
A practical, perfectly secure password scheme in

the bounded retrieval model

Moses Liskov∗

August 30, 2017

Abstract

In this paper, we present a practical password scheme due to Spilman,
which is perfectly secure in the bounded retrieval model, assuming ideal
hash functions. The construction is based on a hash-like function com-
puted by a third party “facilitator”. The facilitator is trusted, and security
derives from the facilitator’s long random secret, although the adversary
is assumed to be able to retrieve a large fraction of that secret.

Unlike the traditional “salted and hashed password” approach, this
scheme is secure against an adversary capable of performing brute force
dictionary attacks offline. The key security property for the facilitator
function is a form of uncloneability, that prevents the adversary from
calculating function values offline.

1 Introduction

Advances in computer technology over the past two decades have greatly in-
creased the capacity for storage of large amounts of data. These advances have
the potential to improve cryptographic techniques by leveraging the distinction
between the storage of large amounts of data and the communication of large
amounts of data.

The “bounded retrieval model” (BRM) of DiCrescenzo, Lipton, and Walfish
[2] limits the adversary to exposing a limited amount of private data, plus an
unlimited amount of computation. The BRM was influential towards the no-
tion of leakage-resilient cryptography, which led to a proliferation of interesting
results.

Our contributions. In this paper, we present a practical password scheme
due to Spilman [4], which is perfectly secure in the bounded retrieval model,
assuming ideal hash functions. The construction is based on a hash-like function

∗mliskov@mitre.org. Copyright (c) 2017 The MITRE Corporation. ALL RIGHTS RE-
SERVED. Approved for Public Release; Distribution Unlimited. Case Number 17-2748.

1

computed by a third party “facilitator”. The facilitator is trusted, and secu-
rity derives from the facilitator’s long random secret, although the adversary is
assumed to be able to retrieve a large fraction of that secret.

Password security. Servers typically do not store the passwords of users in
the clear, because this might compromise the security of the accounts. Instead,
servers frequently store passwords hashed and salted. That is, for each user
account, a pair (si, yi) is stored, where si is an arbitrary random value, and
yi is the result of hashing the user’s password xi with si. Passwords can be
checked by recomputing the hash. An attacker that obtains (si, yi) without
knowing the password can recover the password through a brute force dictionary
attack. Although this may require a large amount of computation, low-entropy
passwords can be recovered after some effort if the attack can obtain the (S,C)
pair and recover the password without attempting interactive logins, a so-called
off-line attack.

The central idea of Spilman’s construction [4] is to provide a service that
calculates a function whose behavior cannot be predicted even if an adversary
exfiltrates a large portion of a very large secret key. This function, rather than
an offline-computable function such as a hash function, is used to calculate the
check value.

Uncloneable functions A physically uncloneable function is a hardware de-
vice based on some physical manifestation of randomness that can calculate a
function with some degree of unpredictability in its output. For instance, the
device might include a block of resin with impurities mixed in, and shine a laser
through the resin in various trajectories and measure the absorption. Measur-
ing the absorption along the same trajectories will give more or less consistent
results, but without exactly copying the block of resin, no attacker would be
able to give more outputs of the function than they had queried themselves.

The connection between uncloneable functions and password security is sim-
ple: instead of using a cryptographic hash function to calculate the check value,
use the uncloneable function. An attacker that has no further access to the
uncloneable function will learn nothing from seeing the check value, unless the
attacker has by chance already learned an input that produces that check value.

This idea could be used with actual PUFs, but the absolute uncloneability
of the PUFs is problematic, because it means that password-checking cannot be
replicated. Any replica must have access to the PUF, and there is only one. This
results in a scaling problem, and also, the PUF is a single point of failure. If it
were to be maliciously or accidentally destroyed, the entire password-checking
system would become indefinitely unavailable.

In contrast, we consider the notion of a random uncloneable function, a
construction that makes use of an ideal hash function and a large random secret
(the “corpus”) to implement a function that is indifferentiable from a random
function in the bounded retrieval model. This kind of uncloneable function
can be replicated by honest parties, by paying the cost of fully replicating the

2

corpus.

