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Abstract

We present a new improvement in the Linear Programming technique to derive bounds
on information theoretic problems. In our case, we deal with the search for lower bounds
on the information ratio of secret sharing schemes. We obtain non-Shannon-type bounds
without using information inequalities explicitly. Our new techniques makes it possible
to determine the optimal information ratio of linear secret sharing schemes for all access
structures on 5 participants. New lower bounds are presented also for graph-based access
structures on six participants and for some small matroidal access structures. In particular,
we determine the optimal information ratio of the linear secret sharing schemes for the ports
of the Vamos matroid.
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1 Introduction

Linear programming involving information inequalities has been extensively used in several
existence and optimization information theoretic problems. For instance in secret sharing [58],
network coding [69], or repairable codes [67]. In this work, we present a new improvement of
the linear programming technique in the search for lower bounds on the information ratio of
secret sharing schemes. Namely, instead of known information inequalities, we propose to use
constraints based on the properties from which those inequalities are deduced.

Secret sharing, which was independently introduced by Shamir [64] and Blakley [8], is a very
useful tool that appears as a component in many different kinds of cryptographic protocols. In
a secret sharing scheme, a secret value is distributed into shares among a set of participants in
such a way that only the qualified sets of participants can recover the secret value. This work
deals exclusively with unconditionally secure and perfect secret sharing schemes, in which the
shares from any unqualified set do not provide any information on the secret value. In this case,
the family of qualified sets of participants is called the access structure of the scheme.

In a linear secret sharing scheme, the secret and the shares are vectors over some finite field,
and both the computation of the shares and the recovering of the secret are performed by linear
maps. Because of their homomorphic properties, linear schemes are used in many applications
of secret sharing. Moreover, most of the known constructions of secret sharing schemes yield
linear schemes.

The information ratio (average information ratio) of a secret sharing scheme is the ratio
between the maximum (average) length of the shares and the length of the secret. The opti-
mization of these parameters has attracted a lot of attention. Specifically, for a given access



structure I', one is interested in determining its optimal information ratios o(I') and A\(T'), and
also its optimal average information ratios o(I') and A(T"). Here, o(I") denotes the infimum of
the information ratios of all secret sharing schemes with access structure I', while for A(I") only
linear secret sharing schemes are taken into account. The corresponding parameters for the
average information ratio are defined accordingly.

That optimization problem is related to the search for asymptotic lower bounds on the length
of the shares, which is one of the main open problems in secret sharing. The reader is referred
to the survey by Beimel [2] for more information about this topic. For linear secret sharing
schemes, building up on the superpolynomial lower bounds in [1, 4], exponential lower bounds
have been proved recently [60]. Nevertheless, for the general case, no proof for the existence
of access structures requiring shares of superpolynomial size has been found. Moreover, the
best of the known lower bounds is the one given by Csirmaz [13, 14], who presented a family of
access structures on an arbitrary number n of participants whose optimal information ratio is
Q(n/logn).

The optimization of the information ratios has been analyzed for several families of access
structures. For example, access structures defined by graphs [3, 9, 11, 15, 17, 19, 30, 32],
access structures on a small number of participants [19, 30, 31, 32, 37, 58, 65|, bipartite access
structures [25, 57], the ones having few minimal qualified sets [45, 47], or the ports of non-
representable matroids [5, 46, 54, 58].

Almost all lower bounds on the optimal information ratios have been obtained by the same
method, which is called here the linear programming (LP) technique. In particular, the asymp-
totic lower bound Q(n/logn) found by Csirmaz [14] and most of the lower bounds for the
aforementioned families of access structures. The LP-technique is based on the fact, pointed
out by Karnin, Greene and Hellman [40], that a secret sharing scheme can be defined as a
collection of random variables such that their joint entropies satisfy certain constraints derived
from the access structure.

The technique was first used by Capocelli, De Santis, Gargano and Vaccaro [11]. Csirmaz [14]
refined the method by introducing some abstraction revealing its combinatorial nature. This
was achieved by using the connection between Shannon entropies and polymatroids discovered
by Fujishige [26, 27]. A new parameter x(I") was introduced in [46]. It is the best lower bound on
the optimal information ratio that can be obtained by using that connection between Shannon
entropies and polymatroids or, equivalently, by using only Shannon information inequalities.
The parameter %(I") is defined analogously. The known values of the optimal information ratios
have been determined by finding a lower bound on x(I') that is equal to an upper bound on
A(T). The lower bound is obtained by (implicitly or explicitly) applying the LP-technique,
and the upper bound is given by presenting a linear secret sharing scheme for the given access
structure. For the access structures in that situation, x(I') = o(I') = A(I"). Analogously, the
access structures for which the optimal average information ratio has been determined satisfy
k() =a() = AT).

A further improvement, which was first applied in [5], consists in adding to the game the so-
called non-Shannon information and rank inequalities, that is, inequalities that are satisfied by
the entropy function but cannot be derived from the basic Shannon inequalities. This addition
provided several new lower bounds [5, 15, 54, 58] and also the first examples of access structures
satisfying x(I") < o(I"), namely the ports of the Vamos matroid. Finally, Metcalf-Burton [54]
and Padré, Vazquez and Yang [58] realized that the method consists of finding lower bounds
on the solutions of certain linear programming problems, which can be solved if the number of
participants is not too large. In particular, the parameters x(I') and £(I') can be determined
by solving linear programming problems. Again, new lower bounds for a number of access
structures [25, 47, 54, 58] were obtained as a consequence of that improvement. Some limitations



of the LP-technique in the search for asymptotic lower bounds have been found [6, 14, 48].
Namely, the best lower bound that can be obtained by using all known information inequalities
is linear in the number of participants, while at most polynomial lower bounds can be found by
using all known or unknown inequalities on a bounded number of variables.

Summarizing, while the LP-technique has important limitations when trying to find asymp-
totic lower bounds, it has been very useful in the search for lower bounds for finite and infinite
families of access structures, providing in many cases tight bounds. More details about the
LP-technique and its application are discussed in Section 2.

