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Abstract—Leakage of information between two processes shar-
ing the same processor cache has been exploited in many novel
approaches targeting various cryptographic algorithms. The
software implementation of AES is an especially attractive tar-
get since it makes extensive use of cache-resident table lookups.
We consider two attack scenarios where either the plaintext or
ciphertext is known. We employ a multi-threaded spy process
and ensure that each time slice provided to the victim (running
AES) is small enough so that it makes a very limited number of
table accesses. We design and implement a suite of algorithms
to deduce the 128-bit AES key using as input the set of (un-
ordered) cache line numbers captured by the spy threads in an
access-driven cache-based side channel attack. Our algorithms
are expressed using simple relational algebraic operations and
run in under a minute. Above all, our attack is highly efficient
– we demonstrate recovery of the full AES key given only
about 6–7 blocks of plaintext or ciphertext (theoretically even
a single block would suffice). This is a substantial improvement
over previous cache-based side channel attacks that require
between 100 and a million encryptions. Moreover, our attack
supports varying cache hit/miss observation granularities, does
not need frequent interruptions of the victim and will work
even if the victim makes up to 60 cache accesses before being
interrupted. Finally, we develop analytic models to estimate
the number of encryptions/decryptions required as a function
of access granularity and compare model results with those
obtained from our experiments.

Index Terms—AES, access-driven, cache attacks, side channel,
table lookup

1. Introduction

Through much of the history of cryptography, attacks
on cryptographic algorithms have focused on cracking hard
mathematical problems such as the factorization of very
large integers (which are the product of two very large
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primes) and the discrete logarithm problem [1]. More re-
cently, however, side channel attacks have gained promi-
nence. These attacks leak sensitive information through
physical channels such as power, timing, etc. and typically
are specific to the actual implementation of the algorithm
[2]. An important class of timing attacks is that based on
obtaining measurements from cache memory systems.

The Advanced Encryption Standard (AES) [3], a rela-
tively new algorithm for secret key cryptography, is now
ubiquitously supported on servers, browsers, etc. Almost
all software implementations of AES including the widely
used cryptographic library, OpenSSL, make extensive use
of table lookups in lieu of time-consuming mathematical
field operations. Cache-based side channel attacks aim to
retrieve the key of a victim performing AES by exploiting
the fact that access times to different levels of the cache-
main memory hierarchy vary by 1–2 orders of magnitude.

Cache-based side channel attacks belong to one of three
categories. Timing-driven attacks measure the time to com-
plete an encryption [4]. Trace-driven attacks create profiles
of a cache hit or miss for every access to memory during
an encryption [5]. Finally, access-driven attacks need infor-
mation only about which lines of cache have been accessed,
not their precise order. Two of the most successful access-
driven attacks [6], [7] belong to the last category.

We consider two possible scenarios. In the first (Sce-
nario I), a victim process runs on behalf of a data stor-
age service provider who securely stores documents from
multiple clients and furnishes them on request after due
authentication. The same key or set of keys is used to
encrypt documents from different clients prior to storage.
In Scenario II, two entities, A and B, exchange encrypted
messages. The victim, on B’s machine, decrypts blocks of
ciphertext received from A.

In both scenarios, we assume that the attacker or spy is
hosted on the same processor core as the victim and that
their executions are interleaved as in [7]. Moreover, both
attacker and victim use the OpenSSL library. So only a
single copy of OpenSSL is resident in main memory and
is mapped to the virtual spaces of both, attacker and victim.

The spy process flushes out all the cache lines containing
the AES tables. When the victim is scheduled, it brings in
some of the evicted line(s). When control returns back to the
spy, it determines which of the evicted lines were fetched



by the victim by measuring the time to access them. It then
flushes out the AES tables from cache before relinquishing
control of the CPU.

Our algorithms to deduce the AES key use two cru-
cial inputs. The first of these is either the plaintext or
the ciphertext. In Scenario I, the attacker could pose as a
customer to the data storage service provider and request
that his documents (plaintext) be securely stored. The attack
in Scenario II makes the reasonable assumption that the
ciphertext to B can be eavesdropped upon.

The second crucial piece of information is the set of
line (or block) numbers of AES table entries accessed by
the victim. Several entries in the AES table are placed on
a single cache line and the espionage network we employ
provides a set (not list) of lines accessed. The absence
of spatial information (the specific table entry on a line)
and temporal information (the order of accesses) makes it
challenging to deduce the key especially for sets with larger
cardinalities. Our espionage software was ported on Intel R©
Core 2 Duo, Core i3 and Core i5 with hardware support for
AES turned off in the latter two cases.

Given the above two inputs, our main contribution is
the design and implementation of a suite of algorithms to
deduce the AES key. Our algorithms are simple and are
elegantly expressed using relational algebraic operations.
Even unoptimized versions of our algorithms in Python
run in under a minute. Above all, our attack is highly
efficient – we demonstrate recovery of the full 128-bit AES
key given only about 6–7 blocks of plaintext or ciphertext
(theoretically even a single block would suffice). This is
a substantial improvement over previous cache-based side
channel attacks that require between 100 and a million
encryptions. Moreover, our attack requires preemption of
the victim only 5-7 times per encryption/decryption and will
work even if the victim makes up to 60 accesses before
being interrupted. Finally, we develop analytic models to
estimate the number of encryptions/decryptions required
and compare model results with those obtained from our
experiments.

This paper is organized as follows. Section 2 contains a
brief introduction to AES, its implementation using lookup
tables and processor cache. Section 3 describes our espi-
onage setup including the spy controller and spy threads.
Sections 4 and 5 present the algorithms, model and results
related to the attacks in Scenarios I and II respectively.
Section 6 discusses other issues of relevance, limitations and
countermeasures. Section 7 summarizes work related to the
theme of this paper and Section 8 contains the conclusions.

2. Preliminaries

We first summarize the software implementation of AES
and then introduce the basics of cache memories.

2.1. AES Summary

AES is a symmetric key algorithm standardized by the
U.S. National Institute of Standards and Technology (NIST)

in 2001. Its popularity is due to its simplicity yet it is
resistant to various attacks including linear and differential
cryptanalysis. The full description of the AES cipher is
provided in [3]. Here, we mainly focus on its software
implementation.

AES is a substitution-permutation network. It supports a
key size of 128, 192 or 256 bits and block size = 128 bits.
A round function is repeated a fixed number of times (10
for key size of 128 bits) to convert 128 bits of plaintext
to 128 bits of ciphertext. The 16-byte input or plaintext
P = (p0, p1, ..., p15) may be arranged column wise in a 4×4
array of bytes. This “state array” gets transformed after each
step in a round. At the end of the last round, the state array
contains the ciphertext.

All rounds except the last involve four steps – Byte
Substitution, Row Shift, Column Mixing and a round key
operation (the last round skips the Column Mixing step).
The round operations are defined using algebraic operations
over the field GF

(
28
)
. For example, in the Column

Mixing step, the state array is pre-multiplied by the matrix
B given below.

B =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


Each element in B is an element of GF

(
28
)

represented
as 2 hexadecimal characters. The original 16-byte secret key
K = (k0, k1, ..., k15) (arranged column wise in a 4×4
array of bytes) is used to derive 10 different round keys to
be used in the round key operation of each round. The round
keys are denoted K(r), r = 0, 1...9.

In a software implementation, field operations are re-
placed by relatively inexpensive table lookups thereby
speeding encryption and decryption. In the versions of
OpenSSL targeted in this paper, five tables are employed
(each of size 1KB). A table Ti , 0 ≤ i ≤ 4 is accessed
using an 8 bit index resulting in a 32-bit output.

Let x(r) =
(
x
(r)
0 , . . ., x

(r)
15

)
denote the input to round

r (i.e. the state array at the start of round r). The initial
state x(0) =

(
x
(0)
0 , . . ., x

(0)
15

)
is computed by x(0)i = pi⊕ki

for i = 0, . . ., 15. The output of round r, r = 0, 1, ..., 8 is
obtained from the input using 16 table lookups and 16 XOR
operations as shown below (1) – (4).(
x
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Here K(r+1)
i refers to the ith column of K(r+1).

To compute the last round, Table T4 is used instead
of T0, ..., T3. Due to the absence of the Column Mixing
step, the value returned by the table lookup is XORed with
the corresponding byte of the round key. Since each round
involves 16 table accesses, a complete encryption involves a
total of 160 table accesses. Table 1 summarizes the notations
that appear in this paper.

2.2. Cache Basics

All modern processors have multiple levels of cache
intended to bridge the latency gap between main memory
and the CPU. Of the machines targeted in this paper, Core 2
Duo has two levels of cache (L1 comprises 32KB D-cache
and 32 KB I-cache and L2 is 2MB) while Core i3 has three
levels (L1 comprises 32KB I-cache and 32KB D-cache, each
core has a private 256 KB L2 cache and a shared 3MB L3
cache).

The granularity of data transfer between different levels
of cache is a block or line. On all the machines we used,
the line size = 64 bytes. The lines of a cache are grouped
into sets – a line from main memory is mapped to exactly
one set though it may occupy any position in that set. The
number of lines in a set is the associativity of the cache. In
the machines we worked with, L1 and L2 caches are 8-way
set associative while L3 is 12-way set associative in Core
i3 and i5.

During the encryption/decryption of a block of plain-
text/ciphertext, parts of the AES tables are brought into
cache as needed. Each entry in a table is 4 bytes, so 16
entries can be accommodated in a single line. Each table
contains 256 entries, so a table fits into 16 blocks. The first
four bits of an 8-bit table index identify a line within the
table while the last four bits specify the position of the entry
within the line. Thus, the first four bits of a table index are
leaked if the attacker can determine which line of the cache
was accessed.

