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Abstract

In a novel analysis, we formally prove that arbitrarily many Arbiter PUFs can be
combined into a stable XOR Arbiter PUF. To the best of our knowledge, this design
cannot be modeled by any known oracle access attack in polynomial time.

Using majority vote of arbiter chain responses, our analysis shows that with a poly-
nomial number of votes, the XOR Arbiter PUF stability of almost all challenges can be
boosted exponentially close to 1; that is, the stability gain through majority voting can
exceed the stability loss introduced by large XORs for a feasible number of votes. Con-
sidering state-of-the-art modeling attacks by Becker and Rührmair et al., our proposal
enables the designer to increase the attacker’s effort exponentially while still maintaining
polynomial design effort. This is the first result that relates PUF design to this traditional
cryptographic design principle.

1 Introduction
The notion of Physically Unclonable Functions (PUFs) and a first integrated circuit (IC) design
that can serve as a PUF was proposed by Pappu et al. and Gassend et al. respectively [15,30].
Most significantly, their contribution aimed at introducing the notion of PUFs as a mean of
authenticating ICs without the need to store a secret key. While many IC authentication
protocols rely on a secret key, removing the dependence on a secret from the protocol eliminates
all attacks that rely on extracting the key from the device, an attack method that receives broad
attention by security researchers.

To replace the secret key and corresponding cryptographic protocols, PUF ICs produce
different response behavior on different chips, although the IC design remains the same. This
can be achieved by a design that allows nano-scale chip imperfections to influence the output of
the IC. As an example for using PUFs as a mean of authentication, an IC can be authenticated
answering a number of challenges with the correct response that was prerecorded at the server.
Some more tangible use cases are using PUFs as part of secure key cards as described in
Gassend et al. [16] or for ICs in the context of radio-frequency identification (RFID) presented
by Devadas et al. [9].

The promising PUF approach to IC authentication subsequently received much attention.
Gassend et al. [17] and Lim et al. [22] implemented the designs to be used in IC authentication.
They also presented successful modeling attacks on their implementations. Armknecht et al.
[1, 3] formalized important security features of PUFs.

Arbiter PUFs, which are based on chip-individual delays, became one of the most important
objects of PUF implementation and security research. Suh and Devadas [36] proposed to XOR
different outputs of one Arbiter PUF to obfuscate the result. Thereafter, Devadas [8] proposed
using multiple Arbiter PUFs to construct an XOR Arbiter PUF. In an XOR Arbiter PUF,
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k Arbiter PUF responses are evaluated in parallel on k different Arbiter PUFs. The final
response is then returned as the XOR of all single Arbiter PUF responses. However, as shown
by Rührmair et al. [32] in a comprehensive overview of feasible attacks on various types of
PUFs, XOR PUFs can be attacked if k is small. As all known Arbiter PUF implementations
suffer from a portion of challenges that do not provide stable responses [6], large XOR Arbiter
PUFs are infeasible to build, as their stability will decrease exponentially with growing k as an
induction argument shows.

Our contribution provides a formally proven PUF design that allows to increase the number k
of arbiter chains arbitrarily while maintaining the overall PUF stability. As we show empirically,
a growing parameter k in turn enables the designer to increase the effort for all known oracle
attacks exponentially in k, while maintaining polynomial design effort. Note, however, that our
design comes at the cost of implementing a volatile memory-solution for majority vote counters,
which may introduce new vulnerabilities to side-channel attacks.

The paper is structured as follows: Sec. 2 gives a detailed and motivated description of
our proposed design. Sec. 3 compares our approach for secure PUFs to other proposals in the
literature. After introducing general preliminaries in Sec. 4 and the necessary background in
Sec. 5, we analyze PUF response stability theoretically. Subsequently, Sec. 7 provides both
physical and oracle-access security considerations. Finally, Sec. 8 concludes the paper.

2 XOR Majority Vote Arbiter PUF

Our contribution proposes a modification of the well-known XOR Arbiter PUF design that
is due to Devadas [8]. The design implements k Arbiter PUFs with n stages each in parallel
and XORes the individual response bits. The XOR operation guarantees that the final output
bit is influenced by all k individual response bits. This fact provides some evidence to show
that the effort an attacker has to make to predict PUF responses is high. So far this idea was
successful, as the best known attacks on XOR Arbiter PUFs have an exponential run time in
k [32]. However, as hardware implementation of Arbiter PUFs are noisy, it was infeasible to
implement XOR Arbiter PUFs with k larger than 12 [41].

In order to reduce the noise of Arbiter PUFs, responses can be determined by a majority
vote process [26] before XORing the individual response bits as shown in Fig. 2.1. We show
that with a feasible, i.e. polynomial, number of votes in the majority vote process, we can
achieve a response stability as high as desired.