1.1 Prior work.

Although this paper relies heavily on the algorithmic constructions of Spilman [4]
(although the ones here are simplified in certain ways from Spilman’s version),
its contribution is in the theoretical treatment of the ideas. Spilman describes
a construction but does not provide clear definitions of success or proofs of
correctness. We define the notion of a random uncloneable function, prove a
construction satisfies it, and also prove that a random uncloneable function
provides offline password security.

The notion of password security in the bounded retrieval model was the
focus of the seminal paper of DiCrescenzo, Lipton and Walfish [2]. However, our
results are substantially different, in that the password scheme here is practical
and achieves security for arbitrarily large absolute retrieval bounds.

2 Definitions

Oracle Turing machines. The definitions in this paper largely involve Tur-
ing machines with one or more oracles. The number of queries an oracle Turing
machine makes to each of its oracles is the way in which the power of the machine
is understood, since we make no assumptions about time or space complexity.
It will be convenient to refer to oracle Turing machines that are implicitly regu-
lated in their number of queries. A (q1, . . . , qm)-bounded oracle Turing machine
(or BOTM for short) is an oracle Turing machine with m distinct oracles, the
ith of which may be queried at most qi times.

Random uncloneable functions. Our notion of a random uncloneable func-
tion transforms a hash-like random oracle into a random uncloneable function
in the BRM.

This is a reduction of random oracles, following the ideas of Maurer et al.
[3]. The same notion was used by Coron et al. [1] to construct an ideal hash
function from an ideal compression function. We do something similar. Rather
than extend the domain of a random function (from {0, 1}2n to {0, 1}∗, as Coron
et al. do), we achieve uncloneability.

We give the formal definition of indifferentiability [3]:

Definition 2.1. A Turing Machine C with oracle access to an oracle H is said
to be (q1, q2, ε)-indifferentiable from F if there exists a PPT simulator S such
that for all (q1, q2)-BOTMs D,

|Pr[DC,H = 1]− Pr[DF,S
F

= 1]| < ε

Note that we could regard the above definition as applying to families of
constructions C, parameterized by some security parameter. This statement
tends to be of interest for families only if ε is a negligible function in k.

3

Here, SF means that S is a Turing Machine with oracle access to F .
If we take oracles to be stateful, this definition could be used for a construc-

tion C that has some sort of private value, generated on its first invocation, and
maintained in C’s memory thereafter. However, our aim is to define indifferen-
tiability when the adversary (distinguisher) has access to some portion of C’s
private data. This motivates the following definition:

Definition 2.2. Let C be a Oracle Turing Machine which takes input ~c =
c1, . . . , cs where each ci ∈ {0, 1}k, and which maintains no long-term state.

We say CH is (q1, q2, q3, ε)-indifferentiable from F in the adaptive bounded
retrieval model (ABRM) if there exists a simulator S such that for all (q1, q2, q3)-
BOTMs D,

|Pr[~c← {0, 1}ks;DC(~c),H,R(~c) = 1]− Pr[DF,S
F (0,·),SF (1,·) = 1]| < ε

Here, S(0, x) attempts to emulate H(x) and S(1, j) attempts to emulate
R(j), and we assume that all invocations of S maintain state.

We can also define the above notion in a non-adaptive model, where the
adversary receives q3 locations of ~c that must be chosen all in advance. However,
the construction in this paper satisfies the stronger definition.

2.1 The construction C

The construction we present is based on the Blind Hash algorithm of Spilman
[4].

The construction is parametrized by a security parameter k and by a corpus
size s. We assume that the corpus consists of s random strings of length k,
referred to as c1, . . . , cs. We assume also that H is a random oracle mapping
{0, 1}∗ → {0, 1}k.

Finally, we assume that Loc is a function that for a uniform random k-bit
input produces a uniform random output in the range [1, s]. For instance, if
s = 2l, Loc could simply truncate its input.

When j is a number, we write j to indicate a blog2(k+ 1)c-bit binary string
that represents j.

