
Moderately Hard Functions:
Definition, Instantiations, and Applications?

Joël Alwen1 and Björn Tackmann2

1 IST, Vienna, Austria, jalwen@ist.ac.at
2 IBM Research – Zurich, Switzerland, bta@zurich.ibm.com

Abstract. Several cryptographic schemes and applications are based on
functions that are both reasonably efficient to compute and moderately
hard to invert, including client puzzles for Denial-of-Service protection,
password protection via salted hashes, or recent proof-of-work blockchain
systems. Despite their wide use, a definition of this concept has not yet
been distilled and formalized explicitly. Instead, either the applications
are proven directly based on the assumptions underlying the function,
or some property of the function is proven, but the security of the ap-
plication is argued only informally. The goal of this work is to provide a
(universal) definition that decouples the efforts of designing new moder-
ately hard functions and of building protocols based on them, serving as
an interface between the two.
On a technical level, beyond the mentioned definitions, we instantiate
the model for four different notions of hardness. We extend the work
of Alwen and Serbinenko (STOC 2015) by providing a general tool for
proving security for the first notion of memory-hard functions that allows
for provably secure applications. The tool allows us to recover all of
the graph-theoretic techniques developed for proving security under the
older, non-composable, notion of security used by Alwen and Serbinenko.
As an application of our definition of moderately hard functions, we prove
the security of two different schemes for proofs of effort (PoE). We also
formalize and instantiate the concept of a non-interactive proof of effort
(niPoE), in which the proof is not bound to a particular communication
context but rather any bit-string chosen by the prover.

1 Introduction

Several cryptographic schemes and applications are based on (computational)
problems that are “moderately hard” to solve. One example is hashing passwords
with a salted, moderately hard-to-compute hash function and storing the hash
in the password file of a login server. Should the password file become exposed
through an attack, the increased hardness of the hash function relative to a
standard one increases the effort that the attacker has to spend to recover the
passwords in a brute-force attack [65,68,44]. Another widely-cited example of
this approach originates in the work of Dwork and Naor [38], who suggested the

? The proceedings version is in TCC 2017. This is the full version.



use of a so-called pricing function, supposedly moderately hard to compute, as a
countermeasure for junk mail: the sender of a mail must compute a moderately
hard function (MoHF) on an input that includes the sender, the receiver, and the
mail body, and send the function value together with the message, as otherwise
the receiver will not accept the mail. This can be viewed as a proof of effort3

(PoE), which, in a nutshell, is a 2-party (interactive) proof system where the
verifier accepts if and only if the prover has exerted a moderate amount of effort
during the execution of the protocol. Such a PoE can be used to meter access
to a valuable resource like, in the case of [38], the attention of a mail receiver.
As observed by the authors, requiring this additional effort would introduce
a significant obstacle to any spammer wishing to flood many receivers with
unsolicited mails. Security was argued only informally in the original work. A
line of follow-up papers [1,37,39] provides a formal treatment and proves security
for protocols that are intuitively based on functions that are moderately hard to
compute on architectures with limited cache size.

PoEs have many applications beyond combatting spam mail. One widely
discussed special case of PoE protocols are so-called cryptographic puzzles (or
client puzzles, e.g. [54,14,71,27,48,29]), which are mainly targeted at protecting
Internet servers from Denial-of-Service attacks by having the client solve the
puzzle before the server engages in any costly operation. These PoEs have the
special form of consisting of a single pair of challenge and response messages
(i.e., one round of communication), and are mostly based on either inverting a
MoHF [54], or finding an input to an MoHF that leads to an output that has a
certain number of trailing zeroes [2]. More recently, crypto-currencies based on
distributed transaction ledgers that are managed through a consensus protocol
based on PoEs have emerged, most prominently Bitcoin [66] and Ethereum [24],
and are again based on MoHFs. In a nutshell, to append a block of transactions
to the ledger, a so-called miner has to legitimate the block by a PoE, and as long
as miners that control a majority of a computing power are honest, the ledger
remains consistent [45].

The notions of hardness underlying the MoHFs that have been designed for
the above applications vary widely. The earliest and still most common one is
computational hardness in terms of the number of computation steps that have
to be spent to solve the problem [38,54,29,66]. Other proposals exploit the limited
size of fast cache in current architectures and are aimed at forcing the processor
to access the slower main memory [1,37,39], the use of large amounts of memory
during the evaluation of the function [68,44,11], or even disk space [40].

Given the plethora of work (implicitly or explicitly) designing and using Mo-
HFs, one question soon comes to mind: is it possible to use the MoHF designed
in one work in the application context of another? The current answer is sober-
ing. Either the security notion for the MoHF is not quite sufficient for proving

3 We intentionally use the term effort instead of work since the latter is often asso-
ciated with computational work, while a MoHF in our framework may be based on
spending other types of resources such as memory.

2



the security of the targeted applications. Or security of the application is proven
directly without separating out the properties used from the underlying MoHF.

For example, in the domain of memory-hard functions (an increasingly com-
mon type of MoHF first motivated by Percival in [68]) the security of MoHF
applications is generally argued only informally. Indeed, this likely stems from
the fact that proposed definitions seem inadequate for the task. As argued by
Alwen and Serbinenko [11], the hardness notion used by Percival [68] and For-
ler et al. [44] is not sufficient in practical settings because it disregards that an
attacker may amortize the effort over multiple evaluations of the function.4 Yet
the definition of [11], while preventing amortization, is also not (known to be)
useful in proving the security of higher-level protocols, because it requires high
average-case, instead of worst-case, complexity. Worse, like all other MoHF defi-
nitions in the literature (e.g. [19,4]), it focuses only on the hardness of evaluating
the function. However, all applications present the adversary with the task of
inverting the MoHF in same form or another.5

In other areas, where the application security is explicitly proven [1,37,39],
this is done directly with out separating out the properties of the underlying
MoHF. This means that (a) the MoHF (security) cannot easily be “extracted”
from the paper and used in other contexts, and (b) the protocols cannot easily
be instantiated with other MoHFs. Furthermore, the security definitions come
with a hard-wired notion of hardness, so it is a priori even more difficult to
replace the in-built MoHF with one for a different type of hardness.

Consequently, as already discussed by Naor in his 2003 invited lecture [67],
what is needed is a unifying theory of MoHFs. The contribution of this paper is
a step toward this direction. Our goal is to design an abstract notion of MoHF
that is flexible enough to model various types of functions for various hardness
notions considered in the literature, but still expressive enough to be useful in
a wide range of applications. We propose such a definition, show (with varying
degrees of formality) that existing constructions for various types of hardness
instantiate it, and show how it can be used in various application scenarios. Not
all proof-of-work schemes, however, fall into the mold of the ones covered in this
work. For example the recently popular Equihash [20] has a different form.6

4 Additionally [44] do not consider an attack with parallel computational capabilities
such as a circuit.

5 The problem, at least with respect to proving security of applications is that, for
almost any reasonable notion of complexity and function f we could modify f to
prepend its input to its output to obtain a new function with just as high complexity
as the original, but which is trivial to invert.

6 Nevertheless, we conjecture that Equihash could also be analyzed in out framework.
In particular, if we can always model the underlying hash function used by Equihash
as a (trivially secure) MoHF. Then, by assuming the optimality of Wagner’s collision
finding algorithm (as done in [20]) one could compute the parameters for which
Equihash gives rise to our proof-of-effort definition in Section 7. We leave this line
of reasoning for future work.

3



Outline. In Section 2, we provide an extended abstract that contains a self-
contained though mostly semi-formal treatment of the results in this paper.
The section intentionally follows the structure of the main technical sections, so
that the interested reader can easily find the detailed material there. Section 3
contains the preliminaries for the full, technical part. In Section 4, we describe
our new definition of MoHF, which is already sketched in Section 2, more for-
mally. Next, in Section 5, we instantiate the MoHF definition for the case of
memory-hard functions, and in Section 6 we discuss other types of moderately
hard functions from the literature. In Section 7, we describe a (composable)
security definition for PoE. In Section 8, we then continue to describing an anal-
ogous definition for a non-interactive proof of effort (niPoE), and again give an
instantiation based on hash trail. In Section 9, we discuss the composition of
the MoHF definition and the PoE and niPoE applications more concretely. A
detailed discussion of related work beyond the overview above, and a discussion
of the applicability of our results to the scenarios discussed from previous litera-
ture, appear in Section 10. Appendices contain additional material (Appendices
A and C) and proofs (Appendix B).

2 Extended abstract

2.1 Moderately hard functions

The starting point of our MoHF definition is the observation that many works in
this area seems to—more or less implicitly—assume that a MoHF behaves like a
random oracle. For instance, the hash-trail scheme [2] that has been widely used
[66,49] works under the assumption that the outputs of the function are uniform,
and papers proving memory-hardness generally prove hardness in the forward
direction [68,44,11], although most applications actually need hardness in the
backward direction. This appears to implicitly assume that forward-hardness
implies backward-hardness, which is somewhat true for random oracles, but false
in general. The immediate idea would then be to require that a MoHF be indif-
ferentiable from a random oracle [64], but that alone would not be sufficient as
plain indifferentiability does not properly model resource consumption [72,34],
which however is central to the notion of MoHF. The core idea of our definition
can be seen as making the indifferentiability framework “resource-aware.”

We recall that the goal of indifferentiability can be seen as defining when
a protocol or scheme π, which may use a certain resource7 S , provides the
guarantees specified by means of some (often idealized) resource T . The resources
S and T each provide two different interfaces via which they can be accessed: a
private interface “priv” that defines how an honest party can access the resource,
and a public interface “pub” that specifies the capabilities of an adversary. On
a high level, and as depicted in Figure 1, π realizes T from S in the sense of
indifferentiability if there exists a simulator σ such that the two settings depicted
in Figure 1 are indistinguishable.

7 All resources here are described as discrete reactive systems that respond to queries
from their environment, see [26,69,60] for instantiations of this concept.

4



S

π

D

priv pub

T

σ

D

priv pub

Fig. 1: Indifferentiability. Left: Distinguisher D connected to protocol π using
the priv-interface of the real-world resource S , denoted D

(
πprivS

)
. Right: Dis-

tinguisher D connected to simulator σ attached to the pub-interface of the ideal-
world resource T , denoted D

(
σpubT

)
.

The ideal-world MoHF. We model an ideal MoHF as a restricted random oracle
(RRO) to which only a limited number of queries can be made. More precisely,
we write T rro

a,b to denote such a random oracle allowing a ∈ N queries to the hon-
est party and b ∈ N queries to the adversary. We then require that a candidate
function being evaluated in a setting with bounded resources be indifferentiable
from this idealization. This approach has the advantage of being extremely con-
venient in the analysis of higher-level protocols based on MoHFs: the analysis
can be performed in the restricted random-oracle model, under consideration
of the bounds a, b on the number of queries, and the composability of indiffer-
entiability guarantees that the result carries over to the setting with the real
MoHF.

In particular, our definition implies one-wayness for the MoHF because the
random oracle is one-way (and therefore an efficient inverter can easily be used
turned into a distinguisher in the indifferentiability statement).

The real-world setting. The real-world setting models the intuition that the
resources of both the honest party and the adversary are bounded. For each
notion of hardness, we have to describe the appropriate computational model
and complexity measure; in particular, for each hardness notion we will have a
different description of the real world.

Generally, the real world is described in terms of a computation resource
which allows both the honest party and the adversary to input an algorithm,
and to subsequently provide (possibly repeatedly) inputs on which the algorithm
will be evaluated. The computational resource is bounded in the sense that
evaluating the algorithm incurs some cost, and depending on the cost of each
evaluation and the bounds imposed by the resource, each algorithm may only be
executed a certain number of times, or maybe not at all. Complexity measures
may charge, e.g., for certain operations of the algorithm (such as each call to the
random oracle), for the memory use during the computation, for each memory
access, and so on.

5



In all cases we consider, the real-world resource will provide the algorithms
with a random oracle that can be queried. That means that the function imple-
mented by the algorithm is actually an oracle function, a term that we specify
in Definition 4. We usually denote such functions, which are defined relative to
an oracle, as f (·).

For several complexity measures (such as for memory hardness; our main
technical result) we restrict the adversary allowing it to input just one algo-
rithm and to evaluate this algorithm on only one input. At first glance, this
restriction may appear needlessly restrictive, and therefore calls for further dis-
cussion. (When) is it necessary? For complexity measures such as memory hard-
ness or memory-boundedness, continuous interaction between the algorithm and
the environment would allow the algorithm to “outsource” memory to the envi-
ronment, essentially circumventing the resource bound. We stress that previous,
stand-alone definitions of memory-hard functions have the same restriction, it
only appears less explicitly there. For other complexity measures such as counting
the oracle calls of an random-oracle algorithm, such a restriction is not required
as the environment is not given direct access to the random oracle. (When) is
it natural? The purpose of our definition is to exactly specify the (assumed)
resource bounds per party. In applications of MoHFs, there is often a natural
beginning at which the adversary, e.g., receives a challenge, and begins the com-
putation. The resource-consumption of this computation is exactly what we want
to measure. Statements about moderately hard functions inherently relate to the
computational resources available to the adversary. Why not consider bounded
distinguishers? The purpose of the distinguisher is to model the environment in
which the protocol is used; in a sense, the distinguisher can be understood as
comprising the entire remaining world, including all other cryptographic proto-
cols possibly executed concurrently. Bounding the distinguisher would therefore
result in too-weak security statements, since reasonably large bounds render
the statement about the MoHF imprecise, while smaller bounds prevent con-
current composition with other protocols. Why is only one algorithm input at
pub? Allowing multiple algorithms to be input generally allows outsourcing to
the distinguisher (as above). In many practical applications, different sessions of
the protocol separate instances of the underlying random oracle by, e.g., salting,
and we treat each salted random oracle as an individual instance. We leave it
to future work to make this argument formal, for example using the techniques
of [80,36].

Definition and the use in applications. Given the above descriptions of the re-
sources, our security definition is simply based on indifferentiability of the MoHF
in the described real-world setting from the query-bounded random oracle. In
the real-world setting, the honest party uses the prescribed algorithm and re-
peatedly evaluates it on inputs adaptively chosen by the distinguisher, whereas
the adversarial party uses the algorithm prescribed by the distinguisher. In the
ideal-world setting, both parties access the query-bounded random oracle; the
simulator at the pub-interface takes as input the algorithm from the distinguisher
and evaluates it.

6



Definition 1 (MoHF security, informal). Let f (·) be an oracle function and
naı̈ve be an algorithm for computing f (·). For non-negative a, b and ε a com-
putational resource S describing the real world, (f (·), naı̈ve) is a (a, b, ε)-secure

moderately hard function if there is a simulator σ such that πpriv

naı̈ve S , where
πnaı̈ve is the protocol that inputs algorithm naı̈ve into the resource and then
evaluates it on all inputs provided by the environment, is ε-indistinguishable from
σpub T rro

a,b .

Despite the fact that indifferentiability-based definitions are generally com-
posable, previous results have shown that the interpretation of the composed
statements requires care especially in resource-restricted scenarios [72,34].

As we further discuss in Sections 7, 8, and 10, our definition is useful in
several application areas of MoHFs where we would like to limit the rate at
which an adversary can evaluate a critical function while simultaneously still
allowing an honest (potentially weaker) party from still evaluating said function
at a moderate rate. Examples include functions in password-based cryptography
such as Key Derivation Functions and password hashing algorithms. Another set
of examples are proofs of effort and non-interactive proofs of effort. Generally,
these are applications where for different instances of the application disjoint
inputs to the MoHF are used, and we can therefore consider these applications
as using multiple instances of our resources. (Salted password storage is another
example of such a use case.) On the other hand, the assumptions formalized in
the real-world model are not compatible with all use cases and applications of
MoHFs. For instance, using our definition of MoHF in the blockchain model of
Garay et al. [45] does not work, since the adversary in that model can invoke
the same algorithm multiple times, and these invocations necessarily involve the
same instance of the MoHF.

Overall, one main advantage of our definition is that the idealization is inde-
pendent of a concrete hardness notion, and applications can simply be analyzed
in the query-bounded random oracle model, which makes the protocol analysis
both more general and easier to understand. The generic composition theorem
for indifferentiability allows to combine any application (for which our definition
of MoHF leads to meaningful statements, see above) with any MoHF, and in
particular with all types of MoHF described in the subsequent two sub-sections.

2.2 Memory-hard functions

Next, in Section 5, we instantiate the MoHF definition for the case of memory-
hard function (MHF). Intuitively, an MHF is a function such that (1) the most
efficient strategy for inverting the MHF on low entropy inputs is a guess-and-
check strategy and (2) the product of the area and time of any parallel device
(amortized per instance of the MHF the device evaluates) is large. This complex-
ity notion is called (amortized) area-time (aAT) complexity [4] and has origins in
the domain of VLSI [78]. In the formalization of MHFs in this work we actually
only consider the area of the memory components. (Clearly our lower bounds on

7



memory-area are also lower bounds on the total area.8) Still, the techniques we
introduce here carry over to the more complicated setting where the area used
for computational logic is also considered.

A bit more precisely we formalize MHFs using a variant of the Random Oracle
Model (pROM). That is we consider a resource-bounded computational device
S with a priv- and a pub-interface capturing the pROM (adapted from [9]). Let
w ∈ N. Upon startup, Sw-prom samples a fresh random oracle h←$ Hw with range
{0, 1}w. Now, on both interfaces, Sw-prom accepts as input a pROM algorithm A

which is an oracle algorithm with the following behavior.
A state is a pair (τ, s) where data τ is a string and s is a tuple of strings.

The output of step i of algorithm A is an output state σ̄i = (τi,qi) where qi =
[q1i , . . . , q

zi
i ] is a tuple of queries to h. As input to step i+ 1, algorithm A is given

the corresponding input state σi = (τi, h(qi)), where h(qi) = [h(q1i ), . . . , h(qzii )]
is the tuple of responses from h to the queries qi. In particular, for a given h and
random coins of A, the input state σi+1 is a function of the input state σi. The
initial state σ0 is empty and the input xin to the computation is given a special
input in step 1.

For a given execution of a pROM, we are interested in the following com-
plexity measure. We denote the bit-length of a string s by |s|. The length of a
state σ = (τ, s) with s = (s1, s2, . . . , sy) is |σ| = |τ | +

∑
i∈[y] |si|. The cumula-

tive memory complexity (CMC) of an execution is the sum of the lengths of the
states in the execution. More precisely, let us consider an execution of algorithm
A on input xin using coins $ with oracle h resulting in z ∈ Z≥0 input states
σ1, . . . , σz, where σi = (τi, si) and si = (s1i , s

2
i , . . . , s

yj
i ). Then the cumulative

memory complexity (CMC) of the execution is

cmc(Ah(xin; $)) =
∑
i∈[z]

|σi| ,

while the total number of RO calls is
∑
i∈[z] yj . More generally, the CMC (and

total number of RO calls) of several executions is the sum of the CMC (and total
RO calls) of the individual executions.

The device Sw-prom imposes constraints on the algorithm it executes. In par-
ticular for an implicit pair of positive integers (qpriv,mpriv) the pROM algorithm
on the priv interface is allowed to make a total of qpriv RO calls and use CMC
at most mpriv summed up across all of the algorithms executions. Similar con-
straints hold on the pub interface for implicit parameters (qpub,mpub).

As usual for memory-hard functions, to ensure that the honest algorithm
can be run on realistic devices, Sw-prom restricts the algorithms on the priv-
interface to be sequential. That is, the algorithms can make only a single call to
h per step. Technically, in any execution, for any step j it must be that yj ≤ 1.
No such restriction is placed on the adversarial algorithm reflecting the power
(potentially) available to such a highly parallel device as an ASIC.

8 For further explanation as to why this lower bound is likely quite tight for all MHFs
we consider we refer to [11].

8



We conclude the section with the formal definition of a memory-hard func-
tion in the pROM. The definition is a particular instance of and MoHF defined
in Definition 5 formulated in terms of exact security.

Definition 2 ((Parallel) memory-hard function, informal). Let f (·) be an
oracle function and naı̈ve be a pROM algorithm for computing f (·). Consider
the function families:

a = {aw ∈ N}w∈N , b = {bw ∈ N}w∈N , ε = {εw ∈ R≥0}w∈N .

Then F = (f (·), naı̈ve) is called an (a, b, ε)-memory-hard function (MHF) if
∀w ∈ N F is an (aw, bw, εw)-secure moderately hard function family for Sw-prom.

Constructing MHFs. Now that we have defined MHFs we turn to their construc-
tion. To this end, we prove the main result of this section; a theorem bounding
the parameters a, b and ε in Definition 2 for a given graph function (a.k.a. hash
graph). Graph functions are a class of functions over bit strings constructed by
fixing a mode of operation over a round function. In practice, most round func-
tions are derived from the compression functions of cryptographic hash functions
such as Blake2b [18]. As such, in this work the round function is modeled as a
(fixed input length) random oracle (RO) also called an ideal compression func-
tion. We view the mode of operation as being given by a (constant in-degree)
directed acyclic graph (DAG) which describes how the inputs and outputs of
the calls to the RO are related to each other. First introduced in [39], graph
functions have since appeared in many works on somewhat-hard-to-compute
functions (e.g. [11,7,42,41,40,44,18,23,6] and many others) for various concrete
notions of “hard to compute”.