However, being closely related to controlled PUFs [18], this design comes at the cost of
storing intermediate voting counts in volatile memory. We discuss in Sec. 7.1 how this may
jeopardize hardware security goals of the PUF. Also, Majzoobi et al. [25] discussed the influence
of voltage and temperature on responses of an FPGA-based Arbiter PUF implementations. One
problem that may arise when implementing the XOR Majority Vote Arbiter PUF in hardware
is to make sure that rapidly generated responses are statistically independent from each other.

3 Related Work

The employed concept of majority voting before the XOR operation is not new to PUF liter-
ature. Majzoobi et al. [25, 26] studied the impact of majority voting on the Arbiter precision
empirically, relating the number of votes to a Gaussian distribution that can approximate the
delay values. Rührmair et al. [31] and Ganji et al. [12] used majority voting to increase pre-
cision of measurements for a fixed number of votes, but did not formally quantify the stability
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Figure 2.1: A detailed logic block diagram of the proposed XOR Majority Vote Arbiter PUF
design. For each arbiter chain, r responses to the given challenge are evaluated and passed to
a majority vote. The result is then XORed and returned.

gain. In contrast, our work aims to study the relation of stability gain by majority vote and
stability loss through the XOR operation.

It is the subject of many publications to build (provable) secure strong PUFs and likewise
it is subject of research to attack published PUF designs.

Based on various non-linear characteristics of current-voltage behavior, several strong PUF
candidates have been proposed [20,21,40]. All of them empirically show some resistance against
modeling attacks using support vector machines. However Guo et al. [19] published an attack
using a genetic algorithm to efficiently learn the non-linear current mirror PUF [21] with accu-
racy up to 99%.

For XOR Arbiter PUFs, state-of-the-art attacks are due to Becker at al. [4] and Rührmair et
al. [32]; both have been empirically shown to run in polynomial time. We discuss those attacks
in detail in Sec. 7. Similarly, an attack published by Ganji et al. [13] has been proven to run
in polynomial time, but only under the precondition that there is only a constant number of
parallel Arbiter PUFs.

Tajik et al. [37, 38] and Ganji et al. [11] showed that PUFs, including XOR Arbiter PUFs,
can be efficiently modeled if additional information about the chip is retrieved in an attack
that requires physical access to the PUF. We are convinced that these attacks can very easily
be adopted to also work against our proposed XOR Majority Vote Arbiter PUF. However, this
work focuses on the theoretical feasibility of building an arbitrarily large, stable XOR Arbiter
PUF. As any hardware-based attack inevitably also depends on the chosen implementation, we
do not consider their attacks in detail here.

Spenke et al. [35] take an entirely different approach to secure Arbiter PUFs by including the
FPGA PUF definition into the challenge sent to the PUF. At the cost of prolonged evaluation
of challenges, they increase the available challenge space and modeling effort. Their approach
appears hard to be modeled, as detailed knowledge of the FPGA design is necessary.

4 Preliminaries
An electric Physically Unclonable Function (PUF) is a circuit that, although it follows the same
design, behaves differently on different hardware. Based on the circuit behavior, the underlying
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hardware shall be identifiable. The notion of behavior is formalized by challenge-response pairs,
with the individual PUF behavior causing a certain response for each challenge given. Usually,
both challenge and response are digital data. The idea of PUFs stems from a non-electric
implementation [30], but nowadays virtually all research focuses on electric PUFs.

An Arbiter PUF is a PUF based on electrical signal delays that vary from chip to chip. It was
first introduced by Gassend et al. [15]. Two electrical signals start at the same time and travel
through a layout of n stages. At each stage, one bit of the n-bit challenge determines whether
the signals travel straight through or are interchanged. With the hardware implementation in
mind, the stages are sometimes called multiplexers. At the end of this arbiter chain, an arbiter
determines on which connector a signal arrives first and outputs the result as the response.

Arbiter PUFs are strong PUFs, as they offer a challenge space that has exponential size in
the design parameter n. In contrast, PUFs with smaller challenge space are called weak PUFs.

This work uses Gaussian random distributions. We denote a random variable X chosen by
a Gaussian distribution with mean µ and variance σ2 by X ∼ N (µ, σ2). For such X, we have
Pr[X < x] = Φ(x−µσ ) where Φ is the Cumulative Distribution Function (CDF) of the standard

normal distribution, Φ(x) = 1√
2π

∫ x
−∞ e−

t2

2 dt. The CDF can be written in terms of the error

function erf, defined by erf(x) = 1√
π

∫ x
−x e

−t2dt; we obtain Pr[X < x] = 1
2 + 1

2 erf(x−µ√
2σ

).

5 Background
This section provides the notions and models used in theoretical analysis throughout this work.
Centerpiece of our analysis is a combination of a linear function that models noise-free arbiter
chain delays and a stochastic process that models measurement and evaluation noise. This
model was introduced by Majzoobi [24] and was later used by Delvaux and Verbauwhede [6] as
the foundation for a noise-based side-channel attack.