Yet another improvement to the LP-technique is presented in this work. Instead of using the
known non-Shannon information and rank inequalities, we use the properties from which most
of them have been derived. More specifically, all known non-Shannon rank inequalities, which
provide lower bounds on A\(I') and A(I'), are derived from the common information property [23],
while most of the known non-Shannon information inequalities are obtained by the techniques
described in [38]. We derive from these properties some constraints to be added to the linear
programming problems that are used to find lower bounds. We apply this improvement to
several access structures on a small number of players and we find new lower bounds that could
not be found before by using the known information and rank inequalities.

Specifically, the access structures on five participants, the graph-based access structures on
six participants, and some ports of non-representable matroids have been the testbeds for our
improvement on the LP-technique.

Jackson and Martin [37] determined the optimal information ratios of most of the access
structures on five participants. The use of computers to solve the corresponding linear program-
ming problems provided better lower bounds for some of the unsolved cases [58]. In addition,
constructions of linear secret sharing schemes were presented in [31] improving some upper
bounds. After those developments, only four cases remained unsolved. All solved cases satisfy
k(') = A(I") and k(') = A(T"). The negative result in [58, Proposition 7.1] clearly indicated that
the solution could not be found by the LP-technique with only Shannon information inequalities.
Moreover, adding non-Shannon information and rank inequalities to the linear programs did
not produce any new lower bound [58]. In contrast, our enhanced LP-technique provides better
lower bounds on for those unsolved cases, which are tight for linear secret sharing schemes.
In particular, the values of A(T') and A\(I") are now determined for all access structures on five
participants, but some values of o(I') and &(I") are still unkown. So, we partially concluded
the project initiated by Jackson and Martin in [37]. Moreover, we found some of the smallest
access structures with x(I') < o(I') or K(I') < (') and all the smallest access structures with
Kk(T) < A(T) or r(T") < A(T).

A similar project was undertaken by van Dijk [19] for graph-based access structures on six
participants, that is, access structures whose minimal qualified sets have exactly two partici-
pants. Most of the cases were solved in the initial work [19], and several advances were presented
subsequently [12, 30, 32, 43, 58]. At this point, only nine cases remain unsolved. We have been
able to find for them new lower bounds on A(T') by using our enhanced LP-technique. Again,
these structures satisfy x(I") < A(T).

In addition, we present new lower bounds on ¢(I') and A(I') for the ports of four non-
representable matroids on eight points. We prove that all those access structures satisfy x(I") <
o(T'). In particular, we determine the exact value of A(I") for the ports of the Vamos matroid
and the matroid Qg.

All the lower bounds that are presented in this paper have been found by solving linear pro-
gramming problems with conveniently chosen additional constraints derived from the common
information property and the techniques described in [38]. Since the number of variables and
constraints is exponential in the numper of participants, this can be done only for access struc-



tures on small sets. We think that our improved LP-technique could be used to derive new lower
bounds on o(I") for infinite families of access structures in a similar way as the LP-technique
has been previously used to that end. Since the known limitations of the LP-technique do not
imply the contrary, it may be even possible to improve Csirmaz’s [14] asymptotic lower bound
Q(n/logn).

The paper is organized as follows. A detailed discussion on the LP-technique is given in
Section 2. Our improvement on the method is described in Section 3. The new lower bounds that
have been obtained by applying our technique are presented in Section 4. Some constructions
of linear secret sharing schemes that are needed to determine the corresponding values of A(T")
and X(F) are given in Section 5. We conclude the paper in Section 6 with some open problems
and suggestions for future work.

2 Lower Bounds in Secret Sharing from Linear Programming

We begin by introducing some notation. For a finite set @), we use P(Q) to denote its power
set, that is, the set of all subsets of (). We use a compact notation for set unions, that is, we
write XY for X UY and Xy for X U {y}. In addition, we write X \'Y for the set difference
and X \ z for X \ {z}.

2.1 Entropic and Linear Polymatroids

Only discrete random variables are considered in this paper. For a finite set ), consider a
random vector (S;)zeq. For every X C @, we use Sx to denote the subvector (S;)zex, and
H(Sx) will denote its Shannon entropy. Given three random variables (5;);c{1,2,3}, the entropy
of S1 conditioned on Sy is

H(S1|S2) = H(S12) — H(S2),

the mutual information of S1 and Sy is
I(51:52) = H(S1) — H(S1|52) = H(S1) + H(S2) — H(S12)
and, finally, the conditional mutual information is defined by
I1(S51:52|S3) = H(S1|S3) — H(S1|S23) = H(S13) + H(S23) — H(S123) — H(S3).

A fundamental fact about Shannon entropy is that the conditional mutual information is always
nonnegative, and this implies the following connection between Shannon entropy and polyma-
troids, which was first described by Fujishige [26, 27].

Definition 2.1. A polymatroid is a pair (Q, f) formed by a finite set @, the ground set, and a
rank function f: P(Q) — R satisfying the following properties.

(P1) f(0)=0.
(P2) f is monotone increasing: if X CY C @, then f(X) < f(Y).
(P3) fis submodular: f(XUY)+ f(XNY) < f(X)+ f(Y) for every X, Y C Q.

A polymatroid is called integer if its rank function is integer-valued. If S = (Q, f) is a poly-
matroid and « is a positive real number, then (@, af) is a polymatroid too, which is called a
multiple of S.



Theorem 2.2 (Fujishige [26, 27]). Let (S3)zeq be a random vector. Consider the mapping
h: P(Q) — R defined by h(0) = 0 and h(X) = H(Sx) if 0 # X C Q. Then h is the rank
function of a polymatroid with ground set Q).