3. Espionage Setup

Our espionage network borrows from the work in [8]. It
comprises a Spy Controller (SC) and a Spy Ring. The SC
runs on one CPU core while the ring of spy threads runs
on another core together with the victim. The executions
of spy threads and the victim (V) are interleaved. We refer
to an execution instance of V as a run. During each run,
V accesses the AES tables and the next spy thread that is
scheduled attempts to determine which lines of the table
were accessed in the preceding run of V. The default time
slice (or quantum) assigned by the OS to a process is large
enough to accommodate thousands of cache accesses. But if

TABLE 1: Notations

Notation Explanation

K, K(i) AES Key or ith round key represented as 4x4 byte
array (column wise)

k i ith byte of AES key

P 128-bit plaintext represented as 4x4 byte array

pi, p i,e ith byte of plaintext (in encryption e)

C 128-bit ciphertext represented as 4x4 byte array

ci, ci, e ith byte of ciphertext (in encryption e)

Ti AES Table, 0 ≤ i ≤ 4

B Column Mixing operation matrix

ρ
Set of line numbers of AES tables accessed in a
single execution quantum or run of the victim. The
cardinality of this set is referred to as the run size.

ρx−y,t,e
Set of line numbers of AES table Tt accessed in
run x to y of encryption e

x′ High-order nibble of byte x

x′′ Low-order nibble of byte x

ri Relation containing various AES subkey attributes

ri 1 rj Join of ri and rj

σi·j (r)
All tuples in relation r satisfying Equation-i with
plaintext used in the j th block encryption

ri × rj Cartesian product of relation ri and rj
ε Number of encryptions required to retrieve AES key

δ Number of decryptions required to retrieve AES key

c
Compression ratio (ratio of cardinalities of output to
input relations of a select operation)

V is given this full time slice, it would perform tens of en-
cryptions (each encryption involves 160 table accesses) thus
making it impossible to obtain any meaningful information
about the encryption key.

We exploit the fact that the Completely Fair Scheduler
(CFS) employed in many Linux versions uses a calculation
based on virtual runtimes to ensure that the aggregate CPU
times allocated to all processes and threads are nearly equal.
If the number of threads is n and they execute in round-
robin fashion, then each run of V is roughly of duration
x/n where x is the uninterrupted time allocated to any run-
ning thread.

The task of a spy thread is to measure the access time of
each cache line containing an AES table and then flush the
tables from all levels of cache. It then signals the SC through
a shared boolean variable, finished, that its task is complete
and blocks on the condition myID = nextThreadID. At this
point, all spy threads are in the blocked state and the OS
resumes execution of V.

The SC continuously polls the finished flag. When it
finds that finished has been set to true, it signals the spy
thread that has waited the longest and sets finished to false.

Our attacks were implemented on Intel R© Core 2 Duo
E4500, 2.20GHz processor running Debian 8.0, 32-bit, ker-
nel version 3.16. We also experimented with Intel R© Core
i3 2100, 3.10GHz processor running Debian 8.0, 32-bit,
kernel version 3.16 and Core i5 2540M, 2.60GHz processor
running Debian Kali Linux 1.1.0, 64-bit, kernel versions



Spy Thread

1: while true do
2: conditionWait until myID = nextThreadID
3: for each cacheLine containing AES tables do
4: if accessTime < THRESHOLD then
5: isAccessed[cacheLine] ← true
6: end if
7: clflush(cacheLine)
8: end for
9: lock(mutex)

10: finished← true
11: unlock(mutex)
12: end while

Spy Controller

1: while true do
2: while finished 6= true do
3: end while
4: signal(nextThreadID)
5: lock(mutex)
6: finished ← false
7: unlock(mutex)
8: end while

3.14 and 3.18. The C implementation of OpenSSL versions
0.9.8a and 1.0.2a were employed.

The third component of the espionage infrastructure is
the Analytics Engine. Based on the inputs from the spy
threads and the known plaintext or ciphertext, it recovers
the original AES key as explained in the remainder of this
paper.

4. Scenario I Attack

We first present the First Round Attack wherein the high-
order nibble of each of the 16 bytes of the AES key are
obtained. These serve as input to the Second Round Attack
described later.

4.1. First Round Attack - Description

In Scenario I, the same key is used to encrypt several
blocks of plaintext that are known to the attacker. As ex-
plained in section 2, the elements of the 4× 4 input matrix
to a round in AES are indices to the AES lookup tables.
During the first round, this matrix is P ⊕K where P is the
plaintext and K is the AES key. Based on measured cache
access times, a spy thread identifies which lines of the AES
tables were accessed. These 4-bit “table line numbers” are
the high-order nibble of each byte in the 4× 4 matrix. So,
the high-order nibbles of all bytes of K may be obtained.

During the first nine rounds, the victim accesses the
lookup tables in round-robin fashion - T0, T1, T2, T3,
T0, T1, . . . If the spy threads could provide the precise se-
quence of lines accessed, we could unambiguously deduce

k
′

0 , k
′

5 , k
′

10 , k
′

15 , k
′

4, . . . However, a spy thread provides
a set (not list) of table line numbers accessed during the
preceding run.

Figure 1: Histogram of per table run size of first run, |ρ0,∗,i|,
in 200 encryptions

Figure 2: Histogram of per table combined run size of first
two runs, |ρ0−1,∗,i|, in 200 encryptions

In addition to the set of accesses within a single run, our
algorithms may require the set of all accesses made during
two or more consecutive runs. Let ρx−y,t,e denote the set
of distinct lines accessed in runs x through y made to Table
Tt in the eth block encryption. The cardinality of the set
of lines denoted |ρi,∗,∗| varies across runs. As it turns out,



|ρi,∗,∗| is an important experimentally determined parameter
that impacts the performance of our algorithms. Histograms
of |ρ0,∗,∗| and |ρ0−1,∗,∗| are of special relevance and are
shown in Figures 1 and 2 respectively.

We assume that the victim encrypts one block after
another, so it is necessary to determine when the encryption
of a new block has begun. In the 5-table implementation of
AES, this is straightforward since the last round accesses
T4 exclusively. Experimental results on our setup indicate
that there are almost always two (or more) consecutive runs
containing accesses to T4. If the last of these runs also
contains accesses to T0, we can be sure that the encryption
of the next block of plaintext has begun. We next introduce
an algorithm to recover the high-order nibble of each byte
of the AES key.

Algorithm 1 First Round Attack

Input:
ε blocks of plaintext, ρ0,t,e ,
ρ0−1,t,e , 0 ≤ t ≤ 3 , 1 ≤ e ≤ ε

Output:
High-order nibble of each byte of AES key

1: for each table, Tt, t = 0, 1, 2, 3 do
2: for each column index i,

referencing matrix P, 0 ≤ i ≤ 3 do
3: // Prepare histogram for key nibble, k

′

t+4i
4: for each encryption, e, e ≤ ε do
5: if ( |ρ0,t,e| ≥ 4 ) then
6: ρ = ρ0,t,e
7: else
8: ρ = ρ0−1,t,e
9: end if

10: for each x ∈ ρ do
11: increment histogram t+4 i [x⊕p

′

t+4 i , e]
12: end for
13: end for
14: end for
15: end for

In total 16 histograms are created, one per high-order
nibble of each byte of the AES key. histogram t+4 i dis-
plays scores for each of the 16 possible nibble values for
nibble k

′

t+4 i of the key. Since P⊕K is the input to the first
round of AES, ρ0,0,1 will contain (p0 ⊕ k0)′ and possibly,
(p4 ⊕ k4)′, (p8 ⊕ k8)′ and (p12 ⊕ k12)′ depending on the
cardinality of ρ0,0,1. A spy thread provides these values but
not necessarily in the order we would like. So starting with
ρ0,0,1, for each value x in ρ0,0,1, Algorithm 1 increments
the value at x⊕p0,0 in histogram0. It repeats this for each
encryption with ρ0,0,e, e ≤ ε and associated plaintext. Note
that the correct key nibble in the histogram receives a boost
but so do several others (which constitute false positives).
As ε increases, all but the correct nibble value will fail to
be incremented at least once, so the true value of the key
nibble will stand out.

This procedure is repeated for each of the remaining 15
histograms. The algorithm terminates after ε is large enough

Figure 3: Evolution of histogram of score of potential high-
order nibble values for key byte k0

that we discover the true values of all high-order key nibbles
in their respective histograms.

4.2. First Round Attack - Results

We experimentally obtained a distribution of ε values by
generating 100 round keys. For each key, we generated 25
random plaintext blocks and encrypted those blocks with
the key. We refer to a key together with the 25 blocks
of the plaintext as a sample. We determined the number
of block encryptions required to unambiguously deduce the
high-order nibbles of all 16 key bytes for each sample. We
found that 70 samples required between 5 and 7 encryptions,
16 samples required 8 encryptions, 13 samples required
9 encryptions and one sample required 13 encryptions.

Figure 3 shows the evolution of a specific histogram after
1, 2, 4 and 5 encryptions. It is clear that four encryptions
do not suffice and the true nibble value is known only after
5 encryptions.

We next derive an expression for the average number
of encryptions required to obtain the high-order nibble of
each byte of the AES key. Given the plaintext for the
ith encryption, the probability that an incorrect value gets
a boost is |ρ|−115 . The probability that the incorrect value
does not receive a boost in at least one of e encryptions
is 1 − ( |ρ|−115 )e. There are 16 histograms, each contains
16 possible values. Of them, a total of 240 values are
incorrect. Let Pe denote the probability that each of 240



incorrect values does not receive a boost in at least one
of e encryptions. So, Pe = (1 − ( |ρ|−115 )e)240. The average
number of encryptions required to deduce the high-order
nibble of each byte of the AES key is therefore

∞∑
e=1

e · (Pe − Pe−1)

Figure 4 shows the average number of encryptions required
to deduce the high-order nibbles of the AES key as function
of the per table run size, |ρ|.