Let x be the input to C. We calculate k locations l1, . . . , lk, where lj =
Loc(H(j||x)). We then concatenate the corresponding corpus contents and hash
this to produce the final result:

C(x) = H(0||cl1 || . . . ||clk).

Theorem 2.3. CH is (q1, q2, q3, ε)-indifferentiable from random, for

ε =
s(s+ 1) + 2q22/(k − k log2 s+ 2)2

2k+1
.

Proof. To prove this, we must describe the simulator S that emulates random
H outputs with only oracle access to the F it must match.

4

The general strategy for S is to randomly select H outputs, except when
those outputs are known or likely to be used as F outputs. Specifically, let
α = dk/ log2 se, and answer queries as follows:

• On input (0, x) where S(x) is defined, return S(x). On input (1, i) where
ci is defined, return ci.

• On input (1, i) where ci is not defined, pick a random block distinct from
all previously defined corpus blocks, and define ci as that block and retutn
ci.

• On input (0, x) where S(x) is not defined:

1. On input (0, j||x) with 1 ≤ j ≤ k, where fewer than k − α of
S(1||x), . . . , S(k||x) are defined, define S(j||x) at random and return
it.

2. On input (0, j||x) where at least k − α of S(1||x), . . . , S(k||x) are
defined, define all the undefined ones at random and return S(j||x).

3. On input (0,0||v1|| . . . ||vk) where each vi is of length k, such that
for some x and all 1 ≤ j ≤ k: (1) rj = S(j||x) is defined, and (2)
cLoc(rj) is defined and is equal to vj , define S(0||v1|| . . . ||vk) = F(x)
and return F(x).

4. Otherwise, on input (0, x), define S(x) to be a random value and
return S(x).

Note that in the “real” experiment, where all corpus blocks are chosen at
random in advance, the probability that any pair of corpus blocks are identical
is bounded by s(s + 1)/2k+1. Therefore, if the adversary has avantage ε, the
adversary must have advantage at least ε − s(s + 1)/2k+1 conditioned on the
fact that the corpus consists only of unique blocks.

When we define S(0||v1|| . . . ||vk) at random, we are taking a risk. If the
distinguisher manages to find some x for which cLoc(S(j||x)) = vj for all j, the
probability that F (x) is the random output we chose is very small. Thus, we
must argue that the probability that this event occurs is small.

The bad event occurs when S(0||v1|| . . . ||vk) has been defined at random,
and at some later point, there is an x such that for each 1 ≤ j ≤ k, (1) S(j||x)
has been defined, (2) cLoc(S(j||x)) has been defined, and (3) vj = cLoc(S(j)).

A one-to-one correspondance can be drawn between all runs of the adversary
against the CH,H, R oracles and runs of the adversary against the simulator in
which bad does not occur. Therefore, the adversary’s advantage in distinguish-
ing can be limited to the probability that bad occurs.

If (1) happens at a later point for some specific x, then the last α of the
S(j||x) are defined at random simultaneously. For any given j, the probability
that conditions (2) and (3) are met is either 1/s if vj is equal to some defined
corpus block, or 1/2k otherwise. Thus, the overall probability can be bounded
by s−α. Note that since α > k/ log2 s, α log2 s > k, so sα = 2α log2 s > 2k.
Therefore, we can bound the probability in this case by 2−k.

5

If (1) is already true of every j when the query is made for some particular
x, then (2) and (3) can only become true at a later point if at least once, an
undefined corpus block is randomly chosen to be equal to the specific vj value
present in the query. This probability can be bounded by 2−k.

To obtain the overall probability that bad occurs, we need a bound on the
number of queries that assign S(0||v1|| . . . ||vk) at random, and on the number
of x that could meet the three conditions for that query. For each pair, a query
is possible with probability at most 2−k. The number of pairs is maximized
when the number of the former type of query is equal to the number of such x.
One of each can be created for every k − α+ 2 queries, so the total probability
of bad occurring may be bounded by (q2/(k − α+ 2))2.

Therefore, the probability that the adversary distinguishes the real exper-
iment from the simulator is at most (q2/(k − α + 2))2/2k + s(s + 1)/2k+1 =
s(s+1)+2q22/(k−α+2)2

2k+1 .