Let fG be a graph function with a mode of operation over a RO given by G.
The main theorem of this section (Theorem 4) quantifies parameters a b and ε
for which fG is an MHF in term of the cumulative pebbling complexity (CPC) of
G [11]). The CPC of G is a complexity measure given in terms of simple pebbling
game over DAGs. (c.f. Definition 8 and 9.) This has several consequences. For
starters Theorem 4 reduces the goal of constructing new MHFs satisfying our
comparatively strong definition to finding new practical graphs with high CPC
(e.g. [6]. What makes the result particularly useful though is that CPC is already
a relatively well-understood property (in particular for the graphs underlying
many prominent candidate memory-hard functions in the literature [4,7,10]).
Thus Theorem 4, together with [11,7] immediately results in security proofs for
several proposed graph functions in the new MoHF framework (including for
Argon2 [18], the most widely deployed graph function based MHF in practice).

2.3 Other types of MoHFs

In Section 6, we instantiate the MoHF definition for other types of moderately
hard functions from the literature. In particular, we briefly review weak memory-
hard functions and memory-bound functions, and shortly discuss one-time com-
putable functions and uncomputable functions.

9



Weak memory-hard functions. A class of MoHFs considered in the literature that
are closely related to MoHFs are weak MoHFs. Intuitively, they differ from Mo-
HFs only in that they also restrict adversaries to being sequential.9 On the one
hand, it may be easier to construct such functions compared to full blown MoHF.
In fact, for the data-independent variant of MoHFs, [4] proves that a graph func-
tion based on a DAG of size n always has cmc of O(wn2/ log(n)) (ignoring log log
factors). Yet, as discussed below, the results of [56,44] and those described below
show that we can build W-MoHFs from similar DAGs with sequential cmc of
O(2n2). Put differently, W-MoHFs allow for strictly more memory consumption
per call to the RO than is possible with MoHFs. This is valuable since the limit-
ing factor for an adversary is often the memory consumption while the cost for
honest parties to enforce high memory consumption is the number of calls they
must perform to the RO.

We capture weak MoHFs in the MoHF framework by restricting the real
world resource-bounded computational device Sw-srom to the sequential random
oracle model (sROM). Given this definition we can now easily adapt the pebbling
reduction of Theorem 4 to obtain a tool for constructing W-MoHFs, which has
some immediate implications. In [56], Lengaur and Tarjan prove that the DAGs
underlying the two graph functions Catena Dragonfly and Butterfly [44] have
scpc = O(n2). In [44], the authors extend these results to analyze the scpc of
stacks of these DAGs. By combining those results with the pebbling reduction
for the sROM, we obtain parameters (a, b, ε) for which the Catena functions are
provably W-MoHFs. Similar implications hold for the pebbling analysis done for
the Balloon Hashing function in [23].

Memory-bound functions. Another important notion of MoHF from the liter-
ature has been considered in [37,39]. These predate MHFs and are based on
the observation that while computation speeds vary greatly across real-world
computational devices, this is much less so for memory-access speeds. Under the
assumption that time spent on a computation correlates with the monetary cost
of the computation, this observation motivates measuring the cost of a given
execution by the number of cache misses (i.e., memory accesses) made during
the computation. A function that requires a large number of misses, regardless of
the algorithm used to evaluate the function, is called a memory-bound function.

To formalize memory-bound functions in the MoHF framework, we describe
the real-world resource-bounded computational device Sw-mb. It makes use of
RO with w-bits of output and is parametrized by a description of the memory
hierarchy. In [37,39] the authors describe such functions (with several parame-
ters each) and prove that the hash-trail construction applied to these functions
results in a PoE for a notion of “effort” captured by memory-boundness. We con-
jecture that the proofs in those works carry over to the notion of memory-bound
MoHFs described above (using some of the techniques at the end of the proof
of Theorem 4). Yet, we believe that a more general pebbling reduction (similar

9 If the adversary is restricted to using general-purpose CPUs and not ASICs or FP-
GAs with their massive parallelism, this restriction may be reasonable.

10



to Theorem 4) is possible for the above definition. Such a theorem would allow
us to construct new and improved memory-bound functions.

One-time computable and uncomputable functions. Another—less widely used—
notion of MoHFs appearing in the literature are one-time computable func-
tions [42]. Intuitively, these are sets of T pseudo-random functions (PRFs)
f1, . . . , fT with long keys (where T is an a priori fixed, arbitrary number). An
honest party can evaluate each function fi exactly once, using a device with
limited memory containing these keys. On such a device, evaluating the ith PRF
provably requires deleting all of the first i keys. Therefore, if an adversary (with
arbitrary memory and computational power) can only learn a limited amount
of information about the internal state of the device, then regardless of the
computation performed on the device, the adversary will never learn more than
one input/output pair per PRF. The authors describe the intuitive application
of a password-storage device secure against dictionary attacks. An advantage
of using the MoHF framework to capture one-time computable functions could
be proving security for such an application (using the framework’s composition
theorem).

We describe a model for one-time computable functions and uncomputable
functions in Section 6, where we also sketch a new (hypothetical) application
for one-time computable functions in the context of anonymous digital payment
systems.

2.4 Interactive proofs of effort

In Section 7, we describe a composable security definition for PoE. That means,
as in the definition of MoHF above, we describe an (idealized) resource that
models the guarantee that using a PoE provides to higher-level protocols. We
then prove a condition that is analogous to indifferentiability, namely that there
exists a simulator for the attacker, such that using the protocol on the assumed
real-world resources is indistinguishable from the setting described by the ideal-
ized resource and the simulator. One of the assumed resources of our PoE will
be the query-bounded random oracle that can then be instantiated using any
MoHF that satisfies our definition.

The proof-of-effort resource. The high-level guarantees provided by a PoE to
higher-level protocols can be described as follows. Prover P and verifier V in-
teract in some number n ∈ N of sessions, and in each of the sessions verifier V
expects to be “convinced” by prover P ’s spending of effort. Prover P can decide
how to distribute the available resources toward convincing verifier V over the
individual sessions; if prover P does not have sufficient resources to succeed in
all sessions, then P can distribute its effort over the sessions. Verifier V ’s proto-
col provides as output a bit that is 1 in all sessions where the prover attributed
sufficient resources, and 0 otherwise.

We formalize these guarantees in a resource that provides to P and V some
number n of sessions in which they interact, and that is parametrized by a

11



function φ : N → R≥0 and a number a ∈ N. In each of the n sessions, prover
P can repeatedly attempt to convince verifier V ; the probability for this to
succeed in the ith attempt within a session is φ(i), and P will learn whether the
attempt was successful. Accumulated over all sessions, P has a attempts before
the resource stops accepting further inputs. Verifier V can repeatedly test in
each session whether P ’s proof succeeded. For a dishonest prover, the interface
provided by the resource is slightly different, but only in the sense that after
solving in a session, the result has to be made available to V explicitly. (This
models the fact that a dishonest prover may solve the problem but then send a
wrong solution to the verifier.) This intuitively described resource is made formal
in Section 7.

We then prove, for two different schemes, one based on inverting the MoHF
on a particular value, and one based on the hash trail scheme [2], that the
described resource is indeed constructed in a setting where an MoHF, modeled
as query-bounded random oracle, is available.

The hash-inversion scheme. The first scheme we consider is based on requiring
the prover to invert the MoHF on a chosen distribution—the choice of this
distribution also specifies the hardness of the problem [54]. Let f be a MoHF
with range R and domain N × D′, and D ⊆ D′; for simplicity we assume that
the distribution over D is uniform.

In each session i ∈ {1, . . . , n}, verifier V samples a value xi from D and
sends yi = f(i, xi) to P . In each session i, prover P then enumerates all x ∈ D
in some order and checks whether f(i, x) = yi; in that case, x is a valid solution
for session i, and is therefore sent to V . Verifier V checks the correctness of the
solution, but accept only one attempt per session. We then prove the following
theorem.

Theorem 1 (informal). Define ζj := (|D| − j + 1)
−1

. If V can evaluate f at
least 2n times, then the described protocol is a proof of effort parametrized by
φ : j 7→ ζj+

1−ζj
|R| , and where the number a of attempts for the verifier is the same

as the prover’s bound in the query-bounded random oracle (for honest provers)
resp. larger by n (for dishonest provers).

The additional n attempts for the dishonest prover stem from the fact that
sending an attempt x̃ ∈ D does not require evaluating the MoHF on the input,
but such a guess is only possible once in each one of the n sessions. Verifier V
has to evaluate f twice per session, once to generate the challenge and once to
verify the solution.

The hash-trail scheme. The second scheme is based on requiring the prover to
provide an input to the MoHF that leads to an output of some form, such as
some number d ∈ N of trailing zero bits [2]. We consider a MoHF f with domain
N×N ×D, for some sets N and D.

In each session i ∈ {1, . . . , n}, verifier V samples a value ni ∈ N uniformly
at random and sends it to ni. In each session, prover P then chooses (e.g., at

12



random) values xi ∈ D and checks whether f(i, ni, xi) has at least d trailing
zeroes; in that case, xi is a valid solution for session i. Verifier V again checks
the correctness and accepts only one attempt per session. We then prove the
following theorem.

Theorem 2 (informal). Let d ∈ N be the hardness parameter. If verified V
can evaluate f at least n times, then the described protocol is a proof of effort
with φ = 2−d, and where the bounds on prover attempts are as in the previous
theorem.

2.5 Non-interactive proofs of effort

In Section 8, we then continue to describing an analogous definition for a non-
interactive proof of effort (niPoE), and again give an instantiation based on hash
trail. The concept of a niPoEs stems from the work of Dwork and Naor [38], who
proposed it as a measure of combatting junk mail. The idea is to associate a PoE,
instead of to a particular interactive session as above, to a certain string that
may consist of data such as, in the case of [38], the sender, receiver, and contents
of the mail.

The non-interactive proof-of-effort resource. On a high level, the resource de-
scribing the goal of non-interactive proofs of effort is analogous to the one de-
scribed above, with the main difference that the concept of a session is replaced
by bit strings s ∈ {0, 1}∗. The resource allows prover P to adaptively input up
to a strings s ∈ {0, 1}∗, with repetitions, and once the prover has allotted suffi-
cient resources to a string s, the same string is output to the receiver. As for the
interactive PoEs above, the prover can freely distribute its effort over different
strings, but has an overall bounded number of attempts.

We again formalize these guarantees in a resource that can be accessed by P
and V some number n of sessions in which they interact, and that is parametrized
by a function φ : N→ R≥0 and a number a ∈ N. For each bit string s ∈ {0, 1}∗,
prover P can repeatedly attempt to convince verifier V ; the probability for this
to succeed in the ith attempt within a session is φ(i), and P will learn whether
the attempt was successful. Accumulated over all sessions, P has a attempts
before the resource stops accepting further inputs. Verifier V can repeatedly
query the resource for strings for which P ’s proof succeeded. For a dishonest
prover, the interface provided by the resource is slightly different, analogously
to the case of the interactive PoE. This intuitively described resource is made
formal in Section 8.

We then prove that a protocol based on the hash-trail, which assumes the
existence of a query-bounded random oracle and unidirectional communication
from P to V , constructs the described niPoE resource.

The hash-trail scheme. The scheme is based on requiring the prover to provide
an input to the MoHF that includes the target string s and leads to an output

13



of some form, such as some number d ∈ N of trailing zero bits [2]. We consider
a MoHF f with domain {0, 1}∗ ×D, for some set D.

For each target string s ∈ {0, 1}∗, prover P chooses (e.g., at random) values
xi ∈ D and checks whether f(s, xi) has at least d trailing zeroes; in that case,
xi is a valid solution for target string s. Verifier V checks the correctness and
accepts if the check verifies. We then prove the following theorem.

Theorem 3. Let d ∈ N the hardness parameter. Then the described protocol is
a non-interactive proof-of-effort with φ = 2−d.

2.6 Combining the results

The main result of our paper then follows by composing the results on the
MoHF constructions with the protocols for PoE and niPoE described above.
Before we can compose the MoHFs with the application protocols using the
respective composition theorem [62,61], however, we have to resolve one apparent
incompatibility. The indifferentiability statement for MoHF is not immediately
applicable in the case with two honest parties, as required in the correctness
statements for PoE and niPoE where both the prover and verifier are honest.
We further explain how to resolve this issue in Appendix A.

In more detail, for an (a, b, ε)-MoHF in some model, and a proof of effort
parametrized by φ, the composition of the MoHF and the PoE construct the
PoE resource described above with a attempts allowed to the prover P , and
consequently α+ n attempts for the dishonest prover and n sessions.

In summary, the results in this paper allow to combine different types of
hardness with different types of applications; for instance, we immediately obtain
PoEs for the settings of spam mail [38] and cryptographic puzzles [54], but based
on memory-hardness [68], when instantiated with functions proposed in [7]. The
greatest benefit of our approach is, however, that when using our framework, in
the future any newly analyzed function can immediately be used in all previously
analyzed applications, and any newly analyzed application can immediately use
all previously analyzed functions.

3 Preliminaries for the full paper

We use the sets N := {1, 2, . . .}, and Z≥c := {c, c+ 1, . . .} ∩Z to denote integers
greater than or equal to c. Similarly we write [a, c] to denote {a, a + 1, . . . , c}
and [c] for the set [1, c]. For a set S, we use the notation x←$ S to denote that x
is chosen uniformly at random from the set S. For arbitrary set I and n ∈ N we
write I×n to denote the n-wise cross product of I. We refer to sets of functions
(or distributions) as function (or distribution) families.

3.1 Reactive discrete systems

For an input set X and an output set Y, a reactive discrete (X,Y)-system re-
peatedly takes as input a value (or query) xi ∈ X and responds with a value

14



yi ∈ Y, for i ∈ {1, 2, . . . }. Thereby, each output yi may depend on all prior in-
puts x1, . . . , xi. As discussed by Maurer [60], reactive discrete systems are exactly
modeled by the notion of a random system, that is, the conditional distribution
pYi|XiY i−1 of each output (random variable) Yi ∈ Y given all previous inputs
X1, . . . , Xi ∈ X and outputs Y1, . . . , Yi−1 ∈ Y of the system.

Discrete reactive systems can have multiple interfaces, where each interface
is labeled by an element in some set I. We then formally consider (I×X, I×Y)-
systems, where providing an input x ∈ X at interface i ∈ I then means evaluating
the system on input (i, x) ∈ I × X, and the resulting output (i′, y) ∈ Y means
that the value y is provided as a response at the interface i′ ∈ I. We generally
denote reactive discrete systems by upper-case calligraphic letters such as S or T
or by lower-case Greek letters such as π or σ.

A configuration of systems is a set of systems which are connected via their
interfaces. Any configuration of systems can again be seen as a system that
provides all unconnected interfaces to its environment. Examples are shown in
Figure 2, where Sub-figure 2a shows a two-interface system π connected to the
single interface of another system R, and Sub-figure 2b shows a two-interface
system π connected to the priv-interface of the system S . The latter config-
uration is denoted by the term πprivS . Finally, Sub-figure 2c shows a similar
setting, but where additionally a distinguisher (or environment) D is attached
to both interfaces of σpubT . This setting is denoted as D(σpubT ) and is further
discussed in Section 3.2.

R

ψ

(a) Two-interface system
π connected to the single
interface of R, denoted
πR.

S

π

priv pub

(b) Two-interface system
π attached to the priv-
interface of system S , de-
noted πprivS .

T

σ

D

priv pub

(c) Distinguisher D at-
tached to both inter-
faces of σpubT , denoted
D(σpubT ).

Fig. 2: Examples for configurations of systems.

3.2 Indifferentiability

The main definitions in this work are based on the indifferentiability framework
of Maurer et al. [64,63]. We define the indifferentiability notion in this section;

15



for more information on the underlying systems model we refer to Appendix 3.1
or the literature [60,64].

Indifferentiability of a protocol or scheme π, which using certain resources S ,
from resource T requires that there exists a simulator σ such that the two sys-
tems πpubS and σpubT are indistinguishable. The indistinguishability is defined
via a distinguisher D , a special system that interacts with either πprivS or σpubT
and finally outputs a bit. In the considered “real-world” setting with πprivS , the
distinguisher D has direct access to the pub-interface of S , but the priv-interface
is accessible only through π. In the considered “ideal-world” setting with σpubT ,
D has direct access to the priv-interface of T , but the pub-interface is accessible
only through σ. The advantage of the distinguisher is now defined to be the
difference in the probability that D outputs some fixed value, say 1, in the two
settings, more formally,

∆D
(
πprivS , σpubT

)
=
∣∣Pr
[
D(πprivS ) = 1

]
− Pr

[
D(σpubT ) = 1

]∣∣ .
Intuitively, if the advantage is small, then, for the honest parties, the real-world
resource S is at least as useful (when using it via π) as the ideal-world resource
T . Conversely, for the adversary the real world is at most as useful as the ideal
world. Put differently, from the perspective of the honest parties, the real world
is at least as safe as the ideal world. So any application that makes use of T can
instead use πprivS . This leads to the following definition.

Definition 3 (Indifferentiability). Let π be a protocol and S , T be resources,
and let ε > 0. Then πprivS is ε-indifferentiable from T , if

∃σ : πprivS ≈ε σpubT ,

with πprivS ≈ε σpubT defined as ∀D : ∆D
(
πprivS , σpubT

)
≤ ε.

3.3 Oracle functions and oracle algorithms

We explore several constructions of hard-to-compute functions that are defined
via a sequence of calls to an oracle. To make this dependency explicit, we use
the following notation. For sets D and R, a random oracle (RO) H is a random
variable distributed uniformly over the function family H = {h : D → R}.

Definition 4 (Oracle functions). For (implicit) oracle set H, an oracle func-
tion f (·) (with domain D and range R), denoted f (·) : D → R, is a set of
functions indexed by oracles h ∈ H where each fh maps D → R.

We fix a concrete function in the set f (·) by fixing an oracle h ∈ H to obtain

function fh : D → R. More generally, if f = (f
(·)
1 , . . . , f

(·)
n ) is an n-tuple of

oracle functions then we write fh to denote the n-tuple (fh1 , . . . , f
h
n ).

For an algorithm A we write Ah to make explicit that A has access to oracle h
during its execution. We sometimes refer to algorithms that expect such access as
oracle algorithm. We leave the precise model of computation for such algorithms
unspecified for now as these will vary between concrete notions of MoHFs.

16



Example 1. The prefixed hash chain of length c ∈ N is an oracle function as

fhhc,c : D → R, x 7→ h
(
c‖h
(
c− 1‖ . . . h(1‖x) . . .

))
.

An algorithm Ahc that computes a hash chain of length c is described as initially
evaluating h at the input 1‖x, and then iteratively (c− 1) times on the outputs
of the previous round, prefixing with the round index. ♦

3.4 Computation and computational cost

One main goal of this paper is to introduce a unifying definitional framework for
MoHFs. For any concrete type of MoHF, we have to quantify the (real-world)
resources required for performing computations such as evaluating the function.

Cost measures. For the remainder of this section, we let (V, 0,+,≤) be a com-
mutative group with a partial order ≤ such that the operation “+” is compatible
with the partial order “≤”, meaning that ∀a, b, c ∈ V : a ≤ b⇒ a+c ≤ b+c. More
concretely, we could consider V = Z or V = R, but also V = Rn for some n ∈ N
if the computational cost cannot be quantified by a single value, for instance if
we want to measure both the computational effort and the memory required to
perform the task. We generally use the notation V≥0 := {v ∈ V : 0 ≤ v}.

The cost of computation. We later describe several MoHFs for differing notions of
effort, where the hardness is defined using the following complexity notion based
on a generic cost function. Intuitively a cost function assigns a non-negative real
number as a cost to a given execution of an algorithm A. More formally, let A
be some set of algorithms (in some fixed computational model). Then an A-cost
function has the form cost : A × {0, 1}∗ × {0, 1}∗ → V≥0. The first argument
is an algorithm, the second fixes the input to the execution and the third fixes
the random coins of the algorithm (and, in the ROM, also the random coins
of the RO). Thus any such triple completely determines an execution which
is then assigned a cost. Concrete examples include measuring the number of
RO calls made by A during the execution, the number of cache misses during the
computation [37,39] or the amount of memory (in bits) used to store intermediate

values during the computation [11]. We write y
a
� A(x; $) if the algorithm A

computes the output y ∈ {0, 1}∗, when given input x ∈ {0, 1}∗ and random
coins $←$ {0, 1}∗, with computation cost a ∈ V.

For concreteness we continue developing the example of a hash-chain of length
c by defining an appropriate cost notion.

Example 2. Let A be an oracle algorithm as in Example 1. The cost of evaluating
the algorithm A is measured by the number b ∈ N = V of queries to the oracle
that can be made during the evaluation of A. Therefore, we write

y
b
�# Ah(x)

17



if A computes y from x with b calls to the oracle h. For the algorithm Ahc

computing the prefixed hash chain of length c ∈ N, the cost of each evaluation is
c and therefore obviously independent of the choice of random oracle, so simply

writing y
b
�# Ahc(x) is well-defined. ♦

3.5 A model for resource-bounded computation

In this section, we describe generically how we model resource-bounded compu-
tation in the remainder of this work. The scenario we consider in the following
section has a party specify an algorithm and evaluate it, possibly repeatedly on
different inputs. We want to model that evaluating the algorithm incurs a certain
computational cost and that the party has bounded resources to evaluate the
algorithm—depending on the available resources—only for a bounded number
of times, or maybe not at all. Our approach consists of specifying a computation
device to which an algorithm A can be input. Then, one can evaluate the algo-
rithm repeatedly by providing inputs x1, . . . , xk to the device, which evaluates
the algorithm A on each of the inputs. Each such evaluation incurs a certain com-
putational cost, and as long as there are still resources available for computation,
the device responds with the proper outputs y1 = A(x1), y2 = A(x2), . . . . Once
the resources are exhausted, the device always responds with the special symbol
⊥. In the subsequent part of this paper, we will often refer to the computation
device as the “computation resource.”