5.1 Noise-Free Delay Value Model
The final delay difference of a single arbiter chain is the sum of all single delay differences and
interchange effects along the way. An important insight for modeling arbiter chains however is
that it does not matter which signal arrives first. In fact, the signals are indistinguishable. It
only matters if a signal arrives on the top or bottom path first.

The delay difference of each stage depends on the challenge bit for this stage, as straight and
crossing paths have different layout, and thus different nanoscale imperfections. The impact
of the delay difference however depends on all following challenge bits: if the signals are later
interchanged again, the impact of the stage’s delay difference is also inverted. Hence, we obtain

Theorem 1. The deterministic noise-free total delay difference of an arbiter chain with n
stages on input1 c = (c1, .., cn) ∈ {−1, 1}n is

∆DModel(c) =

n∑
i=1

δ(i)
ci

n∏
j=i

cj

 , (5.1)

1For the sake of easier notation, we chose to model challenges as vectors in {−1, 1}n rather than {0, 1}n.
If desired, all results can be transformed into {0, 1}n challenges by “encoding” inputs bits with a function
ρ : {0, 1} → {−1, 1}, where ρ(0) = 1 and ρ(1) = −1. This way, we can write ρ(b) = (−1)b and have the
convenient property ρ(b1b2) = ρ(b1)⊕ ρ(b2), where ⊕ denotes addition modulo 2. Any output of our model can
be transformed by ρ−1.
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where δ(i)
1 ,−δ(i)

−1 ∈ R denote the delay difference in the i-th stage in the cases ci = 1 and ci = −1
respectively. For x = (1, x1, ..., xn) ∈ {1}×{−1, 1}n with xi =

∏n
j=i cj for i ≥ 1, the total delay

difference ∆DModel is a linear function in x.

Proof. A rigorous proof for (5.1) can be obtained through induction over n.
We can rewrite ∆DModel(c) in a case-distinction-free form. The value δ(i)

ci can be written
as the linear function δ(i)(ci) = 1

2

[
(δ

(i)
1 − δ

(i)
−1)ci + δ

(i)
1 + δ

(i)
−1

]
. Expanding this notation yields

∆DModel(c) =
∑n
i=1

(
wi
∏n
j=i cj

)
+ w0, where wi = 1

2

(
δ

(i)
−1 + δ

(i)
1 + δ

(i−1)
1 − δ(i−1)

−1

)
and w0 =

1
2

(
δ

(n)
1 − δ(n)

−1

)
, setting δ(i)

ci = 0 for i = 0. We can hence write ∆DModel(x) =
∑n
i=0 wixi =

〈w, x〉.

The noise-free Arbiter PUF responses can thus be modeled by a linear threshold function
sgn (∆DModel(x)), where x can be easily computed from c. Many machine learning modeling
attacks rely upon this fact [32].

5.2 Noise Model

Implementation of arbiter chains in hardware produce noisy responses. To obtain valid pre-
dictions for behavior and security of Arbiter PUFs, this noise needs to be modeled. For any
challenge c ∈ {−1, 1}n, we thus model the PUF delay value as

∆D(c) = ∆DModel(c) + ∆DNoise, (5.2)

where ∆DNoise is a Gaussian random variable with zero mean and a variance σ2
Noise depending

on measurement conditions and implementation. Note that this model does not make any
assumptions about distribution or model of ∆DModel(c). Delvaux and Verbauwhede [6] were
the first to propose this model.

5.3 Stability Analysis

The delay-value based model (5.2) allows us to analyze the stability per given challenge. In fact,
measurements show that stability of Arbiter PUF responses significantly change depending on
the challenge given [35].

Definition 2. For a given challenge c ∈ {−1, 1}n with model delay difference ∆DModel(c) and
∆DNoise following a normal distribution, we define Stab(c) to be

Pr
∆DNoise

[sgn (∆DModel(c) + ∆DNoise) = sgn (∆DModel(c))] ,

the stability of c.

The idea of stability is also captured by the notions of reliability [4], repeatability [6], or
robustness [2] in other literature, although those notions might not formally be equivalent.

The stability of any challenge with known model delay difference can be expressed in terms
of the error function erf. It only depends on the absolute value of ∆DModel(c) and σNoise; the
higher the model delay difference, the higher the stability. The lowest stability of 1

2 is realized
when the model delay difference is exactly zero.
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Corollary 3. For a PUF instance, a challenge with model delay difference ∆DModel(c), and
normally distributed noise ∆DNoise with zero mean and variance σ2

Noise, the probability that
PUF response and model response agree is Stab(c) = 1

2 + 1
2 erf

(
|∆DModel(c)|√

2σNoise

)
.