Definition 2.3. The polymatroids that can be defined from a random vector as in Theorem 2.2
are called entropic. Consider a field K, a vector space V with finite dimension over K and a
collection (Vy)zeq of vector subspaces of V. It is clear from basic linear algebra that the map f
defined by f(X) =dim ) .y V, for every X C @ is the rank function of a polymatroid. Every
such polymatroid is said to be K-linear.

We discuss in the following the well known connection between entropic and linear polyma-
troids, as described in [33]. Let K be a finite field and V' a vector space with finite dimension
over K. Let S be the random variable determined by the uniform probability distribution
on the dual space V*. For every vector subspace W C V, the restriction of S to W de-
termines a random variable S|y that is uniformly distributed on its support W*, and hence
H(S|lw) = log K| dim W* = log |K|dim W. Let (V3)zeq be a collection of subspaces of V. For
every X C @, we notate Vx = > V. This collection of subspaces determines the K-linear
random vector (Sg)zcg = (S|v,)zeq. Observe that Sx = S|y, for every X C @, and hence

H(Sx) = log [K| dim Vx = log [K| dim » _ V.
zeX

This implies that the K-linear polymatroid determined by the collection of subspaces (V3)zeq
is a multiple of the entropic polymatroid defined by the K-linear random vector (S;)zcq =
(S|v, )zeq- By taking also into account that every linear polymatroid admits a linear represen-
tation over some finite field [23, 59], from this discussion we can conclude the well known fact
that every linear polymatroid is the multiple of an entropic polymatroid.

2.2 Secret Sharing

Definition 2.4. Let P be a set of participants. An access structure I' on P is a monotone
increasing family of subsets of P, that is, if AC B C P and A € I', then B € I". The members
of I' are the qualified sets of the structure. An access structure is determined by the family
minI" of its minimal qualified sets. A participant is redundant in an access structure if it is
not in any minimal qualified set. All access structures in this paper are assumed to have no
redundant participants. The dual I'* of an access structure I' on P is formed by the sets A C P
such that its complement P ~\ A is not in T

Definition 2.5. Let I' be an access structure on a set of participants P. Consider a special
participant p, ¢ P, which is usually called dealer, and the set @ = P U {p,}. A secret sharing
scheme on P with access structure I' is a random vector ¥ = (5;)zeq such that the following
properties are satisfied.

1. H(Sp,) > 0.
2. If A € T, then H(S,,|S4) = 0.
3. If A¢ T, then H(S,,|Sa) = H(Sp,).

The random variable S, corresponds to the secret value, while the shares received by the
participants are given by the random variables S, with z € P. Condition 2 implies that the
shares from a qualified set determine the secret value while, by Condition 3, the shares from an
unqualified set and the secret value are independent.



Definition 2.6. Let K be a finite field. A secret sharing scheme X = (S;)zcq is K-linear if it
is a is K-linear random vector.

Definition 2.7. The information ratio o(X) of the secret sharing scheme ¥ is

H(S)
M) =
() bep H(S,,)
and its average information ratio o(X) is
- 1 H(S,)
o) =— .
n zEP H(Spo)

Definition 2.8. The optimal information ratio o(T") of an access structure I' is the infimum
of the information ratios of all secret sharing schemes for I'. The optimal average information
ratio o(I') is defined analogously. The values A(I') and A(I') are defined by restricting the
optimization to linear secret sharing schemes. Obviously, o(I') < A(I') and &(I") < A(T").

2.3 Lower Bounds from Shannon Information Inequalities

We describe next how to find linear programming problems whose optimal values are lower
bounds on those parameters. Let I' be an access structure on a set P and take, as usual,
@@ = Pp,. Given a secret sharing scheme ¥ = (S;)zcq with access structure I', consider the
entropic polymatroid (@, h) determined by the random vector (S;)zeq, that is, h(X) = H(Sx)
for every X C Q. Take o = 1/h(p,) and the polymatroid (@, f) = (@, ah). The rank function f
can be seen as a vector (f(X))xcg € RP(@) that satisfies the linear constraints

(N) f(po) =1,
(T'1) f(Xpo) = f(X) for every X C P with X €T,
(T'2) f(Xpo) = f(X)+1 for every X C P with X ¢ I,

and also the polymatroid axioms (P1)-(P3) in Definition 2.1. Observe that constraints (I'l),
(I'2) are derived from the chosen access structure I'. Constraints (P1)—(P3) are equivalent to
the so-called Shannon information inequalities, that is, the ones implied by the fact that the
conditional mutual information is nonnegative. Therefore, the vector f is a feasible solution of
Linear Programming Problem 2.9.

Linear Programming Problem 2.9. The optimal value of this linear programming problem
is, by definition, K(I"):

Minimize (1/n) Z f(zx)

rzeP
subject to (N), (I'1),(I'2), (P1), (P2),(P3)

Since this applies to every secret sharing scheme 3 with access structure I' and the objective
function equals o(X), the optimal value k(T") of this linear programming problem is a lower
bound on o(I'). Similarly, a lower bound on o(I") is provided by the optimal value x(I') of the
Linear Programming Problem 2.10.



Linear Programming Problem 2.10. The optimal value of this linear programming problem
is, by definition, x(I'):

Minimize v
subject to v > f(x) for every z € P
(N), (I'1), (I'2), (P1), (P2), (P3)

The parameters x(I') and k(T") are the best lower bounds on o(I") and, respectively, o(T") that
can be obtained by using only Shannon information inequalities. If the number of participants
is small, they can be computed by solving the corresponding linear programming problems.
This approach has been used in [25, 47, 58]. In more general situations, lower bounds on (T")
and K(I") can be derived from the constraints without solving the linear programming problems,
as in [9, 11, 16, 17, 19, 37] and many other works. In particular, the result in the following
theorem, which is the best of the known general asymptotic lower bounds, was found in this
way.

Theorem 2.11 (Csirmaz [13, 14]). For every n, there exists an access structure I'y, on n
participants such that K(I'y) is Q(n/logn).