The above-described approach can be used to model arbitrary types of algo-
rithms and computational resources. Examples for such resources include the
memory used during the computation (memory-hardness) or the number of
computational steps incurred during the execution (computational hardness).
Resources may also come in terms of “oracles” or “sub-routines” called by the
algorithms, such as a random oracle, where we may want to quantify the number
of queries to the oracle (query hardness).

As a concrete example, we describe the execution of an algorithm whose use
of resources accumulates over subsequent executions:10

1. Let b ∈ V be the resources available to the party and j = 1.
2. Receive input xj ∈ {0, 1}∗ from the party.

3. Compute yj
c
� A(xj), for c ∈ V. If c ≥ b then set b ← 0 and output ⊥.

Otherwise, set b← b− c and output yj . Set j ← j + 1 and go to step 2.

We denote the resource that behaves as described above for the specific case
of oracle algorithms that are allowed to make a bounded number b ∈ N of
oracle queries by Soab . For concreteness we show how to define an appropriate
computational resource for reasoning about the hash-chain example.

10 An example of this type of resource restriction is the cumulative number of oracle
calls that the algorithm can make. Other resources may have different characteristics,
such as a bound on the maximum amount of simultaneous memory use during the
execution of the algorithm; which does not accumulate over multiple executions.

18



Example 3. We continue with the setting described in Examples 1 and 2, and
consider the hash-chain algorithm Ahc with a computational resource that is
specified by the overall number b ∈ V = N that can be made to the oracle.

In more detail, we consider the resource Soab described above. Upon startup,
Soab samples a uniform h←$ H. Upon input of the oracle algorithm A (the type
described in Example 1) into the computation resource, the party can query
x1, x2, . . . and the algorithm A is evaluated, with access to h, on all inputs until
b queries to h have been made, and subsequently only returns ⊥.

For algorithm Ahc, chain length c, and resource Soab with b ∈ N, the algorithm
can be evaluated bb/cc times before all queries are answered with ⊥. ♦

4 Moderately hard functions

In this section, we combine the concepts introduced in Section 3 and state our
definition of moderately hard function. The existing definitions of MoHF can be
seen as formalizing that, with a given amount of resources, the function can only
be evaluated a certain (related) number of times. Our definition is different in
that it additionally captures that even an arbitrary computation with the same
amount of resources cannot provide more (useful) results about the function
than making the corresponding number of evaluations. This stronger statement
is essential for proving the security of applications.

We base the definition of MoHFs on the notion of indifferentiability discussed
in Section 3.2. In particular, the definition is based on the indistinguishability of
a real and an ideal execution that we describe below. Satisfying such a definition
will then indeed imply the desired statement, i.e., that the best the adversary
can do is evaluate the function in the forward direction, and additionally that
for each of these evaluations it must spend a certain amount of resources.

The resource is parametrized by bounds l, r ∈ P. Initially, set Apub ← ⊥, b← 0, h←$H.

On input A at priv:
If Apriv = ⊥ then
Apriv ← A

On input x at priv:
If Apriv 6= ⊥ then

Return ⊥
y

c
� Ahpriv(x)

If c > l then y ← ⊥
l← l− c
Return y

On input (A, x) at pub:
If ¬b then
b← 1
y

c
� Ah(x)

If c > r then y ← ⊥
Return y

Fig. 3: Specification of the real-world resource Sl,r.

The real-world resource consists of resource-bounded computational devices
that can be used to evaluate certain types of algorithms; one such resource at the
priv- and one at the pub-interface. For such a resource S with bounds specified
by l, r ∈ P, for some parameter space P that is specified by S , for the priv- and

19



pub-interfaces, respectively, we usually write Sl,r. The protocol system π used
by the honest party initially inputs an algorithm naı̈ve to Sl,r, further inputs
x1, x2, . . . from D to π are simply forwarded to Sl,r, and the responses are given
back to D . Moreover, D can use the pub-interface of Sl,r to input an algorithm
A′ and evaluate it.

The resource is parametrized by bounds a, b ∈ N. Initially, set i, j ← 0, and let F :
D → R be empty.

On input x ∈ D at priv:
If i ≥ a then return ⊥
i← i+ 1
If F [x] 6= ⊥ then F [x]←$R
Return F [x]

On input x ∈ D at pub:
If j ≥ b then return ⊥
j ← j + 1
If F [x] 6= ⊥ then F [x]←$R
Return F [x]

Fig. 4: Lazy-sampling specification of the ideal-world resource T rro
a,b .

The ideal-world resource also has two interfaces priv and pub. We consider
only moderately hard functions with uniform outputs; therefore, the ideal-world
resource T rro we consider essentially implements a random function D → R and
allows at both interfaces simply to query the random function. (In more detail,
T rro is defined as initially choosing a uniformly random function f : D → R
and then, upon each input x ∈ D at either priv or pub, respond with f(x) ∈ R
at the same interface.) We generally consider resources T rro

a,b for a, b ∈ N, which
is the same as a resource T rro allowing a queries at the priv and b queries at the
pub-interface. All exceeding queries are answered with the special symbol ⊥.

It is easy to see that the resource T rro
a,b is one-way: it is a random oracle to

which a bounded number of queries can be made.
Before we provide a more detailed general definitions, we complete the hash-

chain example by instantiating an appropriate security notion.

Example 4. We extend Example 3 where the algorithm Ahc evaluates a hash-
chain of length c on its input by defining the natural security notion such an
algorithm achieves. The real-world resource S2oaa,b , with a, b ∈ N, behaves as a
resource Soaa at the priv- and as a resource Soab at the pub-interface. That is
S2oaa,b first samples a random function h ∈ H uniformly, and then uses this for
the evaluation of algorithms input at both interfaces priv and pub analogously
to Soaa and SoaB , respectively.

The converter system πhc initially inputs Ahc into S2oaa,b ; which is a resource
that allows for evaluating such algorithms at both interfaces priv and pub. As
S2oaa,b allows for a oracle queries for Ahc, the system πhc

privS2oaa,b allows for ba/cc
complete evaluations of Ahc at the priv-interface. The resource T rro

a′,b′ is a random
oracle that can be queried at both interfaces priv and pub (and indeed the
outside interface provided by π is of that type). The simulator σ, therefore, will
initially accept an algorithm A′ as input and then evaluate A′ with simulating

20



the queries to h potentially using queries to T rro
a′,b′ . In particular, we can rephrase

the statement about (prefixed) iteration of random oracles of Demay et al. [35]
as follows11: with πhc being the system that inputs the algorithm Ahc, and S2oaa,b

the resource that allows a and b evaluations of h at the priv- and pub-interfaces,
respectively, πhc

privS2oaa,b is (b ·2−w)-indifferentiable, where w is the output width
of the oracle, from T rro

a′,b′ allowing a′ = ba/cc queries at the priv- and b′ = bb/cc
queries at the pub-interface. ♦

The security statement ensures both that the honest party is able to perform
its tasks using the prescribed algorithm and resource, and that the adversary
cannot to perform more computations than allowed by its resources. We empha-
size that the ideal execution in Example 4 will allow both the honest party and
the adversary to query a random oracle for some bounded number of times. The
fact that in the real execution the honest party can answer the queries with its
bounded resource corresponds to the efficient implementation of the MoHF. The
fact that any adversarial algorithm that has a certain amount of resources avail-
able can be “satisfied” with a bounded number of queries to the ideal random
oracle means that the adversarial algorithm cannot gain more knowledge than
by evaluating the ideal function for that number of times. Therefore, Example 4
models the basic properties that we require from a MoHF.

The security statement for an MoHF with näıve algorithm naı̈ve has the
following form. Intuitively, for resource limits (l, r), the real model with those
limits and the ideal model with limits (a(l), b(r)) are ε-indistinguishable, for
some ε = ε(l, r). I.e., there is a simulator σ such that no distinguisher D can tell
the two models apart with advantage > ε.

We recall that the role of σ is to “fool” D into thinking it is interacting with
A in the real model. We claim that this forces σ to be aware of the concrete
parameters r of the real world D is supposedly interacting with. Indeed, one
strategy D may employ is to provide code A at the pub-interface which consumes
all available computational resources. In particular, using this technique D will
obtain a view encoding r. Thus it had better be that σ is able to produce a
similar encoding itself. Thus in the following definition we allow σ to depend on
the choice of r. Conversely, no such dependency between l and σ is needed.12

For many applications, we also want to parametrize the function by a hard-
ness parameter n ∈ N. In that case we consider a sequence of oracle functions

f
(·)
n and algorithms naı̈ven (which we will often want to be uniform) and also

the functions a, b, ε must be defined separately for each n ∈ N. This leads us to
the following definition.

Definition 5 (MoHF security). For each n ∈ N, let f
(·)
n be an oracle function

and naı̈ven be an algorithm for computing f (·), let P be a parameter space and
a, b : P × N → N, and let ε : P × P × N → R≥0. Then, for a family of models

11 Similar statements have been proven earlier by Yao and Yin [82] and Bellare et
al. [17]; however, we use the result on prefixed iteration from [35].

12 We remark that in contrast to, say, non-black box simulators, we are unaware of any
actual advantage of this independence between σ and l.

21



Sl,r, (f
(·)
n , naı̈ven)n∈N is a (a, b, ε)-secure moderately hard function family in

the Sl,r-model if

∀n ∈ N, r ∈ P ∃σ ∀l ∈ P : πpriv

naı̈ven
Sl,r ≈ε(l,r,n) σpub T rro

a(l,n),b(r,n) ,

The function family is called uniform if (naı̈ven)n∈N is a uniform algorithm.
The function family is asymptotically secure if ε(l, r, ·) is a negligible function
in the third parameter for all values of r, l ∈ P.

We sometimes use the definition with a fixed hardness parameter n. Note
also that the definition is fundamentally different from resource-restricted in-
differentiability [34] in that there the simulator is restricted, as the idea is to
preserve the same complexity (notion).

Sa,b

π

D

priv pub

n
a
ı̈
v
e

A
,x

A
(x

)

T rro
a′,b′

σ

D

priv pub

A
,x

A
(x

)
Fig. 5: Outline for the indifferentiability-based notion.

Further discussion on real model. In the real model, the resource described in
Figure 3 is available to the (honest) party at the priv-interface and the adver-
sarial party at the pub-interface. Since our goal is to model different types of
computational hardness of specific tasks, that is, describe the amount of re-
sources needed to perform these tasks, the nature of the remaining resources
will naturally vary depending on the particular type of hardness being modeled.
For example, when modeling memory-hardness, the computation resource would
limit the amount of memory available during the evaluation, and a bound on
the computational power available to the party would correspond to defining
computational hardness. Each resource is parametrized by two values l and r
(from some arbitrary parameter space P) denoting limits on the amount of the
resources available to the parties at the priv- and pub-interfaces, respectively.13

Beyond the local computation resources described above, oracle algorithms have
access to an oracle that is chosen initially in the resource according to the pre-
scribed distribution and the same instance is made available to the algorithms

13 These parameters may specify bounds in terms of the cost function discussed above.

22



at all interfaces. In this work, the algorithms will always have access to a random
oracle, i.e. a resource that behaves like a random function h.

We generally denote the real-world resource by the letter S and use the su-
perscript to further specify the type of computational resource and the subscript
for the resource bounds, as S2oaa,b in Example 4, where P = N, l = a and r = b.

Both interfaces priv and pub of the real-world resource expect as an input
a program that will be executed using the resources specified at the respective
interface. Suppose we wish to make a security statement about the hardness
of a particular MoHF with the näıve algorithm naı̈ve. Besides the resources
themselves, the real world contains a system π that simply inputs naı̈ve to be
executed. Following the specification in Figure 3, the execution in the real model
can be described as follows:

– Initially, D is activated and can evaluate naı̈ve on inputs of its choice by
providing inputs at the priv-interface.14

– Next, D can provide as input an algorithm A at the pub-interface, and eval-
uate A on one input x. The computation resource will evaluate A on input
x.

– Next, D can again provide queries at the priv-interface to evaluate the algo-
rithms naı̈ve (until the resources are exhausted).

– Eventually, D outputs a bit (denoting its guess at whether it just interacted
with the real world or not) and terminates.

At first sight, it might appear counter-intuitive that we allow the algorithm A

input at pub to be evaluated only once, and not repeatedly, which would be
stronger. The reason is that, for most complexity measures we are interested
in, such as for memory-hard functions, continuous interaction with the environ-
ment D would allow A to “outsource” relevant resource-use to D , and contradict
our goal of precisely measuring A’s resource consumption (and thereby some-
times render non-trivial statements impossible). This restriction can be relaxed
wherever possible, as in Example 4.

Further discussion on ideal model. The (ideal-world) resource T also has a priv-
and a pub-interface. In our definition of a MoHF, the ideal-world resource is
always of the type T rro

a,b with a, b ∈ N, that is, a random oracle that allows a
queries at the priv- and b queries at the pub-interface. The priv-interface can be
used by the distinguisher to query the oracle, while the pub-interface is accessed
by the simulator system σ whose job it is to simulate the pub-interface of the
real model consistently.

More precisely, for statements about parametrized real-world resources, we
consider a class of ideal resources T rro

a,b characterized by two functions a and
b which map elements of P to N. For any concrete real model given by pa-
rameters (l, r) we compare with the concrete ideal model with resource T rro

a(l),b(r)

14 Once the resources at the priv-interface are exhausted, no further useful information
is gained by D in making additional evaluation calls for naı̈ve.

23



parametrized by (a(l), b(r)). These numbers denote an upper bound on the num-
ber of queries to the random oracle permitted on the priv- and pub-interfaces, re-
spectively. In particular, after a(l) queries on the priv-interface all future queries
on that interface are responded to with ⊥ (and similarly for the pub-interface
with the limit b(r)).

To a distinguisher D , an execution with the ideal model looks as follows:

– Initially, D is activated, and can make queries to T rro
a(l),b(r) at the priv-

interface. (After a(l) queries T rro
a(l),b(r) always responds with ⊥.)

– Next, D can provide as input an algorithm A at the pub-interface. Overall,
the simulator σ can make at most b(r) queries to T rro

a(l),b(r).

– Next, D can make further queries to T rro
a(l),b(r) on the priv-interface.

– Finally, D outputs a bit (denoting its guess at whether it just interacted
with the real world or not) and terminates.

An ideal model is outlined in Figure 5 with priv and pub resource limits a′

and b′ respectively.

5 Memory-hard functions

Moving beyond the straightforward example of an MoHF based on computa-
tional hardness developed during the above examples, we describe more advanced
types of MoHFs in this and the next section. Each one is based on a different
complexity notion and computational model. For each one, we describe one (or
more) constructions. Moreover, for the first two we provide a powerful tool for
constructing provably secure MoHFs of those types. We begin, in this section,
with memory-hard functions (MHF).

In the introduction, we discussed shortcomings of the existing definitions
of MHFs. We address these concerns by insantiating MHFs within our general
MoHF framework and providing a pebbling reduction with which we can “res-
cue” the MHF constructions [11,7,6] and security proofs [7,6] of several recent
MHFs from the literature. More generally, the tool is likely to prove useful in
the future as new, more practical graphs are developed [6] and/or new labeling
functions are developed beyond an ideal compression function. (For more details
what is meant by “rescue” we refer to discussion immediately after Theorem 4.)

5.1 The parallel ROM

To define an MHF, we consider a resource-bounded computational device S
with a priv- and a pub-interface capturing the pROM (adapted from [9]). Let
w ∈ N. Upon startup, Sw-prom samples a fresh random oracle h←$ Hw with range
{0, 1}w. Now, on both interfaces, Sw-prom accepts as input a pROM algorithm A

which is an oracle algorithm with the following behavior.
A state is a pair (τ, s) where data τ is a string and s is a tuple of strings.

The output of step i of algorithm A is an output state σ̄i = (τi,qi) where qi =

24



[q1i , . . . , q
zi
i ] is a tuple of queries to h. As input to step i+ 1, algorithm A is given

the corresponding input state σi = (τi, h(qi)), where h(qi) = [h(q1i ), . . . , h(qzii )]
is the tuple of responses from h to the queries qi. In particular, for a given h and
random coins of A, the input state σi+1 is a function of the input state σi. The
initial state σ0 is empty and the input xin to the computation is given a special
input in step 1.

For a given execution of a pROM, we are interested in the following com-
plexity measure. We denote the bit-length of a string s by |s|. The length of a
state σ = (τ, s) with s = (s1, s2, . . . , sy) is |σ| = |τ | +

∑
i∈[y] |si|. The cumula-

tive memory complexity (CMC) of an execution is the sum of the lengths of the
states in the execution. More precisely, let us consider an execution of algorithm
A on input xin using coins $ with oracle h resulting in z ∈ Z≥0 input states
σ1, . . . , σz, where σi = (τi, si) and si = (s1i , s

2
i , . . . , s

yj
i ). Then the cumulative

memory complexity (CMC) of the execution is

cmc(Ah(xin; $)) =
∑
i∈[z]

|σi| ,

while the total number of RO calls is
∑
i∈[z] yj . More generally, the CMC (and

total number of RO calls) of several executions is the sum of the CMC (and total
RO calls) of the individual executions.

We now describe the resource constraints imposed by Sw-prom on the pROM
algorithms it executes. To quantify the constraints, Sw-prom is parametrized by
a left and a right tuple from the following parameter space Pprom = (Z≥0)2 de-
scribing the constraints for the priv and pub interfaces respectively. In particular,
for parameters (q,m) ∈ Pprom, the corresponding pROM algorithm is allowed to
make a total of q RO calls and use CMC at most m summed up across all of the
algorithms executions.15

As usual for memory-hard functions, to ensure that the honest algorithm
can be run on realistic devices, Sw-prom restricts the algorithms on the priv-
interface to be sequential. That is, the algorithms can make only a single call to
h per step. Technically, in any execution, for any step j it must be that yj ≤ 1.
No such restriction is placed on the adversarial algorithm reflecting the power
(potentially) available to such a highly parallel device as an ASIC.

We conclude the section with the formal definition of a memory-hard func-
tion in the pROM. The definition is a particular instance of an MoHF defined
in Definition 5 formulated in terms of exact security.

Definition 6 ((Parallel) memory-hard function). For each n ∈ N, let f
(·)
n

be an oracle function and naı̈ven be a pROM algorithm for computing f (·).
Consider the function families:

a = {aw : Pprom × N→ N}w∈N , b = {bw : Pprom × N→ N}w∈N ,
15 In particular, for the algorithm input on the adversarial interface pub the single

permitted execution can consume at most r resources while for the honest algorithm
input on priv the total consumed resources across all execution can be at most l.

25



ε = {εw : Pprom × Pprom × N→ R≥0}w∈N .

Then F = (f
(·)
n , naı̈ven)n∈N is called an (a, b, ε)-memory-hard function (MHF)

if ∀w ∈ N F is an (aw, bw, εw)-secure moderately hard function family for
Sw-prom.

Data-(in)dependent MHFs. An important distinction in the literature of memory-
hard functions concerns the memory-access pattern of naı̈ve. In particular, if
the pattern is independent of the input x then we call this a data-independent
MHF (iMHF) and otherwise we call it an data-dependent MHF (dMHF). The
advantage of an iMHF is that the honest party running naı̈ve is inherently more
resistant to certain side-channel attacks (such as cache-timing attacks) which can
lead to information leakage about the input x. When the MHF is used for, say,
password hashing on a login server this can be a significant concern. Above,
we have chosen to not make the addressing mechanism used to store a state
σ explicit in Sw-prom, as it would significantly complicate the exposition with
little benefit. Yet, we remark that doing so would definitely be possible within
the wider MoHF framework presented here if needed. Moreover the tools for
constructing MHFs below actually construct iMHFs.

5.2 Graph functions

Now that we have a concrete definition in mind, we turn to constructions. We
first define a large class of oracle functions (called graph functions) which have
appeared in various guises in the literature [39,42,11] (although we differ slightly
in some details which simplify later proofs). This allows us to prove the main
result of this section; namely a “pebbling reduction” for graph functions. That
is, for a graph function F based on some graph G, we show function families
(a, b, ε) depending on G, for which function F is an MHF.

We start by formalizing (a slight refinement of) the usual notion of a graph
function (as it appears in, say, [42,11]). For this, we use the following common
notation and terminology. For a directed acyclic graph (DAG) G = (V,E), we
call a node with no incoming edges a source and a node with no outgoing edges
a sink. The in-degree of a node is the number of its incoming edges and the
in-degree of G is the maximum in-degree of any of its nodes. The parents of a
node v are the set of nodes with outgoing edges leading to v. We also implicitly
associate the elements of V with unique strings.16

A graph function makes use of a oracle h ∈ Hw defined over bit strings.
Technically, we assume an implicit prefix-free encoding such that h is evaluated
on unique strings. Inputs to h are given as distinct tuples of strings (or even
tuples of tuples of strings). For example, we assume that h(0, 00), h(00, 0), and
h((0, 0), 0) all denote distinct inputs to h.

16 For example, we can associate v ∈ V with the binary representation of its position
in an arbitrary fixed topological ordering of G.

