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Abstract

In this work we continue the study on the round complexity of secure two-party computation
with black-box simulation.

Katz and Ostrovsky in CRYPTO 2004 showed a 5 (optimal) round construction assuming
trapdoor permutations for the general case where both players receive the output. They also
proved that their result is round optimal. This lower bound has been recently revisited by Garg
et al. in Eurocrypt 2016 where a 4 (optimal) round protocol is showed assuming a simultaneous
message exchange channel. Unfortunately there is no instantiation of the protocol of Garg et
al. under standard polynomial-time hardness assumptions.

In this work we close the above gap by showing a 4 (optimal) round construction for secure
two-party computation in the simultaneous message channel model with black-box simulation,
assuming trapdoor permutations against polynomial-time adversaries.

Our construction for secure two-party computation relies on a special 4-round protocol for
oblivious transfer that nicely composes with other protocols in parallel. We define and construct
such special oblivious transfer protocol from trapdoor permutations. This building block is
clearly interesting on its own. Our construction also makes use of a recent advance on non-
malleability: a delayed-input 4-round non-malleable zero knowledge argument.



Contents

1 Introduction 3
1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Special One-Sided Simulatable OT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Definitions and Tools 9
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Standard Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Σ-protocol and OR Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Delayed-Input Non-Malleable Zero Knowledge . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Two-party Computation with a Simultaneous Message Exchange Channel . . . . . . 17
2.7 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Our OT Protocol Πγ
OT = (SOT , ROT ) 20

4 Secure 2PC in the Simultaneous Message Exchange Model 29
4.1 Formal Description of Our Π2PC = (P1, P2) . . . . . . . . . . . . . . . . . . . . . . . 29

5 Acknowledgments 36

2



1 Introduction

Obtaining round-optimal secure computation [Yao82, GMW87] has been a long standing open prob-
lem. For the two-party case the work of Katz and Ostrovsky [KO04] demonstrated that 5 rounds
are both necessary and sufficient, with black-box simulation, when both parties need to obtain the
output. Their construction relies on the use of trapdoor permutations1. A more recent work of
Ostrovsky et al. [ORS15] showed that a black-box use of trapdoor permutations is sufficient for
obtaining the above round-optimal construction.

A very recent work of Garg et al. [GMPP16b] revisited the lower bound of [KO04] when the
communication channel allows both players to send messages in the same round, a setting that
has been widely used when studying the round complexity of multi-party computation. Focusing
on the simultaneous message exchange model, Garg et al. showed that 4 rounds are necessary
to build a secure two-party computation (2PC) protocol for every functionality with black-box
simulation. In the same work they also designed a 4-round secure 2PC protocol for every func-
tionality. However their construction compared to the one of [KO04] relies on much stronger
complexity assumptions. Indeed the security of their protocol crucially relies on the existence
of a 3-round 3-robust [GMPP16a, Pol16] parallel non-malleable commitment scheme. According
to [GMPP16a, Pol16] such commitment scheme can be constructed either through non-falsifiable
assumptions (i.e., using the construction of [PPV08]) or through sub-exponentially-strong assump-
tions (i.e., using the construction of [COSV16]). A recent work of Ananth et al. [ACJ17] studies
the multi-party case in the simultaneous message exchange channel. More precisely the authors
of [ACJ17] provide a 5-round protocol to securely compute every functionality for the multi-party
case under the Decisional Diffie-Hellman (DDH) assumption and a 4-round protocol assuming one-
way permutations and sub-exponentially secure DDH. The above gap in the state of affairs leaves
open the following interesting open question:
Open Question: is there a 4-round construction for secure 2PC for any functionality in the
simultaneous message exchange model assuming (standard) trapdoor permutations?

1.1 Our Contribution

In this work we solve the above open question. Moreover our construction only requires black-box
simulation and is therefore round optimal. We now describe our approach.

As discussed before, the construction of [GMPP16b] needs a 3-round 3-robust parallel non-
malleable commitment, and constructing this primitive from standard polynomial-time assumptions
is still an open problem. We circumvent the use of this primitive through a different approach. As
done in [GMPP16b], we start considering the 4-round 2PC protocol of [KO04] (KO protocol) that
works only for those functionalities where only one player receives the output (we recall that the
KO protocols do not assume the existence of a simultaneous message exchange channel). Then
as in [GMPP16b] we consider two simultaneous executions of the KO protocol in order to make
both parties able to obtain the output assuming the existence of a simultaneous message exchange
channel. We describe now the KO protocol and then we explain how we manage to avoid 3-round
3-robust parallel non-malleable commitments.
The 4-round KO protocol. Following Fig. 1, at a very high level the KO protocol between the
players P1 and P2, where only P1 gets the output, works as follows. Let f be the function that P1

1The actual assumption is enhanced trapdoor permutations, but for simplicity in this paper we will omit the word
enhanced assuming it implicitly.
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and P2 want to compute. In the second round P2 generates, using his input, a Yao’s garbled circuit C
for the function f with the associated labels L. Then P2 commits to C using a commitment scheme
that is binding if P2 runs the honest committer procedure. This commitment scheme however
admits also an indistinguishable equivocal commitment procedure that allows later to open the
equivocal commitment as any message. Let com0 be such commitment. In addition P2 commits
to L using a statistically binding commitment scheme. Let com1 be such commitment. In the last
round P2 sends the opening of the equivocal commitment to the message C. Furthermore, using L
as input, P2 in the 2nd and in the 4th round runs as a sender of a specific 4-round oblivious transfer
protocol KOOT that is secure against a malicious receiver and secure against a semi-honest sender.
Finally, in parallel with KOOT, P2 computes a specific delayed-input zero-knowledge argument of
knowledge (ZKAoK) to prove that the labels L committed in com1 correspond to the ones used in
KOOT, and that com0 is binding since it has been been computed running the honest committer on
input some randomness and some message. P1 plays as a receiver of KOOT in order to obtain the
labels associated to his input and computes the output of the two-party computation by running
C on input the received labels. Moreover P1 acts as a verifier for the ZKAoK where P2 acts as a
prover.
The 4-round protocol of Garg et al. In order to allow both parties to get the output in 4
rounds using a simultaneous message exchange channel, [GMPP16b] first considers two simultaneous
execution of the KO protocol (Fig. 2). Such natural approach yields to the following two problems
(as stated in [GMPP16b]): 1) nothing prevents an adversary from using two different inputs in the
two executions of the KO protocol; 2) an adversary could adapt his input based on the input of the
other party, for instance the adversary could simply forward the messages that he receives from the
honest party. To address the first problem the authors of [GMPP16b] add another statement to the
ZKAoK where the player Pj (with j = 1, 2) proves that both executions of the KO protocol use the
same input. The second problem is solved in [GMPP16b] by using a 3-round 3-robust non-malleable
commitment to construct KOOT and the ZKAoK in such a way that the input used by the honest
party in KOOT cannot be mauled by the malicious party. The 3-robustness is required to avoid
rewinding issues in the security proof. Indeed, in parallel with the 3-round 3-robust non-malleable
commitment a WIPoK is executed in KOOT. At some point the security proof of [GMPP16b]
needs to rely on the witness-indistinguishability property of the WIPoK while the simulator of
the ZKAoK is run. The simulator for the ZKAoK rewinds the adversary from the third to the
second round, therefore rewinding also the challenger of the WIPoK of the reduction. To solve
this problem [GMPP16b, Pol16] rely on the stronger security of a 3-round 3-robust parallel non-
malleable commitment scheme. Unfortunately, constructing this tool with standard polynomial-time
assumptions is still an open question.
Our 4-round protocol. In our approach (that is summarized in Fig. 3), in order to solve problems 1
and 2 listed above using standard polynomial-time assumption (trapdoor permutations), we replace
the ZKAoK and KOOT (that uses the 3-round 3-robust parallel commitment scheme) with the
following four tools. 1) A 4-round delayed-input non-malleable zero-knowledge (NMZK) argument
of knowledge (AoK) NMZK from one-way functions (OWFs) recently constructed in [COSV17a] (the
theorem proved by NMZK is roughly the same as the theorem proved ZKAoK of [GMPP16b]). 2) A
new special OT protocol Πγ

−−→
OT

that is one-sided simulatable [ORS15]. In this security notion for OT
it is not required the existence of a simulator against a malicious sender, but only that a malicious
sender cannot distinguish whether the honest receiver uses his real input or a fixed input (e.g., a
string of 0s). Moreover some security against a malicious sender still holds even if the adversary can
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perform a mild form of “rewinds" against the receiver, and the security against a malicious receiver
holds even when an interactive primitive (like a WIPoK) is run in parallel (more details about the
security provided by Πγ

−−→
OT

will be provided later). 3) An interactive commitment scheme PBCOM

that allows each party to commit to his input. In more details, in our 2PC protocol each party
commits two times to his input and then proves using NMZK that a) the two values committed are
equal and b) this committed value corresponds to the input used in the 2 simultaneous executions
of our (modified KO) protocol2. 4) A combination of two instantiations of Special Honest Verifier
Zero-Knowledge (Special HVZK) PoK thus obtaining a WIPoK ΠOR. The idea behind the use
of a combination of Special HVZK PoKs was introduced recently in [COSV17a]. The aim of this
technique is to replace a WIPoK by non-interactive primitives (like Special HVZK) in such a way
that rewinding issues, due to the other subprotocol, can be avoided. We use ΠOR in our protocol to
force each party to prove knowledge of one of the values committed using PBCOM. In the security
proof we will use the PoK property of ΠOR to extract the input from the malicious party.
Our security proof. In our security proof we exploit immediately the major differences with [GMPP16b].
Indeed we start the security proof with an hybrid experiment where the simulator of NMZK is used,
and we are guaranteed that the malicious party is behaving honestly by the non-malleability/extractability
of NMZK. Another major difference with the KO security proof is that in our 2PC protocol the
simulator extracts the input from the malicious party through ΠOR whereas in the KO protocol’s
security proof the extraction is made from KOOT (that is used in a non-black box way).

We remark that, in all the steps of our security proof the simulator-extractor of NMZK is
used to check every time that the adversary is using the same input in both the executions of
the KO protocol even though the adversary is receiving a simulated NMZK of a false statement.
More precisely, every time that we change something obtaining a new hybrid experiment, we prove
that: 1) the output distributions of the experiments are indistinguishable; 2) the malicious party
is behaving honestly (the statement proved by the NMZK given by the adversary is true). We will
show that if one of these two invariants does not hold then we can make a reduction that breaks a
cryptographic primitive.
The need of a special 4-round OT protocol. Interestingly, the security proof has to address a
major issue. After we switch to the simulator of the NMZK, we have that in some hybrid experiment,
we change the input of the receiver of Πγ

−−→
OT

in some experiment Hi (following the approach used
in the security proof of the KO protocol). To demonstrate the indistinguishability between Hi and
Hi−1 we want to rely on the security of Πγ

−−→
OT

against a malicious sender. Therefore we construct
an adversarial sender AOT of Πγ

−−→
OT

. AOT acts as a proxy for the messages of Πγ
−−→
OT

and internally
computes the other messages of our protocol. In particular, the 1st and the 3rd rounds of Πγ

−−→
OT

are given by the challenger (that acts as a receiver of Πγ
−−→
OT

), and the 2nd and the 4th messages
of Πγ

−−→
OT

are given by the malicious party. Furthermore, in order to compute the other messages of
our 2PC protocol AOT needs to run the simulator-extractor of NMZK that, and this requires to
rewind from the 3rd to 2nd round. This means that AOT needs to complete a 3rd round of Πγ

−−→
OT

,
for every different 2nd round that he receives (this is due to the rewinds made by the simulator of
NMZK that are emulated by AOT ). We observe that since the challenger cannot be rewound, AOT
needs a strategy to answer to these multiple queries w.r.t. Πγ

−−→
OT

without knowing the randomness
and the input used by the challenger so far. For these reasons we need Πγ

−−→
OT

to enjoy an additional

2Only one execution of NMZK is run by each party, in order to allow a party to prove that the committed values
using PBCOM are the same. We just “expand" the statement proved by NMZK.
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property: the replayability of the 3rd round. More precisely, given the messages computed by an
honest receiver, the third round can be indistinguishability used to answer to any second round of
Πγ
−−→
OT

sent by a malicious sender. Another issue is that the idea of the security proof explained so far
relies on the simulator-extractor of NMZK and this simulator rewinds also from the 4th to the 3rd
round. The rewinds made by the simulator-extractor allow a malicious receiver to ask for different
3rd rounds of Πγ

−−→
OT

. Therefore we need our Πγ
−−→
OT

to be also secure against a more powerful malicious
receiver that can send multiple (up to a polynomial γ) third rounds to the honest sender. As far
as we know the literature does not provide an OT with the properties that we require, so in this
work we also provide an OT protocol with these additional features. This clearly is of independent
interest.
Input extraction. One drawback of Πγ

−−→
OT

is that the simulator against a malicious receiver R?OT is
not able to extract the input of R?OT . This feature is crucial in the security proof of KO, therefore we
need another way to allow the extraction of the input from the malicious party. In order to do that,
as described before, each party commits two times using PBCOM; let c0, c1 be the commitments
computed by P2. P2 proves, using ΠOR, knowledge of either the message committed in c0 or the
message committed in c1. Additionally, using NMZK, P2 proves that c0 and c1 are commitments
of the same value and that this value corresponds to the input used in the two executions of the
modified KO protocol. This combination of commitments, ΠOR and NMZK allows the correct
extraction through the PoK-extractor of ΠOR.

KOOT:

WIPoK + Com
ZKAoK

com0 = com(C) com1 = com(L)

C

P2 P1

Figure 1: The 4-round KO protocol from trapdoor permutations for functionalities where only one
player receives the output.

KOOT:

WIPoK+ZKAoK

com(C)com(L)

C

P2 P1

robust nmcom

com(C̃)com(L̃)

ZKAoK
KOOT:

WIPoK+
robust nmcomC̃

Figure 2: The 4-round protocol of [GMPP16b] for any functionality assuming 3-round 3-robust
parallel non-malleable commitments in the simultaneous message exchange model.