Since not all polymatroids are entropic, the lower bounds x(I') and K(I') are not tight
in general. Moreover, Csirmaz [14] proved that x(I') < n for every access structure I' on n
participants, which indicates that those lower bounds may be very far from tight. That result
was proved by showing feasible solutions of the linear programming problems with small values
of the objective function.

Duality simplifies the search for bounds in secret sharing. Indeed, if I'* is the dual of the
access structure I', then A(I'*) = A(I') and A(I'™*) = A(I") [36], and also x(I'*) = k(I') and
k(I™*) = R(T) [46]. In contrast, it is not known whether the analogous relation applies to the
parameters o and & or not.

2.4 1Ideal Secret Sharing Schemes and Matroid Ports

The extreme case k(I') = 1 deserves some attention because it is related to ideal secret sharing
schemes. Since we are assuming that there are no redundant participants, it is easy to prove
that f(z) > 1 for every feasible solution of the Linear Programming Problems 2.9 and 2.10.
Therefore, 1 < k(I') < k(I') for every access structure I', and hence the average information
ratio of every secret sharing scheme is at least 1.

Definition 2.12. A secret sharing scheme ¥ = (5;),¢q is ideal if its information ratio is equal
to 1, which is best possible. Ideal access structures are those that admit an ideal secret sharing
scheme.

Definition 2.13. A matroid M = (Q,r) is an integer polymatroid such that r(X) < |X| for
every X C Q. The port of the matroid M at p, € Q is the access structure on P = Q \ p,
whose qualified sets are the sets X C P satisfying r(Xp,) = r(X).

The following theorem is a consequence of the results by Brickell and Davenport [10], who
discovered the connection between ideal secret sharing and matroids.

Theorem 2.14. Let ¥ = (S;)zcq be an ideal secret sharing scheme on P with access structures
I'. Then the mapping given by f(X) = H(Sx)/H(Sp,) for every X C @ is the rank function of
a matroid M with ground set (). Moreover, I' is the port of the matroid M at p,.



As a consequence, every ideal access structure is a matroid port. The first counterexample
for the converse, the ports of the Vamos matroid, was presented by Seymour [63]. Additional
results on matroid ports and ideal secret sharing schemes were proved in [46] by using the
forbidden minor characterization of matroid ports by Seymour [62].

Theorem 2.15 ([46]). Let I" be an access structure. Then I' is a matroid port if and only if
k(I') = 1. Moreover, k(') > 3/2 if T" is not a matroid port.

In particular, there is a gap in the values of the parameter k. Namely, there is no access
structure I" with 1 < x(I") < 3/2. Therefore, the optimal information ratio of an access structure
that is not a matroid port is at least 3/2.

2.5 Lower Bounds from Non-Shannon Information and Rank Inequalities

Better lower bounds can be obtained by adding to the Linear Programming Problems 2.9
and 2.10 new constraints derived from mon-Shannon information inequalities, which are sat-
isfied by every entropic polymatroid but are not derived from the basic Shannon information
inequalities. Zhang and Yeung [71] presented such an inequality for the first time, and many oth-
ers have been found subsequently [22, 24, 51, 70]. This approach was first applied in [5] to prove
that the optimal information ratio of the ports of the Vamos matroid is larger than 1, the first
known examples of matroid ports with that property. They are as well the first known examples
of access structures with x(I') < o(I'), and also the first known examples with 1 < ¢(I") < 3/2.
These results have been improved [54] and extended to other non-linear matroids [58].

_ When searching for bounds for linear secret sharing schemes, that is, bounds on A(I') and
A(T), one can improve the linear program by using rank inequalities, which apply to configu-
rations of vector subspaces or, equivalently, to the joint entropies of linear random vectors. It
is well-known that every information inequality is also a rank inequality. The first known rank
inequality that cannot be derived from the Shannon inequalities was found by Ingleton [34].
Other such rank inequalities have been presented afterwards [23, 42]. Better lower bounds on
the information ratio of linear secret sharing schemes have been found for some families of access
structures by using non-Shannon rank inequalities [5, 15, 58].

On the negative side, Beimel and Orlov [6] proved that the best lower bound that can
be obtained by using all information inequalities on four and five variables, together with all
inequalities on more than five variables that are known to date, is at most linear on the number of
participants. Specifically, they proved that every linear programming problem that is obtained
by using these inequalities admits a feasible solution with a small value of the objective function.
That solution is related to the one used by Csirmaz [14] to prove that x(I") is at most the number
of participants. Another negative result about the power of information inequalities to provide
asymptotic lower bounds was presented in [48]. Namely, every lower bound that is obtained by
using rank inequalities on at most 7 variables is O(n"~?), and hence polynomial on the number
n of participants. Since all information inequalities are rank inequalities, this negative result
applies to the search for asymptotic lower bounds for both linear and general secret sharing
schemes.

3 Improved Linear Programming Technique

3.1 Common Information

According to [23], all known non-Shannon rank inequalities are derived from the so-called com-
mon information property. We say that a random variable S3 conveys the common information



of the random variables S; and Sy if H(S3]S2) = H(S3]S1) = 0 and H(S3) = I(S1:52). In
general, given two random variables, it is not possible to find a third one satisfying those
conditions [28]. Nevertheless, this is possible for every pair of K-linear random variables. In-
deed, if S1 = S|y, and S2 = S|y, for some vector subspaces Vi, Vs of a K-vector space V,
then S35 = S|y;ny, conveys the common information of S; and Se. The following definition is
motivated by the concept of common information of a pair of random variables.

Definition 3.1. Consider a polymatroid (@, f) and two sets A, B C (. Then every subset
X, C @ such that

o f(XoA) - f(A) = f(X,B)— f(B) =0, and
o [(Xo) =f(A)+ f(B) - f(AB)

is called a common information for the pair (A, B). If X, = {x,}, then the element z, is also
called a common information for the pair (4, B).

Definition 3.2. A polymatroid (Q, f) satisfies the common information property if, for every
pair (Ap, A1) of subsets of @, there exists an extension (Qz,, f) of it such that z, is a common
information for the pair (Ag, A1).