4.3. Second Round Attack - Description

The goal of the Second Round Attack is to obtain the
low-order nibble of each byte of the AES key. For this, we
use (5) – (20) which relate the second round inputs to the
plaintext and to various bytes of the key. The equations are
easily derived by tracking how the input to Round 1 gets
transformed after Byte Substitution, Row Shift, Column
Mixing and the round key operations.

We choose different subsets of the low-order nibbles
of the key, say k

′′

0 , k
′′

5 , k
′′

10, k
′′

13, k
′′

15 and create relations
(or tables) for each subset of interest. A relation for
the first subset has attributes (or columns) named
k
′′

0 , k
′′

5 , k
′′

10, k
′′

13, k
′′

15. During the execution of the key
retrieval algorithm, each row or tuple of the relation
will contain a potential subkey value. New tables may
be created and are operated upon resulting in gradually
reduced cardinalities so that when the algorithm terminates
only the actual key or a small number of potential key
values survive.

Our algorithm is best described in terms of relational
algebraic operations [9] – select, Cartesian product and
join. The select operator (σ) filters out tuples of a relation
based on a certain predicate, i.e., only those tuples survive
that satisfy the predicate. The select operation used in
this work takes the form σi · j (r). The predicate i · j is
short for “all tuples (subkeys) in relation r satisfying
Equation i, 5 ≤ i ≤ 20, with plaintext used in the j th

block encryption”. Satisfiability of the predicate is limited
to checking for equality of the high-order nibble values of
the LHS and RHS of Equation i.

x
(1)
0 =2 • s(p0 ⊕ k0)⊕ 3 • s(p5 ⊕ k5)⊕ s(p10 ⊕ k10)

⊕ s(p15 ⊕ k15)⊕ s(k13)⊕ k0 ⊕ 1 (5)

x
(1)
1 = s(p0 ⊕ k0)⊕ 2 • s(p5 ⊕ k5)⊕ 3 • s(p10 ⊕ k10)

⊕ s(p15 ⊕ k15)⊕ s(k14)⊕ k1 (6)

x
(1)
2 = s(p0 ⊕ k0)⊕ s(p5 ⊕ k5)⊕ 2 • s(p10 ⊕ k10)

⊕ 3 • s(p15 ⊕ k15)⊕ s(k15)⊕ k2 (7)

x
(1)
3 =3 • s(p0 ⊕ k0)⊕ s(p5 ⊕ k5)⊕ s(p10 ⊕ k10)

⊕ 2 • s(p15 ⊕ k15)⊕ s(k12)⊕ k3 (8)

x
(1)
4 =2 • s(p4 ⊕ k4)⊕ 3 • s(p9 ⊕ k9)⊕ s(p14 ⊕ k14)

⊕ s(p3 ⊕ k3)⊕ s(k13)⊕ k0 ⊕ k4 ⊕ 1 (9)

x
(1)
5 = s(p4 ⊕ k4)⊕ 2 • s(p9 ⊕ k9)⊕ 3 • s(p14 ⊕ k14)

⊕ s(p3 ⊕ k3)⊕ s(k14)⊕ k1 ⊕ k5 (10)

x
(1)
6 = s(p4 ⊕ k4)⊕ s(p9 ⊕ k9)⊕ 2 • s(p14 ⊕ k14)

⊕ 3 • s(p3 ⊕ k3)⊕ s(k15)⊕ k2 ⊕ k6 (11)

x
(1)
7 =3 • s(p4 ⊕ k4)⊕ s(p9 ⊕ k9)⊕ s(p14 ⊕ k14)

⊕ 2 • s(p3 ⊕ k3)⊕ s(k12)⊕ k3 ⊕ k7 (12)

x
(1)
8 =2 • s(p8 ⊕ k8)⊕ 3 • s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)

⊕ s(p7 ⊕ k7)⊕ s(k13)⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1 (13)

x
(1)
9 = s(p8 ⊕ k8)⊕ 2 • s(p13 ⊕ k13)⊕ 3 • s(p2 ⊕ k2)

⊕ s(p7 ⊕ k7)⊕ s(k14)⊕ k1 ⊕ k5 ⊕ k9 (14)

x
(1)
10 = s(p8 ⊕ k8)⊕ s(p13 ⊕ k13)⊕ 2 • s(p2 ⊕ k2)

⊕ 3 • s(p7 ⊕ k7)⊕ s(k15)⊕ k2 ⊕ k6 ⊕ k10 (15)

x
(1)
11 =3 • s(p8 ⊕ k8)⊕ s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)

⊕ 2 • s(p7 ⊕ k7)⊕ s(k12)⊕ k3 ⊕ k7 ⊕ k11 (16)

x
(1)
12 =2 • s(p12 ⊕ k12)⊕ 3 • s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)

⊕ s(p11 ⊕ k11)⊕ s(k13)⊕ k12 ⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1
(17)

x
(1)
13 = s(p12 ⊕ k12)⊕ 2 • s(p1 ⊕ k1)⊕ 3 • s(p6 ⊕ k6)

⊕ s(p11 ⊕ k11)⊕ s(k14)⊕ k13 ⊕ k1 ⊕ k5 ⊕ k9
(18)

x
(1)
14 = s(p12 ⊕ k12)⊕ s(p1 ⊕ k1)⊕ 2 • s(p6 ⊕ k6)

⊕ 3 • s(p11 ⊕ k11)⊕ s(k15)⊕ k14 ⊕ k2 ⊕ k6 ⊕ k10
(19)

x
(1)
15 =3 • s(p12 ⊕ k12)⊕ s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)

⊕ 2 • s(p11 ⊕ k11)⊕ s(k12)⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11
(20)

Given an equation and row of a table, we compute the
high-order nibble of each term on the RHS of the equation
and XOR them. Each high-order nibble is a function of the
plaintext, high-order nibbles of the key (obtained in the First
Round Attack) and values of attributes (subkeys) in the given
row. The high-order nibble of the LHS of the equation is the
specific cache line number accessed by the victim in Round
2 and is contained in the set of line numbers provided by
the spy threads. So, the predicate is satisfied for a given row
if the value of the high-order nibble of the byte value of the
RHS is equal to any of the elements in the set of cache line
numbers provided by the spy.

The Cartesian product (×) and join (1), both operate



on two relations. The × operation pairs each tuple in the
first relation with every tuple in the second relation. The
attributes of the output relation consist of all attributes of
both relations while the cardinality of the output relation is
the product of the cardinalities of the input relations.

One use of the Cartesian product in this paper is in
expressions of the form r×{0, 1}4. Here, each tuple of r is
paired with each 4-bit string, 0000, 0001, . . . , 1111 in turn.
The extra attribute of the output relation is, for example, a
low-order nibble of one of the bytes of the AES key.

If A1 and A2 are respectively the attribute sets of r1 and
r2, then the attribute set of r1 1 r2 is A1 ∪ A2. A tuple, t
is in r1 1 r2 if and only if t ·A1 ∈ r1 and t ·A2 ∈ r2.

We note that of the 16 equations, (7), (10), (13) and
(20) are the only ones with least dependence on the low-
order nibbles of the key. So, in Algorithm 2, we build
four relations, each with four of their unknown key nibbles
as attributes. The choice of these equations enables us to
build relations with smaller cardinalities and at the same
time deduce all 16 low-order nibbles of the AES key. The
equations serve the role of selection predicates. After a
sufficient number of select operations each relation survives
with only a single subkey value. In the next subsection, we
derive an expression for the number of block encryptions,
ε
′
, required to obtain the key.

Algorithm 2 Second Round Attack – Encryption (4 equa-
tions)
Input:

ε
′

blocks of plaintext, ρ0,t,e , ρ1,t,e ,
ρ2,t,e , 0 ≤ t ≤ 3 , 1 ≤ e ≤ ε′

Output:
Low-order nibble of each byte of AES key

Step 0: Create four relations

r2

(
k
′′

0 , k
′′

5 , k
′′

10, k
′′

15

)
,

r5

(
k
′′

4 , k
′′

9 , k
′′

14, k
′′

3

)
,

r8

(
k
′′

8 , k
′′

13, k
′′

2 , k
′′

7

)
,

r15

(
k
′′

12, k
′′

1 , k
′′

6 , k
′′

11

)
and initialize each of them to

{0, 1}4 × {0, 1}4 × {0, 1}4 × {0, 1}4

Step 1: Compute

r
′

i = σm · ε′ (. . . σm · 2 (σm · 1 (ri)) . . .)

m = i+ 5

i = 2, 5, 8, 15

Algorithm 3 attempts to obtain the key with fewer
encryptions using all 16 equations (5) – (20). The database
schema for the initial, intermediate and final relations are
shown in Table 2.

Algorithm 3 Second Round Attack – Encryption (16 equa-
tions)
Input:

ε blocks of plaintext, ρ0,t,e , ρ1,t,e ,
ρ2,t,e , 0 ≤ t ≤ 3 , 1 ≤ e ≤ ε

Output:
Low-order nibble of each byte of AES key

Steps 0 and 1 are as in Algorithm 2 above except that
we require fewer encryptions ε < ε

′
. The remaining

steps are shown below

Step 2: Compute

ri = r
′

2 × {0 , 1}
4
, i = 0 , 1 , 3

ri = r
′

5 × {0, 1}
4
, i = 4, 6, 7

ri = r
′

8 × {0, 1}
4
, i = 9, 10, 11

ri = r
′

15 × {0, 1}
4
, i = 12, 13, 14

r
′

i = σm·ε (. . .σm·2 (σm·1 (ri)) . . .)

m = i+ 5

i = 0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14

Step 3: Compute

rJ0 = r
′

0 1 r
′

1 1 r
′

3

rJ1 = r
′

4 1 r
′

6 1 r
′

7

rJ2 = r
′

9 1 r
′

10 1 r
′

11

rJ3 = r
′

12 1 r
′

13 1 r
′

14

Step 4: Compute

rJ01 = rJ0 1 rJ1

rJ23 = rJ2 1 rJ3

Step 5: Compute

rJ0123 = rJ01 1 rJ23

4.4. Second Round Attack - Results and Analysis

As in the First Round Attack, the number of block
encryptions required to deduce the low-order nibbles of the
key is closely related to the number of table accesses made
in a run.