1.2 Special One-Sided Simulatable OT

One of the main building blocks of our 2PC protocol is an OT protocol Πγ
OT = (SOT , ROT ) one-

sided simulatable3. Our Πγ
OT has four rounds where the first (ot1) and the third (ot3) rounds are

3In the 2PC protocol we will actually use Πγ
−−→
OT

that roughly corresponds to parallel executions of Πγ
OT . More

details will be provided later.
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Πγ
−−→
OT

NMZK

com(C)com(L)

C

P2 P1
com(C̃)com(L̃)

NMZK

C̃

Πγ
−−→
OTΠORΠOR

c0, c1 c̃0, c̃1

Figure 3: Our 4-round protocol for any functionality assuming trapdoor permutations in the simul-
taneous message exchange model. c0 and c1 (c̃0 and c̃1) are commitments of P2’s (P1’s) input.

played by the receiver, and the remaining rounds (ot2 and ot4) are played by the sender. In addition
Πγ
OT enjoys the following two additional properties.
1. Replayable third round. Let (ot1, ot2, ot3, ot4) be the messages exchanged by an honest receiver

and a malicious sender during an execution of Πγ
OT . For any honestly computed ot′2, we have

that (ot1, ot2, ot3) and (ot1, ot
′
2, ot3) are identically distributed. Roughly, we are requiring that

the third round can be reused in order to answer to any second round ot′2 sent by a malicious
sender.

2. Repeatability. We require Πγ
OT to be secure against a malicious receiver R? even when the last

two rounds of Πγ
OT can be repeated multiple times. More precisely a 4-round OT protocol

that is secure in this setting can be seen as an OT protocol of 2 + 2γ rounds, with γ ∈
{1, . . . , poly(λ)} where λ represents the security parameter. In this protocol R?, upon receiving
the 4th round, can continue the execution with SOT by sending a freshly generated third round
of Πγ

OT up to total of γ 3rd rounds.
Roughly, we require that the output of such R? that runs Πγ

OT against an honest sender can
be simulated by an efficient simulator Sim that has only access to the ideal world functionality
FOT and oracle access to R?.

The security of Πγ
OT is based on the existence of trapdoor permutations4.

Our techniques. In order to construct Πγ
OT we use as a starting point the following basic 3-round

semi-honest OT Πsh based on trapdoor permutations (TDPs) of [EGL82, KO04]. Let l0, l1 ∈ {0, 1}λ
be the input of the sender S and b be the input bit of the receiver R.

1. The sender S chooses a trapdoor permutation (f, f−1)← Gen(1λ) and sends f to the receiver
R.

2. R chooses x← {0, 1}λ and z1−b ← {0, 1}λ, computes zb = f(x) and sends (z0, z1).
3. For c = 0, 1 S computes and sends wc = lc ⊕ hc(f−1(zc))

where hc(·) is a hardcore bit of f . If the parties follow the protocol (i.e. in the semi-honest setting)
then S cannot learn the receiver’s input (the bit b) as both z0 and z1 are random strings. Also, due
to the security of the TDP f , R cannot distinguish w1−b from random as long as z1−b is randomly
chosen. If we consider a fully malicious receiver R? then this protocol is not secure anymore. Indeed
R? could just compute z1−b = f(y) picking a random y ← {0, 1}λ. In this way R? can retrieve both
the inputs of the sender l0 and l1. In [KO04] the authors solve this problem by having the parties

4As suggested by Ivan Damgård and Claudio Orlandi in a personal communication, following the approach
of [GKM+00], Πγ

OT can be also constructed by relying on public key encryption schemes with special properties.
More precisely the public key encryption scheme has to be such that that either the ciphertexts can be sampled
without knowing the plaintext, or the public key can be sampled without knowing the corresponding secret key. In
this paper we give a formal construction and proof only for trapdoor permutations.
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engaging a coin-flipping protocol such that the receiver is forced to set at least one between z0 and
z1 to a random string. This is done by forcing the receiver to commit to two strings (r0, r1) in
the first round (for the coin-flipping) and providing a witness-indistinguishable proof of knowledge
(WIPoK) that either z0 = r0 ⊕ r′0 or z1 = r1 ⊕ r′1 where r′0 and r′1 are random strings sent by the
sender in the second round. The resulting protocol, as observed in [ORS15], leaks no information
to S about R’s input. Moreover the soundness of the WIPoK forces a malicious R? to behave
honestly, and the PoK allows to extract the input from the adversary in the simulation. Therefore
the protocol constructed in [KO04] is one-sided simulatable. Unfortunately this approach is not
sufficient to have an OT protocol that has a replayable third round. This is due to the to the added
WIPoK. More precisely, the receiver has to execute a WIPoK (acting as a prover) in the first three
rounds. Clearly, there is no 3-round WIPoK such that given an accepting transcript (a, c, z) one can
efficiently compute multiple accepting transcripts w.r.t. different second rounds without knowing
the randomness used to compute a. This is the reason why we need to use a different approach in
order to construct an OT protocol simulation-based secure against a malicious receiver that also
has a replayable 3rd round.

Our construction: Πγ
OT . We start by considering a trick proposed in [ORS15]. In [ORS15]

the authors construct a 4-round black-box OT starting from Πsh. In order to force the receiver
to compute a random zb−1, in the first round R sends two commitments c0 and c1 such that
cb = Eqcom(·), c1−b = Eqcom(r1−b). Eqcom is a commitment scheme that is binding if the commit-
ter runs the honest committer procedure; however this commitment scheme admits also an indis-
tinguishable equivocal commitment procedure that allows later to open the equivocal commitment
as any message. R then proves using a special WIPoK that either c0 or c1 is computed using the
honest procedure (i.e., at least one of these commitments is binding). Then S in the second round
computes r′0 ← {0, 1}λ, r′1 ← {0, 1}λ and two TDPs f0, f1 with the respective trapdoor and sends
(r′0, r

′
1, f0, f1) to R. R, upon receiving (r′0, r

′
1, f0, f1), picks x ← {0, 1}λ, computes rb = fb(x) ⊕ r′b

and sends the opening of c1−b to the message r1−b and the opening of cb to the message rb. At this
point the sender computes and sends w0 = l0 ⊕ hc(f−1

0 (r0 ⊕ r′0)), w1 = l1 ⊕ hc(f−1
1 (r1 ⊕ r′1)). Since

at least one between c0 and c1 is binding (due to the WIPoK), a malicious receiver can retrieve
only one of the sender’s input lb. We observe that this OT protocol is still not sufficient for our
propose due to the WIPoK used by the receiver (i.e., the 3rd round is not replayable). Moreover
we cannot remove the WIPoK otherwise a malicious receiver could compute both c0 and c1 using
the equivocal procedure thus obtaining l0 and l1. Our solution is to replace the WIPoK with some
primitives that make replayable the 3rd round, still allowing the receiver to prove that at least
one of the commitments sent in the first round is binding. Our key-idea is two use a combination
of instance-dependent trapdoor commitment (IDTCom) and non-interactive commitment schemes.
An IDTCom is defined over an instance x that could belong to the NP-language L or not. If x /∈ L
then the IDTCom is perfectly binding, otherwise it is equivocal and the trapdoor information is
represented by the witness w for x. Our protocol is described as follows. R sends an IDTCom
tcom0 of r0 and an IDTCom tcom1 of r1. In both cases the instance used is com, a perfectly binding
commitment of the bit b. The NP-language used to compute tcom0 consists of all valid perfectly
binding commitments of the message 0, while the NP-language used to compute tcom1 consists of
all valid perfectly binding commitments of the message 1.

This means that tcomb can be opened to any value5 and tcom1−b is perfectly binding (we recall
5The decommitment information of com represents the trapdoor of the IDTCom tcomb.
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that b is the input of the receiver). It is important to observe that due to the binding property
of com it could be that both tcom0 and tcom1 are binding, but it can never happen that they are
both equivocal. Now we can replace the two commitments and the WIPoK used in [ORS15] with
tcom0, tcom1 and com(b) that are sent in the first round. The rest of the protocol stay the same as
in [ORS15] with the difference that in the third round the openings to the messages r0 and r1 are
w.r.t. tcom0 and tcom1. What remains to observe is that when a receiver provides a valid third
round of this protocol then the same message can be used to answer all second rounds. Indeed,
a well formed third round is accepting if and only if the opening w.r.t. tcom0 and tcom1 are well
computed. Therefore whether the third round is accepting or not does not depend on the second
round sent by the sender.

Intuitively this protocol is also already secure when we consider a malicious receiver that can
send multiple third rounds up to a total of γ 3rd rounds, thus obtaining an OT protocol of 2 + 2γ
rounds (repeatability). This is because, even though a malicious receiver obtains multiple fourth
rounds in response to multiple third rounds sent by R?, no information about the input of the sender
is leaked. Indeed, in our Πγ

OT , the input of the receiver is fixed in the first round (only one between
tcom0 and tcom1 can be equivocal). Therefore the security of the TDP ensures that only lb can be
obtained by R? independently of what he does in the third round. In the formal part of the paper
we will show that the security of the TDP is enough to deal with such scenario.

We finally point out that the OT protocol that we need has to allow parties to use strings instead
of bits as input. More precisely the sender’s input is represented by (l10, l

1
1, . . . , l

m
0 , l

m
1 ) where each

lib is an λ-bit length string (for i = 1, . . . ,m and b = 0, 1), while the input of the receiver is λ-bit
length string.

This is achieved in two steps. First we construct an OT protocol where the sender’s input is
represented by just two m-bit strings l0 and l1 and the receiver’s input is still a bit. We obtain
this protocol by just using in Πγ

OT a vector of m hard-core bits instead of just a single hard core
bit following the approach of [KO04, GMPP16b]. Then we consider m parallel execution of this
modified Πγ

OT (where the the sender uses a pair of strings as input) thus obtaining Πγ
−−→
OT

.

2 Definitions and Tools

2.1 Preliminaries

We denote the security parameter by λ and use “||” as concatenation operator (i.e., if a and b are
two strings then by a|b we denote the concatenation of a and b). For a finite set Q, x← Q sampling
of x from Q with uniform distribution. We use the abbreviation ppt that stays for probabilistic
polynomial time. We use poly(·) to indicate a generic polynomial function.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset of {0, 1}∗ × {0, 1}∗
such that membership of (x,w) in Rel can be decided in time polynomial in |x|. For (x,w) ∈ Rel,
we call x the instance and w a witness for x. For a polynomial-time relation Rel, we define the
NP-language LRel as LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation (that is, RelL is such
that L = LRelL). We denote by L̂ the language that includes both L and all well formed instances
that do not have a witness. Moreover we require that membership in L̂ can be tested in polynomial
time. We implicitly assume that a PPT algorithm that is supposed to receive an instance in L̂ will
abort immediately if the instance does not belong to L̂.
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Let A and B be two interactive probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ) the
distribution of B’s output after running on private input β with A using private input α, both
running on common input γ. Typically, one of the two algorithms receives 1λ as input. A transcript
of 〈A(α), B(β)〉(γ) consists of the messages exchanged during an execution where A receives a private
input α, B receives a private input β and both A and B receive a common input γ. Moreover, we will
refer to the view of A (resp. B) as the messages it received during the execution of 〈A(α), B(β)〉(γ),
along with its randomness and its input. We say that a protocol (A,B) is public coin if B sends to
A random bits only. When it is necessary to refer to the randomness r used by and algorithm A we
use the following notation: A(·; r).

2.2 Standard Definitions

Definition 1 (Proof/argument system). A pair of ppt interactive protocol Π = (P,V) constitutes
a proof system (resp., an argument system) for an NP-language L, if the following conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

Prob [ 〈P(w),V〉(x) = 1 ] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P?, there exists a negligible
function ν such that for every x /∈ L and every z:

Prob [ 〈P?(z),V〉(x) = 1 ] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-input completeness
if P needs x and w only to compute the last round and V needs x only to compute the output. Before
that, P and V run having as input only the size of x. The notion of delayed-input completeness was
defined in [CPS+16a]. We say that the transcript τ of an execution b = 〈P(z),V〉(x) is accepting if
b = 1.

Definition 2 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be en-
sembles, where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ). We say
that X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y , if for
every ppt distinguisher D there exists a negligible function ν such that for sufficiently large λ ∈ N,∣∣∣Prob [ t← Xλ : D(1λ, t) = 1

]
− Prob

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ,
it is possible to omit the auxiliary input 1λ. In this paper we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 2 with the only difference that the
distinguisher D is unbounded. In this case use X ≡s Y to denote that two ensembles are statistically
indistinguishable.

Definition 3 (Proof of Knowledge [LP11]). A protocol that is complete Π = (P,V) is a proof of
knowledge (PoK) for the relation RelL if there exist a probabilistic expected polynomial-time machine
E, called the extractor, such that for every algorithm P?, there exists a negligible function ν, every
statement x ∈ {0, 1}λ, every randomness r ∈ {0, 1}? and every auxiliary input z ∈ {0, 1}?,

10



Prob [ 〈P?r (z),V〉(x) = 1 ] ≤ Prob
[
w ← EP

?
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK) if the above condition
holds w.r.t. any ppt P?.

In our security proofs we make use of the following observation. An interactive protocol Π that
enjoys the property of completeness and PoK (AoK) is a proof (an argument) system. Indeed sup-
pose by contradiction that is not. By the definition of PoK (AoK) it is possible to extract the witness
for every theorem x ∈ {0, 1}λ proved by P?r with probability greater than Prob [ 〈P?r (z),V〉(x) = 1 ];
contradiction.

In this paper we also consider the adaptive-input PoK/AoK property for all the protocols that
enjoy delayed-input completeness. Adaptive-input PoK/AoK ensures that the PoK/AoK prop-
erty still holds when a malicious prover can choose the statement adaptively at the last round
(see [CPS+16b] for more discussions about adaptive-input PoK/AoK). In this paper we consider
the 3-round public-coin Special HVZK PoK proposed by Lapidot and Shamir [LS90], that we de-
note by LS. LS enjoys delayed-input completeness since the inputs for both P and V are needed
only to play the last round, and only the length of the instance is needed earlier. LS also enjoys
adaptive-input PoK. In particular in our paper we use use a 4-round delayed-input, special HVZK,
adaptive-input AoK, that is a variant of LS [Fei90] that relies on OWFs only. The additional round
is indeed needed to instantiate the commitment scheme used in LS under any OWF.