Proposition 3.3. Every linear polymatroid satisfies the common information property. More-
over, given a linear polymatroid (Q, f) and a pair (Ao, A1) of subsets of Q, it can be extended
to a linear polymatroid (Qz,, f) such that x, is a common information for the pair (Ao, A1).
In particular, the extension also satisfies the common information property.

Proof. Let (V3)zeq be a collection of vector subspaces representing a K-linear polymatroid
(Q, f), and consider two subsets Ag, A1 C Q. By taking V,, = V4, N Vy,, an extension of our
polymatroid to Qz, is obtained in which z, is a common information for (Ag, A;). Obviously,
this new polymatroid is K-linear too. O

We describe next how to modify the Linear Programming Problems 2.9 and 2.10 by using
the common information property in order to obtain better lower bounds on the information
ratio of linear secret sharing schemes. Let I' be an access structure on a set P and X = (S;)zc0
a linear secret sharing scheme for I'. As usual, associated to X consider the polymatroid (@, f)
defined by f(X) = H(Sx)/H(Sp,) for every X C (. Since the scheme ¥ is linear, (@, f) is
the multiple of a linear polymatroid, and hence it satisfies the common information property.
Therefore, given any two sets Ag, A1 C @, we can find a polymatroid (Qz,, f), an extension
of (@, f), such that z, is a common information for the pair (Ag, A1). Clearly, the vector
(f(X))xco € RP(@%) ig a feasible solution of the Linear Programming Problem 3.4.

Linear Programming Problem 3.4. The optimal value of this linear programming problem
is a lower bound on A(I):

Minimize (1/n) Z f(x)

zeP
subject to (N),(I'1),(I'2)

f(Aozo) — f(Ao) = f(A120) — (A1) =0
f(xo) = f(Ao) + f(A1) — f(Ag A1)
(P1), (P2),(P3) on the set Qz,



Since this applies to every linear secret sharing scheme with access structure I', the optimal
value of that linear programming problem is a lower bound on A\(I"). Of course, we can use the
common information for more than one pair of sets. Specifically, given k pairs (Ajo, Ai1)ic[x)
of subsets of (), the optimal value of the Linear Programming Problem 3.5 is a lower bound
on A(T"). Obviously, analogous modifications on the Linear Programming Problem 2.10 provide
lower bounds on A(T).

Linear Programming Problem 3.5. The optimal value of this linear programming problem
is a lower bound on A(T):

Minimize (1/n) Z f(z)

zeP
subject to (N), (I'1), (I'2)

f(Aiozi) — f(Ap) = f(An ;) — f(Ai1) =0 forevery i =1,...,k
f(:El) = f(AzO) + f(Azl) — f(Al[) Azl) for every 1=1,... ,k‘
(P1), (P2),(P3) on the set Q1 ...z

3.2 Ahlswede and Korner’s Information

In the general case, the common information between any two random variables might not
exist. Therefore, we use the general construction of Ahlswede and Kérner from [18, p.352] This
construction was used to derive non-Shannon-type inequalities [44]. It is equivalent in power to
the Zhang-Yeung technique (also known as the copy Lemma) [38].

Lemma 3.6 (Ahlswede-Korner Lemma, [18]). Let 1,...,2p,w be n + 1 jointly distributed
random variables. Consider their respective M independent and identically distributed copies
Xi1,...,X,,W. Then there exists a random variable W' such that:

o HW'|X1,...,X»n) =0,
o H(X;|W')—M - H(zslw)=o0(M), for all @ # J C [n].

We say that a polymatroid is almost entropic if it is the limit of a sequence of entropic
polymatroids (see for instance [39]). The Ahlswede and Koérner lemma can be seen as a way of
creating a new random variable that satisfies additional entropy constraints with respect to the
original random variables. In the limit, the constraints stated in the lemma can be stated in
the langage of polymatroids.

Definition 3.7. Consider a polymatroid (@, f), and subsets Yi,...,Y;,,Z C Q. Then every
subset Z, C @ such that

o f(ZolY1,...,Ym) =0, and
o f(YyZo) = f(Y;|Z) for J C [m]
is called an AK information for the subsets (Z,Y1,...,Ym).

Definition 3.8. A polymatroid (Q, f) satisfies the AK information property if, for every tuple
of m + 1 variables (Z, Y},,,)) of subsets of @Q, there exists an extension (Qz,, f) of it such that 2,
is an AK information for the tuple (Z, Y},)-

The following property is a corollary of Lemma 3.6.
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Proposition 3.9. FEvery almost entropic polymatroid satisfies the AK information property.
Moreover, given an almost entropic polymatroid (Q, f) and a tuple (Z,Y,)) of subsets of Q, it
can be extended to an almost entropic polymatroid (Qz,, f) such that z, is an AK information
for the tuple (Z, Y[m}) In particular, the extension also satisfies the AK information property.

Proof. Since the Ahlswede and Koérner lemma can be applied to any random variables, we can
create an AK information for any tuple of variables of the polymatroid. This AK information
is itself a random variable, therefore the resulting polymatroid is also almost entropic. O

We can now define a counterpart to the common information LP formulation. The fol-
lowing is a linear program to derive bound using additional constraints from AK information.
Specifically we add k new random variables z; that materialize the AK information between the
subsets Z; and Y1, -+, Yip,.

Linear Programming Problem 3.10. The optimal value of this linear programming problem
is a lower bound on A(T):

Minimize (1/n) Z f(z)

zeP
subject to (N), (I'1), (I'2)
f(zilYit,...,Yim,) =0 for every i =1,...,k
f(Yislzi) = f(Yis|Z;) for every i = 1,...,k and J C [my]
(P1), (P2),(P3) on the set Qz1 ...z

A similar program can be used to get bounds for the optimal information ratio by changing
accordingly the objective function.

