
Actively Secure Garbled Circuits with Constant
Communication Overhead in the Plain Model

Carmit Hazay1, Yuval Ishai2, and Muthuramakrishnan Venkitasubramaniam3

1 Bar-Ilan University
carmit.hazay@biu.ac.il,

2 Technion and UCLA
yuvali@cs.technion.ac.il,

3 University of Rochester
muthuv@cs.rochester.edu

Abstract. We consider the problem of constant-round secure two-party com-
putation in the presence of active (malicious) adversaries. We present the first
protocol that has only a constant multiplicative communication overhead com-
pared to Yao’s protocol for passive adversaries and can be implemented in the
plain model by only making a black-box use of (parallel) oblivious transfer and
a pseudo-random generator. This improves over the polylogarithmic overhead of
the previous best protocol. A similar result could previously be obtained only in
an amortized setting, using preprocessing, or by assuming bit-oblivious-transfer
as an ideal primitive that has a constant cost.
We present two variants of this result, one which is aimed at minimizing the
number of oblivious transfers and another which is aimed at optimizing concrete
efficiency. Our protocols are based on a novel combination of previous techniques
together with a new efficient protocol to certify that pairs of strings transmitted
via oblivious transfer satisfy a global relation. The communication complexity
of the second variant of our protocol can beat the best previous protocols even
for realistic values of the circuit size and the security parameter. This variant is
particularly attractive in the offline-online setting, where the online cost is dom-
inated by a single evaluation of an authenticated garbled circuit, and can also be
made non-interactive using the Fiat-Shamir heuristic.

1 Introduction

Secure two-party computation allows two parties to perform a distributed computation
while protecting to the extent possible the secrecy of the inputs and the correctness of
the outputs. The most practical approach to constant-round secure two-party computa-
tion is Yao’s garbling paradigm [50]. It is convenient to describe Yao’s protocol for the
case of computing deterministic two-party functionalities, described by Boolean cir-
cuits, that deliver output to only one party. (The general case can be easily reduced to
this case.) We will refer to the party who gets an output as the receiver and to the other
party as the sender. The protocol proceeds by having the sender randomly generate an
encoded version of the circuit, referred to as a garbled circuit, together with pairs of in-
put keys, a pair for each input bit. It sends the garbled circuit to the receiver along with



the input keys corresponding to the sender’s inputs, and allows the receiver to select its
own input keys using oblivious transfer (OT). From the garbled circuit and the selected
input keys, the receiver can compute the output.

This simple version of Yao’s protocol is only secure in the presence of passive
(semi-honest) corruptions, since it allows a malicious sender to freely manipulate the
honest receiver’s output by sending a badly formed garbled circuit. Nevertheless, be-
ing the simplest protocol of its type, it serves as a benchmark for the efficiency of se-
cure two-party computation. Given a length-doubling pseudo-random generator4 (PRG)
G : {0, 1}κ → {0, 1}2κ, this protocol can be used to evaluate a Boolean circuit C using
O(κ|C|) bits of communication, O(|C|) PRG invocations, and n OTs on pairs of κ-bit
strings, where n is the length of the receiver’s input. Obtaining security in the presence
of active (malicious) adversaries is much more challenging. To rule out practically inef-
ficient solutions that rely on general zero-knowledge proofs [13] or alternatively require
public-key operations for every gate in the circuit [28, 12], it is useful to restrict the at-
tention to protocols that make a black-box use of a PRG, as well as a constant-round
parallel oblivious transfer (OT) protocol. The latter is in a sense necessary, since paral-
lel OT is an instance of secure computation. It is convenient to abstract away from the
use of an actual OT sub-protocol by casting protocols in the OT-hybrid model, where
the parties can invoke an ideal OT oracle. This is justified by the fact that the cost of
implementing the OTs is typically not an efficiency bottleneck.5 In the following, we
will refer to a protocol that only makes a black-box use of a PRG (or a stronger “sym-
metric” primitive)6 and OT (either a parallel OT protocol or an ideal OT oracle) as a
black-box protocol. Yao’s passively secure protocol is black-box in this sense.

Lindell and Pinkas [35] (following [39]) presented the first constant-round black-
box protocol that achieves simulation-based security against active adversaries. Their
protocol replaces expensive (and non-black-box) zero-knowledge proofs by an ad-hoc
use of a “cut-and-choose” technique. Since then, a large body of works attempted to im-
prove the efficiency of such protocols both asymptotically and concretely (see, e.g., [19,
43, 42, 48, 49] and references therein). The main goal of the present work is to minimize
the asymptotic communication complexity of this type of protocols.

In protocols that rely on the “cut-and-choose” technique, the sender sends O(s)
independent copies of the garbled circuit, for some statistical parameter s, following
which a subset chosen by the receiver is opened to demonstrate correctness. The pa-
rameters in this approach have been sharpened, and the best protocols can achieve
sender simulation error of 2−s using only s copies [15, 34]. However, the multiplicative

4 Garbled circuits are often described and implemented using a pseudo-random function (PRF)
F : {0, 1}κ × {0, 1}κ → {0, 1}κ instead of a length doubling PRG G. Since G can be
implemented via two calls to F but the converse direction is not known, formulating positive
(asymptotic) results in terms of the number of PRG calls makes them stronger.

5 The number of OTs used by such protocols is typically smaller than the circuit size. Moreover,
the cost of a large number of OTs can be amortized via efficient OT extension [17, 29].

6 It is sometimes helpful to replace the PRG by a stronger symmetric primitive, such as sym-
metric encryption, a correlation-robust hash function [17], or even a random oracle. While the
main question we consider was open even when the use of such stronger symmetric primitives
is allowed, our main asymptotic results only require a PRG.



communication overhead7 in all these protocols over Yao’s protocol is at least s, and
similarly the cryptographic cost involves at least Ω(s) PRG calls per gate, compared
to O(1) in Yao’s protocol. Using a different technique (see Section 1.2), the asymp-
totic communication overhead has been improved to polylog(s) [20, 19], at the cost of
relying on heavy “non-cryptographic” machinery (that includes linear-time encodable
error-correcting codes and routing networks) and poor concrete efficiency.

Towards minimizing the overhead of security in the presence of active adversaries,
another line of works analyzed the amortized setting, where multiple evaluations of the
same circuit are conducted by the two parties [38, 16, 45, 42]. In this setting, a recent
work of Nielsen and Orlandi [42] shows how to protect Yao’s protocol against active
adversaries with only a constant (amortized) multiplicative communication overhead.
Besides relying on a collision-resistant hash-function (or even private information re-
trieval schemes for functions with large inputs), the main caveat is that this approach
only applies in the case of multiple circuit evaluations, and moreover the number of
evaluations must be bigger than the size of the circuit.

Finally, a recent work of Wang, Ranellucci, and Katz [49] obtains an actively se-
cure version of Yao’s protocol that can be instantiated to have constant communication
overhead in the OT-hybrid model. Unfortunately, this protocol requires Ω(κ) separate
bit-OT invocations for each gate of the circuit. As a result, its black-box implementation
in the plain model has Ω̃(κ) communication overhead over Yao’s protocol.8 A similar
overhead applies to the computational cost in the plain model. We note that even in
the bit-OT hybrid, the constant-overhead variant of [49] inherits from [25, 7] the use of
heavy tools such as algebraic geometric codes, and has poor concrete efficiency.

To conclude, prior to the present work there was no constant-round actively secure
protocol that makes a black-box use of oblivious transfer and symmetric primitives and
has a constant communication overhead over Yao’s protocol in plain model. This state
of affairs leaves the following question open:

What is the best achievable communication overhead of constant-round “black-
box” actively secure two-party protocols in the plain model compared to Yao’s
passively secure protocol? In particular, is constant multiplicative overhead
achievable?

As discussed above, it will be convenient to consider this question in the OT-hybrid
model. To ensure relevance to the plain model we will only consider a “κ-bit string-

7 Following the common convention in the secure computation literature, the multiplicative
overhead considers the typical case where the circuit is (polynomially) bigger than the in-
put length and the security parameter, and ignores low-order additive terms that are asymp-
totically dominated by the circuit size when the circuit size is a sufficiently large poly-
nomial in the other parameters. Concretely, when we say that the asymptotic multiplica-
tive overhead is c(s), we mean that the communication complexity can be bounded by
c(s) ·O(κ|C|) + |C|ε · poly(n, s, κ) for every constant ε > 0.

8 There are no known protocols for realizing many instances of bit-OT in the plain model with
less than Ω̃(κ) bits per instance, except via a heavy use of public-key cryptography for each OT
instance [23, 5] or polynomial-stretch local PRGs [22]. This is true even for passively secure
bit-OT, even in the random oracle model, and even when using the best known OT extension
techniques [17, 32].



OT” hybrid, where each ideal OT is used to transfer a string whose length is at least
κ (a computational security parameter) and the communication cost also includes the
communication with the OT oracle.

As a secondary goal, we will also be interested in minimizing the computational
overhead. The computational cost of Yao’s protocol is dominated by a constant number
of PRG calls per gate.

1.1 Our Results

Our main result is an affirmative answer to the question of actively secure garbled cir-
cuits with constant communication overhead. This is captured by the following theorem.

Theorem 1.1 (Informal.). Let κ denote a computational security parameter, s a sta-
tistical security parameter, and n the length of the shorter input. Then, for any constant
ε > 0, there exists an actively secure constant-round two-party protocol ΠC for eval-
uating a Boolean circuit C with the following efficiency features (ignoring lower order
additive terms):

– It uses O(κ · |C|) bits of communication;
– It makes O(|C|) black-box calls to a length-doubling PRG of seed length κ;
– It makes n+O(s · |C|ε) calls to κ-bit string OT oracle, or alternatively (n+ |C|ε) ·
poly(κ) calls to any (parallel, constant-round) bit-OT protocol in the plain model,
assuming explicit constant-degree polynomially unbalanced unique-neighbor ex-
panders.9

Concrete efficiency. The above result is focused on optimizing the asymptotic com-
munication complexity while using a small number of OTs. We also present a second
variant of the main result which is geared towards concrete efficiency. In this variant
we do not attempt to minimize the number of string OTs, but only attempt to minimize
the complexity in the κ-bit string-OT hybrid. Efficient OT extension techniques [17, 29]
can be used to get a similar complexity in the plain model. An additional advantage of
the second variant is that it avoids the heavy machinery of linear-time encodable error-
correcting codes and AG codes that are used in the first variant. Eliminating the use of
AG codes makes the protocol realizable with polylogarithmic computational overhead
compared to Yao’s protocol (as opposed to Ω(s) computational overhead in the first
variant, which is incurred by applying the encoding of an AG code on a message of
length Ω(s)).

Optimizing our second variant, we get better concrete communication complexity
than the best previous protocols. For instance, for computational security κ = 128 and
statistical security s = 40 and sufficiently large circuits, our multiplicative communi-
cation overhead is roughly 7 (compared to 40 in optimized cut-and-choose and roughly

9 This assumption is needed for the existence of polynomial-stretch local s-wise PRGs. It is a
mild assumption (arguably more so than standard cryptographic assumptions) that can be in-
stantiated heuristically (see, e.g., [40, 22, 2]). One can dispense with this assumption by allow-
ing O(|C|) OTs of κ-bit strings, or using a stronger symmetric primitive such as a correlation-
robust hash function.



10 in [49]). Similarly to [49], our technique is compatible with the standard Free XOR
garbled circuit optimization [33], but not with the “half-gate” optimization from [51].
Thus, for a fair comparison with the best passively secure cut-and-choose based proto-
cols in the random oracle model, our overhead should be multiplied by 2. We leave the
question of combining our technique with half-gate optimizations for future work.