Definition 4 (Witness Indistinguishable (WI)). An argument/proof system Π = (P,V), is Witness
Indistinguishable (WI) for a relation Rel if, for every malicious ppt verifier V?, there exists a
negligible function ν such that for all x,w,w′ such that (x,w) ∈ Rel and (x,w′) ∈ Rel it holds that:∣∣∣Prob [ 〈P(w),V?〉(x) = 1 ]− Prob

[
〈P(w′),V?〉(x) = 1

] ∣∣∣ < ν(|x|).

Obviously one can generalize the above definitions of WI to their natural adaptive-input variants,
where the adversarial verifier can select the statement and the witnesses adaptively, before the prover
plays the last round (see [CPS+16b] for a formal definition of adaptive-input WI).

Definition 5 (Yao’s garbled circuit). We view Yao’s garbled circuit scheme as a tuple of ppt
algorithms (GenGC,EvalGC) where GenGC is the generation procedure which generates a garbled
circuit for a circuit GCy along with labels, and EvalGC is the evaluation procedure which evaluates
the circuit on the correct labels. Each individual wire i of the circuit is assigned two labels, namely
Zi,0, Zi,1. More specifically, the two algorithms have the following format:

- (Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy)← GenGC(1λ, F, y): GenGC takes as input a security parameter
λ, a circuit F and a string y ∈ {0, 1}λ. It outputs a garbled circuit GCy along with the set of
all input-wire labels {Z1,b, . . . , Zλ,b}b∈{0,1}. The garbled circuit may be viewed as representing
the function F (·, y).

- v = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ): Given a garbled circuit GCy and a set of input-wire labels
Zi,xi where xi ∈ {0, 1} for i = 1, . . . , λ, EvalGC outputs either an invalid symbol ⊥, or a value
v = F (x, y).
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The following properties are required.
Correctness. Prob [ F (x, y) = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ) ] = 1.
Security. There exists a ppt simulator SimGC such that for any (F, x) and uniformly random

labels Z1,x1 , . . . , Zλ,xλ , it holds that:

(GCy, Z1,x1 , . . . , Zλ,xλ) ≈ SimGC(1λ, F, x, v)

where (Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy)← GenGC(1λ, F, y) and v = F (x, y).

Definition 6 (Trapdoor permutation). Let F be a triple of ppt algorithms (Gen,Eval, Invert) such
that if Gen(1λ) outputs a pair (f, td), then Eval(f, ·) is a permutation over {0, 1}λ and Invert (f, td, ·)
is its inverse. F is a trapdoor permutation such that for all ppt adversaries A:

Prob
[

(f, td)← Gen(1λ); y ← {0, 1}λ, x← A(f, y) : Eval(f, x) = y
]
≤ ν(λ).

For convenience, we drop (f, td) from the notation, and write f(·), f−1(·) to denote algorithms
Eval(f, ·), Invert(f, td, ·) respectively, when f , td are clear from the context. Following [KO04,
GMPP16b] we assume that F satisfies (a weak variant of) “certifiability": namely, given some f it
is possible to decide in polynomial time whether Eval(f, ·) is a permutation over {0, 1}λ. Let hc be
the hardcore bit function for λ bits for the family F . λ hardcore bits are obtained from a single-bit
hardcore function h and f ∈ F as follows: hc(z) = h(z)||h(f(z))|| . . . ||h(fλ−1(z)). Informally, hc(z)
looks pseudorandom given fλ(z)6.

2.3 Commitment Schemes

Definition 7 (Commitment Scheme). Given a security parameter 1λ, a commitment scheme CS =
(Sen,Rec) is a two-phase protocol between two ppt interactive algorithms, a sender Sen and a
receiver Rec. In the commitment phase Sen on input a message m interacts with Rec to produce a
commitment com, and the private output d of Sen.

In the decommitment phase, Sen sends to Rec a decommitment information (m, d) such that Rec
accepts m as the decommitment of com.

Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment scheme if the following
properties hold:
Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of an
execution of CS = (Sen,Rec) where Sen runs on input a message m. Let d be the private
output of Sen in this phase.

• Decommitment phase7. Rec on input m and d accepts m as decommitment of com.

Statistical (resp. Computational) Hiding([Lin10]): for any adversary (resp. ppt ad-
versary) A and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment
ExpHidingbA,CS(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same
length.

6 fλ(z) means the λ-th iteration of applying f on z.
7In this paper we consider only non-interactive commitment and decommitment phase.
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• Sen on input the message mb interacts with A to produce a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. ppt adversary) A, there exist a negligible function ν, s.t.:∣∣∣Prob [ ExpHiding0
A,CS(λ) = 1

]
− Prob

[
ExpHiding1

A,CS(λ) = 1
] ∣∣∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com generated during
the commitment phase by a possibly malicious unbounded (resp. malicious ppt) sender Sen?

there exists a negligible function ν such that Sen?, with probability at most ν(λ), outputs two
decommitments (m0, d0) and (m1, d1), with m0 6= m1, such that Rec accepts both decommit-
ments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.
When a commitment scheme (Com,Dec) is non-interactive, to not overburden the notation, we use
the following notation.
– Commitment phase. (com, dec)← Com(m) denotes that com is the commitment of the message

m and dec represents the corresponding decommitment information.
– Decommitment phase. Dec(com, dec,m) = 1.

2-Round Instance-Dependent Trapdoor Commitments. Following [COSV17b] here we de-
fine a special commitment scheme based on an NP-language L where sender and receiver also
receive as input an instance x. While correctness and computational hiding hold for any x, we re-
quire that statistical binding holds for x 6∈ L and moreover knowledge of a witness for x ∈ L allows
to equivocate. Finally, we require that a commitment along with two valid openings to different
messages allows to compute the witness for x ∈ L. We recall that L̂ denotes the language that
includes L and all well formed instances that are not in L.

Definition 8 (2-Round Instance-Dependent Trapdoor Commitments). Let 1λ be the security pa-
rameter, L be an NP-language and RelL be the corresponding NP-relation. A triple of ppt algo-
rithms TC = (Sen,Rec,TFake) is a 2-Round Instance-Dependent Trapdoor Commitment scheme if
the following properties hold.

Correctness. In the 1st round, Rec on input 1λ and x ∈ L̂ outputs ρ. In the 2nd round Sen on
input the message m, 1λ, ρ and x ∈ L outputs (com, dec). We will refer to the pair (ρ, com)
as the commitment of m. Moreover we will refer to the execution of the above two rounds
including the exchange of the corresponding two messages as the commitment phase. Then
Rec on input m, x, com, dec and the private coins used to generate ρ in the commitment
phase outputs 1. We will refer to the execution of this last round including the exchange of
dec as the decommitment phase. Notice that an adversarial sender Sen? could deviate from
the behavior of Sen when computing and sending com and dec for an instance x ∈ L̂. As a
consequence Rec could output 0 in the decommitment phase. We will say that dec is a valid
decommitment of (ρ, com) to m for an instance x ∈ L̂, if Rec outputs 1.

Hiding. Given a ppt adversary A, consider the following hiding experiment ExpHidingbA,TC(λ, x)

for b = 0, 1 and x ∈ L̂R:
• On input 1λ and x, A outputs a message m, along with ρ.
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• The challenger on input x,m, ρ, b works as follows: if b = 0 then it runs Sen on input m, x
and ρ, obtaining a pair (com, dec), otherwise it runs TFake on input x and ρ, obtaining
a pair (com, aux). The challenger outputs com.

• A on input com outputs a bit b′ and this is the output of the experiment.

We say that hiding holds if for any ppt adversary A there exist a negligible function ν, s.t.:∣∣∣Prob [ ExpHiding0
A,TC(λ, x) = 1

]
− Prob

[
ExpHiding1

A,TC(λ, x) = 1
] ∣∣∣ < ν(λ).

Special Binding. There exists a ppt algorithm that on input a commitment (ρ, com), the private
coins used by Rec to compute ρ, and two valid decommitments (dec, dec′) of (ρ, com) to two
different messages m and m′, outputs w s.t. (x,w) ∈ RelL with overwhelming probability.

Instance-Dependent Binding. For every malicious unbounded sender Sen? there exists a negli-
gible function ν s.t. for a commitment (ρ, com) Sen?, with probability at most ν(λ), outputs
two decommitments (m0, d0) and (m1, d1) with m0 6= m1 s.t. Rec on input the private coins
used to compute ρ and x /∈ L accepts both decommitments.

Trapdoorness. For any ppt adversary A there exist a negligible function ν, s.t. for all x ∈ L it
holds that:∣∣∣Prob [ ExpComA,TC(λ, x) = 1

]
− Prob

[
ExpTrapdoorA,TC(λ, x) = 1

] ∣∣∣ < ν(λ)

where ExpComA,TC(λ, x) and ExpTrapdoorA,TC(λ, x) are defined below8.

ExpComA,TC(λ, x): ExpTrapdoorA,TC(λ, x):
-On input 1λ and x, A outputs (ρ,m). -On input 1λ and x, A outputs (ρ,m).
-Sen on input 1λ, x, m and ρ, outputs
(com, dec).

-TFake on input 1λ, x and ρ, outputs
(com, aux).
-TFake on input tk s.t. (x, tk) ∈ RelL,
x, ρ, com, aux and m outputs dec.

-A on input (com, dec) outputs a bit b
and this is the output of the experiment.

-A on input (com, dec) outputs a bit b
and this is the output of the experiment.

In this paper we consider also a non-interactive version of Instance-Dependent Trapdoor Com-
mitments. The only difference in the definition is that the first round sent by the receiver to the
sender just disappears. In this case we use the following simplified notation.
– Commitment phase. (com, dec) ← Sen(m, 1λ, x) denotes that com is the commitment of the

message m and dec represents the corresponding decommitment information.
– Decommitment phase. 1← Rec(m,x, com, dec).
– Trapdoor algorithms. (com, aux)← TFake(1λ, x), dec← TFake(tk, x, com, aux,m) with (x, tk) ∈

RelL.

In the rest of the work, we say that the sender uses the honest procedure when he computes
the commitment com of a message m along with the decommitment information dec running Sen.
Instead, the sender uses trapdoor procedure when he computes com and dec running TFake.

8We assume wlog that A is stateful.
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2.4 Σ-protocol and OR Composition

A 3-round protocol Π = (P,V) for a relation RelL is an interactive protocol played between a prover
P and a verifier V on common input x and private input w of P s.t. (x,w) ∈ RelL. In a 3-move
protocol the first message a and the third message z are sent by P and the second messages c is
played by V. At the end of the protocol V decides to accept or reject based on the data he has seen,
i.e. x, a, c, z.

We usually indicate the message c sent by V as a challenge, and as challenge length the number
of bit of c.

Definition 9 (Σ-Protocol [Dam10]). A 3-round public-coin protocol Π = (P,V) for a relation RelL
is a Σ-Protocol if the following properties hold:

• Completeness: if (P,V) follow the protocol on input x and private input w to P s.t. (x,w) ∈
RelL, V always accepts.

• Special soundness: from any x and any pair of accepting conversation on input x, (a, c, z), (a, c′, z′)
where c 6= c′, one can in polynomial time compute w s.t. (x,w) ∈ RelL;

• Special Honest Verifier Zero-knowledge (Special HVZK): there exists a ppt simulator algorithm
Sim that on input any x ∈ L, security parameter 1λ and any c, outputs a transcript of the
form (a, c, z) for x ∈ L, such that the distribution of the output of Sim is computationally
indistinguishable from the distribution of a transcript obtained when V sends c as challenges
and P runs on common input x and any w such that (x,w) ∈ RelL

9.

Theorem 1. ([Dam10]) Let Π = (P,V) be a Σ-protocol for relation RelL with a sufficient long
challenge length, then Π is a proof of knowledge for RelL.

In our paper we use the trick for composing two Σ-protocols to compute the OR of two state-
ments [CDS94, GMY06]. In more details, let Π = (P,V) be a Σ-protocol for the relation RelL with
SHVZK simulator Sim. Then it is possible to use Π to construct ΠOR = (POR,VOR) for relation
RelLOR

= {((x0, x1), w) : ((x0, w) ∈ RelL) OR ((x1, w) ∈ RelL)} that works as follows.
Protocol ΠOR = (POR,VOR): POR and VOR on common input x0, x1 and private input w of

POR s.t. ((x0, x1), w) ∈ RelLOR
compute the following steps.

- POR computes a0 ← P(1λ, x0, w). Furthermore he picks c1 ← {0, 1}λ and computes (a1, z1)←
Sim(1λ, x1, c1). POR sends a0, a1 to VOR.

- VOR picks c← {0, 1}λ and sends c to POR.

- POR computes c0 = c1 ⊕ c and computes z0 ← P(c0). POR sends c0, c1, z0 z1 to VOR.

- VOR checks that c = c0 ⊕ c1 and if V(x0, a0, c0, z0) = 1 and V(x1, a1, c1, z1) = 1. If all checks
succeed then he outputs 1, otherwise he outputs 0.

Theorem 2. ([CDS94]) ΠOR = (POR,VOR) is a Σ-protocol for RelLOR
.

9Note that we require that the two transcripts are computationally indistinguishable as in [GMY06], instead of
following [CDS94] that require the perfect indistinguishability between the two transcripts.
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Theorem 3. ([GMY06]) ΠOR = (POR,VOR) is WI for the relation RelL̂OR
= {((x0, x1), w) :

((x0, w) ∈ RelL AND x1 ∈ L) OR ((x1, w) ∈ RelL AND x0 ∈ L)}.

In our work we use as Π = (P,V) Blum’s protocol [Blu86] for the NP-complete language Hamil-
tonicity (that also is a Σ-Protocol). We will use the PoK of ΠOR in a black-box way, but we will rely
on the Special HVZK of the underlying Π following the approach proposed in [COSV17a]. Note
that since Hamiltonicity is an NP-complete language, the above construction of ΠOR works for
any NP-language through NP reductions. For simplicity in the rest of the paper we will omit the
NP-reduction therefore assuming that the above scheme works directly on a given NP-language L.

2.5 Delayed-Input Non-Malleable Zero Knowledge

Here we follow [COSV17a]. The definition of [COSV17a] allows the adversary to explicitly select
the statement, and as such the adversary provides also the witness for the prover. The simulated
game however will filter out the witness so that the simulator will receive only the instance. This
approach strictly follows the one of [SCO+01] where adaptive-input selection is explicitly allowed
and managed in a similar way. As final remark, this definition will require the existence of a
black-box simulator since a non-black-box simulator could retrieve from the code of the adversary
the witness for the adaptively generated statement. The non-black-box simulator could then run
the honest prover procedure, therefore canceling completely the security flavor of the simulation
paradigm.