Relating uncloneability and indifferentiability. Suppose a function F
is drawn from some family F of functions, and an adversary is given oracle
access to F . If this adversary is able to “learn” the function F , so that inputs
and outputs of F may be determined without further oracle access to F , the
adversary has succeeded in cloning the function F .

The classical notion of uncloneability is tested by challenging the attacker
to compute F (x) with high probability where x is chosen randomly from some
set. Equivlently, the attacker could be asked to compute F (x) for every x in
some set of random challenges, with non-negligible probability.

Indifferentiability of F from a random function is a stronger property than
this classical notion of uncloneability. Obviously, if a function can be cloned,
the ability of an attacker to predict its outputs is a test that can distinguish
between the true function and a random one.

In this sense, indifferentiability from random is a strong form of uncloneabil-
ity, implying the classical notion of uncloneability. The property our password
scheme relies on relates to the one-wayness of the function F , which is also
implied by its indifferentiability from a random function.

3 Our password scheme

We imagine a scenario in which k honest users create random passwords (x1, . . . , xk)
with a server, with the help of a third party we call the facilitator, which imple-
ments the uncloneable random function. We model the passwords as random
strings of length e, to emulate the notion that passwords are of low or medium
entropy.

The facilitator has a large private key called the corpus, whose size is s blocks
of k bits each. The facilitator operates a public service where any interested
party may request the output of the uncloneable function on an input of their
choice.

6

Advpwd(A1, A2, C,H) =

Pr[~c← {0, 1}ks;α← A
CH(~c),H,R(~c)
1 (k);

x1 ← {0, 1}e; s1 ← {0, 1}k; y1 ← CH(~c, x1||s1);
. . .
xk ← {0, 1}e; sk ← {0, 1}k; yk ← CH(~c, xk||sk);

(x′, j)← A
CH(~c),H,R(x1,...,xk)
2 (α, y1, . . . , y,s1, . . . , sk) :

CH(x′||sj) = yj]− q1+1
2e .

The attack model we imagine is partially adaptive and partially non-adaptive.
Specifically, security is described based on a password-guessing game that runs
in two phases. In the first phase, the adversary is allowed to compromise up
to q3 blocks of the corpus, and make queries to the construction C as well as
to the hash function H. At the end of the first phase, the passwords x1, . . . , xk
and salts s1, . . . , sk are chosen at random, and the check values y1, . . . , yk are
calculated. In the second phase, the adversary may make additional queries to
C and to H, and may also request that up to k−1 of the passwords be revealed.
However, the adversary may retrieve no additional blocks of the corpus in the
second phase. At the conclusion of the second phase, the adversary guesses a
specific non-revealed password.

It is possible that a stronger, fully adaptive notion of security can be achieved,
but such a notion is a bit absurd. In order to continue retrieving blocks of the
corpus, the adversary would have to maintain an infiltration into the facilitator’s
system. However, a real-world adversary able to do this could run a password
search inside the facilitator’s system, accessing but not exfiltrating any blocks
of the corpus, and simply exfiltrating the final password.

Therefore, we imagine that no active presence inside the facilitator exists,
but the adversary may have already exfiltrated a substantial amount of the
corpus.

3.1 Definition

In our definition, we model the adversary as a BOTM with two explicit parts:
A1, which may perform corpus block retrieval, and A2, which may not. A1

takes as input only the security parameter k, and outputs only a state α which
is consumed by A2. A2 outputs a pair (x′, j) where x′ is a guess at password
number j. We call such an A2 challenge-respecting if it only outputs (x′, j)
when it never made a query to its third oracle on input j.

Definition 3.1. Let C be an oracle Turing machine which takes input ~c of length
ks, maintains no long-term state, and outputs strings of length k. Let A1 be an
arbitrary (q1,1, q2,1, q3)-BOTM and let A2 be an arbitrary challenge-respecting
(q1 − q1,1, q2 − q2,1, n− 1)-BOTM. Define

We say that C is (q1, q2, q3, ε(k))-password-securing if for all n and for all
such A1, A2, Advpwd(A1, A2, C,H, k) < ε(k).