While in most use cases the stability of a particular challenge for a given arbiter chain is
irrelevant, it is interesting how many “stable” or “unstable” challenges a given arbiter chain
instance has. Sec. 6.1 formalizes this question and gives an exact answer by providing the
probability distribution of Stab(c) for uniformly random challenges c.

6 Stability

Our proposed PUF design utilizes both majority vote to increase stability, and XORing of re-
sponses, which is known to decrease stability. This section demonstrates that the stability gain
overpowers the stability loss, that is, we show that our PUF design can scale to an arbitrar-
ily large number of arbiter chains that are XORed while maintaining overall stability with a
polynomial number of votes. We analyze our approach theoretically and (briefly) practically.

6.1 Theoretical Analysis

We analyze the stability of the Majority Vote XOR Arbiter PUF design starting from the basic
building blocks, arbiter chains, and then extend the analysis step by step to cover Majority
Vote Arbiter Chains and XOR Majority Vote Arbiter PUFs.

6.1.1 Arbiter Chain Stability

Let n be the number of stages in an arbiter chain, let ∆DNoise be a random variable normally
distributed with mean zero and variance σ2

Noise.
From Corollary 3, we have for a challenge c that Stab(c) = 1

2 + 1
2 erf

(
|∆DModel(c)|/(

√
2σNoise)

)
.

We can see that the challenge stability and thus the distribution of stability of any Arbiter PUF
depends on the distribution of ∆DModel(c) = w0 +

∑n
i=1

(
wi
∏n
j=i cj

)
.

Under the assumption that the hardware-intrinsic imperfections formalized by the wi follow
a normal distribution, it can be proven that ∆DModel(c) can also be approximated by a normal
distribution using the Berry-Esseen Central Limit Theorem (CLT) [5, 10,42].

What’s more, the CLT error bound itself is a random variable depending on the choice
of the wi, with a narrowing variance and lowering mean as n becomes larger. That is, the
approximation of ∆DModel becomes better for increasing n.

This fact theoretically supports the common assumption [6,14] about Gaussian delay values
in Arbiter PUF research.

With the probability distribution of ∆DModel(c) for uniformly and randomly chosen c, we
can approximate the probability that a chosen challenge has stability below a given threshold.
In the following, we assume ∆DModel ∼ N (0, σ2

Model) as a simplification although we actually
have E[∆DModel] = w0, as w0 was in turn drawn from a distribution with mean zero. The
simplification that ∆DModel follows a normal distribution simplifies the analysis drastically.

Lemma 4. For any given PUF instance with n stages, any probability z ∈ [ 1
2 , 1], and mea-

surement and hardware conditions described by ∆DNoise ∼ N (0, σ2
Noise), the probability that a

6
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Figure 6.1: Cumulative Distribution Function (CDF) and Probability Density Function (PDF)
of the distribution of challenge stability under the assumption of normally distributed model
delay values, both shown for σModel/σNoise ∈ {1, 2, 5, 20}. The larger σModel is when compared
to σNoise, the higher the probability for high stability becomes. The CDF Pr[Stab(c) < z] =

erf
(
σNoise

σModel
erf−1 (2z − 1)

)
from Lemma 4 is a central tool in our analysis; the PDF helps us to

interpret measured stability frequency in simulations (see Fig. 6.2).

uniformly, randomly chosen challenge c has stability lower than z ∈ [ 1
2 , 1] is approximated by

StabCDF(z) = Pr
c∼{−1,1}n

[Stab(c) < z] = erf

(
σNoise

σModel
erf−1 (2z − 1)

)
.

The proof follows from the CLT approximation of ∆DModel together with the essential
Gaussian distribution fact that Pr [|∆DModel(c)| < x] = erf (x/

√
2σModel). The CLT also yields

explicit error bounds, if needed.
In the simplest case, we can choose the threshold independently of n to be a constant,

z = 99% to obtain the probability that a randomly chosen challenge has stability below 99%

Pr
c∼{−1,1}n

[Stab(c) < 99%] ≈ erf

(
1.64

σNoise

σModel

)
.

For any given constant threshold z, the probability that a uniformly and randomly chosen
challenge has stability below z, hence depends only on σNoise/σModel. A numeric evaluation can
be found in Fig. 6.1. We can interpret Prc [Stab(c) < z] as cumulative density function. The
derivative then gives the probability density function, as shown in the same figure. We can
see from the probability density that, while the majority of challenges will have high stability,
there is a significant (polynomial) portion of challenges that have stability close to 1

2 .

6.1.2 Majority Vote Arbiter Chain

The stability of an arbiter chain can be boosted by majority voting.

Definition 5. We define for a challenge c ∈ {−1, 1}n the majority vote stability using r votes

Stab
(r)
MV(c) = Pr

∆DNoise∈Rr
[majority vote result = sgn (∆DModel(c))] .