Let Π = (P,V) be a delayed-input interactive argument system for a NP-language L with
witness relation RelL. Consider a ppt MiM adversary A that is simultaneously participating in one
left session and poly(λ) right sessions. Before the execution starts, P,V and A receive as a common
input the security parameter in unary 1λ. Additionally A receives as auxiliary input z ∈ {0, 1}?. In
the left session A verifies the validity of a statement x (chosen adaptively in the last round of Π)
by interacting with P In the right sessions A proves the validity of the statements x̃1, . . . , x̃poly(λ)

10

(chosen adaptively in the last round of Π) to the honest verifiers V1, . . . ,Vpoly(λ).
More precisely in the left session A, before the last round of Π is executed, adaptively selects

the statement x to be proved and the witness w, s.t. (x,w) ∈ RelL, and sends them to P.
Let ViewA(1λ, z) denote a random variable that describes the view of A in the above experiment.

Definition 10 (Delayed-input NMZK). A delayed-input argument system Π = (P,V) for an NP-
language L with witness relation RelL is delayed-input non-malleable zero knowledge (NMZK) if for
any MiM adversary A that participates in one left session and poly(λ) right sessions, there exists a
expected ppt machine S(1λ, z) such that:

1. Let (View, w1, . . . , wpoly(λ)) denote the output of S(1λ, z), for some z ∈ {0, 1}?. The prob-
ability ensembles {S1(1λ, z)}λ∈N,z∈{0,1}? and {ViewA(1λ, z)}λ∈N,z∈{0,1}? are computationally
indistinguishable over λ, where S1(1λ, z) denotes the first output of S(1λ, z).
2. For every i ∈ {1, . . . , poly(λ)}, if the i-th right session is accepting w.r.t. some statement xi
and A does not acts as a proxy (by simply sending back and forward the massages of the left
session), then wi is s.t. (xi, wi) ∈ RelL

11.

10We denote (here and in the rest of the paper) by δ̃ a value associated with the right session where δ is the
corresponding value in the left session.

11In this definition we do not consider identities, since we do not need them for our propose of constructing a 2PC
protocol.
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The above definition of NMZK allows the adversary to select statements adaptively in the last
round both in left and in the right sessions. Therefore any argument system that is NMZK according
to the above definition enjoys also adaptive-input argument of knowledge.

2.6 Two-party Computation with a Simultaneous Message Exchange Channel

Our Two-Party Computation (2PC) protocol is secure in the same model used in [GMPP16b],
therefore the following definition is taken almost verbatim from [GMPP16b].

A two-party protocol problem is cast by specifying a random process that maps pairs of inputs
to pairs of outputs (one for each party). We refer to such a process as a functionality and denote
it F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where F = (F1, F2). That is, for every pair of inputs
(x, y), the output-pair is a random variable (F1(x, y), F2(x, y)) ranging over pairs of strings. The
first party (with input x) wishes to obtain F1(x, y) and the second party (with input y) wishes to
obtain F2(x, y).

Adversarial behaviour. Loosely speaking, the aim of a secure two-party protocol is to protect
an honest party against dishonest behaviour by the other party. In this paper, we consider malicious
adversaries who may arbitrarily deviate from the specified protocol. When considering malicious
adversaries, there are certain undesirable actions that cannot be prevented. Specifically, a party
may refuse to participate in the protocol, may substitute its local input (and use instead a different
input) and may abort the protocol prematurely. One ramification of the adversary’s ability to abort,
is that it is impossible to achieve fairness. That is, the adversary may obtain its output while the
honest party does not. In this work we consider a static corruption model, where one of the parties
is adversarial and the other is honest, and this is fixed before the execution begins.

Communication channel. In our result we consider a secure simultaneous message exchange
channel in which all parties can simultaneously send messages over the channel at the same commu-
nication round but allowing a rushing adversary. Moreover, we assume an asynchronous network12

where the communication is open and delivery of messages is not guaranteed. For simplicity, we as-
sume that the delivered messages are authenticated. This can be achieved using standard methods.

Execution in the ideal model. An ideal execution proceeds as follows. Each party obtains
an input, denoted w (w = x for P1, and w = y for P2). An honest party always sends w to the
trusted party. A malicious party may, depending on w, either abort or send some w′ ∈ {0, 1}|w|
to the trusted party. In case it has obtained an input pair (x, y), the trusted party first replies to
the first party with F1(x, y). Otherwise (i.e., in case it receives only one valid input), the trusted
party replies to both parties with a special symbol ⊥. In case the first party is malicious it may,
depending on its input and the trusted party’s answer, decide to stop the trusted party by sending
it ⊥ after receiving its output. In this case the trusted party sends ⊥ to the second party. Otherwise
(i.e., if not stopped), the trusted party sends F2(x, y) to the second party. Outputs: An honest
party always outputs the message it has obtained from the trusted party. A malicious party may
output an arbitrary (probabilistic polynomial-time computable) function of its initial input and the
message obtained from the trusted party.

12The fact that the network is asynchronous means that the messages are not necessarily delivered in the order
which they are sent.
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Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality where F = (F1, F2) and let
S = (S1, S2) be a pair of non-uniform probabilistic expected polynomial-time machines (representing
parties in the ideal model). Such a pair is admissible if for at least one i ∈ {0, 1} we have that Si
is honest (i.e., follows the honest party instructions in the above-described ideal execution). Then,
the joint execution of F under S in the ideal model (on input pair (x, y) and security parameter
λ), denoted IDEALF,S(z)(1

λ, x, y) is defined as the output pair of S1 and S2 from the above ideal
execution.

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exists no trusted third party). In this case, a malicious party
may follow an arbitrary feasible strategy; that is, any strategy implementable by non-uniform
probabilistic polynomial-time machines. In particular, the malicious party may abort the execution
at any point in time (and when this happens prematurely, the other party is left with no output). Let
F be as above and let Π be a two-party protocol for computing F . Furthermore, let A = (A1, A2)
be a pair of non-uniform probabilistic polynomial-time machines (representing parties in the real
model). Such a pair is admissible if for at least one i ∈ {0, 1} we have that Ai is honest (i.e., follows
the strategy specified by Π). Then, the joint execution of Π under A in the real model, denoted
REALΠ,A(z)(1

λ), is defined as the output pair of A1 and A2 resulting from the protocol interaction.

Definition 11 (secure two-party computation). Let F and Π be as above. Protocol Π is said to
securely compute F (in the malicious model) if for every pair of admissible non-uniform probabilistic
polynomial-time machines A = (A1, A2) that run with auxiliary input z for the real model, there
exists a pair of admissible non-uniform probabilistic expected polynomial-time machines S = (S1, S2)
(that use z as auxiliary input) for the ideal model, such that:

REALΠ,A(z)(1
λ) ≈ IDEALf,S(z)(1

λ).

2.7 Oblivious Transfer

Here we follow [ORS15]. Oblivious Transfer (OT) is a two-party functionality FOT , in which a
sender S holds a pair of strings (l0, l1), and a receiver R holds a bit b, and wants to obtain the
string lb. The security requirement for the FOT functionality is that any malicious receiver does
not learn anything about the string l1−b and any malicious sender does not learn which string has
been transferred. This security requirement is formalized via the ideal/real world paradigm. In
the ideal world, the functionality is implemented by a trusted party that takes the inputs from S
and R and provides the output to R and is therefore secure by definition. A real world protocol
Π securely realizes the ideal FOT functionalities, if the following two conditions hold. (a) Security
against a malicious receiver: the output of any malicious receiver R? running one execution of Π
with an honest sender S can be simulated by a ppt simulator Sim that has only access to the ideal
world functionality FOT and oracle access to R?. (b) Security against a malicious sender. The joint
view of the output of any malicious sender S? running one execution of Π with R and the output
of R can be simulated by a ppt simulator Sim that has only access to the ideal world functionality
functionality FOT and oracle access to S?. In this paper we consider a weaker definition of FOT
that is called one-sided simulatable FOT , in which we do not demand the existence of a simulator
against a malicious sender, but we only require that a malicious sender cannot distinguish whether
the honest receiver is playing with bit 0 or 1. A bit more formally, we require that for any ppt
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Functionality FOT

FOT running with a sender S a receiver R and an adversary Sim
proceeds as follows:
• Upon receiving a message (send, l0, l1, S,R) from S where each

l0, l1 ∈ {0, 1}λ, record the tuple (l0, l1) and send send to R and
Sim. Ignore any subsequent send messages.

• Upon receiving a message (receive, b) from R, where b ∈ {0, 1}
send lb to R and receive to S and Sim and halt. (If no (send, ·)
message was previously sent, do nothing).

Figure 4: The Oblivious Transfer Functionality FOT .

malicious sender S? the view of S? executing Π with the R playing with bit 0 is computationally
indistinguishable from the view of S? where R is playing with bit 1. Finally, we consider the FmOT
functionality where the sender S and the receiver R run m executions of OT in parallel. The formal
definitions of one-sided secure FOT and one-sided secure FmOT follow.

Definition 12 ([ORS15]). Let FOT be the Oblivious Transfer functionality as shown in Fig. 4. We
say that a protocol Π securely computes FOT with one-sided simulation if the following holds:

1. For every non-uniform ppt adversary R? controlling the receiver in the real model, there
exists a non-uniform ppt adversary Sim for the ideal model such that

{REALΠ,R?(z)(1
λ)}z∈{0,1}λ ≈ IDEALf,Sim(z)(1

λ)}z∈{0,1}λ

where REALΠ,R?(z)(1
λ) denotes the distribution of the output of the adversary R? (controlling

the receiver) after a real execution of protocol Π, where the sender S has inputs l0, l1 and the
receiver has input b. IDEALf,Sim(z)(1

λ) denotes the analogous distribution in an ideal execution
with a trusted party that computes FOT for the parties and hands the output to the receiver.
2. For every non-uniform ppt adversary S? controlling the sender it holds that:

{ViewRΠ,S?(z)(l0, l1, 0)}z∈{0,1}? ≈ {ViewRΠ,S?(z)(l0, l1, 1)}z∈{0,1}?

where ViewRΠ,S?(z) denotes the view of adversary S? after a real execution of protocol Π with
the honest receiver R.

Definition 13 (Parallel oblivious transfer functionality FmOT [ORS15]). The parallel Oblivious
Transfer Functionality FmOT is identical to the functionality FOT , with the difference that takes
in input m pairs of string from S (l10, l

1
1, . . . , l

m
0 , l

m
1 ) (whereas FOT takes just one pair of strings

from S) and m bits from R, b1, . . . , bm (whereas FOT takes one bit from R) and outputs to the
receiver values (l1b1 , . . . , l

m
bm

) while the sender receives nothing.

Definition 14 ([ORS15]). Let FmOT be the Oblivious Transfer functionality as described in Def. 13.
We say that a protocol Π securely computes FmOT with one-sided simulation if the following holds:

1. For every non-uniform ppt adversary R? controlling the receiver in the real model, there ex-
ists a non-uniform ppt adversary Sim for the ideal model such that for every x1 ∈ {0, 1}, . . . , xm ∈
{0, 1}
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{REALΠ,R?(z)(1
λ, (l10, l

1
1, . . . , l

m
0 , l

m
1 ), (x1, . . . , xm))} ≈

IDEALf,Sim(z)(1
λ), (l10, l

1
1, . . . , l

m
0 , l

m
1 ), (x1, . . . , xm))}z∈{0,1}λ

where REALΠ,R?(z)(1
λ) denotes the distribution of the output of the adversary R? (controlling

the receiver) after a real execution of protocol Π, where the sender S has inputs (l10, l
1
1, . . . , l

m
0 , l

m
1 )

and the receiver has input (x1, . . . , xm). IDEALf,Sim(z)(1
λ) denotes the analogous distribution

in an ideal execution with a trusted party that computes FmOT for the parties and hands the
output to the receiver.
2. For every non-uniform ppt adversary S? controlling the sender it holds that for every x1 ∈
{0, 1}, . . . , xm ∈ {0, 1} and for every y1 ∈ {0, 1}, . . . , ym ∈ {0, 1}:

{ViewRΠ,S?(z)((l
1
0, l

1
1, . . . , l

m
0 , l

m
1 ), (x1, . . . , xm))}z∈{0,1}? ≈

{ViewRΠ,S?(z)((l
1
0, l

1
1, . . . , l

m
0 , l

m
1 ), (y1, . . . , ym))}z∈{0,1}?

where ViewRΠ,S?(z) denotes the view of adversary S? after a real execution of protocol Π with
the honest receiver R.

We remark that in this notions of OT we do not suppose the existence of a simultaneous message
exchange channel.

3 Our OT Protocol Πγ
OT = (SOT , ROT )

We use the following tools.
1. A non-interactive perfectly binding, computationally hiding commitment scheme PBCOM =

(Com,Dec).
2. A trapdoor permutation F = (Gen,Eval, Invert)13 with the hardcore bit function for λ bits

hc(·) (see Def. 6).
3. A non-interactive IDTC scheme TC0 = (Sen0,Rec0,TFake0) for the NP-language L0 = {com :
∃ dec s.t. Dec(com, dec, 0) = 1}.

4. A non-interactive IDTC scheme TC1 = (Sen1,Rec1,TFake1) for the NP-language L1 = {com :
∃ dec s.t. Dec(com, dec, 1) = 1}.

Let b ∈ {0, 1} be the input of ROT and l0, l1 ∈ {0, 1}λ be the input of SOT , we now give the
description of our protocol following Fig. 5.

In the first round ROT runs Com on input the message to be committed b in order to obtain
the pair (com, dec). On input the instance com and a random string r1

b−1, ROT runs Sen1−b in order
to compute the pair (tcom1−b, tdec1−b). We observe that the Instance-Dependent Binding property
of the IDTCs, the description of the NP-language L1−b and the fact that in com the bit b has been
committed, ensure that tcom1−b can be opened only to the value r1

b−1.
14 ROT runs the trapdoor

procedure of the IDTC scheme TCb. More precisely ROT runs TFakeb on input the instance com

13We recall that for convenience, we drop (f, td) from the notation, and write f(·), f−1(·) to denote algorithms
Eval(f, ·), Invert(f, td, ·) respectively, when f , td are clear from the context. Also we omit the generalization to a
family of TDPs.