The attribute values of a tuple and the plaintext deter-
mine the RHS of an equation (one of (5) through (20)). Be-
cause of the non-linear nature of the S-Box function together
with the assumption of random plaintext, it is reasonable to
conclude that the high-order nibble of each term is uniformly
distributed between 0 and 15. For this tuple to be retained,
it has to match one of |ρ0−1,∗,∗| possible values of the high-
order nibble of the LHS byte. Thus the compression ratio,
c, of the output of the select operation (ratio of cardinalities
of the output to input relation) is c = |ρ0−1,∗,∗| /16. The
cardinality of each output relation of Step 1 in Algorithm
3 is hence 216 × cε. In Step 2, the input relations are first



TABLE 2: Database schema of initial, intermediate, and final
relations for Algorithm 3

Relation Attributes (low-order nibbles of AES key)

r0 k
′′
0 , k

′′
5 , k

′′
10, k

′′
13, k

′′
15

r1 k
′′
0 , k

′′
5 , k

′′
10, k

′′
14, k

′′
15

r3 k
′′
0 , k

′′
5 , k

′′
10, k

′′
12, k

′′
15

r4 k
′′
3 , k

′′
4 , k

′′
9 , k

′′
13, k

′′
14

r6 k
′′
3 , k

′′
4 , k

′′
9 , k

′′
14, k

′′
15

r7 k
′′
3 , k

′′
4 , k

′′
9 , k

′′
12, k

′′
14

r9 k
′′
2 , k

′′
7 , k

′′
8 , k

′′
13, k

′′
14

r10 k
′′
2 , k

′′
7 , k

′′
8 , k

′′
13, k

′′
15

r11 k
′′
2 , k

′′
7 , k

′′
8 , k

′′
12, k

′′
13

r12 k
′′
1 , k

′′
6 , k

′′
11, k

′′
12, k

′′
13

r13 k
′′
1 , k

′′
6 , k

′′
11, k

′′
12, k

′′
14

r14 k
′′
1 , k

′′
6 , k

′′
11, k

′′
12, k

′′
15

rJ0 k
′′
0 , k

′′
5 , k

′′
10, k

′′
12, k

′′
13, k

′′
14, k

′′
15

rJ1 k
′′
3 , k

′′
4 , k

′′
9 , k

′′
12, k

′′
13, k

′′
14, k

′′
15

rJ2 k
′′
2 , k

′′
7 , k

′′
8 , k

′′
12, k

′′
13, k

′′
14, k

′′
15

rJ3 k
′′
1 , k

′′
6 , k

′′
11, k

′′
12, k

′′
13, k

′′
14, k

′′
15

rJ01 k
′′
0 , k

′′
3 , k

′′
4 , k

′′
5 , k

′′
9 , k

′′
10, k

′′
12, k

′′
13, k

′′
14, k

′′
15

rJ23 k
′′
1 , k

′′
2 , k

′′
6 , k

′′
7 , k

′′
8 , k

′′
11, k

′′
12, k

′′
13, k

′′
14, k

′′
15

rJ0123
Low-order nibble of each of the 16 bytes of

the AES key

expanded by a factor of 24 before repeatedly performing the
select operation. Thus the cardinality of each output relation
in Step 2 is 220 × c2ε.

Step 3 involves four 3-way joins. It is well-known in the
Database Query Processing literature [10] that the cardinal-
ity of a 2-way join output is |rA|×|rB ||JA| where |rA| and |rB |
are the input cardinalities and |JA| is the cardinality of the
join attribute. Since the join attribute values were inherited
from the output of Step 1, |JA| in this case is 216 × cε.
The cardinalities of each intermediate and final join output

in Step 3 are thus respectively (220×c2ε)
2

216×cε = 224 × c3ε and
(224×c3ε)(220×c2ε)

216×cε = 228 × c4ε.
In Step 4, the join attributes are k

′′

12, k
′′

13, k
′′

14 and k
′′

15.
Their values in the two input relations are independent
of each other and, collectively, take 216 possible val-
ues. Hence the join outputs in Step 4 have cardinality
(228×c4ε)

2

216 = 240×c8ε. Finally, the cardinality of the output

in Step 5 is (240×c8ε)
2

216 = 264×c16ε. To estimate the number
of encryptions required to deduce the low-order nibbles of
the AES key we set the cardinality of the final output to 1
and solve for ε to obtain ε = −4

log2 c
where c = |ρ0−1,∗,∗|

16 .
Figure 4 compares the number of encryptions required

to deduce the subkeys in Algorithms 2 and 3. The number
of encryptions for Algorithm 2 is obtained by solving for ε
in the equation 1 = 216 × cε resulting in ε = −16

log2 c
. Algo-

Figure 4: # of encryptions/decryptions required to retrieve
the AES key with different algorithms as a function of Run
Size.

Figure 5: Cardinality of output relations after each step for
varying number of encryptions

rithm 2 thus requires four times the number of encryptions
compared to Algorithm 3. This is because the latter uses the
information in all 16 of the second round access equations
rather than in just the four equations used by Algorithm 2.

Figure 5 shows the effect of number of encryptions on
the cardinalities of output relations of each step of Algorithm
3 with a randomly generated key and 10 random plaintext
blocks. (The cardinalities are the number of potentially
correct key or subkey values that survive as the algorithm



Figure 6: Output relation cardinality variations across 100
samples after each step of Algorithm 3 with 7 encryptions

progresses). The operations denoted 3
′

and 3 just below the
x-axis in Figure 5 are the first and second joins of Step 3 of
Algorithm 3. With five encryptions, the number of possible
keys upon algorithm termination is ∼ 212 because the size of
the join outputs is very large. With 6 and 7 encryptions, the
last two join output cardinalities are considerably reduced
ultimately resulting in successful recovery of the AES key.

We randomly generated 100 128-bit keys and selected
30 random plaintexts per key. With Algorithm 3, 90%, 97%
and 100% of the keys were uniquely retrieved using six,
seven and eight encryptions respectively. The number of
encryptions required by Algorithm 2 was around 25 as
predicted by the model for an effective run size = 10.

Figure 6 shows the inter-sample variation in the output
cardinalities of each step in Algorithm 3 with six encryp-
tions. Each vertical strip (corresponding to a step in the
Algorithm) contains the results with all 100 samples. The
trend is toward lower cardinalities as the algorithm pro-
gresses though there are some conspicuous outliers. There
is also a significant variation within each strip. In part, we
attribute this to the variation in run size (|ρ0−1,∗,∗|) across
encryptions.

5. Scenario II Attack

Scenario II assumes knowledge of blocks of ciphertext
and the corresponding cache lines accessed during decryp-
tion. As in Scenario I, there are two phases in this attack -
the First Round attack (which reveals the high-order nibbles
of each byte of the 10th round (encryption) key) and the
Second Round attack which reveals the rest of the key.

Figure 7: Order of steps in AES encryption/decryption

5.1. First Round Attack

Decryption involves reversing each step performed dur-
ing encryption – right circular shift instead of left circular
shift, use of inverse S-Box function (represented as s−1 )
and B−1 in the column mixing step where

B−1 =


0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E


By interchanging the order of Byte Substitution and Shift
Rows steps and also of the Column Mixing and Round
Key operations (Figure 7), OpenSSL implements decryption
using the same sequence of steps as encryption. Also, the
order of round key usage in decryption is reversed (so
the first key operation in decryption uses the 10th round
key in encryption). Moreover, for correct operation, the
key matrices used in each round should be multiplied by
B−1. Representing the ciphertext and the ith round key (of
encryption) as 4×4 matrices C and Ki respectively, the first
step in decryption is to compute C ⊕K10.

The Key Expansion Algorithm [3] is used to derive
all the round keys from the initial AES key. However, this
procedure is reversible – knowing the 10th round key, we
may derive all the other round keys and the AES key.
Recovery of the high-order nibble of each byte of the 10th

round key is very similar to the First Round attack on
encryption. Here, the sequence of table accesses in the first
round is to line numbers c

′

0⊕ k
′

0, c
′

10⊕ k
′

10, c
′

13⊕ k
′

13, etc.



Thus, knowledge of the table line numbers and the ciphertext
enables us to deduce the high-order nibble of each byte of
K10.