26



Definition 7 (Graph function). Let function h : {0, 1}∗ → {0, 1}w ∈ Hw and
DAG G = (V,E) have source nodes {vin1 , . . . , vina } and sink nodes (vout1 , . . . , voutz ).
Then, for inputs x = (x1, . . . , xa) ∈ ({0, 1}∗)×a, the (h,x)-labeling of G is a
mapping lab : V → {0, 1}w defined recursively to be:

∀v ∈ V lab(v) :=

{
h(x, v, xj)) : v = vinj
h(x, v, lab(v1), . . . , lab(vd))) : else

where {v1, . . . , vd} are the parents of v arranged in lexicographic order.
The graph function (of G and Hw) is the oracle function

fG : ({0, 1}∗)×a → ({0, 1}w)×z ,

which maps x 7→ (lab(vout1 ), . . . , lab(voutz )) where lab is the (h,x)-labeling of G.

The above definition differs from the one in [11] in two ways. First, it considers
graphs with multiple source and sink nodes. Second it prefixes all calls to h with
the input x. This ensures that, given any pair of distinct inputs x1 6= x2, no
call to h made by fG(x1) is repeated by fG(x2). Intuitively, this ensures that
finding collisions in h can no longer help avoiding making a call to h for each
new label being computed. Technically, it simplifies proofs as we no longer need
to compute and carry along the probability of such a collision. We remark that
this is merely a technicality and if, as done in practice, the prefixing (of both x
and the node v) is omitted, security will only degrade by a negligible amount.17

The näıve algorithm. The näıve oracle algorithm naı̈veG for fG computes one
label of G at a time in topological order appending the result to its state. If G
has |V | = n nodes then naı̈veG will terminate in n steps making at 1 call to h
per step, for a total of n calls, and will never store more than w(i−1) bits in the
data portion of its state in the ith round. In particular for all inputs x, oracles
h (and coins $) we have that cmc(naı̈vehG(x; $)) = wn(n − 1)/2. Therefore, in
the definition of an MHF we can set aw(q,m) = min(bq/nc, b2m/wn(n− 1)c).
It remains to determine how to set bw and εw, which is the focus of the next
section.

5.3 A parallel memory-hard MoHF

In this section, we prove a pebbling reduction for memory hardness of a graph
function fG in the pROM. To this end, we first recall the parallel pebbling game
over DAGs and associated cumulative pebbling complexity (CPC).

17 Prefixing ensures domain separation; that is random oracle calls in a labeling are
unique to that input. However, if inputs are chosen independently of the RO then
finding two inputs that share an oracle call requires finding a collision in the RO.
To concentrate on the more fundamental and novel aspects of the proofs below, we
have chosen to instead assume full prefixing. A formal analysis with less prefixing
can be found in [11].

27



The parallel pebbling game. The sequential version of the following pebbling
game first appeared in [50,31] and the parallel version in [11]. Put simply, the
game is a variant of the standard black-pebbling game where pebbles can be
placed according to the usual rules but in batches of moves performed in parallel
rather than one at a time sequentially.

Definition 8 (Pebbling a graph). Let G = (V,E) be a DAG and T, S ⊆ V
be node sets. Then a (legal) pebbling of G (with starting configuration S and
target T ) is a sequence P = (P0, . . . , Pt) of subsets of V such that:

1. P0 ⊆ S.
2. Pebbles are added only when their predecessors already have a pebble at the

end of the previous step.

∀i ∈ [t] ∀(x, y) ∈ E ∀y ∈ Pi \ Pi−1 x ∈ Pi−1 .

3. At some point every target node is pebbled (though not necessarily simulta-
neously).

∀x ∈ T ∃z ≤ t x ∈ Pz .

We call a pebbling of G complete if S = ∅ and T is the set of sink nodes of G.
We call a pebbling sequential if no more than one new pebble is placed per step,

∀i ∈ [t] |Pi \ Pi−1| ≤ 1 .

In this simple model of computation we are interested in the following com-
plexity notion for DAGs taken from [11].

Definition 9 (Cumulative pebbling complexity). Let G be a DAG, P =
(P0, . . . , Pt) be an arbitrary pebbling of G, and Π be the set of all complete
pebblings of G. Then the (pebbling) cost of P and the cumulative pebbling
complexity (CPC) of G are defined respectively to be:

cpc(P ) :=

t∑
i=0

|Pi| , cpc(G) := min {cpc(P ) : P ∈ Π} .

A pebbling reduction for memory-hard functions. We are now ready to
formally state and prove the main technical result: a security statement showing
a graph function to be an MHF for parameters (a, b, ε) expressed in terms of the
CPC of the graph and the number of bits in the output of h.

Theorem 4 (Pebbling reduction). Let Gn = (Vn, En) be a DAG of size
|Vn| = n. Let F = (fG,n, naı̈veG,n)n∈N be the graph functions for Gn and their
näıve oracle algorithms. Then, for any λ ≥ 0, F is an (a, b, ε)-memory-hard
function where

a = {aw(q,m) = min(bq/nc, b2m/wn(n− 1)c)}w∈N ,

b =

{
bw(q,m) =

m(1 + λ)

cpc(G)(w − log q)

}
w∈N

, ε =
{
εw(q,m) ≤ q

2w
+ 2−λ

}
w∈N

.

28



We note that cpc charges for keeping pebbles on G which, intuitively, models
storing the label of a node in the data component of an input state. However the
complexity notion cmc for the pROM also charges for the responses to RO queries
included in input states. We discuss three options to address this discrepancy.

1. Modify our definition of the pROM to that used in [11]. There, the ith batch
of queries qi to h is made during step i. So the state stored between steps
only contains the data component τi. Thus cmc in that model is more closely
modeled by cpc. While the techniques used below to prove Theorem 4 carry
over essentially unchanged to that model, we have opted to not go with
that approach as we believe the version of the pROM used here (and in [8])
more closely captures computation for an ASIC. That is, it better models
the constraint that during an evaluation of the hash function(s) a circuit
must store any remaining state it intends to make use of later in separate
registers. Moreover, given the depth of the circuit of hash functions used to
realize h, at least one register per output bit of h will be needed.18

2. Modify the notion of cpc to obtain cpc′, which also charges for new pebbles
being placed on the graph. That is use cpc′ = cpc +

∑
i |Pi \ Pi−1| as the

pebbling cost.19 Such a notion would more closely reflect the way cmc is
defined in this work. In particular, it would allow for a tighter lower bound
in Theorem 4, since for any graph cpc′ ≥ cpc. Moreover, it would be easy
to adapt the proof of Theorem 4 to accommodate cpc′. Indeed, (using the
terminology from the proof of Theorem 4) in the ex-post-facto pebbling P
of an execution, a node v 6∈ P xi−1 is only added to P xi if it becomes necessary
for x at time i. By definition, this can only happen if there is a correct call
for (x, v) in the input state σi. Thus, we are guaranteed that for each time
step i it holds that

∑
i

∑
x |P xi \P xi−1| ≤ yi, where yi is the number of queries

to h in input state σi. So we can indeed modify the second claim in the proof
to also add the quantity

∑
x |P xi \P xi−1| to the left side of the inequality. The

downside of this approach is that using cpc′ in Theorem 4 would mean that
it is no longer (immediately) clear if we can use any past results from the
literature about cpc.

3. The third option, which we have opted for in this work, is to borrow from
the more intuitive formulation of the pROM of [8] while sticking with the
traditional pebbling complexity notion of cpc. We do this because, on the one
hand, for any graph cpc′ ≤ 2cpc, so at most a factor of 2 is lost the tightness
of Theorem 4 when using cpc instead of cpc′. Yet on the other hand, for cpc
we already have constructions of graphs with asymptotically maximal cpc as
well as a variety of techniques for analyzing the cpc of graphs. In particular
we have upper and lower bounds for the cpc of arbitrary DAGs as well as for
many specific graphs (and graph distributions) used in the literature as the

18 Note that any signal entering a circuit at the beginning of a clock cycle that does
not reach a memory cell before the end of a clock cycle is lost. Yet, hash functions so
complex and clock cycles so short that it is unrealistic to assume an entire evaluation
of h can be performed within a single cycle.

19 cpc′ is essentially the special case of “energy complexity” for R = 1 in [4].

29



basis for interesting graph functions [11,4,10,5,7]. Thus we have opted for
this route so as to (A) strengthen the intuition underpinning the model of
computation, (B) leave it clear that Theorem 4 can be used in conjunction
with all of the past concerning cpc while (C) only paying a small price in
the tightness of the bound we show in that theorem.

The remainder of this subsection is dedicated to proving the theorem. For
simplicity we will restrict ourselves to DAGs with a single source v∈ and sink
vout but this only simplifies notation. The more general case for any DAG is
identical. The rough outline of the proof is as follows. We begin by describing
a simulator σ as in Definition 5, whose goal is to simulate the pub-interface of
Sw-prom to a distinguisher D while actually being connected to the pub-interface
of T rro. In a nutshell, σ will emulate the algorithm A it is given by D internally
by emulating a copy of Sw-prom to it. σ will keep track of the RO calls made by
A and, whenever A has made all the calls corresponding to a complete and legal
(x, h)-labeling of G, then σ will query T rro at point x and return the result to
A as the result of the final RO call for that labeling.

To prove that σ achieves this goal (with high probability) we introduce a
generalization of the pebbling game, called an m-color pebbling, and state a
trivial lemma showing that the cumulative m-color pebbling complexity of a
graph is m times the CC of the graph. Next, we define a mapping between a
sequence of RO calls made during an execution in the pROM (such as that of A
being emulated by σ) and an m-coloring P of G. We prove a lemma stating that,
w.h.p., if m distinct I/O pairs for fG were produced during the execution, then
P is legal and complete. We also prove a lemma upper-bounding the pebbling
cost of P in terms of the CMC (and number of calls made to the RO) of the
execution. But since the pebbling cost of G cannot be smaller than m · cpc(G),
this gives us a lower bound on the memory cost of any such execution, as desired.
Indeed, any algorithm in the pROM that violates our bound on memory cost
with too high probability implies the existence of a pebbling of G with too low
pebbling cost, contradicting the pebbling complexity of G. But this means that
when σ limits CMC (and number of RO calls) of the emulation of A accordingly,
then w.h.p. we can upper-bound the number of calls σ will need to to T rro.

To complete the proof, we have to show that using the above statements
about σ imply that indifferentiability holds. Indeed, the simulation, conditioned
on the events that no lucky queries occur and that the simulator does not need
excessive queries, is perfect. Therefore, the distinguishing advantage can be
bounded by the probability of provoking either of those events, which can be
done by the above statements about σ. A detailed proof appears in Appendix B.

6 Other types of MoHFs

Besides MHFs, several other types of MoHFs have been considered in the lit-
erature. In this section, we briefly review weak memory-hard functions and
memory-bound functions. A discussion of one-time computable functions and
uncomputable functions is given in Appendix 6.3.

30



6.1 Weak memory-hard functions

A class of MoHFs considered in the literature that are closely related to MHFs
are weak MHFs. Intuitively, they differ from regular MHFs only in that they
also restrict adversaries to being sequential.20 On the one hand, it may be easier
to construct such functions compared to full blown MHF. In fact, for the data-
independent variant of MHFs, [4] proves that a graph function based on a DAG
of size n always has cmc of O(wn2/ log(n)) (ignoring log log factors). Yet, as
discussed below, the results of [56,44] and those described below show that we
can build W-MHFs from similar DAGs with sequential cmc of O(2n2). Put
differently, W-MHFs allow for strictly more memory consumption per call to
the RO than is possible with MHFs. This is valuable since the limiting factor for
an adversary is often the memory consumption while the cost for honest parties
to enforce high memory consumption is the number of calls they must perform
to the RO.

Weak MHFs as moderately hard functions. We capture weak MHFs in the
MoHF framework as follows. The real world resource-bounded computational
device Sw-srom modeling the sequential random oracle model (sROM) is iden-
tical to Sw-prom except that the adversarial algorithm it gets as input on the
pub-interface must be sequential (just like the honest algorithm). In the nota-
tion used above to define the pROM in Section 5.1, in any execution of A during
any step j, the output state must be such that yj ≤ 1. The parameter space is
Psrom = Pprom. We refer to MHFs that satisfy the Definition 6 for Sw-srom as
weak memory-hard functions W-MHFs.

Given this definition we can now easily adapt the pebbling reduction of The-
orem 4 to obtain a tool for constructing W-MHFs. In particular let scpc be the
same as cpc except that in Definition 9 we set Π be the set of all sequential
pebblings of G. The proof of Theorem 4 applies (essentially unchanged) to the
new pebbling complexity notion; the only aspect we have to check is that if A
is an sROM algorithm, then the ex-post-facto pebbling of any execution of A is
always a sequential m-pebbling. But this holds because a pebble is only added
to G whenever a new node becomes necessary, which is only the case when a
correct call for that node is made to the RO. Since A can only make one call per
step, at most one new node can become necessary.

Applications of the pebbling reduction. The pebbling reduction W-MHFs has
some immediate implications. In [56], Lengaur and Tarjan prove that the DAGs
underlying the two graph functions Catena Dragonfly and Butterfly [44] have
scpc = O(n2). In [44], the authors extend these results to analyze the scpc of
stacks of these DAGs. By combining those results with the pebbling reduction
for the sROM, we obtain parameters (a, b, ε) for which the Catena functions are
provably W-MHFs. Similar implications hold for the pebbling analysis done for
the Balloon Hashing function in [23].

20 If the adversary is restricted to using general-purpose CPUs and not ASICs or FP-
GAs with their massive parallelism, this restriction may be reasonable.

31



6.2 Memory-bound functions

Another important notion of MoHF from the literature has been considered
in [37,39]. These predate MHFs and are based on the observation that while
computation speeds vary greatly across real-world computational devices, this is
much less so for memory-access speeds. Under the assumption that time spent
on a computation correlates with the monetary cost of the computation, this
observation motivates measuring the cost of a given execution by the number
of cache misses (i.e., memory accesses) made during the computation. A func-
tion that requires a large number of misses, regardless of the algorithm used to
evaluate the function, is called a memory-bound function.

Memory-bound functions as MoHFs. We show how to formalize memory-bound
functions in the MoHF framework. In particular, we describe the real-world
resource-bounded computational device Sw-mb. It makes use of RO with w-bits
of output and is parametrized by 6 positive integers Pmb = N×6. That is, fol-
lowing the model of [39], an algorithm A, executed by Sw-mb with parameters
(m, b, s, ω, c, q), makes a sequence of calls to the RO and has access to a two
tiered memory consisting of a cache of limited size and a working memory (as
large as needed). The memory is partitioned into m blocks of b bits each, while
cache is divided into s words of ω bits each. When A requests a location in
memory, if the location is already contained in cache, then A is given the value
for free, otherwise the block of memory containing that location is fetched into
cache. The algorithm is permitted a total of q calls to the RO and c fetches (i.e.
cache misses) across all executions.

In [37,39] the authors describe such functions (with several parameters each)
and prove that the hash-trail construction applied to these functions results in a
PoE for a notion of “effort” captured by memory-boundedness. (See Section 7 for
more on the hash-trail construction and PoEs). We conjecture that the proofs in
those works carry over to the notion of memory-bound MoHFs described above
(using some of the techniques at the end of the proof of Theorem 4). Yet, we
believe that a more general pebbling reduction (similar to Theorem 4) is possible
for the above definition. Such a theorem would allow us to construct new and
improved memory-bound functions. (On the one hand, the function described
in [37] has a large description—many megabytes—while the function in [39] is
based on superconcentrators which can be somewhat difficult to implement in
practice with optimal constants.) In any case, we believe investigating memory-
bound functions as MoHFs to be an interesting and tractable line of future work.

6.3 One-time computable and uncomputable functions

Another—less widely used—notion of MoHFs appearing in the literature are one-
time computable functions [42]. Intuitively, these are sets of T pseudo-random
functions (PRFs) f1, . . . , fT with long keys (where T is an a priori fixed, arbi-
trary number). An honest party can evaluate each function fi exactly once, using

32



a device with limited memory containing these keys. On such a device, evaluat-
ing the ith PRF provably requires deleting all of the first i keys. Therefore, if an
adversary (with arbitrary memory and computational power) can only learn a
limited amount of information about the internal state of the device, then regard-
less of the computation performed on the device, the adversary will never learn
more than one input/output pair per PRF. The authors describe the intuitive
application of a password-storage device secure against dictionary attacks. An
advantage of using the MoHF framework to capture one-time computable func-
tions could be proving security for such an application (using the framework’s
composition theorem).

We adapt the computational model of [42] to capture one-time computable
function as MoHFs. We also generalize it to allow parties access to multiple
memory-constrained devices. Then using the NIPOE construction below we de-
scribe a new (hypothetical) application for one-time computable functions to
anonymous digital payment systems.

The real-world S(w, n)-oc accepts algorithms of the type A = (Abig, {Ai}i∈[n]).
Algorithm Ai is run on a sub-device containing the (freshly sampled) keys for
PRFs fi,j with j ∈ [zi]. The sub-device permits access to a RO h but is con-
strained to having si bits of memory. Algorithm Abig runs on a sub-device with
access to h and no constraint on its memory. The input to the computation
has the form xin = (x1, . . . ,xz) where xi = (xi,1, . . . , xi,iz ). Algorithm Ai is
run on input xi and can exchange at most ci bits of information with Abig
during an execution. Whenever Ai terminates its output is given to Abig. The
output of the computation returned by S(w, n)-oc is the output of Abig. Resource
S(w, n)-oc is parametrized by Poc = N×1+3n where parameter (q, z, s, c) ∈ Poc

with z = (z1, . . . , zn), s = (s1, . . . , sn) and c = (c1, . . . , cn) denote that device
i has memory si can leak ci bits to Abig and contains zi PRF keys and that a
total of q calls to h (across all algorithms and all executions) can be made.

A pair (naı̈ve, f ()) is called an (a, b, ε)-one-time computable function if it sat-
isfies Definition 5 for S(w, n)-oc. A concrete scheme with bounds on its parameters
is given in [42].21

As a new application, we very briefly describe a secure payment system
with a single-message payment protocol involving a service provider and clients.
The service provider generates a master PRF key k and distributes memory-
constrained tamper-resistant devices (e.g. smart-cards). For example each PRF
key corresponds to 1 cent. So a card worth 5 USD contains 500 PRF keys. Each
card has a unique ID ID and the PRF keys stored in the card are generated
deterministically by applying a PRF with key k to ID .

Clients can purchase the cards for use at a later date. In order to then pay
for some amount a to obtain a service identified by a unique string S, the client
uses the cards to run the NIPOE protocol in Construction 3 with target difficulty
log2(a). In more detail, they repeatedly evaluate PRFs in their cards on inputs

21 We conjecture that their parameters carry over to the above definition using the
original proof technique combined with an argument similar to that used at the end
of the proof of Theorem 4.

33



containing S until they find an input mapping to an output prefixed by 0log2(a).
Upon success, they send S, the full input (S|x) used in the PRF, the ID ID of
the card and the index i of the PRF on that card to the service provider. The
service provider verifies that evaluating a PRF with key PRF k(ID) on input
(x|S) is prefixed by 0log2(a), and if so, accepts the transaction for service S.

One interesting but probably undesired property of the payment scheme is
that the number of “burnt keys,” corresponding to real-world currency, is proba-
bilistic. The variance can be decreased by distributing the amount over multiple
“smaller” proofs.

Uncomputable Functions. A closely related type of MoHF are the uncomputable
functions also introduced in [42]. These have the property that they simply can
not be computed on a device with less than some threshold of memory. These
can also be captured by the above resource S(w, n)-oc and parameter space Poc.
However they differ in that the a and b for which security holds either return 0
or ∞, depending only on the memory-constraint parameter.

7 Interactive proofs of effort

One important practical application of MoHFs are proofs of effort (PoE), where
the effort may correspond to computation, memory, or other types of resources
that the hardness of which can be used in higher-level protocols to require one
party, the prover, to spend a certain amount of resources before the other party,
the verifier, has checked this spending and allows the protocol to continue.

7.1 Definition

Our composable definition of PoE is based on the idea of constructing an “ideal”
proof-of-effort functionality from the bounded assumed resources the parties have
access to in the real setting. Our Definition 5 for MoHFs can already be seen in
a similar sense: from the assumed (bounded) resources available to the parties,
evaluating the MoHF constructs a shared random function that can be evaluated
for some bounded number of times. In the following, we describe the assumed
and constructed resources that characterize a PoE.

The goal of PoE protocols. The high-level guarantees provided by a PoE to
higher-level protocols can be described as follows. Prover P and verifier V in-
teract in some number n ∈ N of sessions, and in each of the sessions verifier V
expects to be “convinced” by prover P ’s spending of effort. Prover P can decide
how to distribute the available resources toward convincing verifier V over the
individual sessions; if prover P does not have sufficient resources to succeed in all
sessions, then P can distribute its effort over the sessions. Verifier V ’s protocol
provides as output a bit that is 1 in all sessions where the prover attributed suf-
ficient resources, and 0 otherwise. We formalize these guarantees in the resource
POE that we describe in more detail below.

34



Proof-of-effort resource POEaφ,n

The resource is parametrized by the numbers n, a ∈ N and a mapping φ : N→ R≥0. It
contains as state bits ei, êi ∈ {0, 1} and counters ci ∈ N for i ∈ N which are initially
set to ei, êi ← 0 and ci ← 0.

Verifier V : On input a session number i ∈ {1, . . . , n}, output the state ei of that
session.

Prover P : – On input a session number i ∈ {1, . . . , n}, set ci ← ci+1. If ei∨ êi = 1
or

∑n
i=1 ci > a then return 0. Otherwise, draw ei (if P is honest, else êi) at

random such that it is 1 with probability φ(ci) and 0 otherwise. Output ei
(resp. êi) at interface P .