The next theorem shows that for any monotone increasing t(n), we can boost the stability for
any challenge c that satisfies Stab(c) ≥ 1

2 + 1
t(n) with a polynomial number of votes exponentially

close to 1. (How close exactly will be formalized by the choice of t′(n).) We will later show that
this prerequisite is fulfilled by “most” challenges, see Lemma 7. For any remaining challenges
that do not fulfill the boosting requirement, we know that their stability will be increased
through our process, although not up to the desired value of 1 − 1

2t′(n) . Hence the choice

7
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t(n) can be thought of as the parameter that determines which ratio of challenges should be
boosted up to exponentially stability, whereas t′(n) determines the minimum stability for these
challenges.

Theorem 6. Consider an arbiter chain with n stages. Let t(n) be any monotone increas-
ing polynomial with t(n) > 2. Then for any polynomial t′(n) and all challenges c satisfying
Stab(c) ≥ 1

2 + 1
t(n) there exists a polynomial r(n) such that when using r(n) votes (r(n) odd for

all n), we have Stab
(r)
MV(c) > 1− 1

2t′(n) .

Proof. We consider the probability q(n) = 1−Stab
(r)
MV(c) that the result of majority voting does

not match the model value, that is, the minority of votes show the model value. We sometimes
suppress dependencies on n in the notation.

We get q =
∑(r−1)/2
j=0

(
r
j

)
Stab(c)j (1− Stab(c)) r−j . For any 0 ≤ j ≤ r−1

j , we set m =

r
2 − j and obtain Stab(c)j (1− Stab(c)) r−j = (Stab(c)(1− Stab(c)))

r/2 ·
(

1−Stab(c)
Stab(c)

)m
, where(

1−Stab(c)
Stab(c)

)m
< 1. Hence, q < (Stab(c) (1− Stab(c)))

r
2 . By definition of Stab and the prerequi-

site we have q <
(

1− erf2
(
|∆DModel|√

2σNoise

)) r
2

and with r(n) = 2 ·
⌈
ln 2 · t(n)2 · t′(n)

⌉
+ 1, we obtain

q < 2−t
′(n). Finally, we have Stab

(r)
MV(c) = 1− q > 1− 1

2t′(n) .

Theorem 6 shows that certain challenges can be boosted to stability exponentially close to
1 with a polynomial number of votes in the majority vote process. For applications of this
work, it is essential that the portion of challenges that cannot be boosted is negligible. The
next lemma shows that we can expect the number of challenges not satisfying the prerequisites
of Theorem 6 to be small.

Lemma 7. Pr[Stab(c) < 1
2 + 1

t(n) ] < 4√
π
· σNoise

σModel
· 1
t(n) .

The proof follows from Lemma 4 along with the standard bounds 2√
π
· x · e−x2

< erf(x) <
2√
π
· x (for x > 0) and erf−1 x < x (for x ∈ (0, 1/2)).
The probability distribution of the stability in the challenge space is shown in Figure 6.2.

In the PDF plot can be seen that the probability density for low stabilities does not converge
to zero.

6.1.3 XOR Arbiter PUF

The boosted stability from Sec. 6.1.2 allows us to use a polynomial number k(n) of arbiter
chains and output the XOR of their responses while maintaining high stability.

Definition 8. Consider k arbiter chains with majority vote with r votes each. Let ρi(c) with
1 ≤ i ≤ k be the final output of the i-th chain on input c ∈ {−1, 1}n. Let ∆D

(i)
Model(c)

be the noise-free delay difference of the i-th chain on input c. We define the stability of the
XOR Majority Vote Arbiter PUF as Pr∆DNoise

[⊗k
i=1 ρi(c) =

⊗k
i=1 sgn ∆D

(i)
Model(c)

]
, denoted

by Stab
(r)
XOR, where ⊗ denotes the XOR operation.

The probability Stab
(r)
XOR(c) is bounded from below by the probability that all individual

arbiter chain response bits match their respective model value. Although this bound disregards
the cases where any even number of response bits are flipped, it does still yield the desired
exponential bound.
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Theorem 9. Let t(n) be any monotone increasing polynomial with t(n) > 2. Then for any
polynomial t′(n) and for any challenge c with Stabi(c) ≥ 1

2 + 1
t(n) simultaneously in all ar-

biter chains 1 ≤ i ≤ k, we have for an XOR Majority Vote Arbiter PUFs with r(n) =

2 ·
⌈
ln 2 · t(n)2 · t′(n)

⌉
+ 1 votes and k arbiter chains Stab

(r)
XOR(c) ≥ 1− 1

1
k 2t′(n) .

Proof. For any 1 ≤ i ≤ k, we have Stab
(r)
XOR(c) ≥ Stab

(r)
MVi(c)

k ≥ (1− 1
2t′(n) )k ≥ 1− k

2t′(n) , using
Bernoulli’s inequality in the last step.

As before with Theorem 6, we cannot expect all challenges to be boosted to this stability.
Instead, we need to discuss how many challenges we can expect to fulfill the prerequisites of
the boosting theorem.