5.2. Algorithm 4 - Description (Second Round
Attack)

The four steps of the first round of decryption transform
the ciphertext as explained in subsection 5.1. From this,
we derive expressions for the table indices accessed in the
second round in terms of C and K10 ((21) – (36)). Note
that in these equations, the key variables refer to the bytes
of the 10th round key used in encryption.

x
(1)
0 =e • s−1(c0 ⊕ k0)⊕ b • s−1(c13 ⊕ k13)
⊕ d • s−1(c10 ⊕ k10)⊕ 9 • s−1(c7 ⊕ k7)
⊕ e • (k0 ⊕s(k9 ⊕ k13)⊕ 36)⊕ b • (k1 ⊕s(k10 ⊕ k14))
⊕ d • (k2 ⊕ s(k11 ⊕ k15))⊕ 9 • (k3 ⊕ s(k8 ⊕ k12))

(21)
x
(1)
1 =9 • s−1(c0 ⊕ k0)⊕ e • s−1(c13 ⊕ k13)
⊕ b • s−1(c10 ⊕ k10)⊕ d • s−1(c7 ⊕ k7)
⊕ 9 • (k0 ⊕s(k9 ⊕ k13)⊕ 36)⊕ e • (k1 ⊕s(k10 ⊕ k14))
⊕ b • (k2 ⊕ s(k11 ⊕ k15)⊕ d • (k3 ⊕ s(k8 ⊕ k12))

(22)
x
(1)
2 =d • s−1(c0 ⊕ k0)⊕ 9 • s−1(c13 ⊕ k13)
⊕ e • s−1(c10 ⊕ k10)⊕ b • s−1(c7 ⊕ k7)
⊕ d • (k0 ⊕s(k9 ⊕ k13)⊕ 36)⊕ 9 • (k1 ⊕s(k10 ⊕ k14))
⊕ e • (k2 ⊕ s(k11 ⊕ k15)⊕ b • (k3 ⊕ s(k8 ⊕ k12))

(23)
x
(1)
3 =b • s−1(c0 ⊕ k0)⊕ d • s−1(c13 ⊕ k13)
⊕ 9 • s−1(c10 ⊕ k10)⊕ e • s−1(c7 ⊕ k7)
⊕ b • (k0 ⊕s(k9 ⊕ k13)⊕ 36)⊕ d • (k1 ⊕s(k10 ⊕ k14))
⊕ 9 • (k2 ⊕ s(k11 ⊕ k15))⊕ e • (k3 ⊕ s(k8 ⊕ k12))

(24)
x
(1)
4 =e • s−1(c4 ⊕ k4)⊕ b • s−1(c1 ⊕ k1)
⊕ d • s−1(c14 ⊕ k14)⊕ 9 • s−1(c11 ⊕ k11)
⊕ e • (k0 ⊕ k4)⊕ b • (k1 ⊕ k5)⊕ d • (k2 ⊕ k6)
⊕ 9 • (k3 ⊕ k7) (25)

x
(1)
5 =9 • s−1(c4 ⊕ k4)⊕ e • s−1(c1 ⊕ k1)
⊕ b • s−1(c14 ⊕ k14)⊕ d • s−1(c11 ⊕ k11)
⊕ 9 • (k0 ⊕ k4)⊕ e • (k1 ⊕ k5)⊕ b • (k2 ⊕ k6)
⊕ d • (k3 ⊕ k7) (26)

x
(1)
6 =d • s−1(c4 ⊕ k4)⊕ 9 • s−1(c1 ⊕ k1)
⊕ e • s−1(c14 ⊕ k14)⊕ b • s−1(c11 ⊕ k11)
⊕ d • (k0 ⊕ k4)⊕ 9 • (k1 ⊕ k5)⊕ e • (k2 ⊕ k6)
⊕ b • (k3 ⊕ k7) (27)

x
(1)
7 =b • s−1(c4 ⊕ k4)⊕ d • s−1(c1 ⊕ k1)
⊕ 9 • s−1(c14 ⊕ k14)⊕ e • s−1(c11 ⊕ k11)
⊕ b • (k0 ⊕ k4)⊕ d • (k1 ⊕ k5)⊕ 9 • (k2 ⊕ k6)
⊕ e • (k3 ⊕ k7) (28)

x
(1)
8 =e • s−1(c8 ⊕ k8)⊕ b • s−1(c5 ⊕ k5)
⊕ d • s−1(c2 ⊕ k2)⊕ 9 • s−1(c15 ⊕ k15)
⊕ e • (k4 ⊕ k8)⊕ b • (k5 ⊕ k9)⊕ d • (k6 ⊕ k10)
⊕ 9 • (k7 ⊕ k11) (29)

x
(1)
9 =9 • s−1(c8 ⊕ k8)⊕ e • s−1(c5 ⊕ k5)
⊕ b • s−1(c2 ⊕ k2)⊕ d • s−1(c15 ⊕ k15)
⊕ 9 • (k4 ⊕ k8)⊕ e • (k5 ⊕ k9)⊕ b • (k6 ⊕ k10)
⊕ d • (k7 ⊕ k11) (30)

x
(1)
10 = d • s−1(c8 ⊕ k8)⊕ 9 • s−1(c5 ⊕ k5)
⊕ e • s−1(c2 ⊕ k2)⊕ b • s−1(c15 ⊕ k15)
⊕ d • (k4 ⊕ k8)⊕ 9 • (k5 ⊕ k9)⊕ e • (k6 ⊕ k10)
⊕ b • (k7 ⊕ k11) (31)

x
(1)
11 = b • s−1(c8 ⊕ k8)⊕ d • s−1(c5 ⊕ k5)
⊕ 9 • s−1(c2 ⊕ k2)⊕ e • s−1(c15 ⊕ k15)
⊕ b • (k4 ⊕ k8)⊕ d • (k5 ⊕ k9)⊕ 9 • (k6 ⊕ k10)
⊕ e • (k7 ⊕ k11) (32)

x
(1)
12 = e • s−1(c12 ⊕ k12)⊕ b • s−1(c9 ⊕ k9)
⊕ d • s−1(c6 ⊕ k6)⊕ 9 • s−1(c3 ⊕ k3)
⊕ e • (k8 ⊕ k12)⊕ b • (k9 ⊕ k13)⊕ d • (k10 ⊕ k14)
⊕ 9 • (k11 ⊕ k15) (33)

x
(1)
13 =9 • s−1(c12 ⊕ k12)⊕ e • s−1(c9 ⊕ k9)
⊕ b • s−1(c6 ⊕ k6)⊕ d • s−1(c3 ⊕ k3)
⊕ 9 • (k8 ⊕ k12)⊕ e • (k9 ⊕ k13)⊕ b • (k10 ⊕ k14)
⊕ d • (k11 ⊕ k15) (34)

x
(1)
14 = d • s−1(c12 ⊕ k12)⊕ 9 • s−1(c9 ⊕ k9)
⊕ e • s−1(c6 ⊕ k6)⊕ b • s−1(c3 ⊕ k3)
⊕ d • (k8 ⊕ k12)⊕ 9 • (k9 ⊕ k13)⊕ e • (k10 ⊕ k14)
⊕ b • (k11 ⊕ k15) (35)

x
(1)
15 = b • s−1(c12 ⊕ k12)⊕ d • s−1(c9 ⊕ k9)
⊕ 9 • s−1(c6 ⊕ k6)⊕ e • s−1(c3 ⊕ k3)
⊕ b • (k8 ⊕ k12)⊕ d • (k9 ⊕ k13)⊕ 9 • (k10 ⊕ k14)
⊕ e • (k11 ⊕ k15) (36)

As in the case of encryption (Section 4), we identify all
unknowns in (21) – (36) that affect the high-order nibble
of the LHS. These are the low-order nibbles of different
key bytes and range in number from 13 nibbles (in (21)
– (24)) to 10 nibbles (in (25) – (36)). Processing relations
with such a large number of attribute values is not practical.
Instead, we replace all ciphertext-independent terms on the
RHS by a single byte variable - one variable per equation.
For example, (25) now becomes

x
(1)
4 = e • s−1(c4 ⊕ k4)⊕ b • s−1(c1 ⊕ k1)

⊕ d • s−1(c14 ⊕ k14)⊕ 9 • s−1(c11 ⊕ k11) ⊕ y4
(37)



Effectively, the numbers of unknowns (low-order nibbles of
the key) are reduced to five resulting in smaller relation
cardinalities.

Algorithm 4 takes as input δ blocks of ciphertext and
the sets of table line numbers and computes the low-order
nibbles of the 10th round key.

The tables, rJF0, rJF4, rJF8 and rJF12 contain the
final values of the subkeys k

′′

0 k
′′

13 k
′′

10 k
′′

7 , k
′′

4 k
′′

1 k
′′

14 k
′′

11,
k
′′

8 k
′′

5 k
′′

2 k
′′

15 and k
′′

12 k
′′

9 k
′′

6 k
′′

3 respectively. We next es-
timate the number of decryptions, δ, required to obtain the
complete key, K10.

5.3. Algorithm 4 - Results and Analysis

Figure 8: Output relation cardinality variations after each
select and join operation of Algorithm 4

The 16 relations created in Step 0 each have cardinality
220. After the δ select operations in Step 1, the cardinality
of each relation is roughly 220 × cδ . The cardinalities of
the eight relations created at the end of Step 2 and the four
relations created at the end of Step 3 are approximately
(220×cδ)

2

216 = 224 × c2δ and (224×c2δ)
2

216 = 232 × c4δ

respectively. To obtain an estimate of the number of
decryptions necessary to retrieve the key, we solve for δ by
setting the cardinality of the output of the final join to 1.
This yields δ = −8

log2 c
. As shown in Figure 4, the number of

decryptions is between the number of encryptions required
in Algorithm 2 and Algorithm 3.

