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Abstract. An attacker or evaluator can detect more information leakages if he im-
proves the Signal-to-Noise Ratio (SNR) of power traces in his tests. For this purpose,
pre-processings such as de-noise, distribution-based traces biasing are used. Howev-
er, the existing traces biasing schemes can’t accurately express the characteristics of
power traces with high SNR, making them not ideal for leakage detections. More-
over, if the SNR of power traces is very low, it is very difficult to use the existing
de-noise schemes and traces biasing schemes to enhance leakage detection. In this
paper, a known key based pre-processing tool named Traces Linear Optimal Biasing
(TLOB) is proposed, which performs very well even on power traces with very low
SNR. It can accurately evaluate the noise of time samples and give reliable traces
optimal biasing. Experimental results show that TLOB significantly reduces number
of traces used for detection; correlation coefficients in ρ-tests using TLOB approach
1.00, thus the confidence of tests is significantly improved. As far as we know, there
is no pre-processing tool more efficient than TLOB. TLOB is very simple, and only
brings very limited time and memory consumption. We strongly recommend to use
it to pre-process traces in side channel evaluations.

Keywords: traces optimal biasing · TOB · TLOB · leakage detection · biasing power
traces · SNR · CPA · side channel attack

Introduction

Secret information may leak from devices through side channels such as electromagnetic
[2], acoustic [12] and power consumption [18] during the implementation of cryptographic
algorithms. These leakages are usually unconscious and difficult to be discovered. By
taking advantage of statistical correlation between assumed power consumption of inter-
mediate values and side channel leakages, an attacker can recover sensitive information
(e.g. encryption key) in the target devices. Side channel attacks, such as Differential Pow-
er Analysis (DPA) [18], Correlation Power Analysis (CPA)[5], Template Attacks (TA) [6]
and Collision Attacks (CA) [29, 27], pose serious threats to the security of cryptographic
implementation. In order to improve the attack efficiency, an attacker always tries to
make full use of leakage informations, constructs optimal distinguishers and leakage mod-
els. Pre-processings can be also used to enhance attacks. Current countermeasures, such
as flawed masking implementations [28, 9, 8], failed to defend against the corresponding
higher-order attacks as it claimed. In order to improve security, a defender always tries
to reduce or eliminate the leakage of implementations, for whom side channel leakage
detection and evaluation are very meaningful.

Leakage detections, such as Welch’s t-test [7, 13] in CRI’s TVLA proposal and ex-
tensions in [10, 26], Normalized Inter-Class Variance(NICV) in [4], Mutual Information
Analysis (MIA) in [21], which relate to the concrete security level of an implementation,
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are very important tools for side channel evaluations. They evaluate the security level
according to whether the device leaks information or how many side channel measure-
ments are required to detect the leakage. They can also simply detect whether leakage
exists, independent of whether the leakage can be exploited. Correlation-based leakage
detection ρ-test was proposed in [11], which could significantly enhance the most widely
used Welch’s t-test, approximately 5 times less measurements were used as stated by the
authors. However, the above mentioned works only considered the univariate test on the
selected single POI only. In fact, as stated by Zhang et al. in [33], the overall significance
level increased as the total number of time samples on the traces increased. For long
traces, the overall significance level could be quite large so that non-leaky devices could
not pass TVLA t-test with critical value of 4.5. They optimally combined the detection
tests of univariate leakage at all time samples along the power traces, thus improving the
TVLA procedure.

Here we need to note that power traces pre-processing is independent of specific leakage
detection. It can be used to enhance not only side channel attacks but also the above
leakage detections. Since the presence of noise, if leakage detection tests are directly
performed on power traces without pre-processing, the results may be not ideal. Take
ρ-test for example, correlation coefficient ρ obtained by the evaluator is usually not very
large. In other words, the noise level determines ρ. The number of power traces used in
tests determines the stability of ρ. If the SNR is low, the detection is time-consuming and
unreliable, a lot of power traces are needed. So, pre-processing schemes such as power
traces alignment [32], averaging [30], de-noise [14], fourth-order cumulant [19], are usually
the first step of leakage detection tests.

Biasing power traces, one of the common pre-processing tools to improve SNR, was
firstly proposed by Kris et al [31]. The power consumption of the Point-of-Interest (
POI ) most relevant to S-box outputs could be approximated by a normal distribution
[17]. They obtained the distribution through calculating the Probability Density Function
(PDF) values of power consumption of this POI. The smaller the PDF value, the lower
the noise of the power trace. The PDF values are sorted and power traces with high SNR
are biased from two tails of the distribution. Noura et al. used a new power model to
bias power traces to improve CPA in [23]. However, they did not make improvements to
the strategy of biasing power traces proposed in [17]. Hu et al. proposed an Adaptive
Chosen Plaintext Correlation Power Analysis (ACPCPA) [15]. They solved the problem
of discarding too many power traces in the scheme proposed by Yongade et al [17]. They
analyzed the correlation between S-box output Hamming weights and power consumption
of POIs, and got a conclusion that Hamming weights 0, 1, 7, and 8 corresponded to power
traces with high SNR. They acquired the corresponding measurements to perform CPA.
This scheme was improved by Ou et al. in [24].

However, as we detailed in Section 1.3, the above traces biasing schemes improve SNR
through enlarging the variance of exploitable power consumption component (see Section
4.1 in [20]) instead of de-noise. The SNR improved by these schemes is very limited.
Recently, other schemes such as Principal Component Analysis (PCA), were used to bias
power traces [16]. The above schemes can be able to accurately bias power traces with high
SNR if the noise level is low. However, if the noise level is high, the power consumption
and power leakage model (e.g. Hamming weight model) of intermediate values are no
longer linear, accuracy of biasing power traces is greatly reduced. This also indicates that
directly using the distribution of power consumption to bias power traces with high SNR
is not ideal. How to accurately bias traces to improve the efficiency and confidence of
detection is still a challenging problem.

The attacker or evaluator sorts the power traces according to PDF values and biases
the ’optimal’ ones to perform attacks. When a fixed number of power traces are used, the
SNR of the biased ones is usually the highest. That means, if the attacker or evaluator
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uses these biased traces to perform CPA, he gets the optimal correlation coefficients. This
characteristic is very important, but none of the above papers have found it. Benefit
from this, a known key based pre-processing tool named Traces Linear Optimal Biasing
(TLOB) is proposed to bias power traces with high SNR in this paper. TLOB can ac-
curately evaluate the noise level of each power trace according to the outputs of side
channel distinguishers, and give the reliable traces optimal sorting. The number of power
traces used in leakage detection tests using our TLOB can be significantly reduced to
dozens or hundreds, the correlation coefficient of ρ test can also be significantly improved
(approaching 1.00). Thus, the time-consuming tests can be performed very fast and the
confidence of tests is significantly enhanced. What is most mysterious, TLOB works very
well at different noise levels, especially when biasing a small number of traces from a
large and noisy power traces set. However, if the SNR of power traces is very low, it is
very difficult to use the existing de-noise schemes and traces biasing schemes to enhance
leakage detection. So, we strongly recommend to use TLOB in side channel evaluations.