Lemma 10. For k given arbiter chains with challenge stability Stabi, the probability for a
uniformly and randomly chosen c to have Stabi(c) ≥ 1

2 + 1
t(n) simultaneously for all chains

1 ≤ i ≤ k is greater than 1− 4√
π
· σNoise

σModel
· k
t(n) , under the condition that 4√

π
· σNoise

σModel
< t(n).

This lemma follows directly from the probability bound of Lemma 7 and Bernoulli’s inequal-
ity.

Although we cannot boost all challenges to stability exponentially close to 1, Lemma 10
shows that the number of challenges we do not boost is (polynomially) converging to zero with
growing n. While not an improvement, this is also not a significant degradation of stability,
comparing to a single arbiter chain (see Lemma 7).

Putting all previous results together, we come to the following conclusion.

Corollary 11. Choosing challenges randomly and uniformly, we have for the XORed output
bit of k arbiter chains with n stages and majority vote with r votes each, that for any constants
α ∈ [0, 1

2 ] and α′ > 1, there exists a number of votes r ∈ O(α2 · α′ · k2 · log k), such that

Pr

[
Stab

(r)
XOR(c) ≥ 1− 1

2α′

]
≥ 1− α,

i.e. the proportion of challenges defined by α has stability exponentially close in α′ to 1.

Proof. Our main result follows from Theorem 6, Theorem 7, and Theorem 9 by setting t(n) =
4√
π
· σNoise

σModel
· k ·α and t′(n) = log2 k+α′, where k is a monotone increasing polynomial in n.

The choice of α affects the portion of challenges that will be boosted to exponential stability.
Equivalently, α determines how many challenges we expect to fail to be boosted. The choice of
α′ sets up the boosting goal, i.e. how close to 1 we want the stability to be boosted to.

6.1.4 Number of Votes Required

For a real-world implementation, we need to know an upper bound on how many votes are
required for the XORMajority Vote Arbiter PUF to achieve the desired stability. In the simplest
case, we require that all challenges c with Stab(c) ≥ 1

2 + 1
10 = 60% must have Stab

(r)
XOR(c) > 99%.

By Lemma 4, this captures most challenges, as Pr[Stab(c) < 1
2 + 1

10 ] = erf( σNoise

σModel
erf−1(0.2)) <

erf(0.2 σNoise

σModel
). As an example, we obtain Pr[Stab(c) < 1

2 + 1
10 ] < 3% for σNoise

σModel
= 1

10 . From
Theorem 9, we hence have t(n) = 10 and

Stab
(r)
XOR(c) > 1− 1

1
k2t′(n)

= 99%
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or t′(n) = log2(100k). Along with the number of votes r(n) as defined in Theorem 6, we obtain
r(n) = 2 ·

⌈
ln 2 · t(n)2 · t′(n)

⌉
+ 1 ≈ 1 + 200 log(100k); or r(n) ≈ 1400 for k = 24. Notice that

the upper bound grows with O(log k). Our simulations show that in fact much lower numbers
for r(n) suffice, see Sec. 6.2. The large values of r(n) are hence due to the many non-tight
bounds we use in the proof of Theorem 6 and Theorem 9.

6.2 Simulation

In this section we present software simulation results that validate our stability results from Sec.
6. (Code at https://github.com/nils-wisiol/pypuf/tree/2017-why-attackers-lose.)

Number of Votes Required To show that a high total stability can be reached using
majority vote we determined the minimum number of votes required for acceptable stability
for various numbers of parallel arbiter chains. Fig. 6.2 shows detailed results of how many
votes are needed for stable responses (Pr [Stab(c) ≥ 95%] ≥ 80%), as determined by a binary
search on the voting count for different k. The polynomially increasing number of votes required
to fulfill the stability requirements for a useful PUF implementation shows that XOR Arbiter
PUFs with high stability can be built arbitrarily large using majority vote.

Stability Distribution For a more precise exposition of the stability distribution of Majority
Vote XOR Arbiter PUFs of size k we estimated stability values by a simulation. Our example
uses k = 32 Majority Vote Arbiter Chains with n = 32 stages each. The stability distribution
shown in Fig. 6.2 was achieved using r ∈ {51, 501} votes. As estimated by the computation of
the previous section, the number of votes needed to reach a stability of 95% with probability
80% is 51. In turn, approximately 501 votes are needed to achieve the stability of the single
arbiter chain that was used to build the MV XOR Arbiter PUF. This shows that even large
XOR Majority Vote Arbiter PUFs can become stable through a feasible number of votes.

