the best partition in terms of amortized randomness. In particular the notation
OJi] - R means that the block G; is followed by O[i] refreshing schemes (one per
output edge).



Algorithm 6 FindBlock

Input: circuit C performing a function f(z), first node v; of the block, d

Output: block of gates G;, node v, integers m(oj),i

Gj < {vj+1,vj42, .., Vjtals

1+ 0;

while m&) > m{”’ do
i1+ 1;

if Vj+d+i 75 ? StOp77 then
Gi « G U{vjtari};

else
end while
return Gj, Vjidyi, mgj),i -1
end if
end while

3 ..
return Gj, vjrdyit1, ms 1

Algorithm 7 Partition

Input: circuit C performing a function f(z), N total number of randomized gadgets
Output: circuit C’ performing a function f(x) with a reduced amount of randomness
dy,d2 < Divisors(N);
1+ 1
Gi1,v,0[1], M[1] + FindBlock(C, v1,d1);
while v # "End” do

i1+ 1;

Gi,v, O[i], M[i] + FindBlock(C,v,d1)
end while
nr = O[] + - + Oli;
ng = max(M[1],..., M[i]);
nror = Nr + Ng;
k<« 1;
G1,v',O'[1], M'[1] + FindBlock(C,v1, d2);
while v # "End” do

k<« k+1;

1,0, O'[k], M'[k] < FindBlock(C,v’, d2);

end while
np =O'[1]+ -+ O'[K];
ng = max(M'[1],..., M'[k]);
nror = Mg +ng;
if nror < npror then

C'+ (G1,0[1] - R,...,Gi, O[] - R);
else

C'+ (G1,0'[1] - R,...,Gi, O'[k] - R);
end if
return C’




‘We conclude this section by emphasizing that our algorithm is not designed to
provide the optimal solution (as in finding the grouping which requires the least
amount of randomness). Nevertheless, it can help to decompose an arbitrary
circuit without a regular structure and serve as a starting point for further
optimizations. However, for circuits with an obvious structure (e.g., layers for
symmetric ciphers) which contain easily-exploitable regularities to group the
gadgets, the optimal solutions can be usually found by hand.

5 1-probing security with constant amount of randomness

The first order ISW scheme is not particularly expensive in terms of randomness,
because it uses only one random bit. Unfortunately, when composed in more
complicated circuits, the randomness involved increases with the size of the
circuit, because we need fresh randomness for each gadget. Our idea is to avoid
injecting new randomness in each multiplication and instead alternatively use
the same random bits in all gadgets. In particular, we aim at providing a lower
bound to the minimum number of bits needed in total to protect any circuit, and
moreover show a matching upper bound, i.e., that it is possible to obtain a 1-
probing secure private circuit, which uses only a constant amount of randomness.
We emphasize that this means that the construction uses randomness that is
independent of the circuit size, and in particular uses only 2 random bits in total
per execution.

We will present a modified version of the usual gadgets for refreshing, multi-
plication and the linear ones, which, in place of injecting new randomness, use a
value taken from a set of two bits chosen at the beginning of each evaluation of
the masked algorithm. In particular, we will design these schemes such that they
will produce outputs depending on at most one random bit and such that every
value in the circuit will assume a fixed form. The most crucial change will be
the one at the multiplication and refreshing schemes, which are the randomized
gadgets, and so responsible for the accumulation of randomness. On the other
hand, even tough the gadget for the addition does not use random bits, it will be
subjected at some modifications as well, in order to avoid malicious situations
that the reusing of the same random bits in the circuit can cause. As for the
other linear gadgets, such as the powers .2, .4, etc., they will be not affected by
any change, but will perform as usual share-wise computation.

We proceed by showing step by step the strategy to construct such circuits.
First, we fix a set of bits R = {rg,r;} where ro and 7, are taken uniformly at
random. The first randomized gadget of the circuit does not need to be substan-
tially modified, because there is no accumulation of randomness to be avoided
yet. The only difference with the usual multiplication and refreshing gadgets is
that, in place of the random component, we need to use one of the random bits
in R, as shown in Algorithm 8 and Algorithm 9. Notice that when parts of the
operations are written in parenthesizes, then this means that these operations
are executed first.