As in the case with encryption, we generated 100
random keys and 30 ciphertext blocks per key. For each
key, we decrypted 12 random blocks of ciphertext. Figure 8
is a plot of the cardinality of the output relation after each
of the 12 select operations for each of the 100 samples. As
expected, the cardinalities of successive outputs decrease
geometrically. There is also a substantial drop in the size

Algorithm 4 Second Round Attack- Decryption

Input:
δ blocks of ciphertext, ρ0,t,d , ρ1,t,d ,
ρ2,t,d , 0 ≤ t ≤ 3 , 1 ≤ d ≤ δ

Output:
Low-order nibble of each byte of the first round key in
decryption (tenth round key in encryption)

Step 0: Create 16 relations

ri

(
k
′′

0 , k
′′

13, k
′′

10, k
′′

7 , y
′

i

)
, 0 ≤ i ≤ 3

ri

(
k
′′

4 , k
′′

1 , k
′′

14, k
′′

11, y
′

i

)
, 4 ≤ i ≤ 7

ri

(
k
′′

8 , k
′′

5 , k
′′

2 , k
′′

15, y
′

i

)
, 8 ≤ i ≤ 11

ri

(
k
′′

12, k
′′

9 , k
′′

6 , k
′′

3 , y
′

i

)
, 12 ≤ i ≤ 15

Initialize each to

{0, 1}4 × {0, 1}4 × {0, 1}4 × {0, 1}4 × {0, 1}4

Step 1:

r
′

i = σm.δ (. . .σm.2 (σm.1 (ri)) . . .)

m = i+ 21

i = 0, 1, . . . , 15

Step 2:

rJi = r
′

i 1 r
′

i+1, i = 0, 2, 4. . .14

Step 3:

rJFi = rJi 1 rJ(i+2), i = 0, 4, 8, 12

of the relations after the two joins in steps 2 and 3. Also
shown are the results of the analytical model (the horizontal
segments) superimposed against the experimental results.

TABLE 3: Distribution of # of candidate keys returned by
Algorithm 4 as a function of # of decryptions

# of # of Candidate Key Values
Decryptions 1 1-10 10-102 102-103 103-104 104-105 105-106

8 0 0 0 0 0 0 100
9 0 0 0 0 0 5 95
10 0 0 8 17 15 14 46
11 4 30 26 15 17 6 2
12 36 49 12 2 1 0 0
·· ·· ·· ·· ·· ·· ·· ··
17 99 1 0 0 0 0 0
18 100 0 0 0 0 0 0

Table 3 depicts the degree of success of Algorithm 4 in
narrowing down the set of potential keys as a function of the
number of decryptions. With 18 or more ciphertext blocks
provided for decryption, the AES key was uniquely identi-
fied in every sample. With 17 ciphertext blocks, Algorithm



4 discovered the unique key in 99 samples and reported 4
possible keys in the remaining case. With 12 decryptions,
each of 85 out of 100 samples returned up to 10 possible
candidate keys and another 12 samples each returned up
to 100 candidate keys. Attempts at learning the key with
fewer than 10 decryptions returned a very large number of
candidate keys and so could be considered unsuccessful.

5.4. Algorithm 5 - Theoretical Underpinnings

We next present an algorithm that considerably improves
upon Algorithm 4. For ease of explanation, we refer to (21)-
(24) as Set-1 equations, (25)-(28) as Set-2, (29)-(32) as Set-
3 and (33)-(36) as Set-4 equations. We handle the Set-1
equations (21)-(24) as in Algorithm 4. The remaining 12
equations are treated differently as explained below. Because
field multiplication is distributive over field addition, it is
possible to split each of the last four terms on the RHS of
those equations. Upon rearranging terms, (26), for example,
can be re-written as

x
(1)
4 ⊕ 9 • s−1(c4 ⊕ k4)⊕ e • s−1(c1 ⊕ k1)
⊕ b • s−1(c14 ⊕ k14)⊕ d • s−1(c11 ⊕ k11)
⊕ 9 • ((k0 ⊕ k4)

′
0000)⊕ e • ((k1 ⊕ k5)

′
0000)

⊕ b • ((k2 ⊕ k6)
′
0000)⊕ d • ((k3 ⊕ k7)

′
0000)

=
9 • (0000 (k0 ⊕ k4)

′′
)⊕ e • (0000 (k1 ⊕ k5)

′′
)

⊕ b • (0000 (k2 ⊕ k6)
′′
)⊕ d • (0000 (k3 ⊕ k7)

′′
)
(38)

Let the RHS of (38) be equal to the byte denoted
(x0 x1 x2 x3 x4 x5 x6 x7). Also, let a0a1a2, a3a4a5, a6a7a8
and a9a10a11 denote the most significant three bits of the
nibbles (k0 ⊕ k4)

′′
, (k1 ⊕ k5)

′′
, (k2 ⊕ k6)

′′
and (k3 ⊕ k7)

′′

respectively.

Figure 9: Field Multiplications involved in RHS of (38)

Multiplication in a binary field involves shifting
and XORing of the multiplicand. Figure 9 shows these
operations on RHS terms of (38). The high-order nibble

(x0, x1, x2, x3) of the sum of the terms on the RHS is

x0 = 0

x1 = a0 ⊕ a3 ⊕ a6 ⊕ a9
x2 = a1 ⊕ a3 ⊕ a4 ⊕ a7 ⊕ a9 ⊕ a10
x3 = a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a8 ⊕ a10 ⊕ a11

From Figure 9, it is evident that the bits denoted z in the
RHS of equation (38) do not affect the high-order nibble of
the resultant byte. It follows that, of the 16 unknown bits
on the RHS of (38), only 12 bits determine the high-order
nibble on the RHS.

The operations involved in calculating x1, x2 and x3 can
be represented using the matrix equationx1x2

x3

 =M9ebd •A (39)

where

M9ebd =

 1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 1 1 0 0 1 0 1 1 0

0 0 1 1 1 1 1 0 1 0 1 1


and

A = (a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11)
T

The subscript ‘9ebd’ reflects the order of co-efficients in
RHS of (38).
Let F12

2 represent the 12-dimensional binary vector space.
We define 8 equivalence classes as follows

C9ebd

(
(x1, x2, x3)

T
)
=

A ∈ F12
2 :M9ebd •A =

x1x2
x3


(40)

M9ebd is in row canonical form with pivots in the
first 3 columns. So a0, a1, a2 are pivot variables and
the remaining nine are free variables in A. So, each
equivalence class has 29 = 512 sub-keys with class
representative (x1x2x3 000 000 000). It follows that

Theorem 1: F12
2 can be partitioned into 8 equivalence

classes based on (40) each containing 512 sub-keys. The
class representatives are ({0, 1}3 000 000 000).

The above theorem implies that instead of validating all
the 212 sub-keys, it is sufficient to validate only the class
representatives.

The coefficients of the ciphertext-independent terms on
the RHS of (25), (27) and (28) are shifted versions of those
in (26). Analogous to M9ebd, we define Mebd9, Mbd9e and
Md9eb. These matrices are obtained in a manner similar
to M9ebd (Figure 9) and are column-shifted versions of
M9ebd. Moreover, they are linearly related as follows



Mebd9 = M1 •M9ebd (41)

Md9eb =M2 •M9ebd (42)

Mbd9e =M3 •M9ebd (43)

where

M1 =

1 0 0
1 1 0
1 1 1

 ,M2 =

1 0 0
1 1 0
0 1 1

 ,M3 =

1 0 0
0 1 0
1 0 1


Let A1 ∈ C9ebd

(
(x1, x2, x3)

T
)

. From (40)

M9ebd •A1 = (x1, x2, x3)
T

Pre-multiplying by M1 on both sides

Mebd9 •A1 =M1 • (x1, x2, x3)T

So, A1 ∈ Cebd9

(
M1 • (x1, x2, x3)T

)
. This leads to the

following theorem.

Theorem 2: If A1 ∈ C9ebd

(
(x1, x2, x3)

T
)

, then

A1 ∈ Cebd9
(
M1 • (x1, x2, x3)T

)
,

A1 ∈ Cbd9e
(
M2 • (x1, x2, x3)T

)
and

A1 ∈ Cd9eb
(
M3 • (x1, x2, x3)T

)
The following is of crucial importance in the design of
Algorithm 5.

Corollary 2.1: If A1, A2 belong to the same equivalence
class w.r.t. M9ebd, then they also belong to a single
equivalence class w.r.t. Mebd9 or Mbd9e or Md9eb.

Thus, M9ebd, Mebd9, Mbd9e and Md9eb, each induce an
identical partitioning over F12

2 .

5.5. Algorithm 5 - Description

The Set-1 equations have S-box operations in ciphertext
independent terms on the RHS. This makes it impossible to
separate those terms into two parts as in (38). Instead, for
each equation in Set-1, a different 4-bit variable is used to
represent the sum of the high-order nibbles of ciphertext-
independent terms. These are denoted y0− y3 in Algorithm
5.

From Theorem 1, it is sufficient to validate only a
representative of each class. Moreover, from Corollary 2.1,
these classes and their representatives are identical across the
four equations of each set (Set-2, Set-3 and Set-4). Since,
by Theorem 1, class representatives are distinguished only
by the first 3 bits (while the remaining nine bits are 0), we
include a 3-bit attribute, y4 (respectively y8 and y12) in r4
(respectively r8 and r12). In Step 2, sm·x (ri) and r

′

i
contain tuples that satisfy all equations of a set for the xth

Algorithm 5 Second Round Attack- Decryption

Input:
δ blocks of ciphertext, ρ0,t,d , ρ1,t,d ,
ρ2,t,d , 0 ≤ t ≤ 3 , 1 ≤ d ≤ δ

Output:
Low-order nibble of each byte of the first round key in
decryption (tenth round key in encryption)
Step 0: Create 7 relations

ri

(
k
′′

0 , k
′′

13, k
′′

10, k
′′

7 , yi

)
, i = 0, 1, 2, 3

Initialize each to

{0, 1}4 × {0, 1}4 × {0, 1}4 × {0, 1}4 × {0, 1}4

r4

(
k
′′

4 , k
′′

1 , k
′′

14, k
′′

11, y4

)
r8

(
k
′′

8 , k
′′

5 , k
′′

2 , k
′′

15, y8

)
r12

(
k
′′

12, k
′′

9 , k
′′

6 , k
′′

3 , y12

)
Initialize each to

{0, 1}4 × {0, 1}4 × {0, 1}4 × {0, 1}4 × {0, 1}3

Step 1:

r
′

i = σk.δ (. . .σk.2 (σk.1 (ri)))

k = i+ 21

i = 0, 1, 2, 3

Step 2:

rJFi = sm·δ (. . . (sm·2 (sm·1 (ri))))

where

sm·x (ri) = σ(m+3)·x
(
σ(m+2)·x

(
σ(m+1)·x

(
σ(m)·x (ri)