The rest of this paper is organized as follows. Leakage characteristics of POIs, cross
validation and distribution-based traces biasing proposed by Yongdae et al. are introduced
in Section 1. Leakage detection t-test and ρ-test are introduced in Section 2. Our TLOB
is detailed in Section 3. In order to provide good references for evaluator to decide
the threshold of the number of biased traces, ρ tests are performed on simulated traces
pre-processed by TLOB under different SNRs and different numbers of power traces in
Section 4. Then, we perform real experiments on the measurements of our AT89S52 micro-
controller and DPA contest v1 in Section 5. Finally, Section 6 draws general conclusions.

1 Backgrounds

1.1 Leakage Characteristics of POIs

Let us denote the encrypted plaintext as x = x0||x1|| · · · ||x15, the key used in cryptograph-
ic device as κ = κ0||κ1|| · · · ||κ15, the execution of the S-box Sbox as zi = Sbox (xi ⊕ κi),
the corresponding leakage at time τ as l (τ). Here xi denotes the i-th plaintext byte, κi

denotes the i-th key byte, zi denotes the corresponding intermediate value. The evaluator
encrypts a set of plaintexts P and acquires a set of traces, which is denoted as L.

According to [20], the power consumption of a single time sample l (τ) can be modeled
as the sum of an operation dependent component lo (τ), a data-dependent component
ld (τ), electronic noise lel.n (τ), switching noise lsw.n (τ), and the constant component
lc (τ). That is,

l (τ) = lo (τ) + ld (τ) + lel.n (τ) + lsw.n (τ) + lc (τ) . (1)

These 5 components are independent of each other. For a time sample, the variance
v̂ar (Lo (τ)) = v̂ar (Lc (τ)) = 0. For a classical DPA attack, the attackers only consider
one of the 8 bits intermediate values (e.g. the outputs of Sbox), the power consumption of
other 7 bits is switching noise (i.e. algorithm noise). The variance of switching noise here
is larger than 0. For a classical CPA attack considering all bits of intermediate values, the
variance of switching noise v̂ar (Lsw.n (τ)) = 0. The electronic noise is normal distributed
with mean 0 and variance σ2. Let ln (τ) denote the noise component including lel.n (τ)
and lsw.n (τ).

For all components of power consumption, ld (τ) is the only component correlating to
the leakage model (e.g. Hamming weight model). Let môdel (τ) denote the profiled mean
power consumption model of the intermediate values, the correlation coefficient between
môdel (τ) and the total power consumption L (τ) is

ρ̂ (môdel (τ) , L (τ)) =
cov (môdel (τ) , L (τ))

√

var (môdel (τ)) var (L (τ))
. (2)
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cov here is the covariance matrix operator. Mangard et al. further analyzed the correlation
between power consumption and môdel (τ) in [20]. The important formula in their paper
can be expressed as:

ρ̂ (môdel (τ) , L (τ)) =
ρ̂ (môdel (τ) , Ld (τ))

√

1 + 1
ˆSNR(τ)

, (3)

which lays the theoretical foundation for biasing power traces in CPA. For a classical
CPA attack, ρ̂ (môdel (τ) , Ld (τ)) is a constant for a time sample, SNR determines the
correlation coefficient ρ̂ (môdel (τ) , L (τ)). To improve it, the attacker or evaluator should
improve SNR. The SNR of a time sample is the variance ratio of exploitable power con-
sumption components (Lo (τ) + Ld (τ)) and the noise components. It can be modeled
as

ˆSNR (τ) =
v̂ar (Lo (τ)) + v̂ar (Ld (τ))

v̂ar (Ln(τ))
. (4)

For a time sample, ˆSNR (τ) = v̂ar(Ld(τ))
v̂ar(Ln(τ)) . The formula indicates that there are two ways

to improve SNR, one is noise reduction, and the other is to enlarge v̂ar (Ld (τ)).

1.2 Cross Validation

Cross-validation is a kind of statistical analysis used to verify the performance of classifier,
such as distinguishers in side channel attacks. For a k-fold cross-validation, the evaluator
splits the acquired traces L into k non-overlapping sets L(i) (1 ≤ i ≤ k) of approximately

the same size. Then, profiling sets L
(j)
p =

⋃

i6=j L(i) and test sets L
(j)
t = L \ L

(i)
p are

defined. The profiling sets are used to profile the leakage model, such as the môdel we
used in Equation 2. The test sets are used to test and evaluate the performance of the
trained model.

In order to obtain a reasonable model, the môdel is calculated k times and then av-
eraged. As a result, the number of power traces used increases and the computational
cost is higher. The evaluator obtains a more accurate power consumption model, which
promotes the evaluation. Moreover, for correlation ρ tests, the mean of ρ-s obtained in
10-fold cross validation is more stable, which makes the detection results more reliable
and confidence.

1.3 Distribution-Based Traces Optimal Biasing

The power consumption of a time sample can be modeled by a normal distribution. The
noise component ln (τ) is uncontrollable. Preprocessing can be used to de-noise. In
addition, the evaluator or attacker can improve the SNR by enlarging v̂ar (ld (τ)), thereby
improving the correlation coefficient ρ̂ (môdel (τ) , L (τ)). Suppose that the leakage of
device follows Hamming weight model, then v̂ar (ld (τ)) ∝ v̂ar (HW (Z (τ))), where HW

is the Hamming weight function. For an unknown key implementation, the attacker or
evaluator sorts the PDF values of time samples and biases power traces at both tails of the
normal distribution [17, 24]. We name this kind of traces biasing schemes as Distribution-
Based Traces Optimal Biasing (DTOB).

The principle of the adaptive chosen plaintext correlation power analysis proposed
by Hu et al [15] is similar to DTOB. However, it doesn’t sort the noise of power traces.
This is not surprising, since the current published papers have not found the advantages
of monotonically decreasing correlation coefficient ρ in TOB. They only consider biasing
power traces as a way to improve CPA. Specifically, as detailed in [15], Hamming weights
0, 1, 7, and 8 corresponded to power traces with high SNR, which were biased to enhance
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CPA. In this way, the v̂ar (HW (Z)) improves from 2.0078 to 10.3529. However, these
schemes improve SNR by enlarging v̂ar (HW (Z)) instead of de-noise.

Let R denote the Gaussian distributed noise component Ln (τ) with mean 0 and vari-
ance σ2, C denote the sum of constant component Lc (τ) and operation dependent com-
ponent Lo (τ). The leakage model of the S-box output implementation can be modeled
as

L = HW(Z) + C + R. (5)

We simulate 25600 power traces and bias 12800 out of them. Here C in Equation 5 is
set to 100, σ2 is set to 0.25. The biased power traces at both tails of the overall normal
distribution are shown in Fig.1.
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Figure 1: Using DTOB to bias 50% of 25600 power traces.