For the case of evaluating a single AES circuit, the communication complexity of
our optimized protocol is 3.39MB, roughly half of that of [49]. Our concrete efficiency
advantages are even bigger when choosing bigger values of s. This is needed for the
non-interactive setting discussed below. See Section 6.2 (and also Section 1.3) for a
detailed concrete analysis of this variant of our construction and comparison with the
concrete efficiency of other recent protocols.

We note that, similarly to the protocol from [49], the second variant of our protocol
is particularly attractive in the offline-online setting. In this setting, the overhead of han-
dling active adversaries is mainly restricted to an input-independent offline phase, where
the concrete cost of the online phase is comparable to the passively secure variant.
Moreover, the amount of data the receiver needs to store following the offline phase is
comparable to a single garbled circuit. This should be contrasted with (single-instance)
cut-and-choose based protocols, where only roughly half of the factor-s multiplicative
communication overhead can be moved to an offline phase [38].

Another useful feature of our protocol is that, following a function-independent
preprocessing, it can be made non-interactive in the sense of [20] by using the Fiat-
Shamir heuristic. In the non-interactive variant, the receiver can post an “encryption”
of its input and go offline, allowing the sender to evaluate a circuit C on the inputs
by sending a single message to the receiver. The protocol from [49] cannot be made
non-interactive in this sense.

1.2 Our Techniques

At a high level, our results combine the following main techniques. First, to break the
cut-and-choose barrier we apply an authenticated variant of the garbled circuit con-
struction, as was previously done in [20, 49]. To eliminate selective failure attacks by
a malicious sender, we apply the multiparty circuit garbling technique of Beaver, Mi-
cali, and Rogaway (BMR) [3], which was used for a similar purpose in the two-party
protocols of [37, 49]. Finally, we crucially rely on a new “certified oblivious transfer”
protocol to prove in zero-knowledge that pairs of strings transmitted via OT satisfy a
global relation, providing a more efficient alternative to a similar protocol from [20].

We now give a more detailed account of our techniques. Our starting point is the
work of Ishai, Kushilevitz, Ostrovsky, Prabhakaran, and Sahai [20] (IKOPS), which
obtained a “non-interactive” black-box protocol with polylogarithmic communication
overhead. More concretely, the IKOPS protocol only makes use of parallel OTs and a
single additional message from the sender to the receiver, and its communication com-
plexity is polylog(s) · κ bits per gate. On a high-level, the IKOPS protocol for a func-
tionality circuit F can be broken into the following three non-interactive reductions.

1. Reducing F to an NC0 functionality F̂ . The first step is to securely reduce the
computation of F to a single invocation of a related NC0 functionality F̂ whose



output length is O(κ · |F|). The functionality F̂ takes from the sender a pair of
keys for each wire and the purported PRG outputs on these keys. It also takes from
the receiver a secret key that is used to authenticate the information provided by
the sender. Note that F̂ is non-cryptographic and cannot check that the given PRG
outputs are consistent with the inputs. However, the authentication ensures that the
output of F̂ obtained by the receiver commits the sender to unique values. If the
receiver detects an inconsistency with the authentication information during the
garbled circuit evaluation, it aborts. The protocol for F only invokes F̂ once, and
only makes a black-box use of the given PRG. In fact, two variants of this reduction
are suggested in [20]: one where F̂ authenticates every PRG output provided by the
sender, and one where only the color bits are authenticated.

2. Reducing F̂ to certified OT. The second step is an information-theoretic protocol
for F̂ using an ideal certified oblivious transfer (COT) oracle, namely a parallel OT
oracle in which the receiver is assured that the pairs of transmitted strings (which
also include strings it does not receive) satisfy some global predicate. Such a pro-
tocol is obtained in two steps: (1) Start with a non-interactive protocol for F̂ using
a standard parallel OT oracle, where the protocol is only secure in the presence of a
passive sender and an active receiver. (This is equivalent to an information-theoretic
projective garbling scheme [4] or decomposable randomized encoding [22] for F̂ .)
(2) Use the COT oracle to enforce honest behavior of the sender.

3. Reducing certified OT to parallel OT. The third step is an information-theoretic
protocol for COT using parallel OTs. This step is implemented using a variant of
the “MPC-in-the-head” approach of [21], using a virtual MPC protocol in which
each transmitted OT string is received by a different party, and an honest majority
of servers is used to guarantee global consistency. The COT protocol is inherently
susceptible to a benign form of input-dependent selective failure attacks, but these
can be eliminated at a relatively low cost by using a local randomization tech-
nique [31, 35, 20].

The main instance of the IKOPS protocol is based on the first variant of F̂ , which
authenticates the PRG outputs. This protocol has a polylog(s) communication overhead
that comes from two sources. First, the implementation of F given F̂ (Step 1 above)
is subject to selective failure attacks by a malicious sender. These attacks make the
receiver abort if some disjunctive predicate of the wire values is satisfied. (The sec-
ond variant of F̂ from [20] is subject to more complex selective failure predicates, and
hence is not used for the main result.) Such a disjunctive selective failure is eliminated
in [20, 19] by using leakage-resilient circuits, which incur a polylogarithmic overhead.
We eliminate this overhead by defining an alternative NC0 functionality F̂ that intro-
duces a BMR-style randomization of the wire labels (as done in [37, 49], but using the
first variant of F̂ from [20]). This requires F̂ to take O(|C|) random bits from the re-
ceiver, which results in the protocol using O(|C|) OTs of O(κ)-bit strings. To reduce
the number of OTs, we use a local s-wise PRG [40] to make the receiver’s input to F̂
small while still ensuring that the probability of the receiver detecting failure is essen-
tially independent of its secret input. We note that the reduction in the number of OTs is
essential in order to get a protocol with constant communication overhead in the plain
model by using only a (parallel) bit-OT protocol and a PRG in a black box way.



Another source of polylogarithmic overhead in [20] comes from the COT construc-
tion, which relies on perfectly secure honest-majority MPC protocols. The best known
protocols of this type have a polylogarithmic communication overhead [9]. Our ap-
proach for reducing this overhead is to obtain an interactive variant of COT that can
rely on any statistically secure honest-majority MPC protocol, and in particular on ones
with constant communication overhead [8, 7, 26]. Our new COT protocol extends in a
natural way the recent MPC-based zero-knowledge protocol from [1].

The first variant of our protocol uses the above COT protocol for a consistency pred-
icate defined by Boolean circuits. As in [20], these boolean circuits employ information-
theoretic MACs based on linear-time encodable codes [47]. To compute such a predi-
cate with constant communication overhead, we rely on statistical honest-majority MPC
based on algebraic geometric codes [7, 21]. This results in poor concrete efficiency and
Ω(s) computational overhead.

The second variant of our protocol eliminates the above heavy machinery and ob-
tains good concrete efficiency by making the following two changes: (1) using the sec-
ond variant of the NC0 functionality F̂ for Step 1; (2) applying COT for a predicate
defined by an arithmetic circuit over a field of size 2O(s). The latter change allows us
to use simpler honest-majority MPC protocols for arithmetic circuits over large fields.
Such protocols are simpler than their Boolean analogues and have better concrete effi-
ciency (see [26], Appendix C, and [1]). Another advantage is polylogarithmic computa-
tional overhead. A disadvantage of this approach is that the corresponding functionality
F̂ does not allow us to use an s-wise PRG for reducing the number of OTs. As a result,
the protocol requires O(|C|) OTs of O(κ)-bit strings.

1.3 Comparison with Wang et al. [49]

The recent results of [49] are the most relevant to our work. Like the second variant of
our protocol, the protocol from [49] uses a combination of: (1) an “authenticated gar-
bled circuit functionality” which is similar to the second variant from [20] that only au-
thenticates the color bits, and (2) a BMR-style randomization to defeat selective failure
attacks. (In contrast, the first variant of our protocol that we use to get our main asymp-
totic results relies on the first variant of the functionality from [20] that authenticates the
entire PRG outputs, since in this variant the selective failure predicate is simple.) The
main difference between the second variant of our protocol and the protocol from [49]
is in how the NC0 functionality F̂ is securely realized against active adversaries. While
the work of [49] uses a “GMW-style” interactive protocol for realizing F̂ , we rely on
the non-interactive COT-based approach of IKOPS [20].

In slightly more detail, the protocol of [49] for evaluating F̂ first creates a large
number of authenticated “AND triples” using a variant of the “TinyOT” protocol [41].
Then, using the AND triples, the parties securely compute F̂ . This protocol, which fol-
lows an optimized cut-and-choose approach, has Ω(s/ log |C|) communication over-
head. Alternatively, [49] also propose using a protocol from [25] to make the communi-
cation overhead constant, but this only holds in the bit-OT hybrid model that cannot be
instantiated in the plain model in our black-box model and leads to prohibitive concrete
overhead. In contrast, our protocols realize F̂ using a passively secure non-interactive
protocol in the κ-bit OT-hybrid, and apply an improved implementation of COT to



achieve security against active adversaries with constant communication overhead. The
good concrete efficiency of the second variant of our protocol is inherited from a careful
implementation of the passively secure protocol for F̂ and a sublinear-communication
implementation of COT.

Protocol Total Comm.
[44] 15.12 MB
[49] 6.29 MB

This work 3.39 MB

Table 1. Total concrete communication cost of computing a single instance of AES circuit with
κ = 128 and s = 40. The data about [49] and [44] was obtained from [49].

2 Preliminaries

We assume functions to be represented by a Boolean circuit C (with AND,OR,XOR
gates of fan-in 2 and NOT gates), and denote the size of C by |C|. By default we define
the size to include the total number of gates, excluding NOT gates but including input
gates. In the context of protocols that employ the FreeXOR garbled circuit optimiza-
tion [33], the size does not include XOR gates.

We use a standard notion of secure two-party computation in the standalone model,
in the presence of static, adaptive corruptions. See Appendix A for details.

2.1 Local s-Wise PRGs

An s-wise pseudorandom generator (PRG) GsPRG : {0, 1}δ 7→ {0, 1}n satisfies the
property that for a random r the bits in GsPRG(r) are s-wise independent, in the sense
that their projection to any s coordinates is a uniformly random s-bit string. Standard
constructions of such PRGs exist based on random (s−1)-degree polynomials in a finite
field. In our work, we will require s-wise PRGs that additionally have the property of
being computed by an NC0 circuit, namely ones where every output bit depends on
a constant number of input bits. Such “local” s-wise PRGs can be based on unique-
neighbor bipartite expander graphs [40].

In more detail, consider a bipartite expander graph with left degree d, such that any
subset of v ≤ s vertices on the left has at least 3

4vd neighbors on the right. Then we
associate every left vertex with an output bit and and every right vertex with an input bit.
An s-wise PRG can now be obtained setting an output bit as the XOR of its neighbors.
If we further assume that the bipartite graph has constant-degree d for the left vertices,
we obtain an s-wise PRG that can be computed by an NC0 circuit.

Some of our results require an s-wise PRGs with polynomial stretch. Concretely, for
every 0 < ε < 1 we need an explicit NC0 construction of an s-wise PRG GsPRG from
δ = O(nε+s) to n bits. (In fact, δ = O(nε)+sO(1) would suffice for obtaining slightly



weaker but qualitatively similar results.) Expander graphs with the corresponding pa-
rameters are known to exist, and in fact a random graphs has the required expansion
property with high probability (cf. [19], Theorem 2). While no provable explicit con-
structions are known, assuming the existence of such an explicit construction (e.g., by
using the binary expansion of π) can be viewed as a mild assumption compared to stan-
dard cryptographic assumptions. Some of our results rely such an assumption, which is
necessary for the existence of explicit polynomial-stretch local PRGs. See, e.g.,[22, 2]
for further discussion.