4 New Lower Bounds

We present here the new lower bounds on the optimal information ratio that were obtained by
using our improvement on the LP-technique. All of them deal with access structures on small
sets of participants and were computed by solving the linear programming problems introduced
in Section 3.

4.1 Access Structures on Five Participants

Jackson and Martin [37] determined the optimal information ratios of most access structures
on five participants. After some additional contributions [20, 31, 58], both ¢(T") and &(T") were
determined for 172 of the 180 access structures on five participants. All these results were
obtained by finding the exact values or lower bounds on x(I') and £(T"), and then constructing
linear secret sharing schemes whose (average) information ratios equaled the lower bounds.
Therefore, £(I') = (') = A(T") and (T") = o(I") = A(T") for each of those 172 access structures.
The unsolved cases correspond to the access structures I'sg, I'40, I's3, and I'73 (we use the same
notation as in [37]) and their duals I'153, I'150, 152, and I'151, respectively. Following [37], we
take these access structures on the set {a, b, ¢, d, e}. The minimal qualified sets of the first four
are given in the following.

e minI'3y = {ab, ac, be, ad, bd, ae, cde}.

e minl'yy = {ab, ac, be, ad, be, cde}.
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e minI'53 = {ab, ac, ad, bed, be, ce}.
e minI'73 = {ab, ac, bd, ce, ade}.

We list in the following what is known for them. Each result applies also to the corresponding
dual access structures.

o #(I') = &(I') = N(I') = 7/5 for I'sy and Tyg.
e #(I) =5(I) = M) = 3/2 for I's3.

() < A(
L 3/2 == K(F) < U(F < )\(F) < 5/3 for F30, F53 and F73.
() < A(

® 3/2:H(F)§UF)§ F)§12/7 for F40.

The values of k(I') and &(I'), which coincide with the lower bounds given in [20, 37|, were
determined in [58] by solving the Linear Programming Problems 2.9 and 2.10. The upper
bounds were given in [37], except the one on A(I's3), which was proved in [31].

By [58, Proposition 7.1], there is no linear scheme for I'ss or I'z3 with information ratio
equal to 3/2, and there is no linear scheme for I'73 with average information ratio equal to 3/2.
Therefore, it appears that a new technique is required to solve these cases. Our improvement
of the LP-technique provided new lower bounds. Namely, by solving problems as the Linear
Programming Problems 3.4 and 3.10 with the specified settings, we obtain the bounds in Tables 1
and 2, respectively. In particular, x(I') < o(I') for all those access structures. Observe that
they are the access structures on least participants having this property.

Access structure Ap Aq New lower bound
[30, [0, I's3, 73 a d 5/3 < A\(I)
T'7s a d 23/15 < A(T)

Table 1: Results on five participants using common information.

Access structure VA i Y, New lower bound
Fgo, F40, F53, F73 a d e 14/9 S U(F)
I3 a d e 53/35 < a(T")

Table 2: Results on five participants using AK information for the subsets (Z, Y1, Y2).

4.2 Graph-Based Access Structures on Six Participants

If all minimal qualified sets of an access structure have two participants, it can be represented
by a graph whose vertices and edges correspond to the participants and the minimal qualified
sets, respectively. Van Dijk [19] determined the optimal information ratio of most graph-based
access structures on 6 participants and provided lower and upper bounds for the remaining cases.
After several other authors improved those results [12, 30, 32, 43, 58], only nine cases remained
unsolved. Since the known values of o(I") have been determined by finding lower bounds on
k(T") and upper bounds on A(I"), we have k(I') = o(T") = A(T") in the solved cases. The unsolved
cases correspond to the following graph-based access structures on P = {1,2,3,4,5,6}.
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e min 55 = {12,23,34,45,56, 61, 26,25}
e min 59 = {12,23,34,45,56,61,24, 13}
e minT7 = {12,23,34,45,56,61,24,25,26}
e minI'7; = {12,23,34,45,56,61, 26, 35,36}
e minT'75 = {12,23,34, 45,56, 61,26, 46, 14}
e minI'7; = {12,23,34,45,56, 61, 26, 35, 13}
e min gy = {12,23,34,45,56,61,13,15,35,25}
e minTg; = {12,23,34,45,56,61,15,25,35,46}
e min g3 = {12,23,34,45,56,61,15, 35,46, 24}
The known lower and upper bounds for those access structures are
e 3/2=k(I') <o(l') < AI) <8/5 for I' =Tg; and I" = T'g3, and
e 3/2=k(I") <o(I') < AT) < 5/3 for the other seven access structures.

The values of k were determined by solving the corresponding linear programming problems,
and they are equal to the lower bounds in [19]. All upper bounds were presented in [19], except
the one for I'gz, which was given in [43].

By using the common information property with the settings specified in Table 3, we found
the new lower bound A(I') > 8/5 for all those access structures. In particular, they satisfy
k(I") < A(T"). Moreover, the optimal information ratio of linear secret sharing schemes for the
access structures I'g; and I'g3 is now determined to be equal to 8/5. We have to mention here
that all our attempts to improve the known lower bounds on o (T") for those graph-based access
structures by using linear programming problems with AK-informations did not give any result.

Access Structure Ag Aq New lower bound
I's5, 170, I'75, T'sa 3 6 8/5 < A(I')
I'n 5 Po3 8/5 < A(I')
Lg1,T'g3 6 Pod 8/5 < A(I)
Access structure A  Am A1 Ay New lower bound
T'59 3 6 5 Dol 8/5 < A\(T')
I'77 4 D03 2 o0 8/5 < A(I')

Table 3: New bounds for graph-based access structures on six participants using common
information.

4.3 Ports of Non-Representable Matroids

Recall from Section 2.4 that T' is a matroid port if and only if x(I') = 1. Moreover, x(I') =
o(') = MT') = 1 if [ is the port of a linear matroid. In this section, we apply our techniques
to find new lower bounds on the optimal information ratio of some ports of non-linear matroids
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on eight points, which are access structures on seven participants. All matroids on seven points
are linear. Hence, the matroids we consider here are amongst the smallest non-linear matroids.