As shown in Fig.1, 50% of 25600 power traces are biased from two tails of the dis-
tribution. The smaller the PDF values, the higher the SNR of power traces. As we
mentioned before, this scheme doesn’t reduce the variance of noise v̂ar (Ln (τ)), but en-
larges v̂ar (Ld (τ)) instead. If the noise level is low, it can bias power traces with high
SNR accurately. However, if the noise level is high, noisy time samples corresponding to
Hamming weights close to 4 also appear at both two tails of the distribution. Similarly,
time samples corresponding to small or large Hamming weights may also appear in the
middle of the distribution. Therefore, it is not ideal. In this case, the evaluator can get
better results if he directly uses ACPCPA in [15] to detect leakage. However, ACPCPA
is also not ideal if the noise on traces is very large.

2 Leakage Detection Tests

2.1 Student’s t-test

Student’s t-test is the most popular leakage detection test. It considers one bit of inter-
mediate value, which is denoted as X here. The evaluator or attacker collects n0 and n1

power traces corresponding to X = 0 and X = 1 respectively, and stores them in vectors
T0 and T1. Then, Student’s t-test is computed as follows:

∆ =
Ê (T0 (τ)) − Ê (T1 (τ))
√

v̂ar(T0(τ))
n0

+ v̂ar(T1(τ))
n1

, (6)
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where Ê denotes the sample mean operator and v̂ar denotes the sample variance operator.
The probability of null hypothesis that ∆ = 0 can be computed as follows:

p = 2 × (1 − CDFτ (|∆| , ν)), (7)

where CDF is the cumulative function of a Student’s t distribution, and ν is its number of
freedom degrees. If n0 and n1 are large enough, Student’s t distribution is close to normal
distribution N (0, 1).

2.2 Correlation ρ-test

A correlation-based leakage detection ρ-test was proposed by Durvaux and Standaert [11].
Unlike Student’s t-test, leakage models such as Hamming weight model[3], Hamming
distance model [5], switch distance model [25], are needed when profiling the leakage of
the devices in ρ-test. According to [11], a k-fold cross-validation is used. The evaluator
splits the full set of traces L into k non-overlapping sets L(i) (1 ≤ j ≤ k) of approximately

the same size, and gets profiling sets L
(j)
p =

⋃

i6=j L(i) and test sets L
(j)
t = L \ L

(i)
p . For

each cross-validation set L
(j)
t with 1 ≤ j ≤ k,

r̂(j)(τ) = ρ̂(L
(j)
t (τ), môdel

(j)(τ)), (8)

where môdel denotes the profiled mean power consumption model, and τ denotes the time
sample on power traces, r̂(j) is the corresponding estimated correlation coefficient. Then,
Fisher’s z-transformation is applied and the evaluator obtains:

r̂z(τ) =
1

2
× In

(

1 + r̂(τ)

1 − r̂(τ)

)

, (9)

where In is the natural logarithm function. Let CDF denote the Student’s t cumulative
distribution function. If r̂z(τ) is normalized with standard deviation 1√

N−3
, where N is

the size of time samples in the set L. Then, the probability for a null hypothesis assuming
no correlation:

p = 2 × (1 − CDFN (0,1)(|r̂z(τ)|)). (10)

We still use ρ̂ to denote the averaged correlation coefficient in the next sections. Durvaux
et al. stated in [11] that correlation ρ-test could significantly improve Welch’s t-test with
significantly faster detection speed ( with approximately 5 times less measurements in their
experiments). Just as different distinguishers have different distinguishing ability, different
leakage detection tests have different capabilities to detect leakages. The Student’s t-test
is the most widely used leakage detection test. However, we think ρ-test is much better
than it. In addition to its high efficiency, the correlation coefficient output by ρ-test
directly reflects the linearity between the power consumption and the profiled leakage
model.

3 Traces Linear Optimal Biasing

The first step of side channel attacks is usually power traces pre-processing, of which one of
the main goals is noise reduction. Biasing power traces can help the attacker or evaluator
achieve better noise reduction purposes. Yongdae et al. proposed DTOB in [17], in which
the idea of traces sorting was given for the first time. We name all traces biasing schemes
using sorting as Traces Optimal Biasing (TOB). As we mentioned in Section 1, DTOB
can obtain the highest correlation coefficient when biasing a fixed number of power traces
and the noise level is low. However, this advantage has not been found by Yongdae et al.
and further researched in other current published papers. If the SNR is low, DTOB is not
ideal. In this section, we will give an optimal strategy to bias traces, which performs well
under different noise levels, especially very large ones.
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3.1 New Definition of Noise Level

There are a lot of noise reduction methods used for pre-processing such as power traces
averaging [22, 20, 30] and PCA [16]. Taking power traces averaging for an example, we
assume that the leakage corresponding to the first plaintext byte having value 15 ( the
corresponding Hamming weight is 4 ) in the first round of AES follows normal distribution
N (µ, σ2). If the evaluator captures N power traces and averages them to get a new trace.
The new power consumption follows new distribution N (µ, σ2/N) (see Section 4.6 in [20]).
Taking µ = 104, σ2 = 1 and N = 10 for an example, the two normal distributions are
shown in Fig.2. N (104, 1/10) is higher and thinner than N (104, 1). Traces averaging does
not change the µ, but reduces the noise variance. Compared to N (104, 1), most of time
samples in distribution N (104, 1/10) concentrate close to µ. The correlation coefficient ρ̂
improves if correlation test is performed on the pre-processed traces. The larger the ρ̂-s,
the better the linearity of the pre-processed traces and the môdel. In other words, the
closer the time samples to the môdel, the better the linearity of them.
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Figure 2: Probability density function of N (104, 1) (blue) and N (104, 0.10) (magenta).

For evaluators, leakage detection is to determine whether a device leaks information
and evaluate the corresponding security level. Compared to attackers, they have more
advantages, such as the ability to accurately capture the measurements, and the knowledge
of the key in the cryptographic device. They can be able to obtain a power consumption
distribution for each plaintext. The power traces with small noise component are the
ones close to the mean power consumption. The linearity of these traces and mean power
consumption leakage model môdel is good, and the SNR of these traces is high. On
the contrary, the farther the power consumption of a trace from the profiled model, the
larger the noise component is. This definition of ’traces with high SNR’ is more thorough
and accurate than the one of Yongdae et al [17]. In order to achieve the purpose of noise
reduction, the evaluator only needs to use a pre-processing tool to make most time samples
distribute near their corresponding mean power consumption model môdel.