2.2 Message Authentication Codes

Simple MAC for a Single Bit Our first construction for message space {0, 1} is a
trivial MAC that picks two random strings {σ0, σ1} as the key and assigns σb as the
MAC for bit b ∈ {0, 1}.

Low-Depth MAC for Strings We consider a second MAC that will allow for a sender
to authenticate a κ-bit string via a secure computation of an NC0 function to a receiver
holding the MAC key. It is easy to see that if the MAC itself is computable in NC0

then it can only have a constant soundness error. To overcome this barrier, we follow
the approach of [22, 20] where the message to be authenticated is first locally encoded.
Since the NC0 computation cannot compute the encoding, we will require from the
sender to provide the encoding to the NC0 functionality along with a proof, where both
the MAC computation given the encoding and the proof verification are done in NC0.
We will additionally require that the encoding procedure be efficient, since the proof
verification circuit size grows with the encoding circuit size. By relying on Spielman’s
codes [47], we obtain an asymptotically optimal code that can be encoded by linear-size
circuits. More formally, such codes imply that there exist constants `lin, `out, `key such
that for every length κ, there exists an explicit linear-size circuit Enclin : {0, 1}κ →
{0, 1}`inκ and an NC0 function family {MACSK : {0, 1}`inκ → {0, 1}`outκ}SK∈{0,1}`keyκ

such that MACSK(Enclin(σ)) is a 2−κ information-theoretically secure MAC.

Special-Hiding Information-Theoretic MAC For our concretely efficient protocol,
we will employ another simple information theoretic MAC. We formalize the security
requirement next and then present a construction.

Definition 2.1 (Special-hiding IT-MAC). Let F be a finite field. We say that a family
of functions H = {H : F` × F → F} is ε-secure special-hiding if the following two
properties hold:

Privacy. For every x, x′ ∈ F` and H ∈ H, the distributions H(x; r) and H(x′; r) are
identical for a random r ∈ F.

Unforgeability. For any x, r, x′, r′ such that (x, r) 6= (x′, r′), we have: Pr[H ← H :
H(x; r) = H(x′, r′)] ≤ ε



Proposition 2.1 Let ` ∈ N. Define the family H = {Hw}w∈I where the index set I
includes all vectors (k0, . . . , k`) such that

∑`
i=0 ki 6= 0 and the hash function is defined

as

H(k0,...,k`)((x1, . . . , x`), r) =
∑̀
i=0

ki · (r + xi)

where x0 is set to 0. ThenH is a 1
|F| -secure special-hiding IT-MAC.

3 Framework for Actively Secure Garbled Circuits

In this section we present a general framework for designing an actively secure two-
party computation protocol for a functionality F given its Boolean circuit represen-
tation. It is based on (and can capture) the approach of [20], but incorporates several
additional ideas. The framework consists of the following steps:

Step 1: Reduce F to a local F̂ . In this step, given a circuit for F and a (computational)
security parameter κ, we obtain an NC0 functionality F̂ and a two-party protocol Π1

that securely realizes F in the F̂-hybrid model with active security. In Section 4 we
describe two implementations of this step that combine Yao-style garbling with BMR-
style randomization. The protocol Π1 will have the feature of invoking F̂ just once and
making only a black-box use of a PRG. Our first implementation of this step is used for
our main asymptotic result and the second for our concretely efficient protocol.

Step 2: Reduce F̂ to COT. In this step, we obtain an actively secure protocol Π2

for F̂ where the parties have access to an augmented OT functionality we refer to as
certified oblivious transfer (COT). The COT functionality FCOT in its core performs the
parallel OT functionality but additionally assures the receiver that the pairs of strings
transmitted satisfy a global consistency predicate. This step is implemented via two
intermediate steps:

1. Start with a perfectly secure non-interactive protocol Π1.5 for F̂ using a standard
parallel OT oracle, where security should only hold in the presence of a passive
sender and an active receiver. Such protocols were referred to in [20] as NISC/OT
protocols, and can be based on any decomposable randomized encoding for F̂ [18,
22] (which can also be viewed as a perfectly secure projective garbling scheme
[50, 4] or a private simultaneous messages protocol [10] with 1-bit inputs). We
exploit the simplicity of F̂ to get an efficient realization of this step via the standard
reduction from

(
n
1

)
-OT to

(
2
1

)
-OT [6].

2. Compile Π1.5 into a protocol Π2 in the FCOT-hybrid where the sender and receiver
rely on the COT oracle to perform the parallel OTs prescribed by Π1.5 while assur-
ing the receiver that the sender’s inputs to the parallel OT oracle were constructed
correctly according to Π1.5. To make the COT predicate simpler, we allow it to be
non-deterministic: the predicate depends on an additional NP-witness provided by
the sender. The receiver accepts the selected strings if the witness used by an honest
sender is valid, and rejects (except with negligible probability) if there is no valid
witness that satisfies the global consistency predicate.



Step 3: Reduce COT to commit-and-prove and parallel-OT. We obtain a constant-
round protocol Π3 for the COT functionality in a hybrid model where the parties have
access to a commit-and-prove (C&P) oracle and a parallel-OT oracle. Loosely speaking,
the C&P functionality is a reactive functionality that proceeds in two phases. In the first
phase, the sender commits to an input, and in the second phase it proves that this input
satisfies some NP relation chosen by the receiver.

Our implementation of COT in this step deviates from the approach of [20] which
relies on an information theoretic MPC protocol to simultaneously perform both the
computations of the parallel OT and the “certification.” We decouple the two by relying
on the parallel OT and the C&P functionalities individually in separate steps, which
leads to an efficiency improvement over the COT implementation of [20].

Step 4: Reduce commit-and-prove to parallel-OT. Finally, we use a protocol Π4 to
reduce the C&P functionality to parallel-OT via an MPC-in-the-head approach [21].
Prior works [24, 27] have shown how to realize C&P with sub-linear communication
using PCPs and CRHFs. We provide a leaner alternative construction that realizes the
C&P functionality in the parallel-OT hybrid with constant communication overhead.10

This construction is a variant of the recent sublinear zero-knowledge protocol from [1].

Input-dependent failures. A (standard) issue (also present in [20]) that we have to
address is that Step 2 will only achieve a slightly relaxed notion of security where an
active adversary corrupting the COT sender can cause an input-dependent abort for the
receiver.11 More precisely, a corrupted sender can induce a disjunctive predicate (such
as x3∨x5∨x7) on the receiver’s input bits that if satisfied, will make the receiver abort.
We refer to this as an input-value disjunction (IVD) attack and the resulting abort as
IVD-abort. The IVD attack on Step 2 results in the final protocol (obtained by compos-
ing all 4 steps) realizing a relaxed functionality that allows for similar IVD attacks onF
(and only such attacks). We address this issue as in [20] by precompiling F into another
functionality FIVD such that securely realizing F reduces to securely realizing FIVD up
to IVD attacks. Finally, for our concretely efficient protocol we will rely on efficient
variants of this reduction from [35, 46] that increase the length of the receiver’s input
by a constant (≤ 4) factor and adds only XOR gates in FIVD which can be handled
efficiently via the Free XOR optimization [33]. An alternative implementation of FIVD

that increases the input length by only a sublinear amount is given in [20].

4 Secure 2PC in NC0-Hybrid

In this section, we provide our compilation from an arbitrary 2PC functionality F to a
NC0 functionality F̂ and a protocol Π1 that securely realizes F in the F̂-hybrid. We
provide two such compilations which will be variants of analogous constructions in
[20]. Previous two-party protocols essentially have a sender who creates and delivers a

10 We remark that our protocol can be instantiated using ideal commitments (or even one-way
functions in the plain model), but we present a version based on OT as our end goal is to design
an efficient secure protocol which anyway requires OT.

11 For example, it can modify an honest sender’s strategy by setting some of the OT inputs to ⊥,
which will cause the receiver to abort for those values as inputs.



garbling to a receiver. In contrast, we modify the constructions in [20] to incorporate
additional randomization from the receiver inspired by the BMR approach [3].

Overview. On a high-level, the BMR protocol proceeds in two phases: (1) First, in an
offline phase, the parties jointly compute a garbling of the circuit they wish to evaluate
on their inputs, and (2) in an online phase, the parties share keys corresponding to
their inputs and shares of the garbled circuit and output a translation table. Each party
then individually reconstructs the garbled circuit, evaluates the garbled circuit using the
input keys and then obtains the result of the computation. When instantiated in the two-
party setting, the BMR protocol differs from the standard Yao’s protocol [50] in that the
garbling is constructed jointly by both parties as opposed to just by one party in [50].

In slight more detail and restricting our discussion to the two-party setting, both
parties provide two keys for every wire in the circuit so that the keys for the output wires
of each gate are encrypted in each garbled row under both keys associated with the input
wires of this gate. A key difference between the BMR and the Yao protocol is that the
association of the keys with the actual values remain hidden from both parties as both
of them contribute shares (or masks) that are combined to decide the association. This
allows both parties to evaluate the garbled circuit while maintaining privacy. One can
model the offline phase as a actively secure computation of a “garbling” functionality
where parties provide keys and masks for each wire. However, unless we assume some
strong form of a PRG (i.e. PRGs that can be computed by a constant-depth circuits),
the computation in the offline phase will not be a constant-depth circuit.

An important optimization considered in [37], observes that if the parties provide
both the keys and PRG values under these keys as inputs in the offline phase, then
the garbling can be computed via an NC0 circuit over the inputs. However, such a
functionality cannot guarantee the correctness of the PRG values provided by corrupted
parties. Nevertheless, [37] show that to achieve security against active adversaries in
the overall protocol, it suffices to securely compute the NC0 functionality with active
security. In other words, [37] demonstrate that bad PRG values provided by corrupted
parties do not affect the correctness or privacy in the overall protocol. The key idea here
is that a bad PRG value can at most trigger an abort when the particular wire associated
with the PRG value assumes some particular value in the computation. However, since
the associations of keys to values are randomized by both parties, the event of such an
abort will be independent of the true value associated with that wire. Using an induction
argument, it is possible to establish an invariant that if the evaluation does not abort due
to a bad PRG value then the computation will be correct because the protocol guarantees
correctness of the NC0 computation. Combining the invariant with the key idea implies
that the event of an abort is independent of of the actual honest parties’ inputs (as
opposed to just the particular intermediate wire value) thereby guaranteeing privacy.
Finally, [37] demonstrate that if the evaluation path in the garbled circuit never hits a
bad PRG value, then the computation will be correct.

The IKOPS protocol [20], on the other hand, is an extension of the standard Yao
protocol where the garbling is computed by a sender and the keys are delivered to a
receiver via an OT protocol. As previously observed [35, 36], it must be ensured that
an active sender does not create a bad garbled circuit. In the IKOPS protocol, the au-
thors show how to restrict the effects of such an attack by introducing two variants of



functionalities. In the first variant, the NC0 functionality authenticates the PRG val-
ues that are input by the sender, whereas in the second variant only the color bits (or
point-and-permute bits) are authenticated. The high-level idea is that the authentication
information makes the sender commit to parts of the garbling and restricts the space of
attacks that can be carried out by the sender. Nevertheless, in both these variants, the
sender may still cause the receiver to abort depending on its input or the actual wire
values. To make the abort independent of the receiver’s input, the IKOPS protocol in-
curs a polylog(κ) factor overhead as it precompiles the functionality F to be immune to
such attacks. Consequently, the resulting final protocol has a polylog(κ) communication
complexity overhead over the standard passively secure Yao protocol.

Our new approach combines the benefits of the BMR protocol with the IKOPS
variants to achieve a protocol that achieves communication efficiency with a constant
overhead over the semi-honest Yao protocol. On a high-level, we will continue to have
a sender that provides the keys and PRG values to the garbling functionality as in the
IKOPS protocol, but will randomize the association of keys to values following the
BMR approach.