14com does not belong to the NP-language Lb−1, therefore tcom1−b is a perfectly binding commitment.
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to compute the pair (tcomb, aux). In this case tcomb can be equivocated to any message using the
trapdoor (the opening information of com), due to the trapdoorness of the IDTC, the description
of the NP-language Lb and the message committed in com (that is represented by the bit b). ROT
sends tcom0, tcom1 and com to SOT .

In the second round SOT picks two random strings R0, R1 and two trapdoor permutations
(f0,1, f1,1) along with their trapdoors (f−1

0,1 , f
−1
1,1 ). Then SOT sends R0, R1, f0,1 and f1,1 to ROT .

In the third round ROT checks whether or not f0,1 and f1,1 are valid trapdoor permutations.
In the negative case ROT aborts, otherwise ROT continues with the following steps. ROT picks a
random string z′1 and computes z1 = f(z′1). ROT now computes r1

b = z1 ⊕ Rb and runs TFakeb on
input dec, com, tcomb, aux and r1

b in order to obtain the equivocal opening tdecb of the commitment
tcomb to the message r1

b . ROT renames rb to r1
b and tdecb to tdec1

b and sends to SOT (tdec1
0, r

1
0)

and (tdec1
1, r

1
1).

In the fourth round SOT checks whether or not (tdec1
0, r

1
0) and (tdec1

1, r
1
1) are valid openings

w.r.t. tcom0 and tcom1. In the negative case SOT aborts, otherwise SOT computes W 1
0 = l0 ⊕

hc(f−λ0,1 (r1
0 ⊕ R0)) and W 1

1 = l1 ⊕ hc(f−λ1,1 (r1
1 ⊕ R1)). Informally SOT encrypts his inputs l0 and l1

through a one-time pad using as a secret key the pre-image of r1
0 ⊕ R0 for l0 and the pre-image of

r1
1⊕R1 for l1. SOT also computes two trapdoor permutations (f0,2, f1,2) along with their trapdoors

(f−1
0,2 , f

−1
1,2 ) and sends (W 1

0 ,W
1
1 , f0,2, f1,2) to ROT . At this point the third and the fourth rounds

are repeated up to γ − 1 times using fresh randomness as showed in Fig. 5. In the last round no
trapdoor permutation is needed/sent.

In the output phase, ROT computes and outputs lb = W 1
b ⊕ hc(z′1). That is, ROT just uses

the information gained in the first four rounds to compute the output. It is important to observe
that ROT can correctly and efficiently compute the output because z′ = r1

b ⊕ Rb. Moreover ROT
cannot compute l1−b because he has no way to change the value committed in tcom1−b and invert
the TDP is suppose to be hard without having the trapdoor.

In order to construct our protocol for two-party computation in the simultaneous message
exchange model we need to consider an extended version of Πγ

OT , that we denote by Πγ
−−→
OT

=

(S−−→OT , R−−→OT ). In Πγ
−−→
OT

the S−−→OT ’s input is represented by m pairs (l10, l
1
1, . . . , l

m
0 , l

m
1 ) and the R−−→OT ’s

input is represented by the sequence b1, . . . , bm with bi ∈ {0, 1} for all i = 1, . . . ,m. In this case the
output of R−−→OT is (lb1 , . . . , lbm). We construct Πγ

−−→
OT

= (S−−→OT , R−−→OT ) by simply considering m parallel
iterations of Πγ

OT and then we prove that it securely computes FmOT with one-sided simulation (see
Definition 14).

Proof sketch. The security proof of Πγ
OT is divided in two parts. In the former we prove the

security against a malicious sender and in the latter we prove the security of Πγ
OT against a malicious

receiver. In order to prove the security against malicious sender we recall that for the definition of
one-sided simulation it is just needed the no information about R’s input is leaked to S?. We consider
the experiment H0 where R’s input is 0 and the experiment H1 where R’s input is 1 and we prove
that S? cannot distinguish betweenH0 andH1. More precisely we consider the experimentHa where
tcom0 and the corresponding opening is computed without using the trapdoor (the randomness of
com) and relying on the trapdoorness of the IDTCom TC0 we prove that H0 ≈ Ha. Then we
consider the experiment Hb where the value committed in com goes from 0 to 1 and prove that
Ha ≈ Hb due to the hiding of com. We observe that this reduction can be made because to compute
both Ha and Hb the opening informations of com are not required anymore. The proof ends with
the observation the Hb ≈ H1 due to the trapdoorness of the IDTCom TC1.
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ROT (b) SOT (l0, l1)

(com, dec)← Com(1λ, b);
(tcomb, aux)← TFakeb(1

λ, com);
r1−b ← {0, 1}λ;
(tcom1−b, tdec1−b)← Sen1−b(1

λ, r1−b, com).
com, tcom0, tcom1
−−−−−−−−−−−−−−−−−−→

R0 ← {0, 1}λ;
R1 ← {0, 1}λ;
(f0,1, f

−1
0,1 )← Gen(1λ);

(f1,1, f
−1
1,1 )← Gen(1λ).

R0, R1, f0,1, f1,1
←−−−−−−−−−−−−−−−−−−

z′1 ← {0, 1}λ;
z1 = fλb (z′1);
r1b = z1 ⊕Rb;
tdec1b ← TFakeb(dec, com, tcomb, aux, r

1
b );

tdec11−b = tdec1−b, r11−b = r1−b. (tdec10, r
1
0), (tdec11, r

1
1)

−−−−−−−−−−−−−−−−−−→
(f0,2, f

−1
0,2 )← Gen(1λ);

(f1,2, f
−1
1,2 )← Gen(1λ);

W 1
0 = l0 ⊕ hc(f−λ0,1 (r10 ⊕R0));

W 1
1 = l1 ⊕ hc(f−λ1,1 (r11 ⊕R1)).

W 1
0 ,W

1
1 , f0,2, f1,2

←−−−−−−−−−−−−−−−−−−
z′2 ← {0, 1}λ;
z2 = fλb (z′2);
r2b = z2 ⊕Rb;
tdec2b ← TFakeb(dec, com, tcomb, aux, r

2
b );

tdec21−b = tdec1−b, r21−b = r1−b. (tdec20, r
2
0), (tdec21, r

2
1)

−−−−−−−−−−−−−−−−−−→
(f0,3, f

−1
0,3 )← Gen(1λ);

(f1,3, f
−1
1,3 )← Gen(1λ);

W 2
0 = l0 ⊕ hc(f−λ0,2 (r20 ⊕R0));

W 2
1 = l1 ⊕ hc(f−λ1,2 (r21 ⊕R1)).

W 2
0 ,W

2
1 , f0,3, f1,3

←−−−−−−−−−−−−−−−−−−
.
.
.

(tdecγ0 , r
γ
0 ), (tdecγ1 , r

γ
1 )

−−−−−−−−−−−−−−−−−−→
W γ

0 ,W
γ
1

←−−−−−−−−−−−−−−−−−−
Output lb = W 1

b ⊕ hc(z′1).

Figure 5: Description of Πγ
OT .
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To prove the security against a malicious receiver R? we need to show a simulator Sim. Sim
rewinds R? from the third to the second round by sending every time freshly generated R0 and
R1. Sim then checks whether the values r1

0 and r1
1 change during the rewinds. We recall that com

is a perfectly binging commitment, therefore only one between tcom0 and tcom1 can be opened to
multiple values using the trapdoor procedure (com can belong only to one of the NP-languages L0

and L1). Moreover, intuitively, the only way that R? can compute the output is by equivocating
one between tcom0 and tcom1 based on the values R0, R1 received in the second round. This means
that if during the rewinds the value opened w.r.t. tcomb changes, then the input that R? is using is
b. Therefore the simulator can call the ideal functionality thus obtaining lb. At this point Sim uses
lb to compute W 1

b according to the description of Πγ
OT and sets W 1

1−b to a random string. Moreover
Sim will use the same strategy used to compute W 1

b and W 1
1−b to compute, respectively W i

b and
W i

1−b for i = 2, . . . , γ. In case during the rewinds the value r1
0, r

1
1 stay the same, then Sim sets

both W 1
0 and W 1

1 to random strings. We observe that R? could detect that now W 1
0 and W 1

1 are
computed in a different way, but this would violate the security of the TDPs.

Theorem 4. Assuming TDPs, for any γ > 0 Πγ
−−→
OT

securely computes FmOT with one-sided simula-
tion. Moreover the third round is replayable.

Proof. We first observe that in third round of Πγ
OT only the opening information for the IDTCs

tcom0 and tcom1 are sent. Therefore once that a valid third round is received, it is possible to replay
it in order to answer to many second rounds sent by a malicious sender. Roughly, whether the third
round of Πγ

OT is accepting or not is independent of what a malicious sender sends in the second
round. Therefore we have proved that Πγ

OT has a replayable third round. In order to prove that
Πγ
OT is one-sided simulatable secure for FOT (see Definition 12) we divide the security proof in two

parts; the former proves the security against a malicious sender, and the latter proves the security
against a malicious receiver. More precisely we prove that Πγ

OT is secure against a malicious receiver
for an arbitrary chosen γ = poly(λ), and is secure against malicious sender for γ = 1 (i.e. when just
the first four rounds of the protocol are executed).

Security against a malicious sender. In this case we just need to prove that the output of
S?OT of the execution of Πγ

OT when ROT interacts with S?OT using b = 0 as input is computationally
indistinguishable from when ROT uses b = 1 as input. The differences between these two hybrid
experiments consist of the message committed in com and the way in which the IDTCs are computed.
More precisely, in the first experiment, when b = 0 is used as input, tcom0 and the corresponding
opening (tdec1

0, r
1
0) are computed using the trapdoor procedure (in this case the message committed

in com is 0), while tcom1 and (tdec1
1, r

1
1) are computed using the honest procedure. In the second

experiment, tcom0 and the respective opening (tdec1
0, r

1
0) are computed using the honest procedure,

while tcom1 and (tdec1
1, r

1
1) are computed using the trapdoor procedure of the IDTC scheme.

In order to prove the indistinguishability between these two experiments we proceed via hybrid
arguments. The first hybrid experiment H1 is equal to when ROT interacts with against S?OT
according Πγ

OT when b = 0 is used as input. In H2 the honest procedure of IDTC is used instead
of the trapdoor one in order to compute tcom0 and the opening (tdec1

0, r
1
0). We observe that in H2

both the IDTCs are computed using the honest procedure, therefore no trapdoor information (i.e.
the randomness used to compute com) is required. The computational-indistinguishability between
H1 and H2 comes from the trapdoorness of the IDTC TC0. In H3 the value committed in com goes
from 0 to 1. H2 andH3 are indistinguishable due to the hiding of PBCOM. It is important to observe
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that a reduction to the hiding of PBCOM is possible because the randomness used to compute com
is no longer used in the protocol execution to run one of the IDTCs. In the last hybrid experiment
H4 the trapdoor procedure is used in order to compute tcom1 and the opening (tdec1

1, r
1
1). We

observe that it is possible to run the trapdoor procedure for TC1 because the message committed in
com is 1. The indistinguishability between H3 and H4 comes from the trapdoorness of the IDTC.
The observation that H4 corresponds to the experiment where the honest receiver executes Πγ

OT
using b = 1 as input concludes the security proof.

Security against a malicious receiver. In order to prove that Πγ
OT is simulation-based secure

against malicious receiver R?OT we need to show a ppt simulator Sim that, having only access to the
ideal world functionality FOT , can simulate the output of any malicious R?OT running one execution
of Πγ

OT with an honest sender SOT . The simulator Sim works as follows. Having oracle access to
R?OT , Sim runs as a sender in Πγ

OT by sending two random strings R0 and R1 and the pair of TDPs
f0,1 and f1,1 in the second round. Let (tdec1

0, r
1
0), (tdec1

1, r
1
1) be the messages sent in the third

round by R?OT . Now Sim rewinds R?OT by sending two fresh random strings R0 and R1 such that
R0 6= R0 and R1 6= R1.

Let (tdec
1
0, r

1
0), (tdec

1
1, r

1
1) be the messages sent in the third round by R?OT after this rewind,

then there are only two things that can happen15:
1. r1

b? 6= r1
b? and r1

1−b? = r1
1−b? for some b? ∈ {0, 1} or

2. r1
0 = r1

0 and r1
1 = r1

1.
More precisely, due to the perfect binding of PBCOM at most one between tcom0 and tcom1

can be opened to a different message. Therefore R?OT can either open both tcom0 and tcom1 to
the same messages r1

0 and r1
1, or change in the opening at most one of them. This yields to the

following important observation. If one among r1
0 and r1

1 changes during the rewind, let us say rb?
for b? ∈ {0, 1} (case 1), then the input bit used by R?OT has to be b?. Indeed we recall that the
only efficient way (i.e. without inverting the TDP) for a receiver to get the output is to equivocate
one of the IDTCs in order to compute the inverse of one between R0 ⊕ r1

0 and R1 ⊕ r1
1. Therefore

the simulator invokes the ideal world functionality FOT using b? as input, and upon receiving lb?
computes W 1

b? = lb? ⊕ hc(f−λb?,1(r1
b? ⊕Rb?)) and sets W 1

1−b? to a random string. Then sends W 1
0 and

W 1
1 with two freshly generated TDPs f0,2, f1,2 (according to the description of Πγ

OT given in Fig. 5)
to R?OT . Let us now consider the case where the opening of tcom0 and tcom1 stay the same after
the rewinding procedure (case two). In this case, Sim comes back to the main thread and sets both
W 1

0 and W 1
1 to a random string. Intuitively if R?OT does not change neither r1

0 nor r1
1 after the

rewind, then his behavior is not adaptive on the second round sent by Sim. Therefore, he will be
able to compute the inverse of neither R0⊕r1

0 nor R1⊕r1
1. That is, both R0⊕r1

0 and R1⊕r1
1 would

be the results of the execution of two coin-flipping protocols, therefore both of them are difficult to
invert without knowing the trapdoors of the TDPs. This implies that R?OT has no efficient way to
tells apart whether W 1

0 and W 1
1 are random strings or not.