3.2 Linear Measurement

Let li (τ) denote the τ -th time sample on the i-th power trace in set T , môdel (τ) denote
the mean power consumption leakage model. For each trace, the evaluator gets:

d̂
(j)
i (τ) = D̂

(

môdel
(j) (τ) , l

(j)
i (τ) , L

(j)
t (τ)

)

. (11)

Here D is an evaluation tool such as a side channel distinguisher, or a linear metric that
outputs linear evaluation values according to the power consumption. For example, the
correlation coefficients output by CPA. The higher the correlation, the better the linearity.
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In this case, we need to make full use of power trace set L
(j)
t (τ). Actually, the correlation

coefficients ρ̂-s in areas without leakage are very high and undistinguishable with the ones
in leakage areas. Moreover, it is very time-consuming if CPA is performed for each trace.
This shortcoming is very outstanding when the power trace set is very large. Finally, the
distinguisher used here can be regarded as a simplified Template Attack (TA). Each trace
li (τ) is compared with its corresponding mean power consumption leakage model. The
traces closest to the model are biased. We named this pre-processing scheme as Traces
Linear Optimal Biasing (TLOB).

3.3 Traces Optimal Sorting and Biasing

For TLOB, the evaluator sorts the power traces according to d̂(j) using an evaluation
function S. Here we define it as a distance sorting function. The distance vector d̂(j) is

sorted in ascending order for each time sample L
(j)
t (τ),

L
′,(j) (τ) = S

(

L
(j)
t (τ) , d̂(j) (τ)

)

. (12)

Then, nt traces with smallest distances are biased, and the new leakage detection ρ-test
is performed:

r̂(j)(τ) = ρ̂(L
′,(j)
[1···nt](τ), môdel

(j)(τ)). (13)

They are the optimal ones with highest SNR he can get. Similar distinguishers can also
be introduced into TLOB. Here we can see that TLOB is very simple. It only includes
a linear measurement step and a traces optimal sorting and biasing step, both of which
only bring very limited time and memory consumption. Moreover, TLOB only biases a
small number of power traces to perform leakage detection, which significantly improves
the efficiency.

Suppose that the power consumption of a device can be profiled using Hamming weight
model. The evaluator profiles the mean power consumption for each Hamming weight.
Let’s give an intuitive example using the 25600 samples in our simulation. We use TLOB
to bias 12800 power traces with high SNR from a total number of 25600 measurements.
The experimental result is shown in Fig.3. Time samples biased by TLOB are very close
to the mean power consumption leakage model môdel of each Hamming weight. When
the variance of noise approaches 0, the môdel linearly correlates to the power consump-
tion. If the evaluator performs correlation based leakage detection tests on these traces,
the correlation coefficient will be very high. This also validates our power consumption
assumption in Formula 5.

DTOB, such as [17, 15, 24] introduced in Section 1.3, improves SNR through enlarging
v̂ar (Ld (τ)). The v̂ar (Ln (τ)) of noise is unchanged. Unlike DTOB, TLOB improves SNR
through indirectly reducing v̂ar (Ln (τ)), since the power traces with small noise are biased
and others are discarded. It is worth noting that the purpose of noise reduction is to
minimize the noise on power traces. When biasing a fixed number of traces using TLOB,
the noise of them are the smallest, since they are the ones closest to their môdel. In this
case, the correlation coefficients output by correlation tests approach 1.00. As far as we
know, there is no noise reduction tool that can improve the correlation coefficient ρ̂ of
CPA to such a height. However, how to choose a good threshold nt (see Equation 13) is
worth our further discussion, which will be detailed in Section 4.

3.4 Chosen Plaintexts based TLOB

Similar to DTOB, Hamming weight based biasing proposed by Hu et al. can improve
v̂ar (Ld (τ)). Since it only biases traces according Hamming weights of intermediate values
and does not sort the corresponding noise level, we do not compare it with DTOB and
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Figure 3: Biasing power traces using our TLOB.

TLOB in Fig.4, Fig.5 and Fig.6. The evaluator can combine the advantages of it and
TLOB to detect leakage, the scheme of which is named Chosen Plaintexts based TLOB
(CPTLOB) in this paper. It firstly encrypts plaintexts with large or small Hamming
weights of intermediate values (e.g. Hamming weights 0, 1, 7 and 8 of AES S-box outputs).
Then, TLOB is used to further optimize the power traces biasing. In this way, v̂ar (Ld (τ))
is improved and v̂ar (Ln (τ)) is reduced, the total number of power traces used in leakage
detection can be greatly reduced.

Although TLOB can significantly improve the ρ̂-s in leakage areas, it also improves
the ρ̂-s in areas without leakage. CPTLOB can’t improve the ρ̂-s in leakage areas to the
same height as TLOB, it reduce the ρ̂-s in areas without leakage (see Section 5). The
evaluator can choose TLOB or CPTLOB according to the actual situation.

4 Threshold of the Number of Biased Traces

We find in our experiments that when the number of biased traces nt increases, ρ̂ decreases
gradually. When nt reaches N , it drops to the smallest. This indicates that TLOB
accurately sorts power traces according to their noise level, and accurately biases traces
with high SNR. However, It’s not possible to intuitively determine power traces biased
by which scheme (in Fig.1 and Fig.3) has higher SNR and greater ρ̂. So, we compare
DTOB and TLOB using the simulated traces, of which the parameters (e.g. mean power
consumption leakage model môdel and noise variance σ2) are easy to control.

4.1 Consistency of Correlation

Consistency of correlation, means that the ρ̂-s of all TOB schemes are the same when
nt = N , regardless of their performance. For a good TOB scheme, ρ̂ should be high at
the beginning, then monotonically decreases. The performance of it determines the height
and the decline speed of ρ̂.

The σ2 of noise in our experiments is set to 4, 20, 100, 500 respectively. 20000 power
traces and 10-fold cross validation are used, with 2000 traces in the test sets and other
18000 in the training sets for each repetition. We then perform correlation-based leakage
detection tests on the biased traces. The experimental results are shown in Fig.4.
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Figure 4: ρ-tests under different SNRs using traces without pre-processing (black), pre-
processed by DTOB (green) and TLOB (red).

In the case of small noise, the evaluator can obtain a high correlation coefficient if
he directly uses the power traces without pre-processing to perform leakage detection.
With the increase of noise, the correlation coefficient drops rapidly. Larger noise makes ρ̂
require more traces to become stable. It is about 0.583, 0.307, 0.139 and 0.063 when the
σ2 is 4, 20, 100 and 400 respectively. If the same number of power traces are biased, the
ρ̂-s corresponding to TLOB are significantly higher than the ones corresponding to CPA
and DTOB. This also indicates that TLOB can more accurately bias power traces with
high SNR.

The ρ̂-s corresponding to TLOB and DTOB decrease, too. When a few traces are bi-
ased, the ρ̂-s fluctuate. However, unlike directly performing tests on power traces without
pre-processing, ρ̂-s corresponding to TLOB and DTOB decrease monotonically with the
increase of nt. When noise enlarges, ρ̂-s corresponding to DTOB and classical CPA with-
out preprocessing get closer. This indicates that noise level plays a very important role
in DTOB. Large noise makes the biasing inaccurate. However, ρ tests using our TLOB
are still very robust. This is the experimental result of our simulation.