We describe next several matroids (@, ) on eight points with r(Q)) = 4 that admit convenient
geometric representations on a cube. All of them satisfy that

o 7(X) = |X]| for every X C @ with |X| < 3,
e 7(X) =4 for every X C @ with |X| > 5, and
e 3<7r(X)<4forevery X C Q with | X| = 4.

In particular, they are paving matroids (see [55]). Observe that such a matroid can be described
by giving the subsets X C @ with |X| =4 and r(X) = 3, that is, by giving its 4-points planes.

Consider the 3-dimensional cube with vertices on the points (x,y, 2) € {0,1}2. By using the
binary representation, identify each of those vertices to an integer in {0, 1,...,7}. For instance,
(0,1,0) is identified to 2 and (1, 1,0) to 6. Consider the following 14 sets of vertices.

e The six faces of the cube: 0123,0145,0246, 1357, 2367, 4567,
e the six diagonal planes: 0167,0257,0347, 1256, 1346, 2345, and
e the two twisted planes: 0356,1247.

The matroid whose 4-points planes are those fourteen sets is the binary affine cube AG(3,2).
This matroid is K-linear if and only if the field K has characteristic 2 [55].

All matroids that are obtained from AG(3,2) by relaxing one of the 4-points planes (that
is, by changing the value of its rank to 4) are isomorphic to the matroid AG(3,2)" [55]. We
consider here the one obtained by the relaxation of one of the twisted planes, say 1247. The
matroid AG(3,2)" is a smallest non-linear matroid [55]. The port of AG(3,2)" at p, = 0 is the
access structure A on the set {1,...,7} with minimal qualified sets

min A = {123, 145,167, 246, 257, 347, 356, 1247}

Every port of AG(3,2)" is either isomorphic to A or to its dual A*, which has minimal qualified
sets
min A* = {123, 145, 167, 246, 257, 347, 1356, 2356, 3456, 3567}

By relaxing the other twisted plane 0356 we obtain from AG(3,2)" the matroid Rg, the real
affine cube. The 4-points planes of this matroid are the six faces and the six diagonal planes.
It is K-linear if and only if K has characteristic different from 2 [55] .

If, instead, the 4-points set 1256 is relaxed in AG(3,2)’, one obtains the smallest non-linear
matroid Fg [55]. The port of Fg at p, = 0 is the access structure F on {1,...,7} with minimal
qualified sets

min F = {123, 145,167, 246, 257,347, 356, 1247, 1256 }

The port of Fg at p, = 3 is isomorphic to F. The ports of Fg at p, = 1 and p, = 2 are both
isomorphic to F*, whose minimal qualified sets are

min F* = {123,145, 167, 246, 257, 1356, 2356, 3456, 3567, 1347, 2347, 3457, 3467}

All the other ports of Fg are isomorphic to the port of Fg at p, = 4, and hence isomorphic to
the access structure F on {1,...,7} with minimal qualified sets

min F = {123, 145, 246, 167, 257, 347, 1256, 1356, 2356, 3456, 3567}
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Observe that F is isomorphic to its dual access structure F*.

The relaxation of one of the diagonal planes of the real affine cube Rg, say 1256, produces
the matroid @s, again a smallest non-linear matroid [55]. Let Q be the port of Qs at p, = 0.
Its minimal qualified sets are

min Q = {123, 145, 246, 167, 257, 347, 1256, 1247, 1356, 2356, 3456, 3567}

All ports of Qg are isomorphic to Q or to its dual Q*. The access structure Q* has minimal
qualified sets

{123,145, 246, 167, 257,1247,1347, 1356, 2347, 2356, 3456, 3457, 3467, 3567 }

Finally, the Vamos matroid Vg is another smallest non-linear matroid [55]. Its 4-points
planes are 0123, 0145, 2345, 2367, and 4567. The minimal qualified sets of the port V of the
Vamos matroid Vg at p, = 0 are the 3-sets 123,145 and all 4-sets not containing them, except
2345,2367,4567. Every port of Vg is isomorphic either to V or to V*. The minimal qualified
sets of V* are the 3-sets 123, 145, 167 and all 4-sets not containing them, except 2367,4567. The
known bounds on the optimal information ratio of the ports of those non-linear matroids are
summarized as follows.

o 19/17 < o(V) < 4/3.

e 21/19 < o(V*) < 4/3.

(
(
o 5/4 < A(V) = A(V¥) < 4/3.
19/17 <o) if T =Aor I = Q.
)

e 9/8< ol ifI'=A"or I' = O*.
e 5/4 < A\(T') if T is one of the structures A, A*, Q, Q*.

The lower bounds were obtained in [5, 54, 58] by using the LP-technique enhanced with the
Ingleton inequality or with several information inequalities. The upper bounds for the ports of
the Vamos matroid were presented in [46].

By solving the LP problems 3.5 and 3.10 for those access structures with the given choices,
the lower bounds in Tables 4 and 5 are obtained. In particular, we have determined the exact
value of A(V) = A(V*) = 4/3. In addition, the construction we present in Section 5 implies

AQ) = \(Q*) =4/3.

Access structure Ap Aq New lower bound
A F, F 06 17 4/3 < A(T)
Q 04 15 4/3 < \(T)
1% 01 23 4/3 < \(T)

Table 4: Results on matroid ports using common information.
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Access structure A Y11 Yio 7o Yo Yoo New lower bound

A 03 12 56 9/8 < o(I)
A 03 12 47 | 12 47 56 33/29 < o(T)
F,Q 04 15 37 9/8 < (T
T 04 15 26 | 14 27 36 42/37 < o(T)
F 04 15 37 | 14 27 36 42/37 < o(T)
o 04 15 26 | 15 26 37 33/29 < o(I)
v 01 23 45 | 23 45 67 33/29 < o(I)

V* 0oL 23 45 9/8 < o(T)

Table 5: Results on matroid ports using AK information for the subsets (Z1, Y11, Yi2) and
(Z2,Ya21,Y29).