Completed the fourth round, for i = 2, . . . , γ, Sim continues the interaction with R?OT by always
setting both W i

0 and W i
1 to a random string when r1

0 = ri0 and r1
1 = ri1, and using the following

strategy when r1
b? 6= rib? and r1

1−b? = ri1−b? for some b? ∈ {0, 1}. Sim invokes the ideal world
functionality FOT using b? as input, and upon receiving lb? computesW i

b? = lb?⊕hc(f−λb?,i(r
i
b?⊕Rb?)),

sets W i
1−b? to a random string and sends with them two freshly generated TDPs f0,i+1, f1,i+1 to

15R?OT could also abort after the rewind. In this case we use the following standard argument. If p is the probability
of R?OT of giving an accepting third round, λ/p rewinds are made until R?OT gives another answer.
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R?OT . When the interaction against R?OT is over, Sim stops and outputs what R?OT outputs. We
observe that the simulator needs to invoke the ideal world functionality just once. Indeed, we recall
that only one of the IDTCs can be equivocated, therefore once that the bit b? is decided (using the
strategy described before) it cannot change during the simulation. The last thing that remains to
observe is that it could happen that Sim never needs to invoke the ideal world functionality in the
case that: 1) during the rewind the values (r1

0, r
1
1) stay the same; 2) rib = rjb for all i, j ∈ {1, . . . , γ}

and b = {0, 1}. In this case Sim never outputs the bit b? that corresponds to the R?OT ’s input. That
is, even though Sim is sufficient to prove that Πγ

OT is simulation-based secure against malicious
receiver, it is insufficient to extract the input from R?OT .

We formally prove that the output of Sim is computationally indistinguishable from the output
of R?OT in the real world execution for every γ = poly(λ). The proof goes trough hybrid arguments
starting from the real world execution. We gradually modify the real world execution until the input
of the honest party is not needed anymore such that the final hybrid would represent the simulator
for the ideal world. We denote by OUTHi,R?OT (z)(1

λ) the output distribution of R?OT in the hybrid
experiment Hi.
– H0 is identical to the real execution. More precisely H0 runs R?OT using fresh randomness and

interacts with him as the honest sender would do on input (l0, l1).
– Hrew

0 proceeds according to H0 with the difference that R?OT is rewound up to the second round
by receiving two fresh random strings R0 and R1. This process is repeated until R?OT completes
the third round again (every time using different randomness). More precisely, if R?OT aborts
after the rewind then a fresh second round is sent up to λ/p times, where p is the probability
of R?OT of completing the third round in H0. If p = poly(λ) then the expected running time of
Hrew is poly(λ) and its output is statistically close to the output of H0. When the third round
is completed the hybrid experiment comes back to the main thread and continues according
to H0

– H1 proceeds according to Hrew
0 with the difference that after the rewinds executes the following

steps. Let r1
0 and r1

1 be the messages opened by R?OT in the third round of the main thread
and r1

0 and r1
1 be the messages opened during the rewind. We distinguish two cases that could

happen:
1. r1

0 = r1
0 and r1

1 = r1
1 or

2. r1
b? 6= r1

b? and r1
1−b? = r1

1−b? for some b? ∈ {0, 1}.
In this hybrid we assume that the first case happen with non-negligible probability. After the
rewind H1 goes back to the main thread, and in order to compute the fourth round, picks
W 1

0 ← {0, 1}λ computes W 1
1 = l1 ⊕ hc(f−λ1,1 (r1

1 ⊕ R1)), (f0,2, f
−1
0,2 ) ← Gen(1λ), (f1,2, f

−1
1,2 ) ←

Gen(1λ) and sends (W 1
0 ,W

1
1 , f0,2, f1,2) to R?OT . Then the experiment continues according to

H0. Roughly, the difference between H0 and H1 is that in the latter hybrid experiment W 1
0

is a random string whereas in H1 W
1
0 = l0 ⊕ hc(f−λ0,1 (r1

0 ⊕R0)).
We now prove that the indistinguishability between H0 and H1 comes from the security

of the hardcore bit function for λ bits hc for the TDP F . More precisely, assuming by
contradiction that the outputs of H0 and H1 are distinguishable we construct and adversary
AF that distinguishes between the output of hc(x) and a random string of λ bits having as
input fλ(x). Consider an execution where R?OT has non-negligible advantage in distinguishing
H0 from H1 and consider the randomness ρ used by R?OT and the first round computed by
R?OT in this execution, let us say com, tcom0, tcom1. AF , on input the randomness ρ, the
messages r1

0 and r1
1 executes the following steps.
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1. Start R?OT with randomness ρ.
2. Let (f,H, fλ(x)) be the challenge. Upon receiving the first round (com, tcom0, tcom1) by
R?OT , compute R0 = r1

0⊕fλ(x), pick a random string R1, compute (f1,1, f
−1
1,1 )← Gen(1λ),

set f0,1 = f and sends R0, R1, f0,1, f1,1 to R?OT .
3. Upon receiving (tdec1

0, r
1
0), (tdec1

1, r
1
1) computeW 1

0 = l0⊕H,W 1
1 = l1⊕hc(f−λ1,1 (r1

1⊕R1)),
(f0,2, f

−1
0,2 )← Gen(1λ), (f1,2, f

−1
1,2 )← Gen(1λ) and send (W 1

0 ,W
1
1 , f0,2, f1,2). 16

4. Continue the interaction with R?OT according to H1 (and H0) and output what R?OT
outputs.

This part of the security proof ends with the observation that if H = hc(x) then R?OT acts
as in H0, otherwise R?OT acts as in H1.

– H2 proceeds according to H1 with the difference that bothW0 andW1 are set to random strings.
Also in this case the indistinguishability between H1 and H2 comes from the security of the
hardcore bit function for λ bits hc for the family F (the same arguments of the previous
security proof can be used to prove the indistinguishability between H2 and H1).

– H3 In this hybrid experiment we consider the case where after the rewind, with non-negligible
probability, r1

b? 6= r1
b? and r1

1−b? = r1
1−b? for some b? ∈ {0, 1}.

In this case, in the main thread the hybrid experiment computesW 1
b? = lb?⊕hc(f−λb?,1(r1

b?⊕
Rb?)), picks W 1

1−b? ← {0, 1}? sends W 1
0 ,W

1
1 with two freshly generated TDPs f0,2, f1,2. H3

now continues the interaction with R?OT according to H2. The indistinguishability between
H2 and H3 comes from the security of the hardcore bit function for λ bits hc for the TDP F .
More precisely, assuming by contradiction that H2 and H3 are distinguishable, we construct
and adversary AF that distinguishes between the output of hc(x) and a random string of λ
bits having as input fλ(x). Consider an execution where R?OT has non-negligible advantage
in distinguish H2 from H3 and consider the randomness ρ used by R?OT and the first round
computed in this execution, let us say com, tcom0, tcom1. AF , on input the randomness ρ, the
message b? committed in com and the message r1

1−b? committed tcom1−b? , AF executes the
following steps.
1. Start R?OT with randomness ρ.
2. Let (f,H, fλ(x)) be the challenge. Upon receiving the first round (com, tcom0, tcom1) by
R?OT , compute R1−b? = r1

1−b?⊕fλ(x), pick a random string Rb? , computes (fb?,1, f
−1
b?,1)←

Gen(1λ), sets f1−b?,1 = f and send (R0, R1, f0,1, f1,1) to R?OT .
3. Upon receiving (tdec1

0, r
1
0), (tdec1

1, r
1
1) computeW 1

1−b? = l1−b?⊕H,W 1
b? = lb?⊕hc(f−λb?,1(r1

b?⊕
Rb?)), (f0,2, f

−1
0,2 )← Gen(1λ), (f1,2, f

−1
1,2 )← Gen(1λ) and send (W 1

0 ,W
1
1 , f0,2, f1,2).

4. Continue the interaction with R?OT according to H2 (and H3) and output what R?OT
outputs.

This part of the security proof ends with the observation that if H = hc(x) then R?OT acts as
in H2, otherwise he acts as in H3.

– Hj3 proceeds according to H3 with the differences that for i = 2, . . . , j

1. if rib? 6= r1
b? for some b? ∈ {0, 1} then Hj3 picks W i

1−b? ← {0, 1}λ, computes W i
b? =

lb?⊕hc(f−λb?,i(r
i
b?⊕Rb?)) and sendsW i

0,W
1
i with two freshly generated TDPs f0,i+1, f1,i+1

16Observe that R?OT could send values different from r10 and r11 in the third round. In this case AF just recomputes
the second round using fresh randomness and asking another challenge f,H, f

λ
(x) to the challenger until in the third

round the messages r10 and r11 are received again. This allows AF to break the security of f because we are assuming
that in this experiment R?OT opens, with non-negligible probability, tcom0 to r10 and tcom1 to r11.
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to R?OT otherwise
2. Hj3 picks W i

0 ← {0, 1}λ and W i
1 ← {0, 1}λ and sends W 1

0 ,W
1
1 with two freshly generated

TDPs f0,i+1, f1,i+1 to R?OT .
Roughly speaking, if R?OT changes the opened message w.r.t. tcomb? , then W i

b? is correctly
computed and W i

1−b? is sets to a random string. Otherwise, if the opening of tcom0 and
tcom1 stay the same as in the third round, then both W i

0 and W i
1 are random strings (for

i = 2, . . . , j). We show that OUTHj−1
3 ,R?OT (z)

(1λ) ≈ OUTHj3,R?OT (z)
(1λ) in two steps. In the

first step we show that the indistinguishability between these two hybrid experiments holds
for the first case (when rib? 6= r1

b? for some bit b?), and in the second step we show that the
same holds when ri0 = r1

0 and ri1 = r1
1.

We first recall that if rib? 6= r1
b? , then tcom1−b? is perfectly binding, therefore we have that

ri1−b? = r1
1−b? . Assuming by contradiction that Hj−1

3 and Hj3 are distinguishable then we
construct and adversary AF that distinguishes between the output of hc(x) and a random
string of λ bits having as input fλ(x). Consider an execution where R?OT has non-negligible
advantage in distinguishing Hj−1

3 from Hj3 and consider the randomness ρ used by R?OT and
the first round computed by R?OT in this execution, let us say com, tcom0, tcom1. AF , on
input the randomness ρ, the message b? committed in com and the message r1

1−b? committed
tcom1−b? , executes the following steps.
1. Start R?OT with randomness ρ.
2. Let f,H, fλ(x) be the challenge. Upon receiving the first round (com, tcom0, tcom1)

by R?OT , AF compute R1−b? = r1
1−b? ⊕ fλ(x), pick a random string Rb? , compute

(f0,1, f
−1
0,1 )← Gen(1λ) and (f1,1, f

−1
1,1 )← Gen(1λ) send R0, R1, f0,1, f1,1 to R?OT .

3. Continue the interaction with R?OT according to Hj−1
3 using f1−b?,j = f instead of using

the generation function Gen(·) when it is required.
4. Upon receiving (tdecj0, r

j
0), (tdec1

j , r
j
1) compute W j

1−b? = l1−b? ⊕ H,17 W j
b? = lb? ⊕

hc(f−λb?,j(r
j
b? ⊕ Rb?)), (f0,j+1, f

−1
0,j+1) ← Gen(1λ), (f1,j+1, f

−1
1,j+1) ← Gen(1λ) and sends

(W j+1
0 ,W j+1

1 , f0,j+1, f1,j+1).
5. Continue the interaction with R?OT according to Hj−1

3 (and Hj3) and output what R?OT
outputs.

This step of the security proof ends with the observation that if H = hc(x) then R?OT acts
as in Hj−1

3 , otherwise he acts as in Hj3.
The second step of the security proof is almost identical to the proof used to prove the

indistinguishability between H0 and H2.
The entire security proof is almost over, indeed the output of Hγ3 corresponds to the out-

put of the simulator Sim and OUTH3,R?OT (z)(1
λ) = OUTH1

3,R
?
OT (z)(1

λ) ≈ OUTH2
3,R

?
OT (z)(1

λ) · · · ≈
OUTHγ3 ,R?OT (z)(1

λ). Therefore we can claim that the output of H0 is indistinguishable from the
output of Sim when at most one between l0 and l1 is used.

Theorem 4. Assuming TDPs, for any γ > 0 Πγ
−−→
OT

securely computes FmOT with one-sided simula-
tion. Moreover the third round is replayable.

Proof. The third round of Πγ
−−→
OT

is replayable due to the same arguments used in the security proof

17It is important to observe that r1b? = rjb? .
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of Theorem 4. We now prove that Πγ
−−→
OT

securely computes FmOT with one-sided simulation according
to Definition 14. More precisely to prove the security against the malicious sender S?−−→

OT
we start

by consider the execution H0 that correspond to the real execution where the input b1, . . . , bm is
used by the receiver and then we consider the experiment Hi where the input used by the receiver
is 1 − b1, . . . , 1 − bi, bi+1, . . . , bm. Suppose now by contradiction that the output distributions of
Hi and Hi+1 (for some i ∈ {1,m − 1}) are distinguishable, then we can construct a malicious
sender S?OT that breaks the security of Πγ

OT against malicious sender. This allow us to claim that
the output distribution of H0 is indistinguishable from the output distribution of Hm. A similar
proof can be made when the malicious party is the receiver, but this time we need to consider how
the the security proof for Πγ

OT works. More precisely, we start by consider the execution H0 that
correspond to the real execution where the input ((l10, l

1
1) . . . , (lm0 , l

m
1 )) is used by the sender and then

we consider the experiment Hi where the simulator instead of the honest sender procedure is used
in the first i parallel executions of Πγ

OT . Supposing by contradiction that the output distributions
of Hi and Hi+1 (for some i ∈ {1,m − 1}) are distinguishable, then we can construct a malicious
receiver R?OT that breaks the security of Πγ

OT against malicious sender. We observe that in Hi in
the first i parallel executions of Πγ

OT the simulator Sim is used and this could disturb the reduction
to the security of Πγ

OT when proving that the output distribution of Hi is indistinguishable from
the output distribution of Hi+1. In order to conclude the security proof we need just to show that
Sim’s behaviour does not disturb the reduction. As described in the security proof of Πγ

OT , the
simulation made by Sim roughly works by rewinding from the third to the second round while from
the fourth round onwards Sim works straight line. An important feature enjoyed by Sim is that
he maintains the main thread. Let COT be the challenger of Πγ

OT against malicious receiver, our
adversary R?OT works as following.