It’s worth noting that ρ̂ corresponding to DTOB is larger than the one of classical
CPA without pre-processing, and ρ̂ corresponding to TLOB is the largest when the same
number of traces are biased. However, the higher ρ̂ doesn’t mean the better performance of
leakage detection. A good leakage detection strategy should be able to make ρ̂-s in leakage
areas significantly higher than these in areas without leakage. Here we use simulation
experiments to compare the performance of CPA, DTOB and TLOB at different noise
levels and different numbers of traces, so as to provide a reference for evaluator to decide
the threshold nt.

4.2 Threshold under Different SNRs

We simulate 40000 power traces with σ2 equaling 100, 400, 1600 and 6400, of which the
SNR is 0.02, 0.005, 0.0013 and 0.000315 respectively. To compare the ability of ρ-test
on traces without pre-processing, pre-processed by DTOB and TLOB to distinguish the
POIs from other time samples without leakage, we additionally simulate 10 time samples
without information leakage under the same noise level. The experimental results are
shown in Fig.5.

With the same results getting from Section 4.1, with the decrease SNR of power traces,
ρ̂-s corresponding to CPA, DTOB and TLOB decrease. They are finally equal when

10



Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
CPA, σ2=6400

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
DTOB, σ2=6400

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
TLOB, σ2=6400

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
CPA, σ2=1600

Number of biased traces
1000 2000 3000 4000

ρ
0

0.5

1
DTOB, σ2=1600

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
TLOB, σ2=1600

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
CPA, σ2=400

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
DTOB, σ2=400

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
TLOB, σ2=400

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
CPA, σ2=100

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
DTOB, σ2=100

Number of biased traces
1000 2000 3000 4000

ρ

0

0.5

1
TLOB, σ2=100

Figure 5: ρ-tests under different SNRs using traces without pre-processing (black), pre-
processed by DTOB (green) and TLOB (red).

nt = N . ρ̂ corresponding to classical CPA without pre-processing and DTOB appear a
small peak respectively when σ2 equals 100 and 400. ρ̂ corresponding to DTOB drops
from about 0.50 (0.16) to 0.1365 (0.079) when σ2 equals 100 (400). However, large noise
makes the ρ̂-s in leakage points and non-leakage points quickly drop to 0 and become
indistinguishable. The benefits of biasing traces in DTOB also reflects when σ2 equals
100. However, this is not reflected when σ2 equals 400.

Compared to CPA and DTOB, TLOB performs better under different noise levels.
It can accurately bias traces with high SNR when σ2 equals 100, 400, 1600 and 6400
respectively. This indicates that TLOB has great ability to overcome noise, makes the
ρ̂-s in leakage areas and non-leakage areas distinguishable. When σ2 equals 6400 and
4000 test traces are used, a small peak appears in TLOB. However, this does not happen
in CPA and DTOB. The number of power traces with high SNR reduces when noise
enlarges, which makes ρ̂ smaller. If the noise enlarges, ρ tests using TLOB may not be
able to detect leakage. In order to detect leakage, more traces are required. As shown in
Fig.5, less traces nt used by the evaluator, the higher SNR of them biased using TLOB.
However, if nt is very small, the ρ̂-s in areas without leakage are also very high, which
affects the results of leakage detection. Moreover, if nt is large, noise of the biased power
traces is large, the advantages of biasing power traces can’t be reflected. N

10 ≤ nt ≤ N
4

may be a good choice as shown in Fig.5.

4.3 Threshold under Different Numbers of Traces

In order to compare the division of ρ̂-s in leakage areas and non-leakage areas, we simu-
late 10000, 20000, 40000 and 80000 traces under the same noise level (σ2 = 100). Similar
to Section 4.2, 10 time samples without leakage are additionally simulated. With the
increase number of biased power traces, the ρ̂ of POI tends to be stable at about 0.20.
ρ̂-s corresponding to CPA and DTOB in leakage areas and non-leakage areas are indis-
tinguishable when nt is small. With increase of nt, ρ̂-s in the leakage areas increase and
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decrease to 0 in areas without leakage. A small peak appears on the POI.

DTOB and TLOB are TOB schemes, which sort power traces and bias ones with
high SNR. The ρ̂ corresponding to them gradually declines and finally equals the one
corresponding to ρ test on traces without preprocessing. The increase of noise reduces the
number of traces with high SNR, accelerates the download trend of ρ̂. The performance
of DTOB and TLOB determines the height of ρ̂ when nt is small. ρ̂ corresponding to
DTOB fluctuates sharply when nt is small (as shown in Fig.6). A similar phenomenon
occurs in CPA, too. The larger the noise, the smaller the initial value of ρ̂. It decreases
from about 0.50 to about 0.140 in Fig.6. This also indicates that DTOB can no longer
accurately bias traces. Without pre-processing, the increase number of power traces has
no significant effect on DTOB.
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Figure 6: ρ-tests using different numbers of traces without pre-processing (black), prepro-
cessed by DTOB (green) and TLOB (red).

Compared to DTOB, TLOB performs better. When a few traces are biased, ρ̂-s of
POI are close to 1.00 and gradually declines to about 0.14. They are high when nt < N

2 .
As shown in the 4 sub graphs of TLOB, ρ̂-s of time samples without leakage decline
faster than the ones of POI. They are close to 0 when nt > N

4 . The difference of ρ̂-s is

most obvious when N
10 < nt < N

2 . The experimental result also validates the conclusions

obtained in Fig.4 and Fig.5. So, N
10 < nt < N

2 is a good threshold.

Cautionary Note. There are several factors affecting the experimental results in the
simulation. However, the optimal threshold nt that making ρ̂ largest is hard to obtain.
Since the traces in the real experiments are more complex. So, we only try to find a
good threshold in our experiments. We suggest the evaluator choose a threshold that the
correlation is high and the distinction between the interesting points and the uninteresting
points is clear. The total number of power traces used can be huge, but the number of
biased traces had better be small. Sometimes, dozens or hundreds of them are enough.
N
10 < nt < N

2 can also be used here.
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5 Software and Hardware Experimental Results

We use the simulation experiments in the previous sections to compare the performance of
DTOB, TLOB and classical CPA without pre-processing under different numbers of power
traces and different SNRs, since the parameters of simulated traces are easy to control.
We perform our experiments on real leakages to compare them again in this section. It
is worth noting that CPA using biased power traces is usually performed on POIs, since
these points leak more information, the attacker gets better attack efficiency. Although
DTOB in [17] analyzed all time samples, the whole traces were sorted only according
to the POI that leaked most information. Our purpose here is to detect leakage, so we
perform these 4 schemes on each time sample independently.