– If P is dishonest, then accept a special input copyi that sets ei ← êi.

The resource POE that formalizes the guarantee achieved by the PoE in a
given real-world setting is parametrized by values a, a, n ∈ N and φ : N→ R≥0,

and is written as POE
a,a
φ,n = (POE

a
φ,n,POE

a
φ,n). For an honest prover P , the

parameter a ∈ N describes the overall number of “attempts” that P can take.
For a dishonest prover P , the same is described by the parameter a ∈ N.22 The
success probability of a prover in each session depends on the computational
resources spent in that session and can be computed as φ(a), where a ∈ N is the
number of proof attempts in that session.

The “real-world” setting for PoE protocols. The PoE protocols we consider in
this work are based on the evaluation of an MoHF, which, following Definition 5,
can be abstracted as giving the prover and the verifier access to a shared uniform
random function T rro that they can evaluate for a certain number of times. We
need to consider both the case where the prover is honest (to formalize that the
PoE can be achieved with a certain amount of resources) and the case where
the prover is dishonest (to formalize that not much more can be achieved by a
dishonest prover). In addition to T rro, for n protocol sessions, the prover and
verifier can also access n pairs of channels for bilateral communication, which we
denote by [−→,←−]

n
in the following. (This insecure communication resource

is implicit in some composable frameworks such as Canetti’s UC [26].)
The resource specifies a bound b ∈ N for the number of queries that the

verifier can make to T rro, and bounds a, a ∈ N for the cases where the prover
is honest and dishonest, respectively. Considering the case a ≤ a makes sense
because only loose bounds on the prover’s available resources may be known.

The security definition. Having described the real-world and ideal-world settings,
we are now ready to state the security definition. This definition will consider the
above-described cases where the prover is honest (this requires that the proof

22 For the numbers a, a ∈ N it may hold that a > a because one may only know rough
bounds on the available resources (at least a, at most a).

35



can be performed efficiently) and where the prover is dishonest (this requires
that each proof need at least a certain effort), while we restrict our treatment to
the case of honest verifiers. The security definition below follows the construction
notion introduced in [62] for this specific case. The protocol and definition can
additionally be extended by a hardness parameter n analogously to Definition 5.

Definition 10. A protocol π = (π1, π2) is a (φ, n, b, ε)-proof of effort with re-
spect to simulator σ if for all a, a ∈ N,

π1
Pπ2

V
[
T rro
a,b , [−→,←−]

n
]
≈ε POE

a
φ,n

and
π2
V
[
T rro
a,b , [−→,←−]

n
]
≈ε σPPOEa+nφ,n .

The reason for the term a+n is that the dishonest prover can in each session
decide to send a guess without verifying its correctness locally.

While the definition is phrased using the language of constructive cryptog-
raphy [62,61], it can intuitively also be viewed as a statement in Canetti’s UC
framework [26].23 For this, one would however have to additionally require the
correctness formalized in the first equation of Definition 10, because UC-security
would only correspond to the second equation.

7.2 Protocols

The PoE protocols we discuss in this section are interactive and start by the
verifier sending a challenge to the prover, who responds with a solution. The
verifier then checks this solution; an output bit signifies acceptance or rejection.
There are several ways to build a scheme for PoE from an MoHF; we describe
two particular schemes in this section.

Function inversion. A simple PoE can be built on the idea of having the prover
invert the MoHF on a given output value. This output value is obtained by eval-
uating the function on a publicly known and efficiently sampleable distribution
over the input space, such as the uniform distribution over a certain subset.

Construction 1. The protocol is parametrized by a set D ⊆ {0, 1}∗. For each
session 1 ≤ i ≤ n, it proceeds as follows:

1. The verifier samples xi←$D, queries yi ← T rro(i, xi), and sends yi to the
prover.

2. When activated in session i, the prover checks the next24 possible input value
x′ ∈ D for whether T rro(i, x′) = yi. If equality holds, send x′ to the verifier
and output 1 locally. Otherwise, output 0 locally.

23 One main difference is that UC is tailored toward asymptotic statements. As UC a
priori allows the environment to create arbitrarily many instances of all protocols
and functionalities, making the precise concrete statements we aim for becomes
difficult.

24 We assume that the elements in D are ordered, e.g. lexicographically.

36



3. Receiving the value x′ ∈ D in session i, the verifier accepts iff T rro(i, x′) =
yi. When activated in session i, output 1 if accepted, and 0 otherwise.

Steps 1 and 3 comprise the verifier’s protocol χ, whereas step 2 describes the
prover’s protocol ξ. For this protocol, we show the following theorem.

Theorem 5. Define ζj := (|D| − j + 1)
−1

. If b > 2n, then the described proto-

col (ξ, χ) is a (φ, n, b, 0)-proof of effort, with φ : j 7→ ζj +
1−ζj
|R| . The simulator is

described in the proof.

Proof. We first consider the condition

ξPχV
[
T rro
a,b , [−→,←−]

n
]
≈ POE

a
φ,n .

In the following, let d1, d2, . . . ∈ D be the order in which protocol ξ iteratively
tries elements of D to find a solution.

In the real-world model, in each session i ∈ {1, . . . , n} the protocol χ chooses
a value xi←$D, queries yi ← T rro(i, x), and sends yi to P . Upon each activation
in a session i, the protocol ξ follows the strategy described in Construction 1. For
the jth activation in a session that has not been successful before (i.e., T rro(dk) 6=
T rro(xi) for k ∈ {1, . . . , j − 1}), and if the overall number of activations is not

exceeding a, the probability of dj = xi is ζj = (|D| − j + 1)
−1

as the challenge
is uniform among the remaining |D| − j + 1 values. Additionally, if dj 6= xj ,

then the probability of T rro(dj) = T rro(xi) is |R|−1 since the outputs of T rro

are uniformly distributed and independent for differing inputs. Therefore, the
probability of returning 1 in the jth query in a session that was not solved
before is exactly φ(j), which is exactly the behavior described by POE

a
φ,n. Upon

activation in the ith session at V , if the prover has not solved session i before,
then it has not sent a message to the verifier, who outputs 0. If the prover has
sent a solution x′ ∈ D, then the verifier checks this via T rro(x′) and outputs 1,
as ξ sends only correct solutions. This is again the same behavior as in the case
of POE

a
φ,n. Overall, this means that the verifier makes at most 2n ≤ b queries to

T rro.
The second condition means that

χV
[
T rro
a,b , [−→,←−]

n
]
≈ σPPOEa+nφ,n

with the simulator σ described as follows. Initially, it sets an internal query
counter to c ← 0. The simulator emulates to the dishonest prover P the same
interface as [T rro, [−→,←−]

n
]. Initially, for each session i ∈ {1, . . . , n}, σ draws

a uniformly random challenge ỹi←$R and makes it available on the respective
(instance of the) channel ←−. Whenever the dishonest prover makes a query
x̄ ∈ {0, 1}∗ to T rro, if c ≥ a then output ⊥. Otherwise, set c← c+ 1 and:

– If x̄ has been queried before, then respond consistently.
– If x̄ is not of the form (i, x) for i ∈ {1, . . . , n} and x ∈ D, then output a

uniformly random element from R.

37



– If x̄ = (i, x), and session i has not yet been solved, activate POEa+nφ,n in
session i, and obtain a result bit b. Then, assuming this is the jth (distinct)
input for this session i,

• If b = 1, set gi ← 1 with probability25 ζj/(ζj + |R|−1) and gj ← 0
otherwise. Return ỹi and mark the ith session as solved.

• Otherwise, b = 0. Output a uniformly random value from R \ {ỹi}.
– The final case is that x̄ = (i, x), but session i has been solved already. If
gi = 1, then choose a value uniformly at random from R. If gi = 0, then
with probability ζj switch gi ← 1 and output ỹi, and leave gj unchanged
and output a uniformly random value from R otherwise.

Once the dishonest prover sends a message x̄i via the channel −→ in session i:

– If a message has been sent in session i before, or x̄i /∈ D, then ignore the
message.

– If (i, x̄i) has not yet been queried to T rro, then perform the same steps as
if (i, x̄i) were queried as above (but do not increase c).

– If the response to query (i, x̄i) was 6= ỹi, then ignore the message.

– If the response to query (i, x̄i) was ỹi, then invoke copyi at POEa+nφ,n .

What remains to be shown is that with the described simulator σ, the two
terms in equation Equation 7.2 are equivalent. First, the challenge values that the
dishonest provers obtains on the channels←− are uniformly distributed over R in
both cases. This is so by definition in the simulation, but also straightforward in
the actual protocol since the values are obtained by evaluating T rro on distinct
inputs. The responses to queries to T rro also have the correct distributions.

– Repeated queries are answered consistently in both cases, and queries that
are not of the form (i, x) with i ∈ {1, . . . , n} and x ∈ D are answered by a
uniformly random value.

– For queries of the form x̄ = (i, xi), more care is necessary.

• If the session i is not solved, and for the jth (distinct) query x̄ in session
i, the probability of solving is exactly φ(j) by the same argument as in
the proof of equation Equation 7.2. Consequently, in the simulation, the
probability of returning ỹj is φ(j), and the probability of returning any
y 6= ỹi with y ∈ R is (1− φ(j))/(|R| − 1).

In the protocol, the previous attempts in the ith session were obviously
different from the value xi chosen by the verifier (as otherwise the session
would have been solved). The probability of returning ỹi is therefore the

probability (|D| − j + 1)
−1

of guessing xi plus the probability of not
guessing xi but still using a x′ so that the output of T rro equals ỹi,

which happens with probability (1− (|D| − j + 1)
−1

)|R|−1. Overall, this
is exactly φ(j). On the other hand, for each y 6= ỹi, the probability is of
not guessing xi and having the output equal y ∈ R, and (by substituting

25 This is only needed to sample correctly in sessions which have already been solved

38



z := (|D| − j + 1)
−1

),

1− φ(j)

|R| − 1
=

(
1−

(
z +

1− z
|R|

))
· 1

|R| − 1

=

(
(1− z)− 1− z

|R|

)
· 1

|R| − 1

= (1− z) · |R| − 1

|R|
· 1

|R| − 1
= (1− z)|R|−1 ,

as claimed.
• In case session i has been solved previously, the output distributions

can be seen to be the same as follows. The simulator σ described above
manages a variable gi per session i that tracks whether the simulator
considers any input to correspond to a successful guess of xi; this variable
is set with the same probabilities that occur in the real experiment.
For each subsequent input in this session, the simulator then samples
uniformly if xi is considered to be guessed, and appropriately biased
toward ỹi if xi is considered to not be guessed (and the session to instead
be solved by a collision in T rro).

Sending a value over the channels −→ also has the same effects. A value that is
sent in session i and is not valid, meaning that they are outside of D or known
to map to a value y 6= ỹi, has the effect that the verifier will never accept in
session i. A value that is known to map to ỹi will make the verifier accept. A
value that has not been queried to T rro in session i before will invoke the same
sampling process as a fresh query to T rro in σ; in the real-world model the
success probability is also the same because the probability with which T rro

will output ỹi is the same independently of whether it is queried from P or V .
This completes the proof. ut

Hash trail. The idea underlying PoEs based on a hash trail is that it is difficult
to compute a value such that the output of a given hash function on input
this value satisfies a certain condition; usually one asks for a preimage x of a
function fi such that the output string fi(x) : {0, 1}m → {0, 1}k starts with some
number d of 0’s, where d ∈ {1, . . . , k} can be chosen to adapt the (expected)
effort necessary to provide a solution. For simplicity and to save on the number of
parameters, we assume for the rest of the chapter that d, the hardness parameter
of the moderately hard function, is also the bit-length of the output.

Construction 2. The protocol is parametrized by sets D,N ⊆ {0, 1}∗ and hard-
ness parameter d ∈ N. For each session 1 ≤ i ≤ n, it proceeds as follows:

1. The verifier samples uniform ni←$N and sends ni to the prover.
2. When activated, the prover chooses one value x′ ∈ D uniformly at random

(but without collisions), computes y ← T rro(i, ni, xi), and checks whether
y[1, . . . , d] = 0d. If equality holds, send x′ to the verifier and output 1 locally.
Otherwise, output 0 locally.

39



3. Receiving the value x′ ∈ D from the prover, the verifier accepts iff y′ ←
T rro(i, ni, x

′) satisfies y′[1, . . . , d] = 0d. When activated, output 1 if the
protocol has accepted and 0 otherwise.

To capture the described scheme as a pair of algorithms (ξ, χ) as needed for
our security definition, we view steps 1 and 3 as the algorithm χ, whereas step 2
describes the algorithm ξ. For this protocol, we show the following theorem.

Theorem 6. Let d ∈ N be the hardness parameter and b > n. Then the described
protocol (ξ, χ) is a (2−d, b, n, 0)-proof of effort. The simulator σ is described in
the proof.

Proof. We first consider the condition

ξPχV
[
T rro
a,b , [−→,←−]

n
]
≈ POE

a
φ,n .

In the real-world model, in each session i ∈ {1, . . . , n} the protocol χ chooses
a value ni←$N and sends ni to P . Upon each activation in a session i, the
protocol ξ follows the strategy described in Construction 2. For the jth activation
in a session that has not been successful before, and if the overall number of
activations is not exceeding a, the probability of T rro(i, ni, x

′) = 0d|y′ for some
y′ ∈ {0, 1}∗ is 2−d since the outputs of T rro are uniformly distributed and
independent for differing inputs. Therefore, the probability of returning 1 in the
jth query in a session that was not solved before is exactly φ(j), which is exactly
the behavior described by POE

a
φ,n. Upon activation in the ith session at V , if

the prover has not solved session i before, then it has not sent a message to the
verifier, who outputs 0. If the prover has sent a solution x′ ∈ D, then the verifier
checks this via T rro(i, ni, x

′) and outputs 1, as ξ sends only correct solutions.
This is again the same behavior as in the case of POE

a
φ,n. Overall, this means

that the verifier makes at most n ≤ b queries to T rro.
The second condition means that

χV
[
T rro
a,b , [−→,←−]

n
]
≈ σPPOEa+nφ,n

with the simulator σ described as follows. Initially, it sets an internal query
counter to c ← 0. The simulator emulates to the dishonest prover P the same
interface as [T rro, [−→,←−]

n
]. Initially, for each session i ∈ {1, . . . , n}, σ draws

a uniformly random value ni←$N and makes it available on the respective
(instance of the) channel ←−. Whenever the dishonest prover makes a query
x̄ ∈ {0, 1}∗ to T rro, if c ≥ a then output ⊥. Otherwise, set c← c+ 1 and:

– If x̄ has been queried before, then respond consistently.
– If x̄ is not of the form (i, ni, x) for i ∈ {1, . . . , n}, and x ∈ D, then output a

uniformly random element from R.
– If x̄ = (i, ni, x), and session i has not yet been solved, activate POEa+nφ,n in

session i, and obtain a result bit b. Then:
• If b = 1, sample ỹi←$

{
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
, return ỹi and

mark the ith session as solved.

40



• Otherwise, b = 0. Output a uniformly random value from

R \
{
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
.

– The final case is that x̄ = (i, ni, x), but session i has been solved already. In
that case, output a uniformly random value from R.

Once the dishonest prover sends a message x̄i via the channel −→ in session i:

– If a message has been sent in session i before, or x̄i /∈ D, then ignore the
message.

– If (i, ni, x̄i) has not yet been queried to T rro, then perform the same steps
as if (i, ni, x̄i) were queried as above (but do not increase c).

– If the response to query (i, ni, x̄i) was not valid (i.e., did not start with 0d,
then ignore the message.

– If the response to query (i, ni, x̄i) was valid (i.e., did start with 0d, then
invoke copyi at POEa+nφ,n .

What remains to be shown is that with the described simulator σ, the two
terms in equation Equation 7.2 are equivalent. First, the challenge values that
the dishonest provers obtains on the channels←− are uniformly distributed over
R in both cases. This is so by definition in the simulation as well as in the actual
protocol. The responses to queries to T rro also have the correct distributions.

– Repeated queries are answered consistently in both cases, and queries that
are not of the form (i, ni, x) with i ∈ {1, . . . , n}, ni as output in the ith session
before, and x ∈ D are answered by a uniformly random value.

– For queries of the form x̄ = (i, ni, xi) with xi ∈ D, more care is necessary.
• If the session i is not solved, and for the jth (distinct) query x̄ in session i,

the probability of solving is exactly φ(j) = 2−d by the same argument as
in the proof of equation Equation 7.2. Consequently, in the simulation,
the probability of returning a (uniformly random) value from the set S ={
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
is 2−d, and the probability of returning

a (uniformly random) value from R \ S is (1 − φ(j)) = 1 − 2−d. As
|R|/|S| = 2d, the resulting output is uniformly random in R.
In the protocol, since T rro has never been queried on the input before,
the output is uniformly random from R by definition of T rro.

• In case session i has been solved previously, the output is uniformly
random from R in both cases.

Sending a value over the channels −→ also has the same effects. A value that is
sent in session i and is not valid, meaning that it is outside of D or known to
not map to a valid solution, has the effect that the verifier will never accept in
session i. A value that is known to map to a valid solution will make the verifier
accept. A value that has not been queried to T rro in session i before will invoke
the same sampling process as a fresh query to T rro in σ; in the real-world model
the success probability is also the same because the probability with which T rro

will output a valid value is the same independently of whether it is queried from
P or V . This completes the proof. ut

41



8 Non-interactive proofs of effort

The PoE protocols in Section 7.2 require the prover and the verifier to interact,
because the verifier has to generate a fresh challenge for the prover in each
session to prevent the prover from re-using (parts of) proofs in different sessions.
This interaction is inappropriate in several settings, because it either imposes an
additional round-trip on protocols (such as in key establishment) or because a
setting may be inherently non-interactive, such as sending e-mail. In this section,
we describe a non-interactive variant of PoE that can be used in such scenarios.
Each proof is cryptographically bound to a certain value, and the higher-level
protocol has to make sure that this value is bound to the application so that
proofs cannot be re-used.

Although non-interactive PoE (niPoE) have appeared previously in certain
applications, and have been suggested for fighting spam mail [1,37,38,39], to the
best of our knowledge they have not been formalized as a tool of their own right.

8.1 Definition

Our formalization of non-interactive PoE (niPoE) follows along the same lines as
the one for the interactive proofs. The main difference is that while for interactive
proofs, it made sense to some notion of session to which the PoE is associated and
in which the verifier sends the challenge, this is not the case for niPoE. Instead,
we consider each niPoE as being bound to some particular statement s ∈ {0, 1}∗.
This statement s is useful for binding the PoE to a particular context: in the
combatting-spam scenario this could be a hash of the message to be sent, in the
DoS-protection for key exchange this could be the client’s key share.

For consistency with Section 7, the treatment in this section is simplified
to deal with either only honest or only dishonest provers. The case where both
honest and dishonest provers occur simultaneously is deferred to Appendix C.

The goal of niPoE protocols. The constructed resource is similar to the resource
POE described in Section 7.1, with the main difference that each proof is not
bound to a session i ∈ N, but rather to a statement s ∈ S ⊆ {0, 1}∗. Conse-
quently, the resource NIPOE takes as input at the P -interface statements s ∈ S,
and returns 1 if the proof succeeded and 0 otherwise. Upon an activation at the
verifier’s interface V , if for any statement s ∈ S a proof has been successful,
the resource outputs this s, and it outputs ⊥ otherwise. An output s 6= ⊥ has
the meaning that the party at the P -interface has spent enough effort for the
particular statement s. Similarly to POE, the resource NIPOE is parametrized
by a bound a ∈ N on the number of proof attempts and a performance function
φ : N → R≥0, but additionally the number of verification attempts b ∈ N at
the verifier is a parameter. The resource is denoted as NIPOEaφ,b. The behavior
of this resource is described in more formally below. There are two inputs for a
dishonest prover P that need further explanation:

42



– (copy, s): This corresponds to sending a proof to V . Prover V is convinced
if the proof was successful (i.e., es = 1), and has to spend one additional
evaluation of T rro, so the corresponding counter is increased (d← d+ 1).

– (spend): E forces V to spend one additional evaluation of T rro, for instance
by sending an invalid proof. This decreases the number of verifications that
V can still do (d← d+ 1).

Non-interactive proof-of-effort resource NIPOEaφ,b
The resource is parametrized by numbers a, b ∈ N and a mapping φ : N → R≥0.
It contains as state bits es ∈ {0, 1} and counters d, cs ∈ N for each s ∈ {0, 1}∗ (all
initially 0), and a list S ∈ ({0, 1}∗)∗ of strings that is initially empty.

Verifier V : On input a unary value, if S is empty then return ⊥. Otherwise remove
the first element of S and return it.

Honest prover P : On input a string s ∈ {0, 1}∗, set cs ← cs + 1. If es = 1 or∑
s∈{0,1}∗ cs > a, then return 0. Otherwise, draw es at random such that it is 1

with probability φ(cs) and 0 otherwise. If es = 1 and d < b, then d← d+ 1 and
then append s to S. Output es at interface P .

Dishonest prover P : – On input a string s ∈ {0, 1}∗, set cs ← cs + 1. If es = 1
or

∑
s∈{0,1}∗ cs > a, then return 0. Otherwise, draw es at random such that

it is 1 with probability φ(cs) and 0 otherwise. Output es at interface P .
– Upon an input (copy, s), if d < b and es = 1, then d← d+ 1 append s to S.
– Upon an input (spend), set d← d+ 1.