1. Upon receiving the first round of Πγ
−−→
OT

from R?−−→
OT

, forward the (i+ 1)-th component ot1 to
COT 18.

2. Upon receiving ot2 from COT interacts against R?−−→
OT

by computing the second round of Πγ
−−→
OT

according to Hi (Hi+1) with the difference that in the (i+1)-th position the value ot2 is used.
3. Upon receiving the third round of Πγ

−−→
OT

from R?−−→
OT

, forward the (i+ 1)-th component ot3 to
COT .

4. Upon receiving ot4 from COT interacts against R?−−→
OT

by computing the fourth round of Πγ
−−→
OT

according to Hi (Hi+1) with the difference that in the (i+1)-th position the value ot4 is used.
5. for i = 2, . . . , γ follow the strategy described in step 3 and 4 and output what R?−−→

OT
outputs.

We recall that in Hi (as well as in Hi+1) in the first i execution of Πγ
OT the simulator is used,

therefore a rewind is made from the third to the second round. During the rewinds R?OT can forward
to R?−−→

OT
the same second round ot2. Moreover, due to the main thread property enjoyed by Sim,

after the rewind R?OT can continue the interaction against R?−−→
OT

without rewind C?. Indeed if Sim
does not maintains the main thread then, even though the same ot2 is used during the rewind, R?−−→

OT
could send a different ot3 making impossible to efficiently continue the reduction.

18We recall that Πγ
−−→
OT

is constructed by executing in parallel m instantiations of Πγ
OT , therefore in this reduction

we are just replacing the (i + 1)-th component of every rounds sent to R?−−→
OT

with the value received by COT . Vice
versa, we forward to C? the (i+ 1)-th component of the rounds received from R?−−→

OT
.
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4 Secure 2PC in the Simultaneous Message Exchange Model

Overview of our protocol: Π2PC = (P1, P2). In this section we give an high-level overview of
our 4-round 2PC protocol Π2PC = (P1, P2) for every functionality F = (F1, F2) in the simultaneous
message exchange model. Π2PC consists of two simultaneous symmetric executions of the same
subprotocol in which only one party learns the output. In the rest of the paper we indicate as
left execution the execution of the protocol where P1 learns the output and as right execution the
execution of the protocol where P2 learns the output. In Fig. 6 we provide the high level description
of the left execution of Π2PC . We denoted by (m1,m2,m3,m4) the messages played in the left
execution where (m1,m3) are sent by P1 and (m2,m4) are sent by P2. Likewise, in the right
execution of the protocol the messages are denoted by (m̃1, m̃2, m̃3, m̃4) where (m̃1, m̃3) are sent by
P2 and (m̃2, m̃4) are sent by P1. Therefore, messages (mj , m̃j) are exchanged simultaneously in the
j-th round, for j ∈ {1, . . . , 4}. Our construction uses the following tools.
- A non-interactive perfectly binding computationally hiding commitment scheme PBCOM =

(Com,Dec).
- A Yao’s garbled circuit scheme (GenGC,EvalGC) with simulator SimGC.
- A protocol Πγ

−−→
OT

= (S−−→OT , R−−→OT ) that securely computes FmOT with one-sided simulation.
- A Σ-protocol BLL = (PL,VL) for the NP-language

L = {com : ∃ (dec,m) s.t. Dec(com, dec,m) = 1} with Special HVZK simulator SimL. We uses
two instantiations of BLL in order to construct the protocol for the OR of two statements ΠOR

as described in Sec. 2.4. ΠOR is a proof system for the NP-language LOR = {(com0, com1) :
∃ (dec,m) s.t. Dec(com0, dec,m) = 1 OR Dec(com1, dec,m) = 1} 19.

- A 4-round delayed-input NMZK AoK NMZK = (PNMZK,VNMZK) for the NP-language LNMZK

that will be specified later (see Sec. 4.1 for the formal definition of LNMZK).
In Figure 6 we propose the high-level description of the left execution of Π2PC where P1 runs on

input x ∈ {0, 1}λ and P2 on input y ∈ {0, 1}λ.

4.1 Formal Description of Our Π2PC = (P1, P2)

We first start by defining the following NP-language

LNMZK =
{(
comGC, comL, com0, com1,GC, (ot

1, ot2, ot3, ot4)
)

:

∃(decGC, decL, dec0, dec1, input, α, β, ω) s.t.(
(Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GC)← GenGC(1λ, F1, input;ω)

)
AND(

Dec(com0, dec0, input) = 1
)
AND

(
Dec(com1, dec1, input) = 1

)
AND(

Dec(comL, decL, Z1,0||Z1,1||, . . . , ||Zλ,0||Zλ,1) = 1
)
AND(

ot1 and ot3are obtained by running R−−→OT on input 1λ, input, α
)
AND(

õt
2 and õt

4 are obtained by running S−−→OT on input

(1λ, Z1,0, Z1,1, . . . , Zλ,0, Zλ,1, β)
)}
.

The NMZK AoK NMZK used in our protocol is for the NP-language LNMZK described above.
Now we are ready to describe our protocol Π2PC = (P1, P2) in a formal way.

19We use ΠOR in a non-black box way, but for ease of exposition sometimes we will refer to the entire protocol ΠOR

in order to invoke its proof of knowledge property.
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P1(x) P2(y)
Run R−−→OT on input 1λ, x and randomness α
to get ot1;
Run VNMZK on input 1λ to get nmzk1;
(com0, dec0)← Com(x);
(com1, dec1)← Com(x);
a0 ← PL(1λ, com0, dec0, x);
Pick c1 ← {0, 1}λ;
(a1, z1)← SimL(1λ, com1, c1).

m1 =(
com0, com1, a0, a1, ot

1, nmzk1
)

−−−−−−−−−−−−−−−−−−→
(Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy)
← GenGC(1λ, F1, y;ω);
(comL, decL)
← Com(Z1,0||Z1,1||, . . . , ||Zλ,1);
(comGCy , decGCy)← Com(GCy);
Run S−−→OT on input 1λ, ot1, (Z1,0,
Z1,1, . . . , Zλ,0, Zλ,1)
and randomness β to get ot2;
Run PNMZK on input 1λ and nmzk1

to get nmzk2;
Pick c← {0, 1}λ.

m2 =(
comL, ot

2, comGCy , nmzk2, c
)

←−−−−−−−−−−−−−−−−−−
Run R−−→OT on input ot2 to get ot3;
Run VNMZK on input nmzk2 to get
nmzk3;
c0 = c⊕ c1, z0 ← PL(c0).

m3 =(
c0, z0, c1, z1, ot

3, nmzk3
)

−−−−−−−−−−−−−−−−−−→
If c is equal to c0 ⊕ c1
and VL(a0, c0, z0, com0) = 1
and VL(a1, c1, z1, com1) = 1

continue the execution;
otherwise output ⊥;
Run S−−→OT on input ot3 to get ot4;
Run PNMZK on input nmzk3,
stma and wstm

b to get nmzk4.
m4 =(
ot4,GCy, nmzk4

)
←−−−−−−−−−−−−−−−−−−

Run R−−→OT in input ot4 thus
obtaining Z1,x1

, . . . , Zλ,xλ ;

If VNMZK on input nmzk4 and stm outputs 1
output v = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ);

otherwise output ⊥.

aInformally, NMZK proves that: 1) P2 has performed both oblivious transfers correctly using the same input y; 2) the
value y is committed in both ˜com0, ˜com1 (that P2 computes in the first round) and 3) the Yao’s gabled circuit GCy sent in the
last round represents the message committed in comGCy .

bwstm is s.t. (stm, wstm) ∈ RelLNMZK .

Figure 6: High-level description of the left execution of Π2PC .
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Protocol Π2PC = (P1, P2)
Common input: security parameter λ and instance length `NMZK of the statement of the NMZK.
P1’s input: x ∈ {0, 1}λ, P2’s input: y ∈ {0, 1}λ.
Round 1. In this round P1 sends the message m1 and P2 the message m̃1. The steps computed

by P1 to construct m1 are the following.
1. Run VNMZK on input the security parameter 1λ and `NMZK thus obtaining the first round

nmzk1 of NMZK.
2. Run R−−→OT on input 1λ, x and the randomness α thus obtaining the first round ot1 of

Πγ
−−→
OT

.
3. Compute (com0, dec0)← Com(x) and (com1, dec1)← Com(x).
4. Compute a0 ← PL(1λ, com0, (dec0, x)).
5. Pick c1 ← {0, 1}λ and compute (a1, z1)← SimL(1λ, com1, c1).
6. Set m1 =

(
nmzk1, ot1, com0, com1, a0, a1

)
and send m1 to P2.

Likewise, P2 performs the same actions of P1 constructing message m̃1 =
(

˜nmzk
1
, õt

1
, ˜com0, ˜com1, ã0, ã1

)
.

Round 2. In this round P2 sends the message m2 and P1 the message m̃2. The steps computed
by P2 to construct m2 are the following.
1. Compute (Z1,0, Z1,1, . . . , Zλ,0, Zλ,1,GCy)← GenGC(1λ, F2, y;ω).
2. Compute (comGCy , decGCy)← Com(GCy) and

(comL, decL)← Com(Z1,0||Z1,1||, . . . , ||Zλ,0||Zλ,1)20.
3. Run PNMZK on input 1λ and nmzk1 thus obtaining the second round nmzk2 of NMZK.
4. Run S−−→OT on input 1λ, Z1,0, Z1,1, . . . , Zλ,0, Zλ,1, ot1 and the randomness β thus obtaining

the second round ot2 of Πγ
−−→
OT

.
5. Pick c← {0, 1}λ.
6. Set m2 =

(
ot2, comL, comGCy , nmzk2, c

)
and send m2 to P1.

Likewise, P2 performs the same actions of P1 constructing message m̃2 =
(
õt

2
, ˜comL, ˜comG̃Cx ,

˜nmzk
2
, c̃
)
.

Round 3. In this round P1 sends the message m3 and P2 the message m̃3. The steps computed
by P1 to construct m3 are the following.
1. Run VNMZK on input nmzk2 thus obtaining the third round nmzk3 of NMZK.
2. Run R−−→OT on input ot2 thus obtaining the third round ot3 of Πγ

−−→
OT

.
3. Compute c0 = c⊕ c1 and z0 ← PL(c0).
4. Set m3 =

(
nmzk3, ot3, c0, c1, z0, z1

)
and send m3 to P2.

Likewise, P2 performs the same actions of P1 constructing message m̃3 =
(

˜nmzk
3
, õt

3
, c̃0, c̃1, z̃0, z̃1

)
.

Round 4. In this round P2 sends the message m4 and P1 the message m̃4. The steps computed
by P2 to construct m4 are the following.
1. Check if: c = c0 ⊕ c1, the transcript a0, c0, z0 is accepting w.r.t. the instance com0 and

the transcript a1, c1, z1 is accepting w.r.t. the instance com1. If one of the checks fails
then output ⊥, otherwise continue with the following steps.

2. Run S−−→OT on input ot3, thus obtaining the fourth round ot4 of Πγ
−−→
OT

.
3. Set stm = (comGCy , comL, ˜com0, ˜com1,GCy, õt1, ot2, õt3, ot4) 21 and wstm = (decGCy , decL, ˜dec0,

20Instead of one commitment for each label, P2 commits to the concatenation of all the labels of the garbled circuit
GCy.

21Informally, NMZK is used to prove that P2 in both executions of OT (one in which he acts as a receiver, and one
in which he acts as a sender) behaves correctly and he uses the same input committed in ˜com0 and com1. Furthermore
NMZK is used to prove that Yao’s gabled circuit GCy sent in the last round is consistent with the message committed
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˜dec1, y, α̃, β, ω).
4. Run PNMZK on input nmzk3, stm and wstm thus obtaining the fourth round nmzk4 of

NMZK.
5. Set m4 =

(
nmzk4, ot4,GCy

)
and send m4 to P1.

Likewise, P1 performs the same actions of P2 constructing message m̃4 =
(

˜nmzk
4
, õt

4
, G̃Cx

)
.

Output computation.
P1’s output: P1 checks if the transcript (nmzk1, nmzk2, nmzk3, nmzk4) is accepting w.r.t.
stm. In the negative case P1 outputs ⊥, otherwise P1 runs R−−→OT on input ot4 thus obtaining
Z1,x1 , . . . , Zλ,xλ and computes the output v1 = EvalGC(GCy, Z1,x1 , . . . , Zλ,xλ).
P2’s output: P2 checks if the transcript ˜nmzk

1
, ˜nmzk

2
, ˜nmzk

3
, ˜nmzk

4
is accepting w.r.t. ~stm.

In the negative case P2 outputs ⊥, otherwise P2 runs R−−→OT on input õt
4 thus obtaining

Z̃1,y1 , . . . , Z̃λ,yλ and computes the output v2 = EvalGC(G̃Cx, Z̃1,y1 , . . . , Z̃λ,yλ).
High-level overview of the security proof. Due to the symmetrical nature of the protocol,
it is sufficient to prove the security against one party (let this party be P2). We start with the
description of the simulator Sim. Sim uses the PoK extractor EOR for ΠOR to extract the input y?

from the malicious party. Sim sends y? to the ideal functionality F and receives back v2 = F2(x, y?).
Then, Sim computes (G̃C?, (Z̃1, . . . , Z̃λ)) ← SimGC(1λ, F2, y

?, v2) and sends G̃C? in the last round.
Moreover instead of committing to the labels of Yao’s garbled circuit and P1’s inputs in com0 and
com1, Sim commits to 0. Sim runs the simulator SimNMZK of NMZK and the simulator SimOT of
Πγ
−−→
OT

where P1 acts as S−−→OT using (Z̃1, . . . , Z̃λ) as input. For the messages of ΠOT where P1 acts as
the receiver, Sim runs R−−→OT on input 0λ instead of using x. In our security proof we proceed through
a sequence of hybrid experiments, where the first one corresponds to the real-world execution and
the final represents the execution of Sim in the ideal world. The core idea of our approach is to run
the simulator of NMZK, while extracting the input from P ?2 . By running the simulator of NMZK
we are able to guarantee that the value extracted from ΠOR is correct, even though P ?2 is receiving
proofs for a false statement (e.g. the value committed in com0 differs form com1). Indeed in each
intermediate hybrid experiment that we will consider, also the extractor of NMZK is run in order to
extract the witness for the theorem proved by P ?2 . In this way we can prove that the value extracted
from ΠOR is consistent with the input that P2 is using. For what we have discussed, the simulator
of NMZK rewinds first from the third to the second round (to extract the trapdoor), and then from
the fourth to the third round (to extract the witness for the statement proved by P ?2 ). We need to
show that these rewinding procedures do not disturb the security proof when we rely on the security
of Πγ

−−→
OT

and ΠOR. This is roughly the reason why we require the third round of Πγ
−−→
OT

to be reusable
and rely on the security of Special HVZK of the underlying BLL instead of relying directly on the
WI of ΠOR.