5.1 Experiments on AT89S52 Micro-controller

Our first experiment is performed on an AT89S52 micro-controller, the clock frequency
of which is 12MHz. The shortest instructions take 12 clock cycles for execution. We
use a Tektronix DPO 7254 oscilloscope to capture measurements of the look-up table
instruction "MOVC A,@A+DPTR". We acquire 10000 power traces, of which the length
is 4000 samples. We use the 2000th ∼ 2300th samples to perform our leakage detection
tests, and 10-fold cross-validation is used on MATLAB R2014b. The experimental result
of ρ-test using classical CPA without pre-processing is shown in Fig.7. Leakage occurs
between the 50th and the 200th time samples. The highest correlation coefficients of two
most obvious leakages at the 58th and 142th time samples are about 0.376 and 0.453. The
ρ̂-s of two leak areas around these two time samples are between 0.1 and 0.3, compared
to about 0 of areas without leakage.

Time samples
50 100 150 200 250 300

ρ

0

0.2

0.4

0.6

0.8

1
Original CPA

Figure 7: ρ tests using traces without pre-processing.

Let n denote the number of traces corresponding to Hamming weights 0, 1, 2, 4, 5,
6, 7 and 8 of S-box outputs, which is about 720 in our experiments. We bias traces to
perform correlation based leakage detection tests in our next experiments (as shown in
Fig.8, Fig.9 and Fig.10). It is worth noting that we use 10-fold cross-validation in our

experiments. n in the test set L
(j)
t (1 ≤ j ≤ 10) stated in Section 2 changes in a small

range. However, this does not affect the mean of ρ̂-s. Since DTOB, TLOB and CPTLOB
can bias corresponding number of traces to calculate the ρ̂ regardless of n.

We bias 500, 400, 300 and 200 power traces for leakage detection tests respectively and
repeat this operation for each time sample. The choice of these parameters is not arbitrary,
but has a relationship with the power consumption characteristics of our AT89S52. When
we bias a small proportion of traces, the power consumption of some samples on traces
are very close to their means, which makes the denominator in the formula of Pearson
correlation coefficient approach 0. So, MATLAB outputs "NAN". We determine the
parameters through many experiments.
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Figure 8: ρ tests using DTOB pre-processed traces.

TOB always outputs the traces closest to their corresponding mean power consumption
model, which we regard as the current optimal ones. As shown in the figure, the correlation
of the leakage areas is higher when leakage detection tests are performed with a smaller
number of traces. This also validates the correctness of our TOB.

ρ-test using DTOB-biased traces are shown in Fig.8. The correlation-based tests
detect more leakage when biasing power traces with large variance v̂ar (Ld (τ)). The
instruction "MOVC A, @A+DPTR" has several leakage areas. The 58th and 142 are two
most informative samples, near which there are two wide areas showing clear leakage. In
fact, DTOB is one of TOB schemes, the evaluator gets higher correlation coefficient ρ̂ if
he biases less power traces to perform tests. The correlation of the leak areas are generally
improved by biasing traces (as shown in Fig.8). However, the change is not very obvious.
When biasing 500, 400, 300 and 200 power traces, the correlation coefficients of the two
most informative samples are (0.479, 0.573), (0.514, 0.610), (0.550, 0.655) and (0.589,
0.700) respectively. The ρ̂-s of two leak areas are about from 0.2 to 0.4, compared to
smaller than 0.10 of areas without information leakage. This also indicates the limitation
of DTOB. The SNR of the biased traces is improved, but limited.

Unlike DTOB, TLOB and CPTLOB perform better on biasing traces (as shown in
Fig.9 and Fig.10). ρ̂-s of leak areas are more than 0.60 when biasing 300 and 200 power
traces. Moreover, with the decrease number of biased traces, ρ̂ increases gradually and
finally approaches 1.00. The ρ̂-s in the leak areas corresponding to CPTLOB are between
0.20 and 0.60. The performance of CPTLOB is stable, the ρ̂-s are below 0.20 in the
areas without leakage. It increases with the decrease number of biased traces and the
corresponding increase of SNR.

TLOB performs better than CPTLOB when the same number of traces are moderately
biased. For example, when 300 traces are biased, most ρ̂-s corresponding to TLOB in
leakage areas are large than 0.60. ρ̂-s of the two 58th and 142th time samples even reach
0.85 and 0.92. However, they are only about 0.20 in areas without leakage. Compared
to TLOB, ρ̂-s corresponding to CPTLOB on leak areas are bout 0.16, and the two most
obvious samples are about 0.777 and 0.862. The reason for this phenomenon is because the
number of biased traces is too small, TLOB biases traces with highest linearity, resulting
in the difference of ρ̂-s between leak areas and no leakage areas are not obvious. In
this case, the evaluator can simply bias more traces. This does not affect the conclusion
that TLOB performs better than CPTLOB in most cases. Since TLOB sorts all traces,
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Figure 9: ρ tests using TLOB pre-processed traces.
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Figure 10: ρ tests using CPTLOB pre-processed traces.

CPTLOB only sorts traces corresponding to Hamming weights 0, 1, 2, 4, 5, 6, 7 and 8.
If the same number of traces are biased, the ones biased by CPTLOB have larger noise
since they are farther from their corresponding mean power consumption leakage model.

5.2 Experiments on DPA Contest v1

Our second experiment is perform on the measurements of the unprotected DES crypto-
processor on the SecmatV1 SoC in ASIC provided by DPA contest v1 [1]. We attack
the the output of the first S-box in the last round of DES. Time samples from 16000th

to 17000th on the first 10000 power traces are used. Compared to power traces of our
AT 89S52 micro-controller, the power consumption characteristic of DPA contest v1 is
better suited to bias a smaller number of power traces. DES has 4 bits S-box output, of
which v̂ar (Ld) = 1.0667. We bias power traces corresponding to Hamming distances 0, 1,
3, 4, which account for about 5/8. v̂ar (Ld) = 1.7778 after biasing traces. We bias 600,
400, 200 and 100 from 1000 power traces in the test sets. Experimental results of ρ-tests
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on traces without pre-processing are shown in Fig.11.
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Figure 11: ρ tests using traces without pre-processing.

There are two leak areas 16200th ∼ 16270th and 16720th ∼ 16910th in the selected
time samples. One and three peaks appear in these two areas, ρ̂ of which is about 0.275,
0.331, 0.266 and 0.173 respectively. ρ̂ is about 0.03 in the areas without leakage. For
convenience, we use the symbol ρ̄ to represent the correlation coefficients vector of these
four peaks.