4.1 Variant 1: Authenticating PRG Values

In our first variant the functionality authenticates the PRG values submitted by the
sender for creating the garbling. Following [20], the functionality will receive as in-
put from the sender, for every garbled gate, keys and the PRG evaluations under these
keys and from the receiver it receives as input a MAC key SK that is used to authen-
ticate the PRG evaluations. The high-level idea here is to require the receiver to verify
whether the PRG values obtained during the evaluation of the garbled circuit are consis-
tent with authentication information received from the functionality and letting it abort
if the authentication fails. We deviate from [20] by including additional randomization
in the form of random bits supplied by the receiver to randomize the association of key
and values for each wire.

Formally, we establish the following Lemma.

Lemma 4.1 (AuthPRG Compiler) There exists a compiler AuthPRG that given κ (PRG
seed length), s (statistical security parameter) and a two-party functionality F(x, y),
expressed by a circuit C, outputs another two-party functionality F̂ and protocol Π1

that securely realizes F in the F̂-hybrid with the following features:

– F̂ is represented by an NC0 circuit of size O(|C|κ). The receiver’s inputs to F̂
include its original input y to F and a string of length O(|C| + κ) that it will
choose uniformly at random.

– Π1 makes a single invocation to the F̂ oracle.
– Π1 makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ →
{0, 1}2κ.

Proof. We begin with a description of the compiled functionality F̂ = FAuthPRG and
then continue with our protocol description.. If s > κ then the compiler sets s = κ.
This is because we require our simulation error to be only bounded by 2−s + ν(κ) for
some negligible function ν(·).



The NC0 Functionality F̂ = FAuthPRG. In more details, in this variant the NC0

functionality FAuthPRG computes a BMR-style garbling for the functionality F that is
expressed by a set of wires W and a set of gates G, where only the sender provides the
keys and PRG values to be used for this generation. Namely, the functionality obtains
the parties’ respective inputs (x, y) to the functionF and shares for masking {λw}w∈W ,
as well as the PRG evaluations from the sender and the authenticated information from
the receiver, and creates the garbling for all gates g ∈ G; the complete details can be
found in Figure 1.

Protocol 1 (Protocol Π1) The parties’s common input is a Boolean circuit C, ex-
pressed by a set of wires W and a set of gates G.

Parameters: Let s be the statistical security parameter and κ be the computational
security parameter. Let GPRG : {0, 1}κ → {0, 1}2κ be a PRG and let (ECC,MAC)
be a 2−κ secure MAC-scheme (cf. Section 2.2) where ECC = {Enclin : {0, 1}κ →
{0, 1}`inκ} and MAC = {MACSK : {0, 1}`inκ → {0, 1}`outκ}SK∈{0,1}`keyκ .

Convention for expressing PRG values. The number of random bits that we need to
extract from each key (acting as a seed to the PRG) depends on the number of gates
the wire associated with the key occurs as an input. In standard garbling, if a wire
occurs as input in T gates, then each key associated with the wire will be used in 2T
rows and in each row we will require κ (output key) +`out (authentication information)
+1 (point-and-permute bit) bits. In order to describe our protocol succinctly we will
employ a PRF-type definition: Fk(g, r) will represent a unique portion of κ+ `out + 1
bits in the output of GPRG(k) that is used for gate g in row r.

– Input: The sender is given input x and the receiver is given input y. Both parties
are given the security parameters 1κ, 1s and the description of a Boolean circuit C.

– The sender’s input to FAuthPRG:
• Input x.
• For every wirew ∈W , keys k0w, k

1
w sampled uniformly at random from {0, 1}κ

and a mask bit λSw ← {0, 1} sampled uniformly at random.
• For every gate g ∈ G, input wire w ∈ W , point-and-permute bit b and a row
r, a tag τg,rw,b,S (that will be used to generate the MAC tag for the PRG value
computed based on the key kbw).

• For every gate g ∈ G, with input wires a and b, the PRG values, Fk0a(g, 0),
Fk0a(g, 1), Fk1a(g, 0), Fk1a(g, 1), Fk0b (g, 0), Fk0b (g, 1), Fk1b (g, 0), Fk1b (g, 1).

– The receiver’s input to FAuthPRG:
• Input y.
• A random seed β to an s-wise PRG GsPRG : {0, 1}κ 7→ {0, 1}t.
• A MAC key SK ∈ {0, 1}γ2κ.

– The receiver’s outcome from FAuthPRG:
• {(R00

g , R
01
g , R

10
g , R

11
g )}g∈G.

• kw||zw for every input wire w.
• The masked MAC for every PRG value, namely, τg,rw,b,R.
• λw for every output wire.



Functionality FAuthPRG

Let C represent the circuit that computes the functionality F and comprises of a set of
wires W and a set of gates G.

The sender’s inputs to the functionality are:
– Input x.
– For every wire w ∈W (excluding output wires), keys k0w, k1w ← {0, 1}κ and

mask λSw.
– For every gate g ∈ G with input wires a and b, the PRG val-

ues, F g,0a,0 , F
g,1
a,0 , F

g,0
a,1 , F

g,1
a,1 , F

g,0
b,0 , F

g,1
b,0 , F

g,0
b,1 , F

g,1
b,1 and their encodings under

Enclin, EF g,0a,0 , EF
g,1
a,0 , EF

g,0
a,1 , EF

g,1
a,1 , EF

g,0
b,0 , EF

g,1
b,0 , EF

g,0
b,1 , EF

g,1
b,1

– For every gate g, input wire w, b, r ∈ {0, 1}, a tag τg,rw,b,S (that will be used to
generate the MAC tag for the PRG value computed based on the key kbw).

The receiver’s inputs to the functionality are:
– Input y.
– A random seed β to an s-wise PRG GsPRG : {0, 1}κ 7→ {0, 1}t.
– A MAC key SK ∈ {0, 1}`keyκ.

The functionality performs the following computations:
1. Compute the combined masks for every wire w ∈ W as λw = λSw ⊕ λRw ,

where λRw is computed by choosing the wth bit in GsPRG(β).
2. For every gate g ∈ G with input wires a and b and output wire c, compute the

garbled table as follows:

R00
g = F g,0a,0 ⊕ F

g,0
b,0 ⊕ (k0c ||0)⊕

(
(λaλb ⊕ λc)(k1c ||1⊕ k0c ||0)

)
R01
g = F g,1a,0 ⊕ F

g,0
b,1 ⊕ (k0c ||0)⊕

(
(λa ⊕ λaλb ⊕ λc)(k1c ||1⊕ k0c ||0)

)
R10
g = F g,0a,1 ⊕ F

g,1
b,0 ⊕ (k0c ||0)⊕

(
(λb ⊕ λaλb ⊕ λc)(k1c ||1⊕ k0c ||0)

)
R11
g = F g,1a,1 ⊕ F

g,1
b,1 ⊕ (k0c ||0)⊕

(
(1⊕ λa ⊕ λb ⊕ λaλb ⊕ λc)(k1c ||1⊕ k0c ||0)

)
3. Send the receiver Rec the following values:

– {(R00
g , R

01
g , R

10
g , R

11
g )}g∈G.

– (k0w||0) ⊕
(
(λw ⊕ xi) ∧ (k1w||1 ⊕ k0w||0)

)
for every pair (w, i) where

the input wire w carries the ith bit of x.
– (k0w||0)⊕

(
(λw⊕yi)∧ (k1w||1⊕k0w||0)

)
for every pair (w, i) where the

input wire w carries the ith bit of y.
– The masked MAC for every PRG value, namely, τg,rw,b,R = τg,rw,b,S ⊕

MACSK(EF
g,r
w,b).

– λw for every output wire.

Fig. 1. The offline functionality FAuthPRG.



– In addition, the sender encrypts the mask used to mask the MAC values and sends it
to the receiver. Namely, it sends the ciphertext cg,rw,b = Enckbw(τ

g,r
w,b,S) = Fkbw(g||(2+

r))⊕ τg,rw,b,S .
– Concluding the output. The receiver then proceeds to evaluate the garbled circuit

as follows: Let the gates be arranged in some topological order. We will maintain
the invariant that if the receiver has not aborted when it processes some gate g with
input wires a and b, then it possess keys ka and kb and colors Λa and Λb.
Base case: For each input wire w ∈W , the receiver obtains kw||zw, where the key

is kw and the color Λw is set to zw.
Induction step: Consider an arbitrary gate g ∈ G in the topological sequence

with input wires a and b and output wire c. By our induction hypothesis, if the
receiver has not yet aborted then it has keys ka, kb and colors Λa and Λb. Then
the receiver first checks the correctness of the PRG values as follows:
• For α ∈ {0, 1}, compute τg,αa,Λa,S = Decka(c

g,α
a,Λa

) = cg,αa,Λa ⊕ Fka(g‖(2 +
α)) and check if it equals

τg,αa,Λa,R ⊕MACSK(Fka(g, α)).

If the checks fail, it aborts. Otherwise, it computes

kc||Λc = RΛaΛbg ⊕ Fka(g, Λa)⊕ Fkb(g, Λb).

Finally, if the receiver has not aborted, it possesses the colors Λw for every output
wire w ∈ W . It then outputs Λw ⊕ λw as the output on wire w for every output
wire.

Next, we provide another variant of our first compiler where we further reduce the num-
ber of random bits input by the receiver to F̂ . This will be important in our compilation
as the number of bits input by the receiver to F̂ will directly correspond to the number
of calls made in the final protocol to the parallel OT functionality.

Lemma 4.2 (AuthPRG2 Compiler) Suppose there exist explicit s-wise PRGs in NC0

with O(s) seed size and an arbitrary polynomial stretch. Then there exists a compiler
AuthPRG2 that, given κ (PRG seed), s (statistical parameter), ε (statistical PRG pa-
rameter) and a two-party functionality F(x, y) expressed by a circuit C, outputs an-
other two-party functionality F̂ and protocol Π1 that securely realizes F in the F̂-
hybrid with the following features:

– F̂ is represented by an NC0 circuit of size O(|C|κ). The receiver’s inputs to F̂
include its original input y to F and a string of length O(|C|ε + s) that it chooses
uniformly at random.

– Π1 makes a single call to the F̂ oracle.
– Π1 makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ →
{0, 1}2κ.

Moreover, any active corruption of the sender induces a disjunctive predicate P on the
random bits r input by the receiver to F̂ such that the receiver aborts whenever P on
the receiver’s input is satisfied.



4.2 Variant 2: Authenticating Color Bits

In the second variant, the parties submit their inputs to an NC0 functionality that com-
putes the garbled circuit. In this variant the color bits are encrypted within each garbled
row in an authenticated manner using an information-theoretic MAC, where the MAC
secret-key is chosen by the receiver. In contrast to the protocol described in Section
4.1, the number of OTs in this protocol will be proportional to the circuit’s size since
the abort predicate cannot be viewed as a disjunctive function any longer. On the other
hand, the main advantage of this variant will be that the NP relation between the OT
inputs of the sender and the sender’s inputs and randomness can be expressed by a
constant-degree arithmetic circuit over a large field. As we rely on an MPC protocol to
boost the security of the passive protocol to the active case by certifying that the OT
inputs of the sender satisfy the NP relation, we can rely on efficient MPC protocols for
arithmetic circuits over large fields. In the full version we prove the following Lemma.

Lemma 4.3 (AuthCol Compiler) There exists a compiler AuthCol that, given κ (PRG
seed length), s (statistical parameter) and a two-party deterministic functionalityF(x, y)
expressed by a circuit C, outputs another two-party functionality F̂ and protocol Π1

that securely realizes F in the F̂-hybrid with the following features:

– F̂ is represented by an NC0 circuit of size O(|C| · (κ + s)). The receiver’s inputs
to F̂ include its original input y to F and a string of length W + 2s that it will
chosen uniformly at random where W = |C| is the number of distinct12 wires in
the circuit.