7 Security Analysis

7.1 Resilience against Physical Attacks

Although the goal of PUFs was to increase the robustness against physical attacks, many are
known, e.g. side channel [6, 28, 34], invasive [27, 29], and fault injection attacks [7, 37]. To our
knowledge there is no known strong PUF design that is secure against physical attacks without
classical hardware security measures that are also applied to secure flash memory. Hence, the
XOR Majority Vote Arbiter PUF may only serve as a first step towards a secure strong XOR
Arbiter PUF. Although resilient against all known machine learning attacks (see Sec. 7.2), the
XOR Majority Vote Arbiter PUF is particularly vulnerable to the readout of the memory that
stores the voting count, similar to Ring Oscillator PUFs (RO-PUFs) [23]. The contribution of
this work is hence limited to showing one way to mitigate already-known modeling attacks at
the additional cost of physical attack surface as already known in RO-PUFs.

Further research has to be done to combine the arbiter chains with tamper resistant volatile
memory, to prevent a readout of the voting counts. Unfortunately, it is not straightforward to
build such a PUF system, as it increases the complexity and cost of the PUF. Hu and Sunar
[39, Sec. 13] are giving a state-of-the-art overview on tamper resistant memory.
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Figure 6.2: The graph (left) shows the minimum number of votes needed such that for a uni-
formly random challenge c we have Pr[Stab(c) ≥ 95%] ≥ 80% for different k, as determined by
a simulation (Sec. 6.2). The simulation uses arbiter chain length of n = 32, however we showed
that the results are independent of n. This log-log graph confirms the result that the number
of votes required grows polynomially. (Values were computed using mv_num_of_votes.py .95
.80 32 32 2 .033 2000 200.)
The histogram (right) shows the probability density of an XOR Majority Vote Arbiter PUF
of size k = 32 and chain length of n = 32. We used 51 and 501 votes to boost stability to
Pr[Stab(c) ≥ 95%] ≥ 80% and to the stability of the building block arbiter chains, respectively.
The dashed line shows the theoretical stability probability density for a single arbiter chain
(i.e. before majority vote and XOR) as used in this simulation (σNoise/σModel = 0.033). The
graph confirms that a Majority Vote XOR Arbiter PUF built from these arbiter chains and
the given number of votes can not only achieve a decent stability (at 51 votes), but also reach
the same stability as a single arbiter chain (at 501 votes). (The histogram shows data gen-
erated with pypuf’s stability calculation, stability_calculation.py 32 32 r 0.033 10000
200 0xbeef for r ∈ {51, 501}.)

7.2 Resilience against Machine Learning Attacks

To analyze the XOR Majority Vote Arbiter PUF and provide evidence for its security against
machine learning attacks we use an oracle access model. An adversary, who wants to perform
an attack on a PUF communicates with an oracle. Through the oracle, the adversary can obtain
any number of genuine PUF responses to (adaptively) chosen challenges. Notice that responses
to equal challenges do not necessarily have always the same value, as responses can be noisy.

In the following, we study the feasibility of two state-of-the-art attacks on the XOR Majority
Vote Arbiter PUF.

Becker’s Machine Learning Algorithm This section discusses an attack on XOR Arbiter
PUFs presented by Becker [4, Sec. 5]. Becker uses an evolution strategy based machine learning
evolution algorithm that assesses fitness based on the reliability of the responses of the indi-
vidual arbiter chains. His notion of reliability is similar to our notion of stability in Sec. 6.
Suppose an attacker sends the same challenge c to the oracle l times and collects l response bits
r(c)1, r(c)2, . . . , r(c)l. Then the reliability hi is computed by h(c) =

∣∣∣ l2 −∑l
j=1 r(c)j

∣∣∣ . This
notion of reliability h(c) maximizes in the case that Stab(c) = 1, and minimizes in the case that
Stab(c) = 0.5.

To learn physically feasible constructions without majority vote of XOR Arbiter PUFs
(k ≤ 12) in reasonable time with a relatively small number of examples in the training set,
Becker’s attack uses information revealed by the reliability of individual challenges. A response
for a given challenge is called unstable if it has a delay difference ∆DModel close to zero. Unfor-
tunately, as we showed in Theorem 6 and Lemma 7, there is always a small number of responses
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Figure 7.1: The required number of CRPs when using Becker’s CMA-ES reliability attack
against the Majority Vote XOR Arbiter PUF shows an exponential increase. In contrast, classic
XOR Arbiter PUFs can be attacked with linear increase only and are limited by reliability
decrease.
All measurements were obtained using an empirical binary search on attacks on simulated
(Majority Vote) XOR Arbiter PUFs. (All values shown for n = 32.)

in a PUF, that can not be boosted to stability exponentially close to 1 with a polynomial num-
ber of votes. Hence, there are always challenges with stability Stab(c) < 1

2 + 1
t(n) and so the

prerequisite for Becker’s attack is fulfilled.
Nevertheless, the simulation of Figure 7.1 show that a Majority Vote XOR Arbiter PUF is

only learnable with Becker’s algorithm if an exponential number of examples in the training set
is used.