ρ tests using DTOB-biased traces are performed and the experimental results are
shown in Fig.12. When biasing 600 traces with maximum variances of population mean,
ρ̄ is significantly improved to (0.347, 0.397, 0.328, 0.220). When biasing 400, 200 and
100 power traces, ρ̄ changes to (0.395, 0.462, 0.373, 0.258), (0.480, 0.544, 0.428, 0.313),
(0.532, 0.596, 0.478, 0.395) respectively. It is worth noting that TOB also improves the
correlation in areas without leakage. In fact, TOB always biases the power traces that are
most beneficial to the guess key, including correct one and wrong ones. This makes ρ̂-s
corresponding to both correct key and wrong guess keys improve. In other words, TOB
always biases power traces that most linearly correlates to the profiled leakage model.
This also explains the reason why correlation in areas without leakage improves. The ρ̂-s
in no leaky areas are about the same after 10-fold cross validation. When the number of
biased traces changes from 600 to 100, ρ̂-s in these areas are about 0.03, 0.03, 0.07 and
0.08 respectively. Ghost peaks do not appear in these areas, which reflects the robust
of DTOB. Compared to classical CPA without pre-processing, DTOB performs better in
correlation leakage detection tests. With the decrease of nt, ρ̂-s in leak areas improve, but
not very obviously.
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Figure 12: ρ tests using DTOB pre-processed traces.
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Correlation coefficients increase significantly when DTOB, TLOB and CPTLOB are
introduced into correlation based tests. The experimental results of ρ-tests using TLOB-
and CPTLOB biased traces are shown in Fig.13 and Fig.14. When the same number of
traces are biased from the same set, TLOB performs better than DTOB. Taking the corre-
lation coefficients ρ̄ of 4 peaks for example, when 600, 400, 200 and 100 traces are biased,
ρ̄ corresponding to CPTLOB changes to (0.322, 0.369, 0.293, 0.214), (0.510, 0.579, 0.483,
0.365), (0.770, 0.821, 0.756, 0.590) and (0.934, 0.956, 0.912, 0.842). The corresponding ρ̂
in areas without leakage is average 0.03, 0.06, 0.10 and 0.20. ρ̄ corresponding to TLOB
changes to (0.521, 0.596, 0.522, 0, 360), (0.698, 0.761, 0.672, 0.526), (0.904, 0.924, 0.886,
0.784) and (0.970, 0.980, 0.966, 0.930). The corresponding ρ̂-s in areas without leakage
are average 0.04, 0.07, 0.17 and 0.30. ρ̂-s of two leak areas are also higher than the ones
in the corresponding locations of DTOB.
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Figure 13: ρ tests using TLOB pre-processed traces.

This indicates that the biased traces have high SNR. Compared to DTOB, TLOB
and CPTLOB performs better in 4 leakage areas. In addition, ρ-test using DTOB-biased
traces appears ’lean and high’ correlation in these 4 leakage areas. The correlation de-
clines rapidly from the peaks to the edge areas. Unlike DTOB, ρ-test using TLOB- and
CPTLOB-biased traces looks "fat and tall". This indicates that power traces with high
SNR not only in the peaks and their vicinities but also in the edges of 4 leakage areas are
biased, which makes the correlation in wide leakage areas improve. This also indicates
that, compared to DTOB, ρ-tests using TLOB and CPTLOB can detect leakage more
effectively.

As shown in Section 4, TLOB works very well when nt is smaller than 50 percent of
the total number of traces. The difference of ρ̂-s in the leakage areas and areas without
leakage are most obvious. If the evaluator enlarges nt, ρ̂-s in these areas decrease. If nt is
reduced, ρ̂-s in these areas enlarges. ρ̂-s in leakage areas keep growing, and become stable
after close to the limit 1.00. If the evaluator keeps reducing nt, the ρ̂-s in areas without
leakage grow rapidly (see the two sub graphs in Fig.13).

In fact, if the number of TLOB-biased traces is too small, the ρ̂-s in leak areas and no
leaky areas fluctuate very seriously and are indistinguishable. This experimental result
is very similar to the one in Section 5.1. This also validates the conclusion that nt can
not be too small in Section 4. If nt is properly chosen and the total number of power
traces is fixed, TLOB is generally better than CPTLOB and DTOB. A good nt makes
the difference of ρ̂-s in leak areas and areas without leakage more obvious.
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Figure 14: ρ tests using CPTLOB pre-processed traces.

6 Conclusions and Future Works

Biasing power traces is one of the most efficient de-noising pre-processing tools to improve
SNR, which can significantly enhance leakage detection tests. In this paper, SNR of power
traces is defined more accurately, and the concept of TOB is proposed for the first time.
TLOB and CPTLOB, two specific TOB schemes are given. Compared to DTOB, TLOB
and CPTLOB can bias traces with high SNR more accurately. TLOB based schemes
including CPTLOB are very robust and perform very well even on very noisy traces.
Taking advantage of known key and plaintexts, the evaluator can use a very small number
of traces to perform leakage detection tests. The experimental results in Section 5 shows
that the correlation coefficients of leakage detection tests using TLOB and CPTLOB
approach 1.00. This indicates the high SNR of biased power traces, and high efficiency
of TLOB based leakage detection tests. The ρ-test is only an example given here, TLOB
can also be used in other kinds of tests, such as Student’s t-test detailed in Section 2.1.
Since the noise variance can be reduced very low.

Since CPA was proposed, a lot of optimizations have been done. However, as far as
we know, there has no scheme that can improve the correlation coefficient to the same
level of TLOB and CPTLOB. TLOB-based schemes are still worth further study. As we
mentioned in Section 5, TOB always biases traces best correlating to the mean power
consumption leakage model of intermediate values, if the number of biased traces is too
small, the ρ̂-s in areas without leakage are also very high. This makes the difference of ρ̂-s
in leakage areas and areas without leakage undistinguishable, which seriously affects the
results of our detection tests. In this case, we can simply enlarge the number of biased
traces. Other methods to optimize this are also worth studying. Moreover, we use a
TA-like distinguisher to measure the noise level of traces. How to use other distinguishers
to optimize TLOB and further improve the efficiency of leakage detection tests is also a
very interesting problem.

Finally, as we mentioned in our paper, TLOB is based on known key and can only be
used for evaluation purposes. The attackers can’t use it to perform attacks. How to apply
TLOB to unknown key based leakage detections and attacks is also very meaningful.

18



References

[1] Dpa contest. http://www.dpacontest.org/home/.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s).
In Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International

Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, pages
29–45, 2002.

[3] M. Akkar, R. Bevan, P. Dischamp, and D. Moyart. Power analysis, what is now
possible... In Advances in Cryptology - ASIACRYPT 2000, 6th International Confer-

ence on the Theory and Application of Cryptology and Information Security, Kyoto,

Japan, December 3-7, 2000, Proceedings, pages 489–502, 2000.

[4] S. Bhasin, J. Danger, S. Guilley, and Z. Najm. NICV: normalized inter-class variance
for detection of side-channel leakage. IACR Cryptology ePrint Archive, 2013:717,
2013.

[5] E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model.
In Cryptographic Hardware and Embedded Systems - CHES 2004: 6th International

Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, pages 16–29, 2004.

[6] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In Cryptographic Hardware

and Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores,

CA, USA, August 13-15, 2002, Revised Papers, pages 13–28, 2002.

[7] J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi. Test
vector leakage assessment (tvla) methodology in practice, 2013. http://icmc-2013.

org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf.

[8] J. Coron. Higher order masking of look-up tables. In Advances in Cryptology - EURO-

CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
pages 441–458, 2014.