7

This definition specifies that C produce a secure way of storing password-
checking values when used with random salts. This use case was specifically
envisioned by Spilman [4], although his construction of it is substantially sim-
plified here.

Theorem 3.2. The construction C of Section 2.1 is (q1, q2, s2
−e/k, ε(n))-password-

securing for ε(n) = nq2
2k

+
q2c
2k

+
n2eqk3
sk

.

Proof. This follows from Theorem 2.3. Suppose there is some adversary (A1, A2)
and some k such that Advpwd(A1, A2, C,H, k) > ε(k). Consider the following
distinguisher D:

1. D runs A1 on input k, making queries to its oracles in order to satisfy the
queries A1 makes. D receives output α.

2. D chooses x1, . . . , xk and s1, . . . , sk at random, and makes k queries to its
first oracle to calculate y1, . . . , yk.

3. D runs A2 on input α, y1, . . . , yk, s1, . . . , sk. For any queries A2 makes to
its first or second oracle, D answers that query by making a query to its
first or second oracle. For queries A2 makes to its third oracle, D returns
the requested xi. D receives output (x′, j).

4. D makes a query to its first oracle on input x′||sj to calculate y′j . If
y′j = yj , D outputs 1, otherwise D outputs 0.

If D is run with the real oracles, it has probability q1+1
2e + ε(n) of outputting

1, by our assumptions.
If D is run with the simulator and a random F in place of CH, the probability

of D outputting 1, we will prove, is at most kq2
2k

+
q2c
2k

+
k2eqk3
sk

+ q1+1
2e where

qc = q1 + k + 1 + q2
2+k(1−1/log2s) .

The idea is to use the principle of deferred decisions to prove that, except for
situations which occur with low probability, the probability that A2 can output
a correct password is q1+1

2e . We do this with an emulation of D that defers
choosing the xi values until it is necessary to do so:

1. We pick ~c← {0, 1}ks.

2. We run A1 on input k, with the following methods for answering oracle
queries:

• For queries of A1 to its first oracle, we run a random function oracle
F .

• For queries of A1 to its second oracle, we execute the simulator S of
Theorem 2.3, which in turn also accesses the random function oracle
F .

• For queries of A1 to its third oracle, we return the requested block
of ~c.

8

We receive output α from A1.

3. Choose s1, . . . , sn at random of length k. For each i:

• Set zi to be the number of queries to F of the form x||si for some
x of length e. With probability zi2

−e, choose one such input x at
random and set yi = F(x||si) and set xi = x. Otherwise, pick yi at
random.

4. Run A2 on input α, y1, . . . , yk, s1, . . . , sk, with the following methods for
answering oracle queries.

• For unique queries of A2 to its first oracle (or of the simulator) not
of the form x||si for x of length e and i ∈ [1, k], query the input to
F .

• For unique queries of A2 to its first oracle (or of the simulator) of the
form x||si for x of length e: With probability 1/(2e − zi), set xi = x
and set F(x||si) = yi. Otherwise, increment zi and query x||si to F .

• For queries of A2 to its second oracle, we continue executing S, han-
dling the queries S makes as above.

• For a unique query of A2 to its third oracle on input i, if xi has been
set, return xi. Otherwise, pick a random value x of length e such
that F(x||si) is not yet set, set xi to be x, and set F(x||si) = yi.

5. Obtain the output (x′, j) of A2. If F(x′||sj) has been set, return 1 if and
only if F(x′||sj) = yj . If F(x′||sj) has not been set and x′ is not of length
e, pick F(x′||sj) at random and return 1 if and only if F(x′||sj) = yj .

If x′ is of length e, set xj = x′ and return 1 with probability 1/(2e − αj).
Otherwise, pick F(x′||sj) at random and return 1 if and only if F(x′||sj) =
yj .

The reader may verify that the behavior of this alternate process is exactly
equivalent to a run of D with ideal oracles.