Theorem 5. Assuming TDPs, Π2PC securely computes every two-party functionality F = (F1, F2)
with black-box simulation.

Proof. In order to prove that Π2PC securely computes F = (F1, F2), we first observe that, due to
the symmetrical nature of the protocol, it is sufficient to prove the security against one party (let
this party be P2). We now show that for every adversary P ?2 , there exists an ideal-world adversary
(simulator) Sim such that for all inputs x, y of equal length and security parameter λ:

in comGCy .
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{REALΠ2PC ,P
?
2 (z)(1

λ, x, y)} ≈ {IDEALF,Sim(z)(1
λ, x, y)}.

Our simulator Sim is the one showed in Sec. 4.1.
In our security proof we proceed through a series of hybrid experiments, where the first one

corresponds to the execution of Π2PC between P1 and P ?2 (real-world execution). Then, we gradually
modify this hybrid experiment until the input of the honest party is not needed anymore, such that
the final hybrid would represent the simulator (simulated execution).

We now give the descriptions of the hybrid experiments and of the corresponding security re-
ductions. We denote the output of P ?2 and the output of the procedure that interacts against P ?2
on the behalf of P1 in the hybrid experiment Hi with {OUTHi,P ?2 (z)(1

λ, x, y)}x∈{0,1}λ,y∈{0,1}λ .
- H0 corresponds to the real executions. More in details, H0 runs P ?2 with a fresh randomness, and

interacts with it as the honest player P1 does using x as input. The output of the experiment
is P ?2 ’s view and the output of P1. Note that we are guarantee from the soundness of NMZK
that stm ∈ LNMZK, that is: 1)P ?2 uses the same input y? in both the OT executions; 2) the
garbled circuit committed in comGCy and the corresponding labels committed in comL, are
computed using the input y?; 3)y? is committed in both ˜com0 and ˜com1 and that the garbled
circuit sent in the last round is actually the one committed in comGCy .

- H1 proceeds in the same way ofH0 except that the input y? of the malicious party P ?2 is extracted.
In order to obtain y?, H1 runs the extractor EOR of ΠOR (that exists from the property of
PoK) of ΠOR. If the extractor fail, then H1 aborts. The PoK property of ΠOR ensures that
with all but negligible probability the value y? is extracted, therefore {OUTH0,P ?2 (z)(1

λ, x, y)}
and {OUTH1,P ?2 (z)(1

λ, x, y)} are statistically close22.
- H2 proceeds in the same way of H1 except that the simulator SimNMZK of NMZK is used in

order to compute the messages of NMZK played by P1. Note that SimNMZK rewinds P ?2
from the 3rd to the 2nd round in oder to extract the trapdoor. The same is done by EOR.
Following [GMPP16b, ACJ17] we let EOR and the extraction procedure of SimNMZK work in
parallel. Indeed they just rewind from the third to the second round by sending a freshly
generated second round. The indistinguishability between the output distribution of these
two hybrids experiments holds from the property 1 of NMZK (see Definition 10). In this, and
also in the next hybrids, we prove that Prob [ stm /∈ LNMZK ] ≤ ν(λ). That is, we prove that
P ?2 behaves honestly across the hybrid experiments even though he is receiving a simulated
proof w.r.t. NMZK and ˜stm does not belong to LNMZK. In this hybrid experiment we can prove
that if by contradiction this probability is non-negligible, then we can construct a reduction
that breaks the property 2 of NMZK (see Definition 10). Indeed, in this hybrid experiment,
the theorem that P ?2 receives belongs to LNMZK and the simulator of SimNMZK is used in
order to compute and accepting transcript w.r.t. NMZK. Therefore, relying on property 2
of Definition 10 we know that there exists a simulator that extracts the the witness for the
statement stm proved by P ?2 with all but negligible probability.

- H3 proceeds exactly as H2 except for the message committed in com1. More precisely in this
hybrid experiment com1 is a commitment of 0 instead of x. The indistinguishability between
the output of the experiments H2 and H3 follows from the hiding property of PBCOM. Indeed
we observe that the rewind made by SimNMZK does not involve com1 that is sent in the first
round, moreover the decommitment information of com1 is not used neither in ΠOR nor in

22To simplify the notation here, and in the rest of the proof, we will omit that the indistinguishability between two
distributions must hold for every x ∈ {0, 1}λ, y ∈ {0, 1}λ.
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NMZK. To argue that Prob [ stm /∈ LNMZK ] ≤ ν(λ) also in this hybrid experiment we still use
the simulator-extractor SimNMZK in order to check whether the theorem proved by P ?2 is still
true. If it is not the case then we can construct a reduction to the hiding of PBCOM. Note
that SimNMZK rewinds from the 4th to the 3rd round in order to extract the witness wstm for
the statement stm proved by P ?2 , and the rewinds do not effect the reduction.

- H4 proceeds exactly as H3 except that the honest prover procedure (PL), instead of the spe-
cial HVZK simulator (SimL), is used to compute the messages a1, z1 of the transcript τ1 =
(a1, c1, z1) w.r.t. the instance com1. Suppose now by contradiction that the output distri-
butions of the hybrid experiments are distinguishable, then we can show a malicious verifier
V? that distinguishes between the transcript τ1 = (a1, c1, z1) computed using SimL from a
transcript computed using the honest prover procedure. In more details, let CSHVZK be the
challenger of the Special HVZK. V? picks c1 ← {0, 1}λ and sends c1 to CSHVZK. Upon re-
ceiving a1, z1 from CSHVZK V? plays all the messages of Π2PC as in H3 (H4) except for the
messages of τ1. For these messages V? acts as a proxy between CSHVZK and R?−−→

OT
. At the

end of the execution V? runs the distinguisher D that distinguishes {OUTH3,P ?2 (z)(1
λ, x, y)}

from {OUTH4,P ?2 (z)(1
λ, x, y)} and outputs what D outputs. We observe that if CSHVZK sends

a simulated transcript then P ?2 acts as in H3 otherwise he acts as in H4.
There is a subtlety in the reduction. V? runs SimNMZK that rewinds from the third to the

second round. This means that V? has to be able to complete every time the third round
even though he is receiving different challenges c1, . . . , cpoly(λ) w.r.t to ΠOR. Since we are
splitting the challenge c, V? can just keep fixed the value c1 reusing the same z1 (sent by
CSHVZK) and can compute an answer to a different c′0 = ci ⊕ c1 using the knowledge of the
decommitment information of com0. To argue that Prob [ stm /∈ LNMZK ] ≤ ν(λ), also in this
hybrid experiment we can use the simulator-extractor SimNMZK to check whether the theorem
proved by P ?2 is still true. If it is not the case we can construct a reduction to the special
HVZK property of BLL. Note that the rewinds of SimNMZK from the fourth to the third round
do not affect the reduction.

- H5 proceeds exactly as H4 except that the special HVZK simulator (SimL), instead of honest
prover procedure (PL), is used to compute the prover’s messages a0, z0 for the transcript
τ0 = (a0, c0, z0) w.r.t. the instance com0. The indistinguishability between the outputs of
H4 and H5 comes from the same arguments used to prove that {OUTH3,P ?2 (z)(1

λ, x, y)} ≈
{OUTH4,P ?2 (z)(1

λ, x, y)}. Moreover the same arguments of before can be used to prove that
Prob [ stm /∈ LNMZK ] ≤ ν(λ).

- H6 proceeds exactly as H5 except for the message committed in com0. More precisely in
this hybrid experiment com0 is a commitment of 0 instead of x. The indistinguishability
between the outputs of H5 and H6 comes from the same arguments used to prove that
{OUTH2,P ?2 (z)(1

λ, x, y)} ≈ {OUTH3,P ?2 (z)(1
λ, x, y)}. Moreover the same arguments as before

can be used to prove that
Prob [ stm /∈ LNMZK ] ≤ ν(λ).

- H7 proceeds in the same way of H6 except that the simulator of Πγ
−−→
OT

, SimOT , is used instead of
the sender algorithm S−−→OT . From the simulatable security against malicious receiver of Πγ

−−→
OT

for every γ = poly(λ) follows that the output distributions of H7 and H6 are indistinguishable.
Suppose by contradiction this claim does not hold, then we can show a malicious receiver R?−−→

OT
that breaks the simulatable security of Πγ

−−→
OT

against a malicious receiver. In more details, let
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COT be the challenger of Πγ
−−→
OT

. R?−−→
OT

plays all the messages of Π2PC as in H6 (H7) except for
the messages of Πγ

−−→
OT

. For these messages R?−−→
OT

acts as a proxy between COT and P ?2 . In the
end of the execution R?−−→

OT
runs the distinguisher D that distinguishes {OUTH6,P ?2 (z)(1

λ, x, y)}
from {OUTH7,P ?2 (z)(1

λ, x, y)} and outputs what D outputs. We observe that if COT acts as
the simulator then P ?2 acts as in H7 otherwise he acts as in H6.

To prove that Prob [ stm /∈ LNMZK ] is still negligible we use the same arguments as before
with this additional important observation. The simulator-extractor SimNMZK rewinds also
from the 4th to the 3rd round. These rewinds could cause P ?2 to ask multiple third rounds
of OT õt

3
i (i = 1, . . . , poly(λ)). In this case R?−−→

OT
can simply forward õt

3
i to COT and obtains

from COT an additional õt4i . This behavior of R?−−→
OT

is allowed because Πγ
−−→
OT

is simulatable
secure against a malicious receiver even when the last two rounds of Πγ

−−→
OT

are executed γ

times (as stated in Theorem 4). Therefore the reduction still works if we set γ equals to the
expected number of rewinds that SimNMZK could do. We observe that since we have proved
that stm ∈ LNMZK, then the value extracted y? is compatible with the query that SimOT could
do. That is, SimOT will ask only the value (Z̃1,y1 , . . . , Z̃λ,yλ).

- H8 differs from H7 in the way the rounds of Πγ
−−→
OT

, where P ?2 acts as sender, are computed.
More precisely instead of using x as input, 0λ is used. Note that from this hybrid onward it
is not possible anymore to compute the output by running EvalGC as in the previous hybrid
experiments. This is because we are not able to recover the correct labels to evaluate the
garbled circuit. Therefore H8 computes the output by directly evaluating v1 = F1(x, y?),
where y? is the input of P ?2 obtained by using EOR.

The indistinguishability between the output distributions of H7 and H8 comes from the
security of Πγ

−−→
OT

against malicious sender. Indeed, suppose by contradiction that it is not the
case, then we can show a malicious sender S?−−→

OT
that breaks the indistinguishability security

of Πγ
−−→
OT

against a malicious sender. In more details, let COT be the challenger. S?−−→
OT

plays
all the messages of Π2PC as in H7 (H8) except for the messages of OT where he acts as a
receiver. For these messages S?−−→

OT
plays as a proxy between COT and P ?2 . At the end of

the execution S?−−→
OT

runs the distinguisher D that distinguishes {OUTH7,P ?2 (z)(1
λ, x, y)} from

{OUTH8,P ?2 (z)(1
λ, x, y)} and outputs what D outputs. We observe that if COT computes the

messages of Πγ
−−→
OT

using the input 0λ then P ?2 acts as in H8 otherwise he acts as in H7. In this
security proof there is another subtlety. During the reduction S?−−→

OT
runs SimNMZK that rewinds

from the third to the second round. This means that P ?2 could send multiple different second
rounds ot2i of OT (with i = 1, . . . , poly(λ)). S?−−→

OT
cannot forward these other messages to COT

(he cannot rewind the challenger). This is not a problem because the third round of Πγ
−−→
OT

is
replayable (as proved in Theorem 4). That is the round ot3 received from the challenger can
be used to answer to any ot2. To prove that Prob [ stm /∈ LNMZK ] ≤ ν(λ) we use the same
arguments as before by observing the the rewinds made by the simulator-extractor from the
fourth round to the third one do not affect the reduction.

- H9 proceeds in the same way of H8 except for the message committed in ˜comlab. More precisely,
instead of computing a commitment of the labels
(Z̃1,0, Z̃1,1, . . . , Z̃λ,0, Z̃λ,1), a commitment of 0λ|| . . . ||0λ is computed. The indistinguishability
between the output distributions of H8 and H9 follows from the hiding of PBCOM. Moreover,
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Prob [ stm /∈ LNMZK ] ≤ ν(λ) in this hybrid experiment due to the same arguments used
previously.

- H10 proceeds in the same way of H9 except for the message committed in ˜comGCy : instead of
computing a commitment of the Yao’s garbled circuit G̃Cx, a commitment of 0 is computed.
The indistinguishability between the output distributions of H9 and H10 follow from the
hiding of PBCOM. Prob [ stm /∈ LNMZK ] ≤ ν(λ) in this hybrid experiment due to the same
arguments used previously.

- H11 proceeds in the same way of H10 except that the simulator SimGC it is run (instead of
GenGC) in order to obtain the Yao’s garbled circuit and the corresponding labels. In more
details, once y? is obtained by EOR (in the third round), the ideal functionality F is invoked on
input y?. Upon receiving v2 = F2(x, y?) the hybrid experiment compute (G̃C?, Z̃1, . . . , Z̃λ) ←
SimGC(1λ, F2, y

?, v2) and replies to the query made by SimOT with (Z̃1, . . . , Z̃λ). Furthermore,
in the 4th round the simulated Yao’s garbled circuit G̃C? is sent, instead of the one generated
using GenGC. The indistinguishability between the output distributions ofH10 andH11 follows
from the security of the Yao’s garbled circuit. To prove that Prob [ stm /∈ LNMZK ] ≤ ν(λ)
we use the same arguments as before by observing the the rewinds made by the simulator-
extractor from the fourth round to the third one do not affect the reduction.

The proof ends with the observation that H11 corresponds to the simulated execution with the
simulator Sim.
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