[9] J. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security and
mask refreshing. In Fast Software Encryption - 20th International Workshop, FSE

2013, Singapore, March 11-13, 2013. Revised Selected Papers, pages 410–424, 2013.

[10] A. A. Ding, C. Chen, and T. Eisenbarth. Simpler, faster, and more robust t-test based
leakage detection. In Constructive Side-Channel Analysis and Secure Design - 7th

International Workshop, COSADE 2016, Graz, Austria, April 14-15, 2016, Revised

Selected Papers, pages 163–183, 2016.

[11] F. Durvaux and F. Standaert. From improved leakage detection to the detection
of points of interests in leakage traces. In Advances in Cryptology - EUROCRYPT

2016 - 35th Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pages
240–262, 2016.

[12] D. Genkin, A. Shamir, and E. Tromer. RSA key extraction via low-bandwidth a-
coustic cryptanalysis. In Advances in Cryptology - CRYPTO 2014 - 34th Annual

Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,

Part I, pages 444–461, 2014.

[13] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side-channel
resistance validation, 2011. http://www.rambus.com/wp-content/uploads/2015/

08/a-testing-methodology-for-side-channel-resistance-validation.pdf.

19

http://www.dpacontest.org/home/
http://icmc-2013.org/wp/wp-content/uploads/2013/09/ goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/ goodwillkenworthtestvector.pdf
http://www.rambus.com/wp-content/uploads/2015/08/a-testing-methodology-for-side-channel-resistance-validation.pdf
http://www.rambus.com/wp-content/uploads/2015/08/a-testing-methodology-for-side-channel-resistance-validation.pdf


[14] S. Hajra and D. Mukhopadhyay. On the optimal pre-processing for non-profiling
differential power analysis. In Constructive Side-Channel Analysis and Secure De-

sign - 5th International Workshop, COSADE 2014, Paris, France, April 13-15, 2014.

Revised Selected Papers, pages 161–178, 2014.

[15] W. Hu, L. Wu, A. Wang, X. Xie, Z. Zhu, and S. Luo. Adaptive chosen-plaintext
correlation power analysis. In Tenth International Conference on Computational

Intelligence and Security, CIS 2014, Kunming, Yunnan, China, November 15-16,

2014, pages 494–498, 2014.

[16] Y. Kim and H. Ko. Using principal component analysis for practical biasing of power
traces to improve power analysis attacks. In Information Security and Cryptology -

ICISC 2013 - 16th International Conference, Seoul, Korea, November 27-29, 2013,

Revised Selected Papers, pages 109–120, 2013.

[17] Y. Kim, T. Sugawara, N. Homma, T. Aoki, and A. Satoh. Biasing power traces
to improve correlation power analysis attacks. In Constructive Side-Channel Analy-

sis and Secure Design - COSADE 2010 - First International Workshop, Daemstadt,

Germany, February 4-5, 2010, pages 77–80, 2010.

[18] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in

Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 15-19, 1999, Proceedings, pages 388–397, 1999.

[19] T. Le, J. Clédière, C. Servière, and J. Lacoume. Noise reduction in side channel
attack using fourth-order cumulant. IEEE Trans. Information Forensics and Security,
2(4):710–720, 2007.

[20] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the secrets

of smart cards. Springer, 2007.

[21] L. Mather, E. Oswald, J. Bandenburg, and M. Wójcik. Does my device leak informa-
tion? an a priori statistical power analysis of leakage detection tests. In Advances in

Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and

Application of Cryptology and Information Security, Bengaluru, India, December 1-5,

2013, Proceedings, Part I, pages 486–505, 2013.

[22] T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Examining smart-card security
under the threat of power analysis attacks. IEEE Trans. Computers, 51(5):541–552,
2002.

[23] B. Noura, M. Mohsen, and T. Rached. Optimized power trace numbers in CPA
attacks. In The 8-th International Multi-Conference on Systems, Signals and Devices,

Sousse, Tunisia, March 22-25, 2011. Proceedings, pages 1–5, 2011.

[24] C. Ou, Z. Wang, D. Sun, X. Zhou, J. Ai, and N. Pang. Enhanced correlation pow-
er analysis by biasing power traces. In Information Security - 19th International

Conference, ISC 2016, Honolulu, HI, USA, September 3-6, 2016, Proceedings, pages
59–72, 2016.

[25] E. Peeters. Advanced DPA theory and practice. Springer, 2013.

[26] O. Reparaz. Detecting flawed masking schemes with leakage detection tests. In Fast

Software Encryption - 23rd International Conference, FSE 2016, Bochum, Germany,

March 20-23, 2016, Revised Selected Papers, pages 204–222, 2016.

20



[27] K. Schramm, G. Leander, P. Felke, and C. Paar. A collision-attack on AES: combin-
ing side channel- and differential-attack. In Cryptographic Hardware and Embedded

Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August

11-13, 2004. Proceedings, pages 163–175, 2004.

[28] K. Schramm and C. Paar. Higher order masking of the AES. In Topics in Cryptology

- CT-RSA 2006, The Cryptographers’ Track at the RSA Conference 2006, San Jose,

CA, USA, February 13-17, 2006, Proceedings, pages 208–225, 2006.

[29] K. Schramm, T. J. Wollinger, and C. Paar. A new class of collision attacks and its
application to DES. In Fast Software Encryption, 10th International Workshop, FSE

2003, Lund, Sweden, February 24-26, 2003, Revised Papers, pages 206–222, 2003.

[30] F. Standaert. How (not) to use welch’s t-test in side-channel security evaluations.
IACR Cryptology ePrint Archive, 2017:138, 2017.

[31] K. Tiri and P. Schaumont. Changing the odds against masked logic. In Selected

Areas in Cryptography, 13th International Workshop, SAC 2006, Montreal, Canada,

August 17-18, 2006 Revised Selected Papers, pages 134–146, 2006.

[32] J. G. J. van Woudenberg, M. F. Witteman, and B. Bakker. Improving differential
power analysis by elastic alignment. In Topics in Cryptology - CT-RSA 2011 - The

Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA, USA, Febru-

ary 14-18, 2011. Proceedings, pages 104–119, 2011.

[33] L. Zhang, A. A. Ding, F. Durvaux, F. Standaert, and Y. Fei. Towards sound and
optimal leakage detection procedure. IACR Cryptology ePrint Archive, 2017:287,
2017.

21


	Backgrounds
	Leakage Characteristics of POIs
	Cross Validation
	Distribution-Based Traces Optimal Biasing

	Leakage Detection Tests 
	Student's t-test
	Correlation -test

	Traces Linear Optimal Biasing
	New Definition of Noise Level
	Linear Measurement
	Traces Optimal Sorting and Biasing
	Chosen Plaintexts based TLOB

	Threshold of the Number of Biased Traces
	Consistency of Correlation
	Threshold under Different SNRs
	Threshold under Different Numbers of Traces

	Software and Hardware Experimental Results
	Experiments on AT89S52 Micro-controller 
	Experiments on DPA Contest v1

	Conclusions and Future Works