– Π1 makes a single call to the F̂ oracle.
– Π1 makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ →
{0, 1}2κ.

The NC0 Functionality F̂ = FAuthCol. In this variant the NC0 functionalityFAuthCol

computes a BMR-style garbling for some function F that is expressed by a set of wires
W and a set of garbled gates G, where only the sender provides the keys and PRG
values to be used for this generation. The main difference over the NC0 functional-
ity from Section 4.1 is that in this case the functionality authenticates the color bits
instead of the PRG values submitted by the sender, where authentication is computed
based on the receiver’s secret-key for an information theoretic MAC (see Section 2.2).
More concretely, the functionality obtains the parties’ inputs (x, y) to the function F
and masking {λw}w∈W , as well as the PRG evaluations from the sender, and the au-
thenticated information from the receiver, and creates the garbling for all gates g ∈ G;
the complete details can be found in Figure 2.

Protocol 2 (Protocol Π1) The parties’ common input is a Boolean circuit C, ex-
pressed by a set of wiresW and a set of gatesG. Let s be the statistical security param-
eter and κ be the computational security parameter. Let GPRG : {0, 1}κ → {0, 1}2κ be
a PRG and let {MACSK : {0, 1} → {0, 1}s}SK∈{0,1}2s be an information theoretically
secure MAC computable in NC0.
12 Wires as part of a fan out from a gate are considered the same wire.



Functionality FAuthCol

The functionality runs with parties S,R and an adversary S. The parties’ joint input is
a Boolean circuit C, expressed by a set of wires W and a set of garbled gates G.

The sender’s inputs to the functionality are:
– Input x.
– For every wire w ∈W , keys k0w, k1w ← {0, 1}κ and a mask λSw.
– For every gate g ∈ G with input wires a and b, the PRG values
F g,0a,0 , F

g,1
a,0 , F

g,0
a,1 , F

g,1
a,1 , F

g,0
b,0 , F

g,1
b,0 , F

g,0
b,1 , F

g,1
b,1 .

The receiver’s inputs to the functionality are:
– Input y.
– For every wire w ∈W , a mask λRw .
– Two strings σ0, σ1 ← {0, 1}s.

The functionality performs the following computations:
1. Compute the combined masks for every wire w ∈W as λw = λSw ⊕ λRw .
2. For every gate g ∈ G, compute the garbled table as follows:

R00
g = F g,0a,0 ⊕ F

g,0
b,0 ⊕ (k0c ||σ0)⊕

(
(λaλb ⊕ λc)(k1c ||σ1 ⊕ k0c ||σ0)

)
R01
g = F g,1a,0 ⊕ F

g,0
b,1 ⊕ (k0c ||σ0)⊕

(
(λa ⊕ λaλb ⊕ λc)(k1c ||σ1 ⊕ k0c ||σ0)

)
R10
g = F g,0a,1 ⊕ F

g,1
b,0 ⊕ (k0c ||σ0)⊕

(
(λb ⊕ λaλb ⊕ λc)(k1c ||σ1 ⊕ k0c ||σ0)

)
R11
g = F g,1a,1 ⊕ F

g,1
b,1 ⊕ (k0c ||σ0)⊕

(
(1⊕ λa ⊕ λb ⊕ λaλb ⊕ λc)(k1c ||σ1 ⊕ k0c ||σ0)

)
3. Send the receiver R the following values:

– {(R00
g , R

01
g , R

10
g , R

11
g )}g∈G.

– (k0w||σ0)⊕
(
(λw⊕xi)∧(k1w||σ1⊕k0w||σ0)

)
for every pair (w, i) where

input wire w carries the ith bit of x.
– (k0w||σ0)⊕

(
(λw⊕yi)∧ (k1w||σ1⊕k0w||σ0)

)
for every pair (w, i) where

input wire w carries the ith bit of y.
– λw for every output wire.

Fig. 2. The offline functionality FAuthCol.

– Input: The sender is given input x and the receiver is given input y. Both parties
are given the security parameters 1κ, 1s and the description of a Boolean circuit C.

– The sender’s input to FAuthCol:
• Input x.
• For every wirew ∈W , keys k0w, k

1
w sampled uniformly at random from {0, 1}κ,

and mask bit λSw ← {0, 1} sampled uniformly at random.
• For every gate g ∈ G, with input wires a and b, PRG values, Fk0a(g, 0),
Fk0a(g, 1), Fk1a(g, 0), Fk1a(g, 1), Fk0b (g, 0), Fk0b (g, 1), Fk1b (g, 0), Fk1b (g, 1).

– The receiver’s input to FAuthCol:



• Input y.
• for every w ∈W , a random mask bit λRw ← {0, 1}.
• Two strings σ0, σ1 ← {0, 1}s chosen uniformly at random.

– The receiver’s outcome from FAuthCol:
• {(R00

g , R
01
g , R

10
g , R

11
g )}g∈G.

• kw||zw for every input wire w.
• A mask λw for every output wire.

– Concluding the output. The receiver then proceeds to evaluate the garbled circuit
as follows: Let the gates be arranged in topological order. We will maintain the
invariant that if the receiver has not aborted when it processes some gate g with
input wires a and b, then it possess keys ka and kb and color bits Λa and Λb.
Base case: For each input wire w ∈ W , the receiver holds an input key kw and

a color Λw that is set to 0 if zw = σ0, and set to 1 if zw = σ1. In case the
receiver does not have these values in the correct format, it aborts.

Induction step: Consider an arbitrary gate g ∈ G in the topological sequence
with input wires a and b and output wire c. By our induction hypothesis, if the
receiver has not yet aborted then it has keys ka, kb and color bits Λa and Λb.
Then the receiver computes

kc||zc = RΛaΛbg ⊕ Fka(g, Λa)⊕ Fkb(g, Λb).

If zc 6∈ {σ0, σ1}, the receiver aborts. Otherwise it sets the color Λc such that
zc = σΛc .

Finally, if the receiver has not aborted, it possesses the colors Λw for every output
wire w ∈ W . It then outputs Λw ⊕ λw as the output on wire w for every output
wire.

Claim 4.4 Let F a two-party functionality as above and assume that F is a PRG. Then
Protocol 2 securely computes F in the FAuthCol-hybrid.

We can modify all our variants to incorporate (by now standard) optimization of
Free XOR [33]. Implicit in this optimization is a mechanism that restricts the space of
keys sampled for the wires.

5 Realizing FCOT in the Presence of IVD Attacks

In this section, we design our protocol that securely realizes the COT functionality (cf.
Figure 3) with security in the presence of active adversaries up to IVD-abort. On a
high-level, we combine the MPC-in-the-head approach of [21] to “certify” the inputs
to the OT executions. A similar approach was taken in the work of [20]. However, our
approach significantly deviates from the previous approaches in the following way:

– In the [20] approach, the receiver obtains the output of the individual OTs by obtain-
ing the view of the corresponding receivers in the MPC network. In our approach,
the sender and receiver first engage in the OT protocol as in a normal OT execution



and later a “zero-knowledge” proof for the correctness of the values, that are trans-
ferred via the OT protocol, is provided. The main savings of our approach is in the
communication complexity. In the [20] approach, the view of the receivers contain
redundant information from each of the servers and we avoid this redundancy.

Functionality FCOT−IVD

Functionality FCOT−IVD communicates with sender S and receiverR, and adversary S
and is parameterized by an NP relationR(·, ·) and integers m,n, κ.

1. Upon receiving input (P, {(s01, s11)}j∈[m], w) from S where sbj ∈ {0, 1}κ and
w ∈ {0, 1}poly(n,κ) it checks if the predicate P is a disjunction of literals and
records (P, s, w) if it is a disjunction where s = {(s01, s11)}j∈[m].

2. Upon receiving (u1, . . . , um) from R where uj ∈ {0, 1}, record (u) where
u = (u1, . . . , um)). If there is no record from the sender the functionality
waits until it receives a message from S. If there is a record (s, w) then it sends
({sujj }j∈[m],R(s, w)) to R only if P (u) 6= 1 and ⊥ if P (u) = 1.

Fig. 3. The certified oblivious transfer functionality with IVD.

We will describe our protocol Π3 in the (FOT,FCnP)-hybrid where FOT is the par-
allel OT functionality and FCnP is a slight variant of the standard commit-and-prove
functionality that allows a sender to first commit to a witness w and then, given a func-
tion H from the receiver and an image y from the sender, delivers the output of the
predicate H(w) = y; see Figure 4 for the formal description.

Functionality FCnP

Functionality FCnP communicates with sender S and receiver R, and adversary S and
is parameterized by an NP relationR(·, ·) and integers n, κ.

Commit phase. Upon receiving input (z, w) from S where z =
{(sbj , rbj)}j∈[m],b∈{0,1} and w ∈ {0, 1}poly(n,κ), record this message.

Prove phase. Upon receiving H from R, forward H to S. Upon receiving y from S,
check if there exists a record (z, w) that it received from S. Ignore if no such
record exists. Otherwise, send 1 to R only if H(z) = y and R(s, w) = 1 where
s = {(s01, s11)}j∈[m]. Return 0 otherwise.

Fig. 4. The commit-and-prove functionality.

Beside employing functionalities FOT and FCnP, our protocol uses a special-hiding
information theoretic MAC that preserves the properties of privacy and unforgeability



in a way that enforces the sender to properly commit to its inputs; see Definition 2.1 for
more details. More formally,

Protocol 3 (Protocol Π3 for realizing functionality FCOT−IVD)

– Inputs: The sender SCOT’s input is {(s0j , s1j )}j∈[m] and a witness w with respect to
some NP relationR, and the receiver RCOT’s input is b1, . . . , bm.

– The protocol:
1. SCOT

FOT←→ RCOT : The parties engage in m oblivious transfers in parallel
using FOT where SCOT uses ((s0j , r

0
j ), (s

1
j , r

1
j )) and RCOT uses bj , as their re-

spective inputs in the jth (j ∈ [m]) oblivious transfer execution, where rbj is a
sufficiently long string. (Looking ahead, this string will serve as the random-
ness for some MAC function H .)

2. SCOT

FCnP←→ RCOT : The sender commits to the witness ({(sbj , rbj)}j∈[m],b∈{0,1}, w)
by sending it to the FCnP functionality.

3. SCOT ← RCOT: The receiver chooses a random MAC key H ← H and sends
it to the sender via functionality FCnP.

4. SCOT → RCOT: The sender sends the MAC of every string, namely it sends
{H(sbj ; r

b
j)}j∈[m],b∈{0,1} toRCOT. If the MACed value transmitted for (sujj , r

uj
j )

does not match H(s
uj
j ; r

uj
j ) for some j ∈ [m], then RCOT rejects.

5. SCOT

FCnP←→ RCOT : The sender and receiver interact via the FCnP functional-
ity where SCOT submits {H(sbj ; r

b
j)}j∈[m],b∈{0,1} and RCOT submits H . FCnP

checks if H was computed correctly on every pair (sbj , r
b
j) committed to before

as part of the witness and if R({(s0j , s1j )}j∈[m], w). If both these checks pass,
it delivers 1 to RCOT and otherwise 0.

Since we can only realize a relaxed functionalityFCOT−IVD that allows IVD attacks,
we need to understand how the attack propagates into the protocol for F (the original
functionality that the parties want to compute) in the FCOT-hybrid. The key point is that
the receiver’s inputs to FCOT in the latter protocol consist of either actual inputs y for
F or independently random bits (for the BMR masking and MAC keys). Thus, any dis-
junctive predicate on the receiver’s inputs to FCOT can be emulated by a (randomized)
disjunctive predicate on the receiver’s inputs y to F .