Algorithm 8 1-SecMult case (i)

Input: shares a1, as such that a1 ® a2 = a, shares b1, b2 such that by & b2 = b
Output: shares ¢; depending on a random number r;, € R such that ¢; @ c2 = a - b,
the value 7

3
rr — R;
c1 < aiby + (04()2 + ’I“k);
Cco +— a2b1 + (a2b2 — Tk);

Algorithm 9 Refreshing case (i)

Input: shares a1, a2 such that a1 ® a2 = a
Output: shares ¢; depending on the random number r, € R such that ¢1 & c2 = a,
the value 7

Tk & R;

C1 < a1 + Tk,

C2 < A2 — Tk;

Secondly, we analyze the different configurations that an element can take
when not more than one randomized gadget has been executed, i.e. when only
one random bit has been used in the circuit. The categories listed below are then
the different forms that such an element takes if it is respectively the first input
of the circuit, the output of the first refreshing scheme as in Algorithm 2 and
the one of the first ISW multiplication scheme as in Algorithm 1 between two
values x and y:

(1) a
(2) a
() a
This categorization is important because according to the different form of the
values that the second randomized gadget takes in input, the scheme will accu-

mulate randomness in different ways. Therefore, we need to modify the gadgets
by taking into account the various possibilities for the inputs, i.e. distinguish if:

= (a17 a2);
= (a1 + r,az — ), where r is a random bit in R;
= (z1y1 + T1Y2 + 1, x2y1 + Tay2 — 1), where r is a random bit in R.

(i) both the inputs are in category (1);

(ii) the first input is as in category (1), i.e. a = (a1,a2), and the second one in
category (2), i.e. b= (by +71,b2 —71);

(iii) the first input is as in category (1), i.e. a = (a1, a2), and the second one in
category (3), i.e. b = (c1dy + c1da + 71, cady + cada — 11);

(iv) the first input is in category (3), i.e. a = (c1dy + ¢1da + 7o, cady + cody — 1),
and second one in category (2), i.e. b= (by +71,b2 — 71);

(v) both inputs are in category (2), i.e. a = (a3 + r1,a2 — 1) and b = (by +
70, b2 — 10);

(vi) both inputs values are in category (3), i.e. a = (c1dy +c1da+71, cady +cada —
r1) and b = (cjdy + i dh + ro, chd) + chdy — rp).



where for the moment we suppose that the two inputs depend on two different
random bits each, but a more general scenario will be analyzed later. The goal of
the modified gadgets that we will present soon will be not only to reuse the same
random bits, avoiding an accumulation at every execution, but also to produce
outputs in the groups (1), (2) or (3), in order to keep such a configuration of the
wires unchanged throughout the circuit. In this way we guarantee that every wire
depends only on one random bit and that we can use the same multiplication
schemes in the entire circuit. According to this remark we modify the ISW as
depicted in Algorithms 10 and 11.

Algorithm 10 1-SecMult case (ii) and (iii)
Input: shares a1, a2 such that a; ®az = a, shares b;, b2 depending on a random number
r; € R such that by @ by = b, the set R = {’1“0,7"1}7 Ti
Output: shares ¢; depending on the random number 7;_; such that ¢1 G c2 = a-b, the
value r1_;

c1 < aibi + (a1b2 + r1-;);

c2 < a2bi + (a2b2 — ri—y);

Algorithm 11 1-SecMult case (iv), (v) and (vi)

Input: shares a1, a2 depending on the random number r; such that a1 @ a2 = a, shares
b1, bz depending on the random number 71 _; satisfying by @b = b, the set R = {ro, 1}
Output: shares ¢; depending on the random number 71_; € R satisfying ¢1 ©c2 = a-b,
the value r1_;

0 —T1—4;

6« 6+ rib;

<« 0+ TibQ;

c1 +— ai1by + (albz — 5),
Cco +— azb1 + (azbz + 6),

It is easy to prove that the new multiplication algorithms are such that their
outputs always belong to group (3).

Lemma 6. Let a and b be two input values of Algorithm 10 or of Algorithm 11.
Then the output value e = a - b is of the form (3).

As specified before, in the previous analysis we supposed to have as input of
the multiplication schemes values depending on different random bits. Since this
is not always the case in practice, we need to introduce a modified refreshing
scheme, which replaces the random bit on which the input depends with the
other random bit of the set R. The scheme is presented in Algorithm 12 and it
has to be applied to one of the input values of a multiplication scheme every
time that they depend on the same randomness. Algorithm 12 is also useful



before a XOR gadget with inputs depending on the same random bit, because
it avoids that the randomness is canceled out. The proof of correctness is quite

Algorithm 12 Modified refreshing R’
Input: shares a1, a2 such that a1 @ a2 = a depending on a random bit r;, the value r;
Output: shares ¢; depending on the random number r1_; such that ¢; @ c2 = a, the
value r1_;

c1 4= (a1 +ri-g) — 74

c2 + (a2 — r1—q) + 7i;

straightforward, therefore we provide only an exemplary proof for a value in
category (3).

Lemma 7. Let a be an input value of the form (3) depending on a random bit
r; € R for Algorithm 12. Then the output value is of the form (3) and depends
on the random bit r1_;.