The “real-world” setting for niPoE protocols. The main difference between PoE
and niPoE is that a PoE requires bidirectional communication, which in Sec-
tion 7.1 we described by the channels −→ and ←− available in each session.
A niPoE only requires communication from the prover to the verifier, which
we denote by the channel −→. Additionally, and as in the PoE case, the proof
also requires computational resources, which are again formalized by the shared
resource T rro

a,b .

The security definition. The definition of niPoE security is analogous to the one
for PoE.

Definition 11. A protocol π = (π1, π2) is a non-interactive (φ, b, ε)-proof-of-
effort with respect to simulator σ if for all a, a ∈ N,

π1
Pπ2

V
[
T rro
a,b ,−→

]
≈ε NIPOE

a+b
φ,b

and
π2
V
[
T rro
a,b ,−→

]
≈ε σPNIPOE

a+b
φ,b .

8.2 Protocol

Our protocol for niPoE is similar to the one in Construction 2. Instead of binding
the solution to a session identifier chosen by the server, however, the identifier

43



is chosen by the client. This makes sense for instance in the setting of sending
electronic mail where the PoE can be bound to a hash of the message, or in
Denial-of-Service protection in the TLS setting, where the client can bind the
proof to its ephemeral key share.26

Construction 3. The protocol is parametrized by sets D,S ⊆ {0, 1}∗ and a
hardness parameter d ∈ N. It proceeds as follows:

1. On input a statement s ∈ S, the prover chooses x ∈ D uniformly at random
(but without collisions with previous attempts for the same s), computes
y ← T rro(s, x), and checks whether y[1, . . . , d] = 0d. If equality holds, send
(s, x, y) to the verifier and output 1 locally, otherwise output 0.

2. Upon receiving (s′, x′, y) ∈ S × D × R, the verifier accepts s iff y′ ←
T rro(s′, x′) satisfies y = y′ and y′[1, . . . , d] = 0d. If the protocol is activated
by the receiver and there is an accepted value s′ ∈ S, then output s′.

To capture the described scheme as a pair of converters (ξ, χ) as needed
for our security definition, we view step 2 as the converter χ, whereas step 1
describes the converter ξ. For this protocol, we show the following theorem.

Theorem 7. Let d ∈ N the hardness parameter. Then the described proto-
col (ξ, χ) is a non-interactive (2−d, b, 0)-proof-of-effort.

Proof. We first consider the condition

ξPχV
[
T rro
a,b ,−→

]
≈ NIPOE

a
φ,b .

In the real-world model, upon each input s ∈ S at P , the protocol ξ follows the
strategy described in Construction 2. For each activation for s ∈ S for which
P has not been successful before, and if the overall number of activations is
not exceeding a, the probability of T rro(s, x′) = 0d|y′ with y′ ∈ {0, 1}∗ is 2−d

since the outputs of T rro are uniformly distributed and independent for differing
inputs. Therefore, the probability of returning 1 in the jth query in a session that
was not solved before is exactly φ(j), which is exactly the behavior described
by NIPOE

a
φ,b. Upon an activation at V , if the prover has not solved for any

(new) statement, then it has not sent a message to the verifier, who outputs ⊥.
If the prover has sent a solution (s′, x′) ∈ S × D, then the verifier checks this
via T rro(s′, x′) and outputs s′, as ξ sends only correct solutions, for up to b
statements. This is again the same behavior as in the case of NIPOE

a
φ,b.

The second condition means that

χV
[
T rro
a,b ,−→

]
≈ε σPNIPOEaφ,b ,

with ε = b·2d
|R| and the simulator σ described as follows. Initially, it sets internal

query counters to cP , cV ← 0. The simulator emulates to the dishonest prover P

the same interface as
[
T rro
a,b ,−→

]
. Whenever the dishonest prover makes a query

x̄ ∈ {0, 1}∗ to T rro, if cP ≥ a then output ⊥. Otherwise, set cP ← cP + 1 and:

26 This works especially well with the new ordering in TLS 1.3.

44



– If x̄ has been queried before, then respond consistently.
– If x̄ is not of the form (s, x) ∈ S × D, then output a uniformly random

element from R.
– If x̄ = (s, x) ∈ S×D, and for statement s the prover has not yet been solved,

activate NIPOEaφ,b with statement s, and obtain a result bit b. Then:

• If b = 1, sample ỹi←$

{
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
, return ỹi and

mark s as solved.
• Otherwise, b = 0. Output a uniformly random value from

R \
{
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
.

– The final case is that x̄ = (s, x) ∈ S × D, but the prover has solved for
statement s already. In that case, output a uniformly random value from R.

Whenever the dishonest prover sends a message x̄ via the channel −→ :

– If x̄ /∈ S × D × R, or cV ≥ b, then ignore the message. Otherwise, set
cV ← cV + 1.

– If x̄ = (s, x, y) but the response to query (s, x) was not valid (i.e., did not
start with 0d) or not equal to y, then input (spend) to NIPOEaφ,b.

– If x̄ = (s, x, y) and the response to query (s, x) was y, and y starts with 0d,
then invoke copys at NIPOEaφ,n.

– If x̄ = (s, x, y) but (s, x) has not yet been queried to T rro, then behave as if
(s, x) where queried to T rro and continue appropriately as in the two above
cases.

What remains to be shown is that with the described simulator σ, the two
terms in equation Equation 7.2 are equivalent. First, the responses to queries to
T rro also have the correct distributions.

– Repeated queries are answered consistently in both cases, and queries that
are not of the form (s, x) ∈ S × D are answered by a uniformly random
value.

– For queries of the form x̄ = (s, x) ∈ S ×D, more care is necessary.
• If the prover has not yet solved for statement s, the probability of solv-

ing is exactly φ(j) = 2−d by the same argument as in the proof of
equation Equation 8.2. Consequently, in the simulation, the probability
of returning a (uniformly random) value from the set

S =
{
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
is 2−d, and the probability of returning a (uniformly random) value from
R \ S is (1 − φ(j)) = 1 − 2−d. As |R|/|S| = 2d, the resulting output is
uniformly random in R.
In the protocol, since T rro has never been queried on the input before,
the output is uniformly random from R by definition of T rro.

• In case session i has been solved previously, the output is uniformly
random from R in both cases.

45



Sending a value over the channel −→ has the same effects. A value that is not
valid, meaning that it is outside of S ×D × R or known to not map to a valid
solution, does not change the state of the verifier. A value that is known to map
to a valid solution will make the verifier accept the corresponding statement.
A message (s, x, y) where (s, x) has not been queried to T rro before will be
treated analogously to a query to T rro and subsequently sending the result in
both cases. This completes the proof. ut

9 Combining the results

Before we can compose the MoHFs proven secure according to Definition 5 with
the application protocols described in Sections 7 and 8 using the respective
composition theorem [62,61], we have to resolve one apparent incompatibility.
The indifferentiability statement according to Definition 5 is not immediately
applicable in the case with two honest parties, as required in the availability
conditions of Definitions 10 and 11, where both the prover and verifier are hon-
est.27 We further explain how to resolve this issue in Appendix A; the result
is that for stateless algorithms, Definition 5 immediately implies the analogous
statement for resources with more honest interfaces, written Sl1,l2,r and T rro

a1,a2,b
,

which have two “honest” interfaces priv1 and priv2.
We can then immediately conclude the following corollary from composition

theorem [62,61] by instantiating it with the schemes of Definitions 5 and 10. An
analogous corollary holds for the niPoEs.

Corollary 1. Let f (·), naı̈ve,P, π, a, b : P → N, and ε : P × P → R≥0 as in
Definition 5, and let (ξ, χ) be a (φ, n, b, ε′)-proof of effort. Then

ξPχV
[
πPπV⊥pubSl1,l2,r, [−→,←−]

n] ≈ε POE
a(l1)
φ,n ,

with P = priv1 and V = priv2, for all l1, l2 ∈ P, and where ⊥pubSl1,l2,r means
that the pub-interface is not accessible to the distinguisher. Additionally,

χV
[
πV⊥priv1Sl1,l2,r, [−→,←−]

n] ≈ε σ̃PPOE
b(r)+n
φ,n ,

with P = pub and V = priv2, for all r, l2 ∈ P, and where σ̃ is the composition
of the two simulators guaranteed by Definitions 5 and 10.

10 Detailed discussion of related work and applications

10.1 Related work

Definitions of moderately hard functions. Existing notions of moderately hard
functions [68,44,19,11,4] essentially define a game in which an adversary has to
evaluate the function in the forward direction. For many applications, such as

27 The verifier is always considered honest in our work.

46



the most natural PoE constructions based on finding inputs to the MoHF such
that its output has some desired property, it is important for the MoHF to also
be difficult to invert. These applications only indirectly require the difficulty of
computing it in the forward direction.28 As we show in the applications, our
definition is indeed sufficient for proving security of those constructions.

The definitions that are conceptually most similar to ours are those of Bellare
et al. [17] and Demay et al. [35]. Both papers discuss hash-function iteration as
a method to increase the hardness of the function, and also present a definition
based on indifferentiability. Their definitions, however, are restricted to the com-
plexity measure of counting the number of random-oracle invocations. Our work
is based on the same framework, but shows how more general hardness notions
can be captured.

Candidate constructions. The seminal paper of Dwork and Naor [38] discusses
several candidate constructions based on supposedly moderately hard-to-compute
mathematical problems. Most subsequent work is based on properties of hash
functions, such as using the plain hash function [2] or iterating the function to
increase the hardness of inverting it. Iteration seems to first appear in the Unix
crypt function [65] and analyzed by Yao and Yin [82] and Bellare et al. [17], a
prefixing scheme has been discussed and analyzed by Demay et al. [35].

Another notion of hardness is based on forcing the processor to access the
(slower) main memory because the data needed to compute the functions do not
fit into the (small) cache. Such functions were proposed in the context of com-
batting spam mail [1,37,39], and the rough idea is that during the computation
of the function one has to access various position in a random-looking array that
is too large to fit into cache. We discuss the reduction that will be necessary to
make those functions useful in our framework in Section 6.

A more recent popular approach draws its inspiration from the work of Per-
cival [68]. These MoHFs rely on a notion of hardness aimed at ensuring that
application-specific integrated circuits (ASICs) have as little advantage (in terms
of dollar per rate of computation) over general-purpose hardware. This is mo-
tivated by the observation that, both for large-scale password cracking and for
high-capacity brute-forcing of the PoEs underlying crypto-currencies, the go-
to computational device in practice has often been a (highly parallel) ASIC.
In the case of password cracking, this results in undesirably efficient cracking
devices while for crypto-currencies the effect is to convey an disproportionate
amount of influence from a comparatively small subset of users that are willing
to invest in such hardware; an undesirable effect in what are meant to be egali-
tarian distributed systems. Percival had the insight that high-speed memory for
ASICs is comparatively very expensive while general purpose computers are usu-
ally equipped with large amounts of cheap DRAM. Therefore, he proposed [68]
building functions which require large amounts of memory to compute. The idea
has been well received and [68] has been followed by a large number of proposed

28 Intuitively it is also the difficulty of inverting the MoHF which makes it useful for
the password storage applications proposed in [11,44].

47



constructions [44,11,23,32,70,53,81,7]. A notable example is Argon2 [18], an early
version of which was the winner of the Password Hashing Competition.

The most prominent application of memory-hard functions thus far has been
password hashing. Here, rather than storing a password in the clear, a login
server will evaluate a memory-hard function on users passwords and store the
result. That way, by recomputing the function at the next login the server can
still authenticate users. But if an adversary breaks in and steals the password
file they are faced with the task of inverting the outputs of the function in order
to recover valid login credentials. Another application are PoEs such as those in
Litecoin [28], Dogecoin [59] and several other crypto-currencies. In general in all
proposed and actual applications, an adversary is ultimately faced with the task
of inverting the memory-hard function.29

The first security notion of memory-hard functions was given in [68] which
asks for a lower bound on the product of memory and time used by an algorithm
evaluating the function on any single input. Another step towards provably se-
cure applications was made in [11] where a concrete computational model—the
parallel random oracle model (pROM)—was introduced together with a compu-
tational notion of complexity called amortized Cumulative Memory Complexity
(aCMC). This notion calls for a lower bound on the amortized product of space
and time across an arbitrary number of evaluations. aCMC was further refined
in [4] to account for possible trade-offs of decreasing memory consumption at the
added cost of increased logic gates resulting in the notion of amortized Energy
Complexity (aEC). For simplicity, in this work we focus on aCMC as the tech-
niques carry over directly to the more complicated case of aEC. The pROM was
refined in [9] to better capture the nature of computation using an ASIC and it
is that version which serves as a starting point for our definition of memory-hard
functions. (For more on the choices for the complexity notion and computational
model in this work we refer to the remarks after Theorem 4.)

We remark that, an important shortcoming of aCMC (and eEC) is that they
only consider the (amortized) complexity of evaluating an MHF in the forward
direction. Thus notions of MoHFs in those works can serve, at best, as the basis
of heuristic arguments for the security of their applications in practice. Another
problem standing in the way of basing provable security on aCMC is that is
defined to only bound the expected complexity. Yet this is too weak for any
reasonable security application as expectation can be dominated by rare outlier
cases. In other words, large expected complexity does not rule out very low
complexity on the vast number of instances but extremely high complexity on
very rare instances; an undesirable property for most applications of MoHFs.

Nevertheless, recent results [8,9] raise hopes that even scrypt may be prov-
able in our framework, although our techniques in Theorem 4 does not apply.

Proofs of effort. Proofs of effort have been first introduced (informally) in the
work of Dwork and Naor [38] on combatting spam mail and a line of follow up

29 E.g in the case of a PoE the goal is to find an input which maps to any element in
a large set of possible outputs.

48



works [1,37,39], but have found applications in various scenarios. One particular
widely-discussed one is in client-server applications, where Denial-of-Service at-
tacks can be launched on the server by forcing it to perform costly cryptographic
computations. The high-level idea of the moderately hard so-called “client puz-
zles” in this domain is that the client has to perform some computation in the
very beginning of a session, rendering Denial-of-Service attacks infeasible. Ap-
plications in the area of key-agreement and secure-session protocols have been
described in the literature [54,33,76]. A formal definition of client puzzles ap-
peared in the work of Chen et al. [29], but has later been shown to be insufficient
for the case of multiple sessions and improved by Stebila et al. [75], which has
subsequently been strengthened by Groza and Warinschi [49].

Initiated by Bitcoin [66], several crypto-currencies have emerged in recent
years. The underlying principle is that all transactions are recorded in a public
ledger. Extending this ledger is designed to be computationally feasible but
expensive (it is intuitively based on moderately hard functions); this results in a
scheme that is secure as long as no dishonest party obtains the majority in terms
of computational power [45]. Other blockchains have been designed that are not
based on computation hardness but rather on memory hardness [28,24]. This
area has spawned a lot of interest in the cryptographic community, recent results
showing that the underlying technique can also be used in the design multi-party
protocols whose security is based on the majority of computational power [12].
A related concept is resource fairness as proposed by Garay et al. [47], which
assures that in a multi-party computation all parties can receive their output by
investing a similar amount of computational resources.

Another definition of proof of effort appears in the work of Alberini et al. [3].
The definition, there called private proof of effort is somewhat similar to our
Definition 10 in Section 7, but for very specific parameters, as in their definition
the prover can solve an instance by (exactly) one call to the so-called “effort
oracle.” Our definition is more general and allows more fine-grained statements
about (the widely used) protocols in which the prover can take multiple attempts.
Stand-alone definitions for proofs of space have recently been given by Ateniese
et al. [13] and Dziembowski et al. [40].

Further applications. The need for moderately hard computation has also ap-
peared in partial key escrow [16], where the key escrow is implemented in a way
such that actually obtaining a key is computationally challenging but feasible
for authorities. This allows to obtain the keys of specific targets, while at the
same time hindering large-scale surveillance. While the moderately hard func-
tions we describe in this cannot directly be used in the known constructions, a
more detailed study appears promising.

Another related area is that of time-lock puzzles, which has started with the
work of Rivest et al. [73]. The idea is to design computations such that they can
be performed in a pre-determined span of real-time; this has applications such
as time-stamping or delayed key escrow, but also proofs of work. For time-lock
puzzles it is particularly important that the computation cannot be parallelized.

49



Several constructions of time-lock puzzles have been proposed, based on different
assumptions [79,51,55,77,58,57,22].
Various further applications have been discussed in an invited talk by Naor [67].

10.2 Applications

In this section, we further discuss the usefulness of our definitions in application
scenarios that have been studied in the literature.

Combatting spam mail. A line of work initiated by Dwork and Naor [38] and
continued by [1,37,39] proposes the use of moderately hard functions to fight
spam mail. According to their ideas, sending an email requires solving a compu-
tational problem based on a computationally hard function, a concept that we
called a non-interactive proof of effort in Section 8. In a nutshell, and using the
notation from [39], their scheme works as follows:

– Compute A ← H(m,R, S, d, k) with message m, receiver R, sender S, date
d, and auxiliary value k.

– Evolve A by computing a (randomized) graph function that incurs some
` ∈ N calls to hash functions.

– Accept if the result of applying a hash function H ′ to the result of the graph
function has d trailing zeroes, for hardness parameter d. Send the output as
well as k as a proof of effort.

The main result, [39, Theorem 1], is that the amortized complexity of a spammer
of generating a proof that will be accepted by the verifier is Ω(2d`), where the
asymptotic statement is over the number of proofs.

Analogous results can be obtained using our framework. In particular, use of
the resource NIPOE described in Section 8 makes deriving the statement very
easy: we simply require the sender of a mail to provide a proof associated to
the statement (m,R, S, d).30 Analogously to [37, Lemma 1], one easily obtains
that amortized over the number of proofs the (dishonest) prover has to activate
NIPOE for Ω(2d) times. Once we instantiate NIPOE with an MoHF that requires
cost ` ∈ N per evaluation, we immediately obtain the bound of Ω(2d) simply by
application of the composition theorem.

Consequently, any MoHF that satisfies our definition immediately gives rise
to a scheme for combatting spam mail along the lines of [1,37,39].

Client puzzles and Denial-of-Service resilience. The theoretical groundwork for
the use of client puzzles in Denial-of-Service resilience has been laid by [29,75,49].
The work of Chen et al. [29] considered the hardness only for a single, isolated
session. The works of Stebila et al. [75] and Groza and Warinschi [49] measure
the hardness of multiple parallel sessions. Their definition is roughly similar to
our POE-security in Section 7, the main differences are that [49] considers the

30 When instantiating NIPOE with an appropriate MoHF, the resulting scheme is sim-
ilar to the ones in [1,37,39].

50



probability of an adversary in solving all sessions, whereas our definition is more
fine-grained and considers the probabilities per-session. On the other hand, the
adversary in their definition has access to an oracle providing it with properly
solved puzzles (which is not the case in our definition).31 The statements and
proofs in [49] only require that the adversary algorithm accesses the MoHF as
an oracle, the results can be re-phrased in different computational models and
make use of MoHFs proven secure in our work, bringing up client puzzles for
other notions of hardness. These puzzles can then also be used to achieve Denial-
of-Service resilience via the protocols of Stebila et al. [75].

Public transaction ledgers based on Nakamoto consensus. The work of Garay
et al. [45] studies properties of a public transaction ledger that is managed
through the Nakamoto consensus, and related, protocols, which are based on
proof of work. The properties are formalized in a multi-party computation model
based on Canetti’s work [25]. The model is synchronous and during each round
the (honest and corrupted) parties are activated in a round-robin fashion. The
hardness of the proof of work is, as in the examples discussed above, modeled by
restricting the number of queries that each party (honest or corrupted) can make
to a random oracle. Unlike in the above two cases, instantiating this random or-
acle using an MoHF proven according to Definition 5 does not make sense, as
the model allows the adversary only to run a single, non-interactive algorithm.

Interestingly, the hardness amplification statement of Demay et al. [35], which
is phrased in a similar, indifferentiability-like fashion, does carry over also to that
statement. The “real-world” resources do not restrict the way in which they can
be used by the adversary, and the simulator reacts to the adversaries queries in a
fully on-line way. Previous works [17,35] consider only a single hardness notion,
namely the number of queries that a party makes to a random oracle, for which
the environment (or distinguisher) does not have “implicit” resources.

An interesting open question is therefore to either generalize our definition or
modify the model of [45] in a way that allows for proving security also based on
other hardness assumptions (such as memory-hard or memory-bound functions).
One possible idea of restricting the model of [45] would be to use a different RO
instance per round (which can be argued because the prefix is only known after
the previous round is finished) and to restrict the attention to miners that do
not use messages received in the same round for mining their own block in this
round (which appears a reasonable assumption). We leave this as an interesting
(and pressing) question for future work.

11 Open Questions

We discuss several interesting open questions raised by this work. The topic of
moderately hard functions is an active topic of research both in terms of defi-

31 Such an oracle is inherently not useful if one demands that the difficulty of solving n
puzzles in parallel is (approximately) n times the difficulty of solving a single puzzle,
which the schemes we consider achieve for realistic parameters.

51



nitions and constructions and so many practically interesting (and used) mod-
erately hard function constructions and proof-of-effort protocols could benefit
from a more formal treatment (e.g. Equihash [20], CryptoNight, Ethash). Many
of these will likely result in novel instantiates of the MoHF framework which we
believe to be of independent interest as this requires formalizing new security
goals motivated by practical considerations. In terms of new moderately hard
functions, the recent work of Biryukov and Perrin [21] introduces several new
constructions for use in hardening more conventional cryptographic primitives
against brute-force attacks. For this type of application, a composable security
notion of moderate hardness such as the one in this work would lend itself well
to analyzing the effect on the cryptographic primitives being hardened. Other
examples of recent proof-of-effort protocols designed to for particular higher-
level applications in mind are the results in [15,30,43,46]. In each case, at most
standalone security of the higher-level application can be reasoned about so us-
ing the framework in this paper could help improve the understanding of the
applications composition properties.