Theorem 5.1. LetH be a family of special-hiding MAC according to Definition 2.1 for
κ-bit strings. Then Protocol 3 securely computes FCOT−IVD in the (FOT,FCnP)-hybrid.

6 Putting it Together

In this section we instantiate our framework for two-party computation by instantiating
the computation of our two NC0 functionalities and the information-theoretic MPC
protocols and obtain different efficiency guarantees, both in the asymptotic and concrete
regimes. We use the following convention:

– We use κ and s for the computational and statistical security parameter respectively.



– We use n to denote the input lengths of the parties and m to denote the output
length of the function F that the parties want to securely compute.

Both of our variants will have constant overhead communication complexity over
the passively secure Yao protocol. The second uses a large number of OTs but has better
concrete efficiency.

6.1 Variant 1: Asymptotically Optimal Construction

The first variant incurs communication complexity of O(|C|κ) bits in the κ-bit string
OT oracle. We first provide a basic result for this variant that will employ O(|C|) calls
to κ-bit string OT oracle. Next, by relying on an information-theoretic PRG, we will be
able to reduce the number of calls to n + O(s · |C|ε) for an arbitrary constant ε > 0.
Such information-theoretic PRGs exist assuming explicit constant-degree unbalanced
unique-neighbor expanders.

The basic result we obtain in this variant is the following theorem.

Theorem 6.1. There exists a protocol compiler that given κ (PRG seed length), s (sta-
tistical security parameter), and a two-party deterministic functionality F expressed as
a Boolean circuit C : {0, 1}n × {0, 1}n → {0, 1}m, outputs a protocol ΠC that se-
curely realizes F in the κ-bit string OT hybrid, namely using ideal calls to κ-bit string
OT. The protocol ΠC has the following efficiency features:

– It makes O(|C|) + poly(log(|C|), s) black-box calls to a PRG GPRG : {0, 1}κ →
{0, 1}2κ.

– It makes O(|C|+ s) calls to κ-bit string OT oracle.
– It communicates O(κ · |C|) + poly(log(|C|), log κ, s) bits.

Remark 6.1. Recall that we require the distinguishing advantage to be bounded by
2−s + ν(κ) for some negligible function ν(·). We state our asymptotic result with s
as a parameter as we would like to make the distinction between protocols that achieve
2−s error versus negligible in s error. Furthermore, it allows us to compare our proto-
cols with prior works that achieve the same simulation error. We remark that we can
assume s < κ without loss of generality as we require the distinguishing error to be
bounded by a negligible function in κ and if s is bigger than κ, we can let s = κ.

Proof of Theorem 6.1. We follow the framework described in Section 3.

1. Following an approach based on [35], we first transform the original functionality
F into a new functionality FIVD that will resist input-dependent attack.

– The circuit size of F̂IVD is O(κ · |C|+κ · s) for any circuit C that computes the
original functionality F .

– The receiver’s input length in F̂IVD is O(|C|) +O(max(n, s)) = O(|C|+ s).
2. We next consider an information-theoretic protocol Π2 that realizes F̂IVD in the
FCOT−IVD-hybrid (where functionality FCOT−IVD is defined in Section 5). Such a
protocol is obtained in two steps: (1) First, we take a non-interactive protocol Π1.5

for F̂IVD using a standard parallel OT oracle, where this protocol only needs to



be secure in the presence of a passive sender and an active receiver. (which can
also be viewed as a perfectly secure projective garbling scheme [50, 4] or a private
simultaneous messages protocol [10] with 1-bit inputs. See next variant for more
details.) (2) We then use the FCOT−IVD oracle to enforce honest behavior of the
sender up to IVD attacks.
This protocol Π2 has the following features:

– The receiver’s input size is O(|C|+ s).
– The sender’s algorithm makes O(|C|+ s) black-box calls to a length-doubling

PRG GPRG : {0, 1}κ → {0, 1}2κ.
– The total length of the sender’s OT inputs across all OTs is O(κ · |C|+ κ · s).

We remark that we only track the number of OTs and the sum total of the lengths
of the sender OT inputs as we can rely on a standard transformation that takes
nOT parallel OTs where the sum of OT input lengths is `OT and compile it to nOT

parallel OTs with κ-bit inputs that will require the sender to make d `OT

κ e calls to
the underlying length doubling PRG GPRG and send one additional message to the
receiver of length `OT. This transformation simply requires the sender to use κ-bit
keys sampled independent from a semantically-secure encryption scheme as the OT
sender inputs and send encryptions of the corresponding inputs with that key.

3. We replace the oracle call to the FCOT−IVD in Π2 by replacing it with the protocol
Π3 from Section 5 in the (FOT,FCnP)-hybrid. Then we replace the oracle call to
FCnP with our protocol Π4 where we instantiate our MPC protocol using a vari-
ant of the protocol from [8] further used in [21]. The resulting protocol is in the
FOT-hybrid and realizes FCOT−IVD against active adversaries. The communication
complexity of the protocol can be computed as follows:
(a) The sender and receiver first engage in parallel OTs where they execute only the

oblivious-transfer part of the COT protocol. This involves O(|C| + s) inputs
from the receiver and the sum total of the lengths of the sender’s OT inputs
across all OTs is O(κ · |C|+ κ · s).

(b) The sender transmits a MAC of length s corresponding to each OT input.
There are totally O(|C| + s) strings transmitted via 1-out-of-2 OTs. There-
fore, sending the MACs will require the sender to transmit 2 · s ·O(|C|+ s) =
O(s · |C|+ s2) bits.

(c) The NP-relation associated withFCnP is of sizeO(κ·C+κ·s)+O(s·|C|+s2) =
O(κ ·C)+ κ · poly(s). We can conclude the communication complexity of the
protocol realizing FCnP to be O(κ · C) + poly(log |C|, log κ, s) and involves
O(|C|) + poly(log |C|, s) calls to the PRG.

This compilation has the following efficiency features:
– The protocol makes O(|C|) + poly(log |C|, s) black-box calls to a length-

doubling PRG GPRG : {0, 1}κ → {0, 1}2κ.
– The protocol involvesO(κ·|C|)+poly(log |C|, log κ, s) bits of communication.
– The protocol incurs O(|C|+ s) calls to O(κ)-bit string OTs.

This concludes the proof of Theorem 6.1.
Based on Theorem 6.1, we obtain the first construction of actively secure 2PC pro-

tocol that achieves constant overhead communication complexity over Yao’s passively



secure protocol in a model where all parties have black-box access to any protocol re-
alizing the OT oracle. In contrast, prior works based on the cut-and-choose paradigm
induce a multiplicative overhead of Ω(s).

Next, we improve our construction from Theorem 6.1 to one that requires fewer
calls to the OT oracle to something that is sublinear in the circuit size. This is obtained
by replacing the compilation from FIVD to F̂IVD in Step 2 using Lemma 4.2. This com-
pilation results in F̂IVD where the receiver’s input length is n + O(s · |C|ε) assuming
s-wise PRGs. Then we observe that the number of calls made to the OT in our final pro-
tocol is equal to the receiver’s input length to F̂IVD. We thus get the following corollary.

Corollary 6.2 Suppose there exist explicit s-wise PRGs in NC0 with O(s) seed size
and an arbitrary polynomial stretch. Then, for every ε > 0, there exists a protocol
compiler that, given (κ, s) and a functionality F expressed as a Boolean circuit C :
{0, 1}n × {0, 1}n → {0, 1}m, outputs a protocol ΠC that securely realizes F in in the
κ-bit string OT hybrid with the following efficiency features:

– It makes O(|C|) + poly(log(|C|), s) black-box calls to a length-doubling PRG
GPRG : {0, 1}κ → {0, 1}2κ.

– It makes n+O(s · |C|ε) calls to a κ-bit string OT oracle.
– It communicates O(κ · |C|) + poly(log(|C|), log κ, s) bits.

Remark 6.2. As discussed in Footnote 9 and Section 2.1, the combinatorial assumption
about explicit s-wise PRGs is a seemingly mild assumption that was already used in
other contexts.

This corollary provides the first black-box protocol that simultaneously achieves
asymptotically constant overhead communication complexity over Yao’s passively se-
cure protocol and requires sublinear (in circuit size) number of calls to a OT protocol.
In contrast, prior works have either obtained constant overhead (eg, [49], albeit in the
bit-OT hybrid model) or a small number of calls to the OT oracle (eg, protocols based
on cut-and-choose).

6.2 Variant 2: Concretely Efficient Variant

Our second variant will also achieve a communication complexity ofO(κ · |C|) bits and
employ O(|C|) calls to a κ-bit string OT oracle. We will identity the precise constant in
the overhead. In this variant we will be able to incorporate the FreeXOR optimization.

More precisely, we have the following theorem:

Theorem 6.3. There exists a protocol compiler that, given κ (PRG seed length), s
(statistical security parameter) and a functionality F(x, y) expressed as a circuit C :
{0, 1}n × {0, 1}n → {0, 1}m, outputs a protocol ΠC which securely realizes F in the
κ-bit string OT-hybrid with the following features:

– The protocol makes |C|+ 2 · s+max(4 · n, 8 · s) calls to κ-bit string OT.
– The protocol communicates (in bits)

(16 · κ+ 26 · s) · |C|+ 2 · s · (|C|+ 2 · s+max(4 · n, 8 · s))

+ 8 · s1.5 ·
√
|C| · (55 · dκ/se+ 6 · κ+ 73).



Proof of Theorem 6.3. The compilation takes as input a circuit C and security pa-
rameter κ and proceeds by following the same approach as in our first variant with
the exception that we use our transformation in the FAuthCol-hybrid as described in
Section 4.2 and the MPC protocol instantiated above. More precisely,

1. We transform the original functionality F into FIVD that is resistant to IVD attacks
just as in the previous compilation. In our initial computation in this section, we
ignore the additive overhead that is incurred as a result of this transformation. At
the end of the section, we provide bounds for the additive terms. The circuit size of
FIVD will therefore be |C| and the recipe input |C|+ n+ 2s.

2. Next, we compile FIVD to F̂IVD using FAuthCol-hybrid as described in Section 4.2.
The NC0 functionality F̂IVD has the following features:

– The receiver’s input size is |C|+2 · s+max(4 ·n, 8 · s) where max(4 ·n, 8 · s)
is the length of the encoding of the receiver’s input following [35].

– The output length of the NC0 functionality is 4 · |C| · (κ + s). Note that F̂IVD

includes an additional n2 XOR gates compared to FIVD. These are required to
decode the receiver’s input before the computation begins. We will not include
these gates in our circuit size as we can rely on the FreeXOR optimization.

We will compute the precise size in the next step.
3. We next consider an information-theoretic protocol Π that realizes F̂IVD in the
FCOT−IVD-hybrid. As before, this proceeds in two steps: (1) Take a non-interactive
protocol for F̂ using a parallel OT oracle, where the protocol only needs to be
secure in the presence of a passive sender and an active receiver. (2) Use the
FCOT−IVD oracle to enforce honest behavior of the sender up to IVD attacks.
First, we compute the communication complexity of the passive protocol that re-
alizes the NC0 functionality in (1). Note that the computation of F̂IVD involves
a computation with constant locality, in fact, at most 4 locality on the receiver’s
inputs. We recall from [6] that there is a NISC protocol in the 1-out-of-2d OT-
hybrid to compute any function with locality d. This incurs a communication cost
of 2d+1 − 2 bits. Following this construction naively results in a total communica-
tion complexity of 24+1− 2 = 30 per output bit for total of 30 · 4 · (κ+ s) · |C| bits
for computing F̂IVD.
We tighten the analysis in two ways:

– First, we observe that each bit in the output of the NC0 functionality we are
computing can be expressed as a sum of monomials. This means we can break
the monomials into different sections where the locality of each section is
small. Then, we compute each section using the standard approach prescribed
above. Additionaly, to ensure privacy we will have to mask the outputs each
section with shares of 0.