Proof. Suppose without loss of generality that the input a depends on the ran-
dom bit 71, so that a = (e1dy + c1da + ro, cady + cady — 19). Then the output
e ="TR/(a) is:

er = (c1di +cida + 19+ 711) — 19 = c1di + c1de + 11
€9 = (Cle + cody —1rg — 7'1) +1rg = cady + cody — 1
completing the proof. a

Lastly, in Algorithm 13 we define a new scheme for addition, which allows to
have outputs in one of the three categories (1), (2) or (3). Note that thanks to
the use of the refreshing R’, we can avoid having a dependence on the same
random bit in the input of an addition gadget. The proof of correctness is again

Algorithm 13 Modified addition XOR’

Input: shares a1, a2 such that a1 @& a2 = a depending on a random bit r;, shares b1, b2
such that b1 @ b2 = b depending on a random bit r1_;

Output: shares ¢; depending on a random number r; € R such that ¢1 § c2 = a + b,
the value 7

$
rr < R;
c1 < a1 + b1 — rg;
c2 < a2 + b2 + 1g;

quite simple

In conclusion, we notice that by using the schemes above and composing
them according to the instructions just given, we obtain a circuit where each



wire carries a value of a fixed form (i.e. in one of the categories (1), (2) or (3))
and therefore we can always use one of the multiplication schemes given in the
Algorithms 8, 10 and 11 without accumulating randomness and without the risk
of canceling the random bits. Moreover, it is easy to see that all the schemes just
presented are secure against a 1-probing attack.

5.1 Impossibility of the 1-bit randomness case

In the following we show that is impossible in general to have a 1st-order probing
secure circuit, which uses only 1 bit of randomness in total. In particular, we
present a counterexample which breaks the security of a circuit using only one
random bit.

Let us consider ¢ and ¢’ two outputs of two multiplication schemes between
the values a, b and o', b’ respectively, and let r be the only random bit which is
used in the entire circuit. Then ¢ and ¢’ are of the form

co = agby +asby + 1 ch = ahby 4+ abbly +r

{cl =ai1by +arby+ 7 {c’l =ajby +ajby+r

and
Suppose now that these two values are inputs of an additive gadget, as in Fig-
ure 6. Such a gadget could either use no randomness at all and just add the
components each other, or involve in the computation the bit » maintaining the
correctness. In the first case we obtain

¢+ c1 = arby + arbs + @) by + aibhy = a1b + aft/

ch + co = agby + agbe + abby + ahbl, = asb + alt/
and then the randomness r will be completely canceled out, revealing the secret.
In the second case, if we inject in the computation another r, then, in whatever
point of the computation we put it, it will cancel out again one of the two r
revealing one of the secrets during the computation of the output. For example,
we can have

¢y +c1 =r+aby +arby +r+aiby +aiby +r = aib+ ayb| +ayby +r
ch+ co =1+ agby + agby + 1 + abb| + ahbly + 1 = axb + abb) + ahbhy +r

In view of this counterexample, we can conclude that the minimum number of
random bits needed in order to have a 1st-order private circuit is 2.

6 Case study: AES

To evaluate the impact of our methodology on the performance of protected
implementations, we implemented AES-128 without and with common random-
ness. In particular, we consider the inversion of each Sbox call (cf. Figure 5)
as a block of gadgets G;—1,... 200 using the same random components and each



Fig. 6.

of these inversions is followed by a refresh R;—1,. . 200. For the implementation
without common randomness, we use the multiplication algorithm from [18] and
the refresh from [10] (cf. Algorithm 2). To enable the use of common random-
ness, we replace the multiplication with our ¢~SCR multiplication, the refresh
with Algorithm 4 for ¢ > 3, and increase the number of shares accordingly.
Table 1 summarizes the randomness requirements of both types of refresh and
multiplication algorithms for increasing orders.

Table 1. Number of random elements required for the multiplication and refresh al-
gorithms with and without common randomness from ¢t = 1 to ¢t = 11.

Without Common Randomness With Common Randomness
t n  Multiplication Refresh n  Multiplication  Refresh
1 2 1 2 1
2 3 3
3 4 4
4 5 10 10 7 21 21
5 6 15 15 7 25 25
6 7 21 21 13 52 52
7 8 28 28 13 59 59
8 9 36 36 21 105 105
9 |10 45 45 21 116 116
10 | 11 55 55 31 186 186
11| 12 66 66 31 202 202