A natural question that arises from how the framework is currently formu-
lated is whether the ideal-world resource could be relaxed. While modeling the
ideal resource as a random oracle does make proving security for applications
using the MoHF easier it seems to moot ever proving security for any candidate
MoHF outside the random oracle model. However, it would be nice to show
some form of moderate hardness based on other assumptions or, ideally, even
unconditionally. Especially in the domain of client-puzzles several interesting
constructions already exists based on various computational hardness assump-
tions [74,55,79,52].

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Trans. Internet Technol. 5(2), 299–327 (2005)

2. Adam Back: Hashcash - A Denial of Service Counter-Measure (2002)

3. Alberini, G., Moran, T., Rosen, A.: Public verification of private effort. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC. LNCS, vol. 9015, pp. 169–198 (2015)

4. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-
tions. In: CRYPTO. LNCS, vol. 9815, pp. 241–271 (2016)

5. Alwen, J., Blocki, J.: Towards Practical Attacks on Argon2i and Balloon Hashing.
In: EuroS&P 2017 (2017)

6. Alwen, J., Blocki, J., Harsha, B.: Practical graphs for optimal side-channel resis-
tant memory-hard functions. Cryptology ePrint Archive, Report 2017/443 (2017),
http://eprint.iacr.org/2017/443

7. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative
memory complexity. In: EUROCRYPT. LNCS (2017), https://eprint.iacr.org/
2016/875

8. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On
the complexity of Scrypt and proofs of space in the parallel random oracle model.
In: EUROCRYPT. LNCS, vol. 9666, pp. 358–387 (2016)

52

http://eprint.iacr.org/2017/443
https://eprint.iacr.org/2016/875
https://eprint.iacr.org/2016/875


9. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: EUROCRYPT. LNCS (2017)

10. Alwen, J., Gaži, P., Kamath, C., Klein, K., Osang, G., Pietrzak, K., Reyzin, L.,
Roĺınek, M., Rybár, M.: On the Memory-Hardness of Data-Independent Password-
Hashing Functions. Cryptology ePrint Archive, Report 2016/783 (2016)

11. Alwen, J., Serbinenko, V.: High Parallel Complexity Graphs and Memory-Hard
Functions. In: STOC (2015)

12. Andrychowicz, M., Dziembowski, S.: Distributed cryptography based on the proofs
of work. Cryptology ePrint Archive, Report 2014/796 (2014)

13. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: When space is
of the essence. In: SCN. pp. 538–557 (2014)

14. Aura, T., Nikander, P., Leiwo, J.: Dos-resistant authentication with client puzzles.
In: Security Protocols, LNCS, vol. 2133, pp. 170–177 (2001)

15. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of useful work. Cryptology
ePrint Archive, Report 2017/203 (2017), http://eprint.iacr.org/2017/203

16. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: CCS. pp. 78–91 (1997)

17. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its applica-
tion to password-based cryptography. In: CRYPTO, LNCS, vol. 7417, pp. 312–329
(2012)

18. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: New generation of memory-hard
functions for password hashing and other applications. In: IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24,
2016. pp. 292–302. IEEE (2016), http://dx.doi.org/10.1109/EuroSP.2016.31

19. Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard functions.
In: ASIACRYPT. pp. 633–657 (2015)

20. Biryukov, A., Khovratovich, D.: Equihash: Asymmetric proof-of-work based on the
generalized birthday problem. Ledger Journal 2 (2017)

21. Biryukov, A., Perrin, L.: Symmetrically and asymmetrically hard cryptogra-
phy (full version). Cryptology ePrint Archive, Report 2017/414 (2017), http:

//eprint.iacr.org/2017/414

22. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikutanathan, V., Waters, B.:
Time-lock puzzles from randomized encodings. Cryptology ePrint Archive, Report
2015/514 (August 2015)

23. Boneh, D., Corrigan-Gibbs, H., Schechter, S.E.: Balloon hashing: A memory-
hard function providing provable protection against sequential attacks. In: ASI-
ACRYPT. LNCS, vol. 10031, pp. 220–248 (2016)

24. Buterin, V., Di Lorio, A., Hoskinson, C., Alisie, M.: Ethereum: A Distributed
Cryptographic Leger (2013), http://www.ethereum.org/

25. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

26. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science. pp. 136–145. IEEE (2001)

27. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: TCC. pp. 17–33 (2005)

28. Charles Lee: Litecoin (2011), https://litecoin.info/

29. Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security notions and generic
constructions for client puzzles. In: ASIACRYPT. LNCS, vol. 5912, pp. 505–523
(2009)

53

http://eprint.iacr.org/2017/203
http://dx.doi.org/10.1109/EuroSP.2016.31
http://eprint.iacr.org/2017/414
http://eprint.iacr.org/2017/414
http://www.ethereum.org/
https://litecoin.info/


30. Chepurnoy, A., Duong, T., Fan, L., Zhou, H.S.: Twinscoin: A cryptocurrency
via proof-of-work and proof-of-stake. Cryptology ePrint Archive, Report 2017/232
(2017), http://eprint.iacr.org/2017/232

31. Cook, S.A.: An observation on time-storage trade off. In: STOC. pp. 29–33 (1973)
32. Cox, B.: Twocats (and skinnycat): A compute time and sequential memory hard

password hashing scheme. Password Hashing Competition. v0 edn. (2014)
33. Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: USENIX Se-

curity. vol. 10 (2001)
34. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability.

In: EUROCRYPT. LNCS (2013)
35. Demay, G., Gaži, P., Maurer, U., Tackmann, B.: Query-complexity amplification

for random oracles. In: ICITS. LNCS (2015)
36. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: Random oracles with

auxiliary input, revisited. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryp-
tology — EUROCRYPT 2017. LNCS, vol. 10211, pp. 473–495. Springer (2017)

37. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: CRYPTO. LNCS, vol. 2729, pp. 426–444 (2003)

38. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: CRYPTO.
pp. 139–147 (1992)

39. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: CRYPTO. LNCS,
vol. 3621, pp. 37–54 (2005)

40. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:
CRYPTO. pp. 585–605. LNCS (2015)

41. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-
bounded leakage. In: CRYPTO. LNCS, vol. 6841, pp. 335–353 (2011)

42. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: TCC. LNCS, vol. 6597, pp. 125–143 (2011)

43. Eckey, L., Faust, S., Loss, J.: Efficient algorithms for broadcast and consensus
based on proofs of work. Cryptology ePrint Archive, Report 2017/915 (2017), http:
//eprint.iacr.org/2017/915

44. Forler, C., Lucks, S., Wenzel, J.: Catena: A memory-consuming password scram-
bler. Cryptology ePrint Archive, Report 2013/525 (2013)

45. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol. In: EU-
ROCRYPT. LNCS (2015)

46. Garay, J.A., Kiayias, A., Panagiotakos, G.: Proofs of work for blockchain protocols.
Cryptology ePrint Archive, Report 2017/775 (2017), http://eprint.iacr.org/

2017/775

47. Garay, J.A., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: TCC. LNCS, vol. 3876, pp. 404–428
(2006)

48. Groza, B., Petrica, D.: On chained cryptographic puzzles. In: SACI. pp. 25–26
(2006)

49. Groza, B., Warinschi, B.: Cryptographic puzzles and DoS resilience, revisited. DCC
73(1), 177–207 (2014)

50. Hewitt, C.E., Paterson, M.S.: Record of the project mac. In: Conference on Con-
current Systems and Parallel Computation. pp. 119–127. ACM, New York, NY,
USA (1970)

51. Jeckmans, A.: Practical client puzzle from repeated squaring (August 2009)
52. Jerschow, Y.I., Mauve, M.: Non-parallelizable and non-interactive client puzzles

from modular square roots. In: ARES. pp. 135–142. IEEE (2011)

54

http://eprint.iacr.org/2017/232
http://eprint.iacr.org/2017/915
http://eprint.iacr.org/2017/915
http://eprint.iacr.org/2017/775
http://eprint.iacr.org/2017/775


53. Jr., M.A.S., Almeida, L.C., Andrade, E.R., dos Santos, P.C.F., Barreto, P.S.L.M.:
Lyra2: Password Hashing Scheme with improved security against time-memory
trade-offs

54. Juels, A., Brainard, J.G.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: NDSS (1999)

55. Karame, G.O., Čapkun, S.: Low-cost client puzzles based on modular exponentia-
tion. In: ESORICS. pp. 679–697 (2010)

56. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4), 1087–1130 (Oct 1982)

57. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential
work. In: ITCS. pp. 373–388. ITCS ’13 (2013)

58. Mahmoody, M., Moran, T., Vadhan, S.P.: Time-lock puzzles in the random oracle
model. In: CRYPTO. LNCS, vol. 6841, pp. 39–50 (2011)

59. Markus, B.: Dogecoin (2013), http://dogecoin.com/
60. Maurer, U.: Indistinguishability of random systems. In: EUROCRYPT. LNCS, vol.

2332, pp. 110–132 (2002)
61. Maurer, U.: Constructive cryptography: A new paradigm for security definitions

and proofs. In: TOSCA. LNCS (2011)
62. Maurer, U., Renner, R.: Abstract cryptography. In: ICS (2011)
63. Maurer, U., Renner, R.: From indifferentiability to constructive cryptography (and

back) from indifferentiability to constructive cryptography (and back). In: TCC.
LNCS, vol. 9985, pp. 3–24 (2016)

64. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: TCC. LNCS,
vol. 2951, pp. 21–39 (2004)

65. Morris, R., Thompson, K.: Password security: A case history. Commun. ACM
22(11), 594–597 (November 1979)

66. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009)
67. Naor, M.: Moderately hard functions: From complexity to spam fighting. In: FST

TCS 2003. LNCS, vol. 2914, pp. 434–442 (2003)
68. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:

BSDCan 2009 (2009)
69. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its

application to secure message transmission. In: Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy. pp. 184–200. IEEE (2001)

70. Pintér, K.: Gambit – A sponge based, memory hard key derivation function. Sub-
mission to Password Hashing Competition (PHC) (2014)

71. Price, G.: A general attack model on hash-based client puzzles. In: Cryptography
and Coding. LNCS, vol. 2898, pp. 319–331 (2003)

72. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limita-
tions of the indifferentiability framework. In: Paterson, K.G. (ed.) Advances in
Cryptology — EUROCRYPT 2011. vol. 6632, pp. 487–506. Springer (2011)

73. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep., Cambridge, MA, USA (1996)

74. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep., Cambridge, MA, USA (1996)

75. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., González Nieto, J.: Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols. In: CT-
RSA. LNCS, vol. 6558, pp. 284–301 (2011)

76. Stebila, D., Ustaoglu, B.: Towards denial-of-service-resilient key agreement proto-
cols. In: (ACISP) 2009. LNCS, vol. 5594, pp. 389–406 (2009)

55

http://dogecoin.com/


77. Tang, Q., Jeckmans, A.: On non-parallelizable deterministic client puzzle scheme
with batch verification modes (January 2010), http://doc.utwente.nl/69557/

78. Thompson, C.D.: Area-time complexity for vlsi. In: Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing. pp. 81–88. STOC ’79, ACM,
New York, NY, USA (1979), http://doi.acm.org/10.1145/800135.804401

79. Tritilanunt, S., Boyd, C.A., Foo, E., Nieto, J.M.G.: Toward non-parallelizable client
puzzles. In: Cryptology and Network Security. LNCS, vol. 4856, pp. 247–264 (2007)

80. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) Advances
in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings. Lecture Notes
in Computer Science, vol. 4622, pp. 205–223. Springer (2007), http://dx.doi.

org/10.1007/978-3-540-74143-5_12

81. Wu, H.: POMELO – A Password Hashing Algorithm (2015)

82. Yao, F.F., Yin, Y.L.: Design and analysis of password-based key derivation func-
tions. In: Menezes, A. (ed.) Topics in Cryptology — CT-RSA 2005. LNCS, vol.
3376, pp. 245–261. Springer (2005)

A The embedding lemma

We aim at using the standard composition theorem of constructive cryptogra-
phy [62,61] to compose the MoHFs proven secure according to Definition 5 with
the application protocols described in Sections 7 and 8. We note, however, that
the indifferentiability statement according to Definition 5 is not immediately
applicable in the case with two honest parties, as required in the availability
conditions of Definitions 10 and 11, where both the prover and verifier are hon-
est. In particular, the priv-interface models use by an honest party, whereas the
pub-interface corresponds to a dishonest party. We argue here, however, that
for stateless algorithms a definition with two honest users’ interfaces priv1 and
priv2 follows immediately: as potential oracles are evaluated consistently at the
interfaces priv1 and priv2 and the algorithm is stateless, there is no difference
between providing input at those two interfaces, as long as the resources at the
single interface priv are sufficient to make the same number of evaluations. This
statement is formalized in the following lemma, where the resources Sl1,l2,r and
T rro
a1,a2,b

are defined analogously to Sl,r and T rro
a,b but with two “honest” interfaces

priv1 and priv2.

Lemma 1. Let f (·), naı̈ve,P, a, b : P → N, and ε : P × P → R≥0 as in Defini-
tion 5, with naı̈ve being a stateless algorithm, and a(l1 + l2) ≥ a(l1) + a(l2) for
all l1, l2 ∈ P.

For a family of models Sl,r, let (f (·), naı̈ve) be a (a, b, ε)-secure moderately
hard uniform function in the Sl,r-model. Let Sl1,l2,r and T rro

a1,a2,b
be as described

above. Then,

∀r ∈ P ∃σ ∀l1, l2 ∈ P : πpriv1 πpriv2 Sl1,l2,r ≈ε(l1+l2,r) σpub T rro
a(l1),a(l2),b(r)

,
(1)

where π = πnaı̈ve is the protocol from Definition 5.

56

http://doc.utwente.nl/69557/
http://doi.acm.org/10.1145/800135.804401
http://dx.doi.org/10.1007/978-3-540-74143-5_12
http://dx.doi.org/10.1007/978-3-540-74143-5_12


Proof. For simplicity of notation, we define

S ′ := πpriv1 πpriv2 Sl1,l2,r , T ′ := σpub T rro
a(l1),a(l2),b(r)

,

S ′′ := πpriv Sl1+l2,r , T ′′ := σpub T rro
a(l1+l2),b(r)

.

We prove the statement by reduction. Let σ be the simulator that exists by
the validity of Definition 5; the same σ is used in equation (1). Let D be a
distinguisher that achieves advantage ε′ > ε(l1 + l2, r); we build a distinguisher
D ′(D) for

S ′′ = πpriv Sl1+l2,r ≈ε(l1+l2,r) σpub T rro
a(l1+l2),b(r)

= T ′′

as follows. All queries that D makes to interfaces priv1 or priv2 are instead made
at the single interface priv; up to a(l1) queries at priv1 and up to a(l2) queries
at priv2, all further queries are answered with ⊥ instead. The queries at pub are
simply forwarded to the respective interface of S ′ or T ′, respectively.

By the definition of Sl1,l2,r and T rro
a1,a2,b

, the fact that naı̈ve is stateless, and

a(l1 + l2) ≥ a(l1) + a(l2), the views of D when connected to S ′ or D ′(·)S ′′, and
respectively to T ′ or D ′(·)T ′′, are the same. ut

B Proof of Theorem 4

To prove the two lemmas, we use a standard compression argument to show
that violating them requires compressing the function table of a RO with large
probability; an impossible task. For this the proof uses the following lemma
bounding the success probability of a predictor at guessing bit-strings when
given short but correlated hints. (A proof can be found in [42] for example.)

Lemma 2. Let B = b1, . . . , bu be a sequence of uniform random bits. Let P be a
randomized procedure which gets a hint h ∈ Γ , and can adaptively query any of
the bits of B by submitting an index i and receiving bi. At the end of the execution
P outputs a subset S ⊆ {1, . . . , u} of |S| = k indices which were not previously
queried, along with guesses for all of the bits {bi|i ∈ S}. Then the probability
(over the choice of B and randomness of P) that there exits some h ∈ Γ for

which P(h) outputs all correct guesses is at most |Γ |
2k

.

The simulator. We begin with the detailed description of the simulator σ. Recall
(from Definitions 5 and 6) that σ is connected to the pub-interface of T rro

l,r where
l = aw(ql,ml) and r = bw(qr,mr). Upon initialization, σ initializes an internal
copy of Sw-prom

l,r where l = (ql,ml) and r = (qr,mr). To be precise, σ implements
h using a lazy-sampling technique: Whenever h is queried, σ checks whether that
query has been made before. If so, σ responds with the same answer. Otherwise
it selects a uniform random y←$ {0, 1}w, records the pair (x, y) and responds
with y. Once initialization is complete, upon input of a pROM algorithm A and
input xin on its external interface connected with distinguisher D , the simulator
provides A and xin to the emulated copy of Sw-prom. This causes Sw-prom to

57



(sample fresh random coins $ and) begin the execution of A(xin; $). During the
emulation of that execution, σ keeps track of the calls to h made by A. All calls
are answered using the lazy sampling method unless A is making a call of the
form h(x̄) with x̄ = (x, u, `1, `2) where all of the following three conditions are
met:

1. u = vout is the sink of G,
2. `1 and `2 are the labels of the parents of u in G in the (h, x)-labeling of G,
3. A has already made all other calls to h for the (h, x)-labeling of G in an order

respecting the topological sorting of G.

We call a query to h, for which the first two conditions are valid, an h-final call
(for x). If the third condition also holds then we call the query a sound final call.
For a sound final call x̄, if the record (x̄, y) already exists, then respond with y.
Otherwise, send x to T rro (via the pub interface). If the response is y ∈ {0, 1}w,
then store the record (x̄, y) and continue emulating A with y as the response to
h(x̄). If, however, the response from T rro is ⊥, then σ outputs ⊥ to D and halts.
Whenever Sw-prom produces output on its pub-interface, σ forwards that output
on to D and halts (ignoring all future messages).

It remains to be proved that Definition 5 is satisfied, that there is no dis-
tinguisher D that can tell apart an interaction with πpriv

naı̈veG
Sw-prom
l,r from an

interaction with σpub T rro
l,r with probability greater than εw(l, r, n). To this end,

we introduce the following generalization of the pebbling game which serves to
model concurrent evaluations of fG on multiple inputs.

Multi-color pebbling. Intuitively, the pebbling game above abstracts a single
computation of a graph function. Placing a pebble on a node corresponds to
computing a label and storing its value for future use. However, because we are
ultimately concerned with the amortized complexity of MoHFs, we must consider
repeated computations of functions in F . Therefore, we introduce the following
multi-colored generalization of the pebbling game. Intuitively each color repre-
sents the values stored while evaluating a distinct (index, input) pair.

More precisely, let G be a DAG and m ∈ N. The m-tuple P = (P 1, . . . , Pm)
is called an m-color pebbling of G (or just m-pebbling for short) if each P j is
a complete and legal pebbling of G. Moreover, if P is an m-pebbling of G and
Π is the set of all m-pebblings of G then the m-cumulative pebbling complexity
(m-CPC) of G is defined to be:

cpcm(P ) :=
∑
j∈[m]

∑
i

∣∣P ij ∣∣ , cpcm(G) := min {cpcm(P ) : P ∈ Π} .

It is immediate from this definition that cpcm of any graph scales linearly in
the number of colors.

Lemma 3. For any DAG G and positive integer m > 0 it holds that:

cpcm(G) = m · cpc(G).

58



Ex-post-facto pebbling. We define (a variant of) the ex-post-facto m-pebbling P
(which were first introduced in [39]) of a given execution E in the pROM. We
prove two important properties relating P to E. First, w.h.p., if E contains m
final calls then P is a legal and complete m-pebbling of G. Second, w.h.p., if for

the bit-length of the input state |σi| = d, then
∑
j∈[m]

∣∣∣P ji ∣∣∣ is at most of size

(approximately) d/w. Thus, w.h.p., both statements are true for P and so we

can lower-bound cmc(E) in terms of
∑
i

∑
j∈[m]

∣∣∣P ji ∣∣∣ which is at least m ·cpc(G).

The following is a generalization of the ex-post-facto pebbling in [11,42] such
that every distinct index/input pair appearing in a RO call is assigned its own
color in the m-coloring.

Fix an execution of some algorithm A in the pROM (i.e., as executed by
Sw-prom). More precisely, fix an execution of algorithm A on input X using coins
$ with oracle h resulting in z ∈ N output states σ̄1, . . . , σ̄z where σ̄i = (τi,qi) and
qi = (q1i , q

2
i , . . . , q

yi
i ). To define the corresponding ex-post-facto m-color pebbling

of G′ we need the following terminology.
For input x ∈ {0, 1}∗ and node v ∈ V let pre-lab(x, v) denote the RO query

(x, v, lab(v1), . . . , lab(vz)), where the {vj} are the parents of v arranged in lexi-
cographic order and lab(vi) is the label of vi in the (h, x)-labeling of G.32 A RO
query q ∈ {0, 1}∗ is said to be correct for (x, v) if q = pre-lab(x, v). In this case
the nodes parents(v) ⊆ V are called the input nodes of q and v ∈ V is the output
node of q.