– Certain monomials (or sum of monomials) appear in multiple expression (for
eg, the four garbled rows share monomials as we describe below) and we can
compute the shared monomials only once.

The general formula for computing the garbled row (r1, r2) in gate g with input
wires a, b and output wire c is given by

Fkr1a (g, r1, r1)⊕Fkr2b (g, r1, r2)⊕[(λRa⊕λSa⊕r1)∧(λRb ⊕λSb⊕r2)⊕λRc ⊕λAc ]∧(k0c⊕k1c )



Next, we consider the following monomials and explain how the first κ bits of the
four rows of a garbled gate can be computed from them.

M1 = [(λRa ∧ λRb )⊕ (λRa ∧ λSb )⊕ (λSa ∧ λRb )⊕ λAc ] ∧ (k0c ⊕ k1c )⊕R1

M2 = [λRa ∧ (k0c ⊕ k1c )]⊕R2

M3 = [λRb ∧ (k0c ⊕ k1c )]⊕R3

M4 = [λRc ∧ (k0c ⊕ k1c )]⊕R3

We will also have the sender send the receiver the following four strings (cipher-
texts): For r1, r2 ∈ {0, 1}

cg,r1,r2 = Fkr1a (g, r1, r1, 0)⊕Fkr2b (g, r1, r2, 0)⊕R1⊕ (r1∧R2)⊕ (r2∧R3)⊕R4

In the evaluation, if the receiver obtains kr1a and kr2b , then it can obtain key for the
c wire by computing

cg,r1,r2 ⊕M1 ⊕ (r1 ∧M2)⊕ (r2 ∧M3)⊕M4

By our preceding calculations, M1 is a monomial over two variable λRa , λ
R
b from

the receiver and can be computed with overhead 6 per bit of the key. The other three
monomials involve only one variable from the receiver and can be computed with
overhead 2. Overall the communication of transmitting this will be 6 ·κ+(2+2+
2) · κ as part of the oblivious-transfer and 4 · |C| · κ bits in the clear.
The next s bits which will encrypt the color bits can be computed analogously,
where each of the terms above will additionally involve a multiplicand σ0 ⊕ σ1
from the receiver. Following a similar analysis the number of bits transmitted will
be 14 · s+ (6 + 6 + 6) · s bits as part of the oblivious transfer and 4 · |C| · s bits in
the clear. We can improve this further because we can compress the sender’s input
to the OT when it is communicating strings that are long and chosen uniformly
random. For example, in the OTs involving each bit of σ0 ⊕ σ1 as receiver’s input,
the sender’s input length is O(|C|). This can be reduced to sending a PRG seed of
length κ and the receiver expanding it to O(|C|) bits. This reduces the cost to

2 · κ · s+ 10 · s+ (4 + 4 + 4) · s = 2 · κ · s+ 22 · s

Looking ahead, in our final protocol we will employ protocol Π directly as a
sub-protocol. We will need two measures of complexity from this protocol. First,
we need the communication complexity which we compute by calculating the re-
ceiver’s input size (which translates to number of parallel OT invocations) and the
sums of the lengths of the sender’s inputs in all the parallel OT. Second, we estimate
the size of the global predicate defined by the NISC/OT protocol which will dictate
the complexity of our commit-and-prove protocol in the next step.
Following the calculations described above, we can conclude that this protocol in-
curs the following costs:

– The receiver’s input size is |C|+ 2s+max(4 · n, 8 · s).



– The sum total of the sender OT inputs is (12 · κ+ 22 · s) · |C|+ 2 · κ · s bits.
– The length of the sender’s message is 4 · (κ+ s) · |C|.
– The global predicate that will be the NP relation used in the FCOT−IVD oracle

can be expressed as an arithmetic circuit over the GF(2s) field. We will only
count the number of multiplication gates, as addition will be free. Recall that
the global predicate is required to enforce honest behavior of the sender in Π .
Given the sender inputs to the parallel OT, we compute the size of the global
predicate as follows:
Input size to NP relation. The witness to the NP statement includes (1) the

strings for the OT, the sum of the lengths of inputs of which are (12 · κ +
22 · s) · |C|+ 2 · κ · s, (2) The PRF values which totals to 4 · |C| · (κ+ s),
and (3) for each wire w, λRw, k

0
w, k

1
w that sums up |C|+ 2|C| · κ.

Key part of the output. Consider one of the garbled rows for a gate g with in-
put wires a, b and output wire c. For very possible assignment (a1, a2, a3)
of λRa , λ

R
b , λ

R
c the first κ bits of a garbled row can be expressed as

F aprg + F bprg + k0c + fa1,a2,a3g,row (λSa , λ
S
b , λ

S
c ) · (k1c − k0c )

where F aprg, F
b
prg, λ

S
a , λ

S
b , λ

S
c , k

0
c , k

1
c will be include in the witness for the

predicate. The function fa1,a2,a3g,row can further be expressed as

c1 · λSa · λSb + c2 · λSa + c3 · λSb + c4 · λSc + c5

for some coefficient c1 through c5 that will depend on the particular as-
signment for λRa , λ

R
b , λ

R
c .

Each garbled row can also be computed from the sender’s OT inputs (again
included in the witness) using only addition operations (this is exactly the
computation of the receiver once it receivers the OT outputs). The predicate
will check that the garbled row computed the two ways are equal.
We only include the number of multiplication operations in our circuit
size. It suffices to compute the product of each of λSa · λSb , λSa , λSb , λSc
with (k1c − k0c ) to compute all of fa1a2a3g,row (where a1, a2, a3 ∈ {0, 1} and
row ∈ {1, 2, 3, 4}). Since we first split k0c , k

1
c into chunks of s bits, there

will be dκs e chunks and for each garbled row, the predicate will include
5 · dκs e multiplications per gate.

MAC part of the output. Again, for every combination of λRw values, we com-
pute the MAC part in two ways and check if they are equal. However, we
will not do this check for every garbled row, we will do this for every
column of the matrix where the MAC part of the garbled rows across all
gates are stacked up. Furthermore, as we describe below, it will incur no
additional multiplication gates.
As before, for very possible assignment (a1, a2, a3) of λRa , λ

R
b , λ

R
c corre-

sponding to a gate, the last s bits (i.e. the MAC part) of a garbled row can
be expressed as

F aprg + F bprg + σ0 + fa1,a2,a3g,row (λSa , λ
S
b , λ

S
c ) · (σ1 − σ0).



First, we observe that σ0 and σ1 are provided by the receiver. We consider
the computation of each bit of this string. For every position, i, if the it

bit of σ0 and σ1 − σ0 are b1 and b2 respectively, the result will be vb1b2g,row,
where

vb1b2g,row = F aprg + F bprg + b1 + fa1,a2,a3g,row (λSa , λ
S
b , λ

S
c ) · b2.

Since fa1,a2,a3g,row was already computed in the previous part, the values
vb1b2g,row can be achieved with no additional multiplication gates. We further
note that vb1b2g,row is independent of the position in the MAC part.
Again, we can compute vb1b2g,row using the sender OT input strings by using
only an addition operation for each position in the MAC part. We can check
for every position if this value matches the computation above from the
witness. There is no additional cost for this part.

Binary constraints. The λSw values need to be sampled from {0, 1} and since
we are operating in GF(2s) we need enforce this constraint. This will re-
quire a single multiplication13 per wire for a total of |C| multiplications.
However, it will not affect the communication length and only the compu-
tations that need to performed.

Combining the above, we have a total of |C| · 5 ·
⌈
κ
s

⌉
multiplications.

4. As in our previous compilation, we replace the oracle call to FCOT−IVD in Π with
the protocol Π3 from Section 5 in the (FOT,FCnP)-hybrid. We then replace the
oracle call to FCnP with our protocol Π4 in the FOT-hybrid where we instantiate
our MPC protocol using [1]. The resulting protocol realizesFCOT−IVD against static
corruptions by active adversaries. This communication complexity of the protocol
can be computed as follows:
(a) The sender communicates (12 · κ + 22 · s) · |C| + 2 · κ · s bits to the OT

functionality and 4 · (κ+ s) · |C| bits in a direct message to the receiver in the
first step of the protocol as part of the passively secure protocol for realizing
the F̂IVD functionality.

(b) Transmitting a MAC for each OT input. We transmit a MAC value of length s
for each OT string independent of its length. There are 2 · (|C|+2 ·s+max(4 ·
n, 8 ·s)) strings transmitted via OTs. Therefore, sending the MACs will require
the sender to transmit 2 · s · (|C|+ 2 · s+max(4 · n, 8 · s)) bits.

(c) The commit-and-prove protocol. The communication complexity of this pro-
tocol can be bounded by 8 · s1.5 ·

√
I + 3 ·M bits, where M represents the

number of field multiplications over GF(2s) involved in the computation of
the NP-relation and I denotes the any additional witness bits (involved only
in additions). Our NP-relation can be expressed as an arithmetic circuit over
GF(2s), including the global predicate from the previous step and an additional
check to ensure that the MACs are correct. From the previous step we know
that the first part requires 5 · |C| · dκs e multiplications for verifying the OT in-
puts whereas the second part, verifying the MACs requires one multiplication
per s bits of the OT sender inputs. This results in dΓ/se multiplications where

13 We express this as x2 − x = 0.



Γ is the total length of OT sender inputs. From the previous step, we know
Γ = (12 · κ + 22 · s) · |C| + 2 · κ · s. In addition, as part of the witness, the
PRF values that are used only for additions need to be included this sums up
to 4 · |C| · (κ+ s). For an arithmetic circuit C we denote by |C| the number of
multiplication gates. Our proof length is given by

8 · s1.5 ·
√
4 · |C| · (κ+ s) + 3 · |C| · (5 · dκ/se+ 12dκ/se+ 22 + 2 · κ · s)

= 8 · s1.5 ·
√
|C| · (55 · dκ/se+ 6 · κ+ 73)

Finally, the overall communication complexity of the protocol in the κ-bit string OT-
hybrid for circuits with more than 5000 AND gates is

(12 · κ+ 22 · s) · |C|+ 4 · (κ+ s) · |C|︸ ︷︷ ︸
passive NISC/ OT communication

+2 · s · (|C|+ 2 · s+max(4 · n, 8 · s))︸ ︷︷ ︸
MAC for every OT input

+ 8 · s1.5 ·
√
|C| · (55 · dκ/se+ 6 · κ+ 73)︸ ︷︷ ︸

CnP protocol

.

In Table 2, we provide estimate communication cost incurred by our protocol. We
set κ = 128 and s = 40 and 80. The communication cost for the OT invocations
were computed assuming an implementation based on the actively secure OT extension
protocol of [29] and can be bounded by 3 · (#OT ) · κ. Furthermore, to accommodate
arbitrary length strings for the sender’s inputs the communication cost of OT is com-
puted on κ′-bit strings from the sender, where κ′ = 128 in practice, and longer strings
are handled by transferring random keys and encrypting the bigger strings via the keys.