We identify an event bad that may occur in a run of this alternate setting.
The event bad occurs if (1) some query of the form (j||x) is made by A1 to its
second oracle for x of length k + e, and for some i ∈ [1, k], si is later chosen
to be equal to the last k bits of x, (2) if two distinct random choices made by
F result in the same random choice, or (3) if for any 1 ≤ i ≤ n, there is some
x ∈ {0, 1}e such that for all k locations {loc(S(j||x||si))} are locations revealed
by queries by A1 to its third oracle.

A1 makes at most q′ ≤ q2 queries to its second oracle so at most q2 distinct
bad choices for each si are possible. Therefore, bad occurs for this reason with
probability at most kq2

2k
.

As for the second type of bad event, there are three choices that we consider:
adversary queries to the first oracle, simulator queries to the F oracle, and
queries by D to the F oracle. The adversary makes at most q1 queries to its first

9

oracle total, and our emulation makes a total of k+1 random choices: the choice
of the k yi values, and checking the adversary’s output. The simulator makes
at most one query to F for every k(1−1/log2s)+2 queries the adversary makes
to its second oracle. Therefore, there are qc total choices, so the probability of
this second type of bad event is at most q2c/2

k.
The third type of bad event occurs with probability at most k2e(q3s)k, since

there are 2e values in {0, 1}e and k salts, and each such pair leads to a choice of
k independent locations, which each have a probability of at most q3

s of being
locations that are previously known.

The overall probability that bad occurs may thus be bounded by kq2+qc
2

2k
+

k2eqk3
sk

.
We now assume that bad does not occur, and prove a bound on the proba-

bility that the above alternative process outputs 1. Suppose the output of A2

is (x′, j). There are two cases.
First, if the value of xj has been set, then we output 1 if x′ = xj (which

occurs with probability at most 1). The probability that xj has been set without
j being queried to A2’s third oracle is

αj

2e .
If the value of xj has not been set, then we output 1 with probability 1

2e−αj
,

in other words, only if we set xj = x′ during the check. (Other ways to output
1 would amount to a bad event of the second type.)

Now,
αj

2e +(1− αj

2e)(1
2e−αj

) =
αj+1
2e bounds the probability that we output 1.

This can in turn be bounded by q1+1
2e , the case in which all first oracle queries

are made on e-bit passwords concatenated with sj .

4 Discussion

In this paper, we present a construction of a Random Uncloneable Function
based on Spilman’s blind hash algorithm [4]. We prove two main results.

First, we prove that the construction is indifferentiable from random in the
(adaptive) bounded retrieval model and is in this sense a random uncloneable
function. Second, we prove that the password security scheme Spilman describes
as an application of blind hashing is secure against passive adversaries in the
bounded retrieval model.

Though passive security is generally weaker than active security, we are
satisfied with this result; it shows that offline attacks are prevented, even when
most of the corpus is known to the attacker. The adaptive security case (not
discussed much in this paper) seems much more comparable to an online attack,
which cannot really be prevented.

Both of these results are proven in an absolute sense, without any reliance
on computational complexity assumptions such as the hardness of factoring or
of computing discrete logarithms.

We close by noting that physically uncloneable functions have been shown
to be useful in a variety of applications, and any such application is potentially
an application of our construction. Unlike physically uncloneable functions, our

10

random uncloneable function is not uncloneable in an absolute sense: honest
parties may, through concerted effort, duplicate the entire corpus accurately and
therefore achieve a kind of load balancing and redundancy that is impossible
for physically uncloneable functions.

References

[1] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-damg̊ard revisited: How to construct a hash function. In
Annual International Cryptology Conference, pages 430–448. Springer, 2005.

[2] Giovanni Di Crescenzo, Richard Lipton, and Shabsi Walfish. Perfectly secure
password protocols in the bounded retrieval model. In Theory of Cryptog-
raphy Conference, pages 225–244. Springer, 2006.

[3] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology. In Theory of Cryptography Conference, pages 21–39. Springer,
2004.

[4] Jeremy Spilman. TapLink blind hashing technical specification, 2016. Tech-
nical whitepaper.

11