)))
m = i+ 21

i = 4, 8, 12

Step 3:

rJi = r
′

i 1 r
′

i+1, i = 0, 2

rJF0 = rJ0 1 rJ2

Step 4:

rc(k
′′

0 , k
′′

1 , . . . , k
′′

15, y0 y1, y2, y3, y4, y8, y12)

= rJF0 × rJF4 × rJF8 × rJF12

Step 5:

r
′

F = σs3 (σs2 (σs1 (σs0 (rc))))

rF = σs12

(
σs8

(
σs4

(
r
′

F

)))
σsi is explained in Section 5.5



TABLE 4: Database schema of initial, intermediate, and final
relations

Relation Attributes (Key nibbles)

r0 k
′′
0 , k

′′
7 , k

′′
10, k

′′
13, y0

r1 k
′′
0 , k

′′
7 , k

′′
10, k

′′
13, y1

r2 k
′′
0 , k

′′
7 , k

′′
10, k

′′
13, y2

r3 k
′′
0 , k

′′
7 , k

′′
10, k

′′
13, y3

rJ0 k
′′
0 , k

′′
7 , k

′′
10, k

′′
13, y0, y1

rJ2 k
′′
0 , k

′′
7 , k

′′
10, k

′′
13, y2, y3

rJF0 k
′′
0 , k

′′
7 , k

′′
10, k

′′
13, y0, y1, y2, y3

r4, rJF4 k
′′
1 , k

′′
4 , k

′′
11, k

′′
14, y4

r8, rJF8 k
′′
2 , k

′′
5 , k

′′
8 , k

′′
15, y8

r12, rJF12 k
′′
3 , k

′′
6 , k

′′
9 , k

′′
12, y12

rc, rF
Low-order nibble of each of the 16 bytes of

the AES key and y0, y1, y2, y3, y4, y8, y12

decryption and for all decryptions respectively. At the end
of Step 3, rJF0 contains values of k

′′

0 , k
′′

7 , k
′′

10 and k
′′

13 that
satisfy all Set-1 equations. rc, the output of Step 4 contains
tuples with potentially correct values of all 16 low-order
nibbles of the AES key.

The first statement in Step 5 contains predicates denoted
s0, s1, s2 and s3. These check for equality of two nibbles.
For example, to check for s0 in a tuple, the sum of the
ciphertext-independent terms on the RHS of (21) is com-
puted. This employs as input appropriate attribute values in
the tuple (low-order nibbles of the key) together with high-
order nibbles obtained from the First Round Attack. The
high-order nibble of the result is compared with the value
of y0 in the tuple. Likewise, s1, s2 and s3 are computed by
considering (22), (23) and (24) and the values of y1, y2 and
y3. A given tuple is discarded if it fails to satisfy even a
single predicate.

A tuple that satisfies the above predicates is then sub-
jected to three more tests via predicates denoted s4, s8 and
s12 (the second statement of Step 5). Each predicate tests for
the equivalence of two vectors A1 and A2 ∈ F12

2 as defined
in (40). For example, s4 populates A1 from the three most
significant bits of (k0 ⊕ k4)

′′
, (k1 ⊕ k5)

′′
, (k2 ⊕ k6)

′′
and

(k3 ⊕ k7)
′′

in that order (see (38)). The latter are obtained
from the attribute values of the tuple under consideration.
The first three bits of vector A2 are copied from y4 while
the remaining bits of A2 are made zero. From Corollary 2.1,
the equivalence of A1 and A2 with respect to M9ebd also
guarantees their equivalence with respect to Mebd9,Md9eb

and Mbd9e. So, a single predicate test for s4 suffices (instead
of 4 tests involving each equation in Set-2). Testing of
predicates s8 and s12 is similar but they involve an equation
from Set-3 and Set-4 respectively.

5.6. Algorithm 5 - Analysis and Results

In Step 0, a relation is created for each of the four
equations in Set-1 with cardinality 220 each. In Step 1,

the δ select operations reduce the size of each of r0, r1,
r2 and r3 from 220 to 220 × cδ . In Step 2, the size of
each of the input relations, r4, r8 and r12 is 219. After
a total of 4δ select operations (4 per decryption), the size
of each output relation is 219 × c4δ . In Step 3, the cardi-
nalities of rJ0 and rJ2 are (220×cδ)2

(216) = 224 × c2δ while

the cardinality of rJF0 is (224×c2δ)2
(216) = 232 × c4δ . The

Cartesian product in Step 4 results in an output, rc of size
(232 × c4δ) · (219 × c4δ)3 = 289 × c16δ .

Consider, for example, an average per table run size =
8, (c = 0.5). After 4 decryptions, at the end of Step 3, the
cardinality of rJF0 will be 216 and cardinality of rJF4, rJF8

and rJF12 will be 23 each. The cardinality of rc in Step 4
will be roughly 216 ·23∗3 = 225 - a manageable size. Without
using the theory developed in Section 5.4, the cardinality of
the cartesian product would be

(
216
)4

.
Because y0, y1, y2 and y3 are each 4 bits and y4, y8 and

y12 are 3 bits, the probability of a tuple surviving in Step 5 is
1

(24)4×(23)3 . So, the cardinality of rF is 289×c16δ
(24)4×(23)3 = 264×

c16δ . To obtain an estimate of the number of decryptions
necessary to retrieve the key, we solve for δ by setting the
cardinality of rF to 1. This yield δ = −4

log2 c

Figure 10: Output relation cardinality variations after each
select and join operation of Algorithm 5

As in the case with the previous algorithm, we generated
100 random keys and 30 ciphertext blocks per key. For
each sample, we decrypted 6 random blocks of ciphertext.
Figure 10 is a plot of the relation cardinalities of the output
relations after performing the select operations involving
input from the six decryptions (samples). Cardinality of
relations resulting from selection operations using Set-1
equations as predicates has a more gentle fall compared to
those using Sets 2, 3 and 4. This is because r4, r8 and r12
are each subject to four select operations per decryption
(Step 2) while r0, r1, r2 and r3 are subject to a single select



operation per decryption (Step 1). The output cardinalities of
Steps 4 and 5 are shown within operation 8 and 9 in Figure
10. There is a dramatic increase in the output cardinality
of Step 4, since this step involves the Cartesian product
operation. As expected, the last step shows a drastic fall in
cardinality, since each tuple of the input relation is subject
to seven tests for equality/equivalence. With Algorithm 5,
90% of the keys were uniquely retrieved (remaining have
10 possible keys) with 6 decryptions. With 7 decryptions,
the AES keys for all samples were uniquely deduced. This
compares quite favourably with Algorithm 4 which requires
about 17 decryptions.

6. Discussion

In this section, we discuss further optimizations together
with possible extensions. We also highlight the limitations
of our approach and conclude with countermeasures against
our attack.

6.1. Further Optimizations and Performance
Bounds

In practice, it is possible to optimize the First Round
Attack. In the current implementation, we consider the
accesses in ρ0−1,∗,∗ (the union of the elements in the first
two runs) whenever the total number of accesses in the first
run was less than 16 (since each round of AES makes 16
table accesses). Using accesses in the first run separately
could give more precise and early information on some of
the high-order nibbles and reduce the “noise” in some of
the histograms.

The number of encryptions/decryptions required for Al-
gorithms 2, 3, 4 and 5 are respectively −16

log2 c
, −4

log2 c
, −8

log2 c

and −4
log2 c

. Is there a lower bound on the number of encryp-
tions/decryptions required to recover the key? To answer
this, imagine a hypothetical relation with the low-order
nibbles of the 16 bytes of the AES key as attributes. Upon
initialization, the cardinality of this relation is 264. Now if
the 16 equations were used as selection predicates in the
decryption of δ blocks of ciphertext, then the size of the
output relation would be 264 × c16δ . Equating to 1, we
get δ = −4

log2 c
. Algorithm 3 (Scenario I) and Algorithm

5 (Scenario II) achieve this lower bound on number of
encryptions and decryptions respectively.

6.2. Limitations

Our algorithms assume accurate reporting of cache ac-
cesses by the spies. False positives (i.e. spurious cache
accesses) will have adverse fallout to the extent that the
effective run size may be increased thus requiring additional
encryptions/decryptions. On the other hand, even a single
false negative in the accesses reported by the spy threads
and used by our algorithm will result in elimination of the
correct key.

As with many access-driven attacks, we do assume that
the victim and multi-threaded spy process are on the same
processor core as a determined attacker may be able to
co-locate itself with the victim. For example, in a multi-
user environment, a user could simply request inordinate
CPU resources and obtain access to multiple cores including
the one victim is running on. We also assume that the
core running the victim and spy do not simultaneously host
another active process running AES. Otherwise, the accesses
made by the latter may be mistaken for accesses by the
victim possibly leading to flawed conclusions.

In Scenario I, plaintext blocks supplied to our key
retrieval algorithms should not be related. Two or more
plaintexts differing in only a few bits or bytes provide little
new information to our algorithms. So, in this case, it will be
necessary to use a larger number of encryptions to deduce
the AES key.

6.3. Enhancements and Extensions

In this work, we have targeted OpenSSL version 0.9.8a
which supports five AES tables. Some versions of OpenSSL
use only four tables (for example, versions 1.0.0p and
1.0.2a). Four tables are sufficient for encryption (but not
decryption). In this paper, access to the fifth table provides
synchronization. With only four tables, it is necessary to
design heuristics that identify the start of a new encryption.