We can now define the ex-post-facto pebbling for the execution. Initially, all
sets P xi for i ∈ [0, z] and x ∈ {0, 1}∗ are empty. We start with i = 1 and parse
the batches of RO calls in the output states of the execution in the order they
were produced, populating the sets as we go along by applying the following
rules to each batch qi.

1. Initially, for all x ∈ {0, 1}∗, we set P xi := P i,xj−1.
2. For each query q ∈ qi, if it is correct for some (x, v) ∈ {0, 1}∗ × V , then set
P xi := P xi ∪ {v}.33

3. For fixed input x ∈ {0, 1}∗, a node v ∈ V is called necessary for x if there
exists a future query q ∈ ql with l > j where v is an input node to a correct
call q for some (x, u), yet in between there is no correct call for (x, v). That
is there is no q′ ∈ qs with j < s < l where q′ is a correct call (x, u). Remove
all v from P xj which are not necessary.34

32 In other words pre-lab(x, v) is precisely the RO call defining the label of v in the
(h, x)-labeling of G.

33 Intuitively, placing a pebble on v (by adding v to set P xj ) represents A storing in
memory v’s label for the (h, x) labeling of G.

34 Intuitively, v is necessary for x if the label of v will be needed to make some future call
to h in the computation of the (h, x) labeling of G, but the label of v in that labeling
will not be recomputed beforehand. Only necessary nodes need to be stored (i.e.
pebbled) since other nodes are either not needed, or will be computed (i.e. pebbled)
before they are needed. We optimistically assume that the labels of unnecessary
nodes are never stored.

59



Finally let X ⊆ {0, 1}∗ be the set of inputs to fG such that ∃i ∈ [z] such
that vout ∈ P xi . Then the ex-post-facto pebbling of this execution is the |X|-color
pebbling P := {P x = (P x1 , . . . , P

x
z ) | x ∈ X}.

We prove that, w.h.p., P is indeed a multi-pebbling of G (i.e. for each color
in P the pebbling is both complete and legal for G).

Claim. For any input xin, the probability that the ex-post-facto pebbling P of
an execution Ah(xin; $) is a legal and complete |X|-color pebbling of G is at least
1− qr

2w over the choice of h and $.

Proof. We must show that P is both legal and complete with high probability.
To see that P must always be complete notice that, by construction, ∀x ∈ X

it holds that P x0 = ∅. Moreover by definition of X, for all P x ∈ P , there exists
some time step where vout is pebbled in P x. Thus each P x is a complete pebbling
of G and thus so is P .

To prove that P is legal we build a predictor P which attempts to compress
parts of the RO function table by making internal use of A. We show that for
any combination of random coins $ and RO h that causes an execution for which
the ex-post-facto pebbling P is illegal, P will succeed at compressing parts of h
when given $. Lemma 2 then implies that such pairs ($, h) must be very rare.

We call a RO call by A lucky if it is correct for some (x, v), has input node
w but no previous correct call for (x,w) was made. Notice that the only way for
P to be illegal is if A makes such a lucky call. Our goal is to build a predictor
P as in Lemma 2 which is given access to the random string B. The predictor P
depends on xin, the value supplied by D as input to the execution of A. It uses
the even bits of B as the random coins $ and odd bits of B as a function table
of h to internally emulate a copy of Ah(xin; $) as follows.

Hint: Recall that A is permitted by Sw-prom to make at most qr RO calls in
total. The predictor receives as a hint the index j ∈ [qr] of the (first) lucky
RO made by A. If no lucky call exists for that choice of B (i.e. the $ and h
induced by B) then no hint is given and P simply halts.

Execution: The predictor runs Ah(x; $) forwarding all RO calls to h (i.e. by
reading B at the relevant positions) until the jth query q. By assumption
q is lucky which means it is correct for some (x, v) and contains the label
lab(w) of w in the (h, x)-labeling of G although no correct call for (x,w)
was previously made. The reduction recomputes the value of pre-lab(x,w)
by evaluating the (h, x)-labeling in topological order. Notice this is done
without querying H(pre-lab(x,w)). Finally it outputs lab(w) as its guess for
the odd bits of B at the positions representing pre-lab(x,w).

Notice that P outputs a correct guess whenever A produces a lucky RO call.
Moreover P can receive a total of qr different values for the hint nor does P ever
read out the the w positions (representing) lab(w) in the string B. Thus Lemma 2
implies that P can succeed with probability at most qr/2

w, which in turn implies
that A can produce a lucky RO call with that probability. This concludes the
proof of the claim. ut

60



Now we show that at the end of any step in the execution, w.h.p., the sum
of the number of pebbles (over all colors) on G can be upper-bounded by the
size of the data τi in the input state σi.

Claim. Fix any input xin. Let σi be the ith input state in an execution of
Ah(xin; $). Then, for all λ ≥ 0,

Pr

[
∀i :

∑
x∈X
|P xi | ≤

|σi|+ λ

w − log(qr)

]
> 1− 2−λ

over the choice of h and $.

Proof. Recall that, intuitively, we only place necessary pebbles in P , namely
ones representing labels which will be used in a future call without first being
recomputed. Suppose that, at some time step i ∈ [z], P has a large number of
pebbles on G but A was only given a small state σi. Then, intuitively, we should
be able to use A to predict the values of the labels of the pebbled nodes given
only a small hint (namely σi). Since random oracles are w.h.p. incompressible
this event should happen with low probability. We make this intuition formal
with the following reduction P whose goal it is to predict the values of h at the
points pre-lab(x, v) for all pebbled nodes in such a time step.

Fix any input xin and let σ0, σ1, . . . σz be the input states for the execution
Ah(xin; $). Let P be the corresponding ex-post-facto pebbling. Fix any step i ∈
[z]. The reductions goal will be to predict the label of all pebbles (of any color)
currently on G in the ith step of P .

A query q to h made by A at time j > i is called critical for (x, v) if q is
correct for some node (x, u) and v is an input-node for q but no correct call for
v was made during the time steps [i + 1, j − 1]. Intuitively, critical queries are
interesting because, by telling the predictor when they will occur (with a hint),
the predictor can use them to extract the labels of all nodes that are necessary
at time i. Note that these are exactly the set of pebbles on G at time i. In
particular, there can be at most c ≤

∑
x∈X |P xi | critical calls since there can be

at most one per pebble on G.
As before, P has access to a bit-string B which it uses to implement coins $

and a RO h in an emulation of Ah(xin; $). The prediction proceeds as follows.

Hint: As a hint it is given I ∈ [q]c, the indices of the critical calls made by A,
and the state σi.

Execution: The reduction runs A with initial input state σi. When P gets an
oracle call q, it checks if q is critical (in some (h, x)-labeling) using I. If
so, then, for each input node v of q, the reduction records the corresponding
label in q as v’s label in the (h, x)-labeling of G. These will eventually become
the predictions for the RO. To answer q, the reduction does the following.
– Determines if the call is correct for some (x, v). This is the case if q is

critical. It is also correct for (x, v) if q has the form q = (x, v, `1, . . . , `e),
node v has e parents in G, and, for each parent vl, a correct call for
(i, x, vl) has already been made and that call’s result was `l. In particular,

61



P can determine if q = pre-lab(x, v) and no new calls need be made by P

to check this.
– If the call is correct for (x, v) and the label lab(v) in the (h, x)-labeling

has been recorded, then respond to A with this label. Otherwise query
h(q), record the answer, and return it to A.

When A terminates, P has recorded all labels of input-nodes to all critical
calls. These will serve as its predictions for the outputs of the RO. So what
remains is computing the corresponding inputs as follows.
First P checks the transcript to determine the sets {P xi | x ∈ X}.35 For all
x ∈ X and v ∈ P xi , the reduction computes pre-lab(x, v) using h and the
recorded labels extracted from critical calls. Finally, it outputs lab(x, v) as
its prediction of h(pre-lab(x, v)).

Notice that the labels in the output of P were all used in a critical call without
first being recomputed by A. Thus, P never queried them to h, as they were
recorded before pre-lab(x, v) was ever queried by A. It follows that P correctly
predicts the value of h at pre-lab(x, v), without querying h at that point, for
every pair (x, v) ∈ X × V with v ∈ P xi .

Now assume, for the sake of contradiction, that ∃λ ≥ 0 such that with prob-
ability at least 2−λ for some i ∈ [z] it holds that if we define µ :=

∑
x |P xi |, then

µ > |σi|+λ
w−log(q) . Let E be the event that the reduction produces correct predic-

tions for all labels it attempts. By construction Pr[E ] ≥ 2−λ. On the other hand,
using Lemma 2 and the fact that c ≤

∑
x |P xi | = µ, we can now write:

Pr[E ] ≤ qr · 2|σi|

2µw
≤ 2µ(log(q)−w)+|σi| .

But this implies 2−λ ≤ 2µ(log(q)−w)+|σi|, which is a contradiction to the assump-
tion. In other words, there can be no such λ and so we are done. ut

We are now equipped to complete the proof of Theorem 4.
Fix any λ ≥ 0, z ∈ N and define

ρ := q/2w + 2−λ .

Next, fix l, r ∈ Pprom and set l = a(l) and r = b(r), our goal is to prove that

πnaı̈veG

priv Sw-prom
l,r ≈ρ σpub T rro

l,r .

Let D be any distinguisher. By definition of the real and ideal model, the in-
teraction proceeds as follows: First D makes (some number of) queries at the
priv-interface. Then it inputs an algorithm at the pub-interface, and obtains the
outputs. Finally, it again makes (some number of) queries at the priv-interface,
before it outputs the decision bit. We discuss each of these phases individually.

35 This can be done by adding v to P xi if and only if v is an input node to some future
critical call for the (h, x)-labeling.

62



For the first phase, the outputs of I := σpub T rro
l,r for distinct inputs at the

priv-interface are uniformly random and independent by the definition of T rro
l,r .

In the case of R := πnaı̈veG

priv Sw-prom
l,r , proper prefixing the construction of

the graph function assures that all final queries the function makes to Sw-prom
l,r

are on fresh inputs, so the outputs are also uniformly random and independent.
Therefore, the systems behave equivalently up to this point.

For the second phase, we first consider a variation Î of I in which the sim-
ulator σ is allowed to issue more than r queries to make the simulation valid.
We, then, define events bad that occur in the execution of A within Î and R
whenever A makes a lucky call to the RO. The evaluations of Î and R, condi-
tioned on ¬bad and on the prior inputs/outputs from the queries at priv, are
identical: for any (fresh) non-final query, or final query that is not determined
by the interaction at the priv-interface, the response is uniformly random. For a
final query that is determined by the prior interaction, it is determined. Using
Maurer’s conditional-equivalence theorem [60], we obtain that the distinguishing
advantage between Î and R up to this point is bounded by the probability of
bad, and by the first above claim we can bound this by q/2w. The distinguishing
advantage between Î and I is bounded through the second claim by 2−λ.

For the third phase, we argue analogously to the first phase. (Final) queries
that have been answered before, either at the priv-interface or toward A, are
answered consistently in both I and R, and the responses to all other queries
are uniformly random. Overall, we conclude that the distinguishing advantage
can be bounded by ρ, which concludes the proof.

C niPoE with honest and dishonest provers

The niPoE material in Section 8 considers only settings where all parties are
honest or all parties are dishonest. In this section, we consider the more complex
but realistic setting where both honest and dishonest provers exist.

C.1 Definition

The main difference between the material in this section and the one in Section 8
is that all resources have three interfaces: an interface P for the honest prover,
an interface V for the verifier, and a third interface E for the attacker.

The goal of niPoE protocols. The constructed resource is similar to the resource
NIPOE described in Section 7.1, with the main difference being that honest and
dishonest provers appear in the same setting. Consequently, the resource NIPOE
takes as input at both the P - and E-interfaces statements s ∈ S, and returns
1 if the proof succeeded and 0 otherwise. The E-interface additionally allows
to retrieve the list of statements for which a proof has been performed at the
P -interface. Upon an activation at the verifier’s interface V , if for any statement
s ∈ S a proof has been successful, the resource outputs this s, and it outputs
⊥ otherwise. An output s 6= ⊥ has the meaning that the party at the P - or

63



E-interface has spent enough effort for the particular statement s. Similarly to
NIPOE, the resource NIPOE is parametrized by a performance function φ : N→
R≥0 and the number b ∈ N of verification attempts. The provers’ attempts are
specified by a number a ∈ N of attempts for the honest prover and a number a ∈
N for the dishonest prover. The resource is denoted as NIPOE

a,a
φ,b . The behavior

of this resource is described in more detail in Figure 6. There are three inputs
at E that need further explanation:

– (copy, s): This corresponds to sending a proof to V . Prover V is convinced
if the proof was successful (i.e., ês = 1), and has to spend one additional
evaluation of T rro, so the corresponding counter is increased (d← d+ 1).

– (spend): E forces V to spend one additional evaluation of T rro, for instance
by sending an invalid proof. This decreases the number of verifications that
V can still do (d← d+ 1).

– (read): E may observe the proofs that P has sent to V .

Non-interactive proof-of-effort resource, 3-party setting

The resource is parametrized by numbers a, a, b ∈ N and a mapping φ : N → R≥0. It
contains as state bits ês ∈ {0, 1} and counters d as well as cs, ĉs ∈ N for each s ∈ {0, 1}∗
(all initially 0), and lists S, Ŝ ∈ ({0, 1}∗)∗ of strings that is initially empty.

Verifier V : On input a unary value, if S is empty then return ⊥. Otherwise remove
the first element of S and return it.

Honest prover P : On input a string s ∈ {0, 1}∗, set cs ← cs + 1. If
∑
s∈{0,1}∗ cs >

a, then return 0. Otherwise, draw e ∈ {0, 1} at random such that it is 1 with
probability φ(cs) and 0 otherwise. If e = 1 then append s to Ŝ. If d < b, then
append s to S and set d← d+ 1. Output e at interface P .

Dishonest prover P : – On input a string s ∈ {0, 1}∗, set cs ← cs + 1. If∑
s∈{0,1}∗ cs > a, then return 0. Otherwise, of ês = 0, then draw ês at random

such that it is 1 with probability φ(cs) and 0 otherwise. Output ês at interface
P .

– Upon an input (copy, s). Set d← d+ 1. If d ≤ b and ês = 1, then append s to
S.

– Upon input (spend), set d← d+ 1.
– Upon an input (read), return Ŝ.

Fig. 6: Description of the desired functionality NIPOE
a,a
φ,b .

The “real-world” setting for niPoE protocols. The main difference between the
niPoE setting in Section 8 is that we have to describe how the channel −→ in
the three-party scenario is understood. For simplicity, we model it such that if
sender P inputs a message into the channel, it can be read by both V and E.
Additionally, E can put messages into the channel which will also be readable
by V . The shared resource T rro

a,a,b behaves as usual, but allows a queries by P , b

64



queries by V , and a queries by E. That is, the assumed resources are described

by
[
T rro
a,a,b,−→

]
in this case.

The security definition. Having described the real-world and ideal-world settings,
we are now ready to state the security definition. As in the case of a PoE, the
definition considers both the case where the prover is honest (this requires that
the proof can be performed efficiently) and where the prover is dishonest (this
requires that each proof need at least a certain effort).

Definition 12. A protocol π = (π1, π2) is a non-interactive (φ, b, ε)-proof-of-
effort with respect to simulator σ if for all a, a ∈ N,

π1
Pπ2

V
[
T rro
a,a,b,−→

]
≈ε σENIPOE

a,a
φ,b .

C.2 Protocol

We prove the statement for the same Construction 3 that we considered in
Section 8. We show the following theorem.

Theorem 8. Let d ∈ N the hardness parameter. Then the described proto-
col (ξ, χ) is a non-interactive (2−d, b, 0)-proof-of-effort.

Proof. We have to prove the condition

ξPχV
[
T rro
a,a,b,−→

]
≈ε σPNIPOE

a,a
φ,b ,

with ε = b·2d
|R| and the simulator σ described as follows. Initially, it sets internal

query counters to cP , cV ← 0. The simulator emulates to E the same interface

as
[
T rro
a,a,b,−→

]
. Whenever E makes a query x̄ ∈ {0, 1}∗ to T rro, if cP ≥ a then

output ⊥. Otherwise, set cP ← cP + 1 and:

– If x̄ has been queried before, then respond consistently. (Including cases
where the query was made implicitly because the proof was simulated to be
sent over −→.)

– If x̄ is not of the form (s, x) ∈ S × D, then output a uniformly random
element from R.

– If x̄ = (s, x) ∈ S×D, and for statement s the prover has not yet been solved,

activate NIPOE
a,a
φ,b with statement s, and obtain a result bit b. Then:

• If b = 1, sample ỹi←$

{
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
, return ỹi and

mark s as solved.
• Otherwise, b = 0. Output a uniformly random value from

R \
{
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
.

– The final case is that x̄ = (s, x) ∈ S × D, but the prover has solved for
statement s already. In that case, output a uniformly random value from R.

65



Whenever E sends a message x̄ via the channel −→ :

– If x̄ /∈ S × D × R, or cV ≥ b, then ignore the message. Otherwise, set
cV ← cV + 1.

– If x̄ = (s, x, y) but the response to query (s, x) was not valid (i.e., did not
start with 0d) or not equal to y, or the same input has been given before or

it was simulated as a message on −→, then input (spend) to NIPOE
a,a
φ,b .

– If x̄ = (s, x, y) and the response to query (s, x) was y, and y starts with 0d,

then invoke copys at NIPOE
a,a
φ,n.

– If x̄ = (s, x, y) but (s, x) has not yet been queried to T rro, then first behave
as in a query (s, x) to T rro, and subsequently as sending an either correct
or incorrect query according to the above rules.

Whenever E attempts to read P ’s messages from −→, invoke (read) at NIPOE
a,a
φ,n

to obtain Ŝ. If a new s ∈ S is obtained (or there is still one buffered from a
previous invocation), then simulate a valid proof for s as sent over −→.

In the real-world model, upon each input s ∈ S at P , the protocol ξ follows
the strategy described in Construction 2. If P has not been successful for s ∈ S
before, and if the overall number of activations at P is not exceeding a, the
probability of T rro(s, x′) = 0d|y′ with y′ ∈ {0, 1}∗ is 2−d since the outputs of
T rro are uniformly distributed and independent for differing inputs. Therefore,
the probability of returning 1 for an s for which it was not solved before is exactly
2−d, which is exactly the behavior described by NIPOE

a,a
φ,b . Additionally, in both

cases the verifier accepts s ∈ {0, 1}∗ if the proof is valid and the overall number
of verifications does not exceed b.

Upon an activation at V , if no prover has solved for a (new) statement, then
the verifier outputs ⊥. If a prover has sent a solution (s′, x′) ∈ S ×D, then the
verifier checks this via T rro(s′, x′) and outputs s′ if the solution was correct.

What remains to be shown is that with the described simulator σ, the two
terms in equation Equation C.2 are equivalent. First, the responses to queries
to T rro also have the correct distributions.

– Repeated queries are answered consistently in both cases, and queries that
are not of the form (s, x) ∈ S × D are answered by a uniformly random
value.

– For queries of the form x̄ = (s, x) ∈ S ×D, more care is necessary.
• If the prover has not yet solved for statement s, the probability of solving

is exactly φ(j) = 2−d by the same argument as in the proof of the
two-party setting. Consequently, in the simulation, the probability of
returning a (uniformly random) value from the set

S =
{
y ∈ R : y = 0d|y′ ∧ y′ ∈ {0, 1}∗

}
is 2−d, and the probability of returning a (uniformly random) value from
R \ S is (1 − φ(j)) = 1 − 2−d. As |R|/|S| = 2d, the resulting output is
uniformly random in R.
In the protocol, since T rro has never been queried on the input before,
the output is uniformly random from R by definition of T rro.

66



• In case session i has been solved previously, the output is uniformly
random from R in both cases.

The read operations on −→ are also simulated properly. In both cases, in the
order in which the proofs were obtained for statements s1, s2, . . . at P , E will
observe valid proofs at the channel −→.

Under the condition that E does not send a message (s, x, y) such that y =
T rro(s, x), sending a value over the channels −→ also has the same effects. A
value that is not valid, meaning that it is outside of S ×D×R or known to not
map to a valid solution, does not change the state of the verifier. A value that is
known to map to a valid solution will make the verifier accept the corresponding
statement. A message (s, x, y) where (s, x) has not been queried to T rro is also
treated consistently, namely as first a query to T rro and then as sending the
corresponding result to the verifier. This completes the proof. ut

67


	Moderately Hard Functions: Definition, Instantiations, and Applications
	Joël Alwen and Björn Tackmann
	Introduction
	Extended abstract
	Moderately hard functions
	Memory-hard functions
	Other types of MoHFs
	Interactive proofs of effort
	Non-interactive proofs of effort
	Combining the results

	Preliminaries for the full paper
	Reactive discrete systems
	Indifferentiability
	Oracle functions and oracle algorithms
	Computation and computational cost
	A model for resource-bounded computation

	Moderately hard functions
	Memory-hard functions
	The parallel ROM
	Graph functions
	A parallel memory-hard MoHF

	Other types of MoHFs
	Weak memory-hard functions
	Memory-bound functions
	One-time computable and uncomputable functions

	Interactive proofs of effort
	Definition
	Protocols

	Non-interactive proofs of effort
	Definition
	Protocol

	Combining the results
	Detailed discussion of related work and applications
	Related work
	Applications

	Open Questions
	The embedding lemma
	Proof of [thm:mhf]Theorem 4
	niPoE with honest and dishonest provers
	Definition
	Protocol