Computational efficiency. In contrast to the concrete communication complexity, which
is implementation independent, the concrete computation cost is sensitive to many im-
plementation details. Although we have not implemented our protocol, we believe that
it can be reasonably fast. The parties engage in O(|C|) instances of parallel OT execu-
tion which can be implemented efficiently via OT-extensions [17, 30]. Reconstructing
the garbled circuit from the output of the parallel OTs relies only on simple bitwise
XOR operation on bit strings. The computationally intensive part of the COT protocol
is sharing several blocks of secrets via packed secret-sharing and evaluating polynomi-
als by both the sender and the receiver. Since we instantiate our packed-secret sharing
scheme over a large finite field, this can be done efficiently via Fast Fourier Transforms.
An implementation of a similar FFT-based protocol is provided in [1]. Furthermore, the
communication complexity of the COT protocol is significantly smaller than the overall
communication (as can be seen in the calculations above). This allows trading a slight
increase in the communication cost for more significant improvements in computational
cost by using a larger number of FFTs on shorter blocks.

Non-interactive variant. With function independent preprocessing for generating ran-
dom OTs between the sender and the receiver, we can make our protocol non-interactive
in the sense of [20], namely implement the protocol with one message from the receiver

13 6800 is the size of the AES circuit excluding XOR gates.



Circuit Size Comm.(MB) Overhead Comm.(MB) Overhead
(s = 40) (s = 40) (s = 80) (s = 80)

1024 0.71 11.33 1.07 17.16
2048 1.19 9.49 1.89 15.09
4096 2.12 8.46 3.16 12.65

6800 (AES) 3.39 8.16 4.80 11.56
8192 3.94 7.88 5.63 11.27

16384 7.53 7.53 10.46 10.46
32768 14.64 7.32 19.96 9.98
65536 28.76 7.19 38.74 9.69
131072 56.86 7.11 75.99 9.50
262144 112.85 7.05 150.05 9.38
524288 224.54 7.02 297.55 9.30

1048576 447.52 6.99 591.66 9.24
2097152 892.90 6.98 1178.65 9.21
4194304 1782.85 6.96 2350.87 9.18

Table 2. We give our total estimated communication cost of our concretely efficient variant where
κ = 128 and s = 40 and 80. We also provide our overhead over the passively secure Yao protocol
(with FreeXOR but no half-gate optimization).

to the sender, followed by one message from the sender to the receiver. At a high-level,
this is done by executing the passively secure information theoretic “Yao-style” proto-
col, followed by our commit and prove protocol. By OT preprocessing we can make
the passively secure NISC/OT protocol a two-message protocol in the online phase.
Our commit and prove protocol is public coin and can be made non-interactive via a
standard Fiat-Shamir transform [11]. However, in the non-interactive case, the statisti-
cal security parameter s becomes a computational parameter, since a malicious sender
can just try sampling 2s instances of its message until finding one that would lead the
receiver to accept a badly formed transcript. It is therefore needed in this case to use a
larger value of s, say s = 80. A useful feature of non-interactive protocols is that the
sender can use the same encrypted receiver input for multiple evaluations.14

Offline-online variant. Our protocol is particularly attractive in the offline-online set-
ting. In an offline preprocessing phase, before the inputs are known, the sender and the
receiver can run the entire protocol except for the oblivious transfers that depend on the
receiver’s input. Following this offline interaction, the receiver verifies that the informa-
tion obtained from the sender is consistent, and can then “compress” this information
into a single authenticated garbled circuit whose size is comparable to a standard gar-
bled circuit. In an online phase, once the inputs are known, the receiver uses a small
number of OTs to obtain the input keys, and performs garbled circuit evaluation and
verification whose total cost is comparable to a single garbled circuit evaluation.

14 As discussed in [20], the multiple evaluation setting is subject to selective failure attacks when
the sender can learn the receiver’s output in each evaluation.



7 Acknowledgments

We thank Peter Rindal, Mike Rosulek and Xiao Wang, for helpful discussions and the
anonymous TCC reviewers for helpful comments.

The first author was supported by the European Research Council under the ERC
consolidators grant agreement n. 615172 (HIPS), and by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office. The second author was supported by a
DARPA/ARL SAFEWARE award, DARPA Brandeis program under Contract N66001-
15-C-4065, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174,
and 1065276, ERC grant 742754, NSF-BSF grant 2015782, ISF grant 1709/14, BSF
grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those
of the authors and do not reflect the official policy or position of Google, the Department
of Defense, the National Science Foundation, or the U.S. Government. The third author
was supported by Google Faculty Research Grant and NSF Awards CNS-1526377 and
CNS-1618884.

References

1. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Proc. ACM CCS 2017,
to appear, 2017.

2. Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure
arithmetic computation with constant computational overhead. In CRYPTO, pages 223–254,
2017.

3. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-
cols (extended abstract). In STOC, pages 503–513, 1990.

4. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
CCS, pages 784–796, 2012.

5. Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimizing
rounds, communication, and computation. In EUROCRYPT, pages 163–193, 2017.

6. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure of se-
crets. In CRYPTO, pages 234–238, 1986.

7. Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In CRYPTO, pages 521–536, 2006.

8. Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages
501–520, 2006.

9. Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

10. Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended
abstract). In STOC, pages 554–563, 1994.

11. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, pages 186–194, 1987.

12. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.



13. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

14. Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques and
Constructions. Information Security and Cryptography. Springer, 2010.

15. Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In CRYPTO, pages 18–35, 2013.

16. Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Maloze-
moff. Amortizing garbled circuits. In CRYPTO, pages 458–475, 2014.

17. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In CRYPTO, pages 145–161, 2003.

18. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In ICALP, pages 244–256, 2002.

19. Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai,
and David Zuckerman. Robust pseudorandom generators. In ICALP, pages 576–588, 2013.

20. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Effi-
cient non-interactive secure computation. In EUROCRYPT, pages 406–425, 2011.

21. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In STOC, pages 21–30, 2007.

22. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In STOC, pages 433–442, 2008.

23. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

24. Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge pcps. In
TCC, pages 151–168, 2012.

25. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious trans-
fer - efficiently. In CRYPTO, pages 572–591, 2008.

26. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no
honest majority. In TCC, pages 294–314, 2009.

27. Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-
knowledge. In TCC, pages 121–145, 2014.

28. Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on commit-
ted inputs. In EUROCRYPT, pages 97–114, 2007.

29. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with
optimal overhead. In CRYPTO, pages 724–741, 2015.

30. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. IACR Cryptology ePrint Archive, 2016:505,
2016.

31. Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.
32. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short

secrets. IACR Cryptology ePrint Archive, 2013:491, 2013.
33. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and

applications. In ICALP, pages 486–498, 2008.
34. Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and covert adversaries.

J. Cryptology, 29(2):456–490, 2016.
35. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation

in the presence of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.
36. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose obliv-

ious transfer. J. Cryptology, 25(4):680–722, 2012.
37. Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round

multi-party computation combining BMR and SPDZ. In CRYPTO, pages 319–338, 2015.



38. Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the on-
line/offline and batch settings. In CRYPTO, pages 476–494, 2014.

39. Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious two-party
computation. In PKC, pages 458–473, 2006.

40. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In
FOCS, pages 136–145, 2003.

41. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In CRYPTO, pages 681–700,
2012.

42. Jesper Buus Nielsen and Claudio Orlandi. Cross and clean: Amortized garbled circuits with
constant overhead. In TCC, pages 582–603, 2016.

43. Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously
secure 2pc with function-independent preprocessing using LEGO. IACR Cryptology ePrint
Archive, 2016:1069, 2016.

44. Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously
secure 2PC with function-independent preprocessing using LEGO. In 24. Annual Network
and Distributed System Security Symposium (NDSS’17). The Internet Society, February 26-
March 1 2017.

45. Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with on-
line/offline dual execution. In 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016., pages 297–314, 2016.

46. Abhi Shelat and Chih-Hao Shen. Fast two-party secure computation with minimal assump-
tions. In CCS, pages 523–534, 2013.

47. Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. In STOC,
pages 388–397, 1995.

48. Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster secure two-party computation
in the single-execution setting. In EUROCRYPT, pages 399–424, 2017.

49. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient
maliciously secure multi-party computation. In Proc. ACM CCS, to appear, 2017. Full
version: Cryptology ePrint Archive, Report 2017/030.

50. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162–167, 1986.

51. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In EUROCRYPT, pages 220–250, 2015.

A Secure Two-Party Computation

We use a standard standalone definition of secure two-party computation protocols.
In this work, we only consider static corruptions, i.e. the adversary needs to decide
which party it corrupts before the execution begins. Following [14], we use two security
parameters in our definition. We denote by κ a computational security parameter and
by s a statistical security parameter that captures a statistical error of up to 2−s. We
assume s ≤ κ. We let F be a two-party functionality that maps a pair of inputs of equal
length to a pair of outputs. Without loss of generality, our protocols only deliver output
to one party (the receiver), which can be viewed as a special case in which the other
party’s output is fixed.

Let Π = 〈P0, P1〉 denote a two-party protocol, where each party is given an input
(x for P0 and y for P1) and security parameters 1s and 1κ. We allow honest parties to



be PPT in the entire input length (this is needed to ensure correctness when no party is
corrupted) but bound adversaries to time poly(κ) (this effectively means that we only
require security when the input length is bounded by some polynomial in κ). We denote
by REALΠ,A(z),Pi(x, y, κ, s) the output of the honest party Pi and the adversary A
controlling P1−i in the real execution of Π , where z is the auxiliary input, x is P0’s
initial input, y is P1’s initial input, κ is the computational security parameter and s is
the statistical security parameter. We denote by IDEALF,S(z),Pi(x, y, κ, s) the output
of the honest party Pi and the simulator S in the ideal model where F is computed by a
trusted party. In some of our protocols the parties have access to ideal model implemen-
tation of certain cryptographic primitives such as ideal oblivious-transfer (FOT) and we
will denote such an execution by REALFOT

Π,A(z),Pi
(x, y, κ, s).

Definition A.1. A protocol Π = 〈P0, P1〉 is said to securely compute a functional-
ity F in the presence of active adversaries if the parties always have the correct out-
put F(x, y) when neither party is corrupted, and moreover the following security re-
quirement holds. For any probabilistic poly(κ)-time adversary A controlling Pi (for
i ∈ {0, 1}) in the real model, there exists a probabilistic poly(κ)-time adversary (simu-
lator) S controlling Pi in the ideal model, such that for every non-uniform poly(κ)-time
distinguisherD there exists a negligible function ν(·) such that the following ensembles
are distinguished by D with at most ν(κ) + 2−s advantage:

– {REALΠ,A(z),Pi(x, y, κ, s)}κ∈N,s∈N,x,y,z∈{0,1}∗
– {IDEALF,S(z),Pi(x, y, κ, s)}κ∈N,s∈N,x,y,z∈{0,1}∗

Secure circuit evaluation. The above definition considers F to be an infinite function-
ality, taking inputs of an arbitrary length. However, our protocols (similarly to other
protocols from the literature) are formulated for a finite functionality F : {0, 1}n ×
{0, 1}n → {0, 1}m described by a Boolean circuit C. Such protocols are formally cap-
tured by a polynomial-time protocol compiler that, given security parameters 1κ, 1s and
a circuit C, outputs a pair of circuits (P0, P1) that implement the next message func-
tion of the two parties in the protocol (possibly using oracle calls to a cryptographic
primitive or an ideal functionality oracle). While the correctness requirement (when no
party is corrupted) holds for any choice of κ, s,C, the security requirement only con-
siders adversaries that run in time poly(κ). That is, we require indistinguishability (in
the sense of Definition A.1) between

– {REALΠ,A(z),Pi(C, x, y, κ, s)}κ∈N,s∈N,C∈C,x,y,z∈{0,1}∗
– {IDEALF,S(z),Pi(C, x, y, κ, s)}κ∈N,s∈N,C∈C,x,y,z∈{0,1}∗

where C is the class of boolean circuits that take two bit-strings as inputs and output two
bit-strings, x, y are of lengths corresponding to the inputs of C, F is the functionality
computed by C, and the next message functions of the parties P0, P1 is as specified by
the protocol compiler on inputs 1κ, 1s,C.