All the processors used by us support hardware pre-
fetching (i.e. on a cache miss, the next line is pre-fetched
in anticipation of its future access). Pre-fetching is the
default option and was disabled in our experiments. With
pre-fetching enabled, the spies will be unable to distinguish
between cache lines fetched by the victim and those pre-
fetched by the processor. Worse still, a spy thread will
inadvertently cause the processor to pre-fetch the line next
to the one it just accessed. Consequently, the spy thread may
end up finding that all cache lines were “accessed” by the
victim.

It is necessary to design and implement algorithms that
work in an environment where hardware pre-fetching is
enabled. Likewise, it is necessary to modify our algorithms
so that they are error-tolerant. Initial experiments with error
tolerant algorithms and pre-fetching lead us to believe that
our attack can be adapted to handle errors and hardware
pre-fetching albeit at the cost of a larger number of encryp-
tions/decryptions.

Most of the Intel caches have block size = 64 bytes.
However, the IBM Power PC processor has block size =
128 bytes. Our attack can be adapted to work on the latter.
The first round attack will obtain the first three bits of
each byte of the AES key. To obtain the remaining five
bits (second round), we will need much larger tables and
so our key-retrieval algorithms will take more time. More
importantly, the acceptable run size will be half that in the
case with block size = 64 bytes (the compression ratio will
be |ρ∗,∗,∗|8 instead of |ρ∗,∗,∗|16 ). This will necessitate more
CPU interruptions.

Another possible direction is to operationalize our attack



so that the espionage software provides to our algorithms,
both, the sets of cache line numbers accessed by the victim
as well as the blocks of ciphertext for further processing.
Whether a “trojanized” version of these pieces can be cre-
ated is material for further investigation.

6.4. Countermeasures

The multiple tables used in the software implementation
of AES have much redundancy. For example, the ith entries
in tables T0–T3, 0 ≤ i ≤ 255 are the same save for a
permutation of their bytes. Also, the entries in T4 are all
contained in T0. The single table is the default implementa-
tion in some versions of OpenSSL. This could thwart side
channel attacks for run sizes experimented with in this paper.
However, for very small run sizes (4-5 accesses per run),
our attack may still be successful. [6] uses a single 256-
byte table which occupies only four cache lines. The code
that implements AES encryption/decryption may not be as
efficient as in the case with five tables. On the other hand,
the attack described here may either be unsuccessful or may
require many more encryptions. Other mitigation strategies
include the pre-loading of AES tables before each round
and the addition of spurious accesses. These could lead
to errors in the accesses reported by the spies but could
be handled by error-tolerant key retrieval algorithms. Many
more countermeasures have been proposed in [4], [11] and
[12].

The most effective countermeasure is to support AES
in hardware. Most Intel x86 processors beginning with
the Westmere family include the AES-NI [13] instructions.
Since the hardware implementation does not use processor
cache to store the lookup tables, the attack described here
will not work. However, some processors like Core 2 Duo
with an installed base that is not insignificant do not have
hardware support for AES as also the Pentium and Celeron
models within the Westmere family.

7. Related Work

It was first mentioned by Hu [14] that cache mem-
ory can be considered as a potential vulnerability in the
context of covert channels to extract sensitive information.
Later Kocher [15] demonstrated the data-dependent tim-
ing response of cryptographic algorithms against various
public-key systems. Based on his work, [16] mentioned the
prospects of using cache memory to perform attacks based
on cache hits in S-box ciphers like Blowfish. One formal
study of such attacks using cache misses was conducted in
[17].

Access-driven cache attacks were reported in [18] on
RSA for multithreaded processors. Osvik et al. proposed
an approach [19] and analysis for the access-driven cache
attacks on AES for the first two rounds. They introduced the
Prime+Probe [6] technique for cache attacks. In the Prime
phase, the attacker fills the cache with its own data before
the encryption. In the Probe phase, it accesses its data and
determines whether each access results in a hit or miss.

In the synchronous version of their attack, 300 encryptions
were required to infer a 128-bit AES key on Athlon64
platform whereas in the asynchronous attack, which required
statistical data on the frequency of accessed cache lines, they
retrieved 45.7 bits of the 128-bit AES key after one minute.

The ability to detect whether a cache line has been
evicted or not was further exploited by Neve et al. [20]. They
designed an improved access-driven cache attack on the last
round of AES on a single threaded processor. Aciiçmez et
al. [21] presented a realistic access-driven cache attack by
targeting I-cache attack based on vector quantization and
hidden Markov models on OpenSSL’s DSA implementation.

Gullasch et al. [7] proposed an efficient access-driven
cache attack when attacker and victim use a shared crypto
library. The spy process first flushes the AES lookups tables
from all levels of the cache and interrupts the victim process
after allowing it a single lookup table access. After every
interrupt, it calculates the reload time to find which memory
line is accessed by the victim. This information is further
processed using a neural network to remove noise. Their
experimental measurement method is similar to ours but
the key retrieval is very different. Gullasch et al. attack is
a practical and real time attack on AES-128. However, it
requires frequent interruptions to the victim and requires
about 100 encryptions. Its advantages are that it does not
require synchronization nor does it requires the knowledge
of the plaintext or ciphertexts.

Extending the work of Gullasch et al., [22] conducted
a cross-core attack on the Last Level Cache (L3 on proces-
sors with three levels of cache) executing the spy and the
victim concurrently on two different cores. They introduced
Flush+Reload technique which is effective across multiple
processor cores and virtual machine boundaries.

Trace-driven cache attacks were first theoretically intro-
duced in [17]. They proposed a chosen plaintext attack on
DES which required 210 blocks of plaintext to collect cache
profiles and 232 computational steps to recover the key.
Gallais et al. [23] proposed an improved adaptive known
plaintext attack on AES implemented for embedded devices.
Their attacks recover a 128-bit AES key with exhaustive
search of at most 230 key hypotheses.

Aciiçmez et al. [5] provided an analytical treatment of
trace-driven cache attacks and analyzed its efficiency against
symmetric ciphers. Trace-driven cache attacks were further
investigated by Zhao et al. [24] on AES and CLEFIA by
considering cache misses and S-box misalignment.

Tsunoo et al. [25] pioneered the work on time-driven
cache attacks by observing that the cache access pattern
caused timing variations. Their attack comprises of two
processes: obtaining the key differences and collecting cache
timing data. They demonstrated that DES could be broken
using 223 known plaintexts and 224 calculations at suc-
cess rate > 90% on 600 MHz Pentium III processor. A
similar approach was used by Bonneau and Mironov [12]
where they emphasized individual cache collisions during
encryption instead of overall hit ratio. Although this attack
was a considerable improvement over previous work, it still
requires 213 timing samples.



Bernstein provided a practical cache attack [4] that can
be categorized as a remote time-driven cache attack. He pre-
sented a known plaintext attack on a remote server running
AES encryption. [26] is a recent work applying Bernstein’s
attack on ARM Cortex-A platform used on Android-based
systems.

Neve [27] revisited Bernstein’s attack technique and ex-
plains why his attack works. Concurrently but independently
to the work of Bernstein [4], Osvik et al. [6] also described
a similar time-driven attack with Evict+Time technique in
which an attacker evicts cache lines from all levels of the
cache and then identifies those which are accessed during
the encryption.

A similar attack was proposed by Aciiçmez et al. [28]
that was extended to use second round information of the
AES encryption. Following the work of Tsunoo et al. [25],
Canteaut et al. [29] proposed another variant of Bernstein’s
attack in which they described the influence of the cache
initial state and cache parameters. Tiri et al. proposed an
analytical model for forecasting the strength of symmetric
ciphers by last round correlation attack [30] on AES. Further
time-driven cache attacks were investigated by [31], [32].

Zhang et al. [33] targeting virtualized environments
extract the private ElGamal key of a GnuPG description
running in the scheduler of the Xen hypervisor [34]. Weiß
et al. [35] used Bernstein’s timing attack on AES running in-
side an ARM Cortex-A8 single core system in a virtualized
environment to extract the AES encryption key. Irazoqui et
al. [36] performed Bernstein’s cache based timing attack
in a virtualized environment to recover the AES secret key
from co-resident VM with 229 encryptions. Later Irazoqui
et al. [37] used a Flush + Reload technique and recovered
the AES secret key with 219 encryptions.

8. Conclusions

We designed and implemented algorithms to recover
the 128-bit AES key in two scenarios – when either the
plaintext is known or when the ciphertext is known. It was
assumed that, both, spy and victim (process computing AES
encryptions/decryptions) are co-located on the same proces-
sor core and that their executions are interleaved. In both
cases, a multi-threaded spy process collects a set of cache
line numbers of AES table entries accessed by the victim
and presents it to our algorithms for further processing. Our
algorithms are concise and elegantly expressed using rela-
tional algebraic operations. An unoptimized implementation
of our algorithm runs in under a minute.

With sets of cache line numbers provided by the spy
threads, our experimental setup was able to recover the full
128-bit AES key using only 5-7 encryptions/decryptions in
both Scenario I and Scenario II. Finally, we also presented
analytical models that accurately predicted the number of
encryptions/decryptions required.

We believe that this is probably the first successful
attempt at retrieving the AES key with so few encryp-
tions/decryptions in a practical setting.

References

[1] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook
of applied cryptography. CRC press, 1996.

[2] Y. Zhou and D. Feng, “Side-Channel Attacks: Ten Years After
Its Publication and the Impacts on Cryptographic Module Security
Testing.” 2005. [Online]. Available: http://eprint.iacr.org/2005/388

[3] J. Daemen and V. Rijmen, The Design of Rijndael: AES – The
Advanced Encryption Standard. Springer Science & Business Media,
2002.

[4] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.
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