5 Constructions

We present here linear secret sharing schemes for the access structures I'yg and I'vg3 on five
participants and also for the matroid port Q. These constructions and the lower bounds for
linear schemes that have been obtained with our enhancement of the LP-technique determine
the exact values of A(T'40), A(I'73), and A(Q). As a consequence, the exact values of A(I') and
X(F) are now determined for all access structures on five participants.

We present first a linear scheme with information ratio 5/3 for the access structure I'yp on
five participants. For a finite field K with characteristic larger than 5, consider the K-linear

secret sharing scheme that is determined by the K-linear code with generator matrix

— =
— o O
S O =
= o O
O = O
— N
N = O

1
0
0

Namely, every codeword corresponds to a distribution of shares. The vertical bars indicate
which positions of the codeword correspond to the secret and to every participant. In this case,
a codeword

(Spy | Sats Sa2 | Sp1, 802 | Sc | sa | se) € K®

corresponds to a distribution of shares in which the secret value is s,, € K, the share for a is
(841, 842) € K2, and so on. The access structure of this linear scheme is T'y9. Another K-linear
secret sharing scheme for I'yg is given by the K-linear code with generator matrix

1 -1{1 1 040 1 0j0 O 0 0|0 O 1|1 0 1
2 10011 0140 0 0O0|1 0 1|0 01
o 301101 1{0 00 0j0 0 1]0 0 O
0 0|01 0(0O0O0]1 OO0O0O(0O1TO0(0O01
1 1700 1j0 0 0/0O 1 0 0|0 O 1]0 1 O
-1 2010401 0j0 0O 1 0j0O 0 0|0 0 1
1 1400 1{0 0 1/0 00100 1|0 0O
0 0|00 0[O0 OO0 O0OO0O(O0OO0T1(0 01

By concatenating these two schemes, we obtain a scheme for I'yg with information ratio 5/3.
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If K is a field with characteristic 2, the K-linear code with generator matrix

1 00/000O0O0O11O0O0OO0OOO11O0O0OO0OO0OO0O0O0OO0O1TO0O0OQO0
010/{00O0O0CO001O0O0O0O0O01O0O0OO0O0O0OO0OO0O|O01O0O0
0601000000 O01O0O00O01O0O00O0O0OO0|0O0TI1T®O0
00 0/100O0O0CO00O0O0OCO0O01O0/0O0O0O61O0/10O0O0|1 0O0TFO0
0 00/{010O0O0O01O01O0/00O0O0T1{000O00©001
0o 00/{00O01O0O00O0O0O01/0010O0/0O0O0O0C11T1O0
o0 0/{00O0100O0O0BO0O0K1O01O0O000O0O0O0O01T11
0oo0o0/00O0CO0O01{01011/0110O0/00O0O0[0O0T1TFO0
0oo0o0/000O0O0O0O110110411101{]01O0O01 010
0oo00/0OOO0O0O0CO010O01141717101{0010f1 100
0o o0o0/00O0O0O0CO0O0O0101;2717111/0001{0100O0

defines a K-linear secret sharing scheme with access structure I'73. Its average information ratio
is equal to 23/15.

Finally, we present a construction of a linear secret sharing scheme with information ratio
4/3 for the access structure Q. It is obtained by combining four ideal secret sharing schemes
in a A-decomposition with A = 3. The reader is referred to [56, 66] for more information about
A-decompositions. Let K be a finite field with characteristic different from 2. The first scheme
is the one giving by the K-linear code with generator matrix

000011 1

1
0 1
0 0
1 1

— = O

1 100
0101
1 111

—_ =

Its access structure R is the port at p, = 0 of the matroid Rg, the real affine cube. One can see
that all minimal qualified sets of Q except 1256 are also qualified sets of R. On the other hand,
the unqualified sets of Q are also unqualified sets of R. The second and third pieces in the
decomposition are ideal schemes given by K-linear codes with generator matrices of the form

00 0 0 1 1 1 1

00 1 1 0 1 1

01 2z 1 24 1 2z 1

11 1 1 1 1 1 1
If z0 =0 and z4 = zg = —1, that linear code represents the matroid that is obtained from Rg
by relaxing the 4-points planes 0347 and 1256. Therefore, we obtain a secret sharing scheme in
which 347 is not qualified. If, instead, we take zo = —1 and z4 = zg = 0, the matroid represented

by that K-linear code is obtained from Rg by relaxing the 4-point planes 1256, 0246, and 0257.
In the corresponding secret sharing scheme, the sets 246 and 257 are unqualified. The fourth
scheme is given by the K-linear code with generator matrix

0 0 001111
0 -1 110011
0 1 010101
1 1 111111

which represents the matroid that is obtained from Rg by relaxing the 4-points planes 1256,
0145, and 0167. The sets 145 and 167 are not qualified in the corresponding scheme. Observe
that every minimal qualified set of Q appears in at least 3 of those 4 ideal linear secret sharing
schemes. Therefore, we get a linear secret sharing scheme for Q with information ratio 4/3.
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6 Open Problems

The first open problem worth mentioning is to fully conclude the project initiated by Jackson
and Martin [37] by determining the values of o(I') and o (I") for all access structures on five
participants.

Many examples of access structures with (I') = o(I") = A(T') are known., and also examples
with £(I') < o(T") and (I') < A(I'). An open problem is to find the smallest examples with
o(I') < A(T"), and also find examples in each of the following situations: «(I') = o(T") < X(T'),
k() < o(T) = A(T), and k(T') < o(T") < A(T).

Another interesting problem is to find matroid ports such that o(I") or A(T") are greater than
3/2 or even arbitrarily large.

The main direction for future work is to obtain a better understanding of the techniques
introduced here in order to improve, if possible, the known asymptotic lower bounds on o(T).
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