Both types of protected AES were implemented on an ARM Cortex-M4F
running at 168 MHz using C. The random components were generated using
the TRNG of the evaluation board (STM32F4 DISCOVERY) which generates
32 bits of randomness every 40 clock cycles running in parallel at 48 MHz. To



assess the influence of the TRNG performance on the result, we considered two
modes of operation for the randomness generation. For TRNG3z, we use all 32
bits provided by the TRNG by storing them in a buffer and reading them in
8-bit parts when necessary. To simulate a slower TRNG, we also evaluated the
performance of our implementations using TRNGg which only uses the least sig-
nificant 8 of the 32 bits resulting in more idle states waiting for the TRNG
to generate a fresh value. We applied the same degree of optimization on both
implementations to allow a fair comparison. While it is possible to achieve bet-
ter performances using Assembly (as recently shown by Goudarzi and Rivain
in [13]) our implementations still suffice as a proof of concept. The problem
of randomness generation affects a majority of implementations independent of
the degree of optimization and can pose a bottleneck, especially if no dedicated
TRNG is available. Therefore, we argue that our performance results can be
transferred to other types of implementations and platforms, and we expect a
similar performance improvement if the run time is not completely independent
of the randomness generation (e.g., pre-computed randomness).

As shown in Table 2, the implementations with common randomness requires
fewer calls to the TRNG for all considered ¢. Only after t > 22, the randomness
complexity of the additional refreshes R;—1,.. 200 becomes too high. The run-
time benefit of common randomness strongly depends on the performance of the
random number generator. While for the efficient TRNG32 our approach leads to
faster implementations only until ¢ = 5, it is superior until ¢ = 7 for the slower
TRNGg2. The dependency on the performance of the randomness generation is vi-
sualized in Figure 7. For TRNGg, the curve is shifted downwards compared to the
faster generator. In theory, an even slower randomness generator could move the
break-even point to after t = 23 for our scenario, i.e., until the implementation
with common randomness requires more TRNG calls.

For the special case of t = 1, we presented a solution (cf. Section 5) with con-
stant randomness independent of the circuit size. Following the aforementioned
procedure, we realized an 1-probing secure AES implementation with only two
TRNG calls. Overall, the implementation using the constant randomness scheme
requires more cycles than the one with common randomness, mostly due to ad-
ditional operations in the multiplication, addition, and refresh algorithms. This
is especially apparent for the key addition layer which is 40% slower. In gen-
eral, however, the approach with constant randomness could lead to better per-
formances for implementations with many TRNG calls and a slower source of
randomness.

7 Conclusion

Since the number of shares n for our +~SCR multiplication grows in O(t?) and
R requires O(nt) random elements, the practicability our proposed method-

2 For t = 1, our implementation with common randomness is faster for TRNGs than for
TRNGs2. This is due to the small number of TRNG calls and the extra logic required
to access the randomness buffer of TRNG32.



Table 2. Cycle counts of our AES implementations on an ARM Cortex-M4F with
TRNG32. In addition, we provide the required number of calls to the TRNG for each t.

Without Common Randomness With Common Randomness

TRNG Cycle Count TRNG Cycle Count
t n  Calls TRNG32 TRNGg n  Calls TRNG32 TRNGs
1 2 1,200 112,919 187,519 | 2 206 70,262 70,196
2 3 3,600 308,600 548,477 | 3 618 173,490 199,063
3 4 7,200 496,698 1,089,092 | 4 1,236 309,844 412,887
4 5 12,000 751,670 1,812,213 | 7 4,326 737,260 1,206,558
5 6 18,000 1,051,323 2,729,052 | 7 5,150 808,412 1,358,560
6 7 25,200 1,403,243 3,836,006 | 13 10,712 1,973,885 3,134,628
7 8 33,600 1,779,403 5,125,072 | 13 12,154 2,147,190 3,467,553
8 9 43,200 2,286,003 6,603,199 | 21 21,630 4,647,611 7,017,148
9 | 10 54,000 2,814,435 8,257,996 | 21 23,896 4,877,985 7,498,022
10 | 11 66,000 3,459,684 10,096,735 | 31 38,316 8,282,630 12,467,274
11| 12 79,200 4,046,836 12,112,375 | 31 41,612 8,640,018 13,211,240

ology becomes limited for increasing t. Nevertheless, our case study showed
that for small ¢ our approach results in significant performance improvement
for the masked implementations. The improvement factor could potentially be
even larger, if we replace our efficient TRNG with a common PRNG. Addition-
ally, an improved R with a smaller randomness complexity, e.g., O(t?), could
lead to better performances even for ¢ > 22 and is an interesting starting point
for future work. This would be of interest as with time larger security orders
might be required to achieve long-term security.

Another interesting aspect for future work is the automatic application of our
methodology to an arbitrary circuit. While we provide a basic heuristic approach
in Section 4, further research might be able to derive an algorithm which finds
the optimal grouping for any given design. This would help to create a compiler
which automatically applies masking to an unprotected architecture in the most
efficient way removing the requirement for a security-literate implementer and
reducing the chance for human error.
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