Rührmair’s et al. Logistic Regression Algorithm In this section we briefly discuss an
attack on XOR Arbiter PUFs presented by Rührmair et al. [32, 33]. They implemented and
evaluated various machine learning methods in order to learn different types of PUFs, including
basic Arbiter PUFs and XOR Arbiter PUFs. For both, the best results were delivered by
the Logistic Regression (LR) algorithm with Resilient Propagation (RProp) as optimization
method.

Due to its nature, the LR algorithm has to perform multiple iterations before it finds a
minimum. One trial of the algorithm takes polynomial time. But the number of restarts grows
exponentially in the number k of arbiter chains. This fact was already observed by Rührmair
et al. and is insignificant when k is limited by the stability. However, in the majority vote
scenario, the designer’s choice of k can defeat the modeling attack runtime.

8 Conclusion

All known oracle attacks against stable XOR Arbiter PUFs based on machine learning are only
successful if the number of arbiter chains is small. On the other hand, a large number of arbiter
chains leads to an instability for most challenges due to noisy effects. Hence, such XOR Arbiter
PUFs cannot be used in practice. Our work showed that with majority voting, we can boost the
stability for almost all challenges exponentially close to 1, even for PUFs with a large number of
arbiter chains. We formally proved that for this purpose only a feasible (polynomial) number of
votes is needed to increase the stability gain through majority voting beyond the stability loss
induced by the XOR operation. However, while the size of the arbiter chains will only slightly
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increase with the vote counter, our design comes at the cost of additional digital memory that
holds volatile sensitive information and a prolonged evaluation run time, which may jeopardize
security goals.

To support our theoretical stability claim we evaluated the number of votes necessary in a
software simulation. We further showed based on empirical data that state-of-the-art attacks
based on oracle access will not be able to model our design in polynomial time. Further research
should focus on how the reliability-based CMA-ES attack scales with the XOR Arbiter PUF
stability.

In asymmetric cryptography, one usually has methods to increase the security (e.g., extend-
ing the key length) if there are minor improvements for attacks (e.g., faster computers). To our
knowledge, our design is the first result that relates PUF design to this traditional cryptographic
design principle.

9 Acknowledgments

The authors would like to thank Georg T. Becker, Yongzhi Cao, Fatemeh Ganji, Rainer Plaga,
Jean-Pierre Seifert, and Shahin Tajik for many helpful discussions and insights. We further
would like to thank the HPC Service of ZEDAT, Freie Universität Berlin, for computing time.

References
[1] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Francois-Xavier Standaert, and Christian

Wachsmann. A formalization of the security features of physical functions. In Security and Privacy
(SP), 2011 IEEE Symposium on, pages 397–412. IEEE, 2011.

[2] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and Pim Tuyls. Memory
leakage-resilient encryption based on physically unclonable functions. In Mitsuru Matsui, editor,
Advances in Cryptology – ASIACRYPT 2009: 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceed-
ings, pages 685–702, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[3] Frederik Armknecht, Daisuke Moriyama, Ahmad-Reza Sadeghi, and Moti Yung. Towards a unified
security model for physically unclonable functions. In Proceedings of the RSA Conference on Topics
in Cryptology - CT-RSA 2016 - Volume 9610, pages 271–287, 2016.

[4] Georg T Becker. The gap between promise and reality: on the insecurity of XOR arbiter PUFs.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages 535–555.
Springer, 2015.

[5] Andrew C. Berry. The accuracy of the Gaussian approximation to the sum of independent variates.
Transactions of the American Mathematical Society, 49(1):122–122, 1941.

[6] Jeroen Delvaux and Ingrid Verbauwhede. Side channel modeling attacks on 65nm arbiter PUFs
exploiting CMOS device noise. In Hardware-Oriented Security and Trust (HOST), 2013 IEEE
International Symposium on, pages 137–142. IEEE, 2013.

[7] Jeroen Delvaux and Ingrid Verbauwhede. Fault injection modeling attacks on 65 nm arbiter and
RO Sum PUFs via environmental changes. IEEE Transactions on Circuits and Systems I: Regular
Papers, 61(6):1701–1713, 2014.

[8] Srini Devadas. Physical unclonable functions (pufs) and secure processors. In Workshop on Cryp-
tographic Hardware and Embedded Systems, 2009.

[9] Srinivas Devadas, Edward Suh, Sid Paral, Richard Sowell, Tom Ziola, and Vivek Khandelwal.
Design and implementation of PUF-based "unclonable" RFID ICs for anti-counterfeiting and

13



Why Attackers Lose Wisiol et al.

security applications. 2008 IEEE International Conference on RFID (Frequency Identification),
IEEE RFID 2008, pages 58–64, 2008.

[10] Carl-Gustaf Esseen. On the Liapounoff limit of error in the theory of probability. Almqvist &
Wiksell, 1942.
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