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Abstract. Albrecht et al. [1] at Crypto 2016 and Cheon et al. [4] at
ANTS 2016 independently presented a subfield attack on overstretched
NTRU problem. Their idea is to map the public key down to the sub-
field (by norm and trace map respectively) and hence obtain a lattice of
smaller dimension for which a lattice reduction algorithm is efficiently
applicable. At Eurocrypt 2017, Kirchner and Fouque proposed another
variant attack which exploits the presence of orthogonal bases within the
cyclotomic number rings and instead of using the matrix of the public
key in the subfield, they use the multiplication matrix by the public key
in the full field and apply a lattice reduction algorithm to a suitable
projected lattice of smaller dimension. They also showed a tight estima-
tion of the parameters broken by lattice reduction and implementation
results that their attack is better than the subfield attack.

In this paper, we exploit technical results from Kirchner and Fouque [12]
for the relative norm of field elements in the subfield and we use Hermite
factor for estimating the output of a lattice basis reduction algorithm in
order to analyze general choice of parameters for the subfield attack by
Albrecht et al. [1]. As a result, we obtain the estimation for better choices
of the subfields for which the attack works with smaller modulus. Our
experiment results show that we can attack overstretched NTRU with
modulus smaller than that of Albrecht et al. and of Kirchner and Fouque.

1 Introduction

The NTRU encryption scheme is one of the first cryptosystems based on lat-
tices proposed in 1998 by Hoffstein, Pipher and Silverman [11]. Up to present,
NTRUEncrypt remains secure and is considered as one of the fastest post-quantum
public key encryption schemes. The NTRU assumption is that, given the quo-
tient ring R = Z[x]/(φ(x)) where φ(x) is a polynomial of degree n and q a
positive integer, finding a “short” element in

Λqh = {(x, y) ∈ R2 | hx = y mod q}



is hard. Here h is the public polynomial in Rq = Zq[x]/(φ(x)) which is of the
form h = gf−1 mod q, where f and g are sampled from R such that they have
small coefficient norms and f is invertible modulo q. In the original proposal [11],
the authors used R to be the convolution ring Z[x]/(xn− 1) and the coefficients
of f and g are normally taken from the set {−1, 0, 1}. Even though there is no
efficient attack against NTRUEncrypt, there is no security reduction to a hard
mathematical problem; see [10] for current updates on the security of classical
NTRUEncrypt. It is later recommended by Lyubashevsky and Micciancio [14] to
replace the polynomial xn − 1 by the cyclotomic polynomial xn + 1 with n a
power of 2, based on which they constructed a hash function proven collision-
resistant under the assumed hardness of worse-case lattice problem over ideal
lattices. Stehlé and Steinfeld used the polynomial xn + 1 and defined a variant
of NTRUEncrypt. They showed that if f and g are sampled from a Gaussian
distribution with wide enough standard deviation, then NTRUEncrypt is proven
to be secure under the hardness of lattice problems in ideal lattices; see [15]
for more details. In this paper, we consider only the cyclotomic number ring
R = Z[x]/(xn + 1) where n is a power of 2.

Coppersmith and Shamir [6] showed that in order to break an NTRU cryp-
tosystem, it suffices to find a short multiple of the secret key (f, g). The goal
of the attack against NTRU problem then is to find a short enough vector in
Λqh, which is corresponding to an integral lattice of dimension 2n; such a short
vector will be a short multiple of the secret key (f, g) (see Theorem 8).

Albrecht et al. [1] and Cheon et al. [4] independently at Crypto 2016 and
ANTS 2016 proposed a subfield attack on NTRU. Their idea, attributed to Gen-
try, Szydlo, Jonsson, Nguyen and Stern [9], is to exploit the presence of a subfield
L in the cyclotomic number field K = Q[x]/(xn + 1). They then map the public
key h down to the subfield L using the relative norm and trace map respectively.
The obtained element h′ in the subfield L gives rise to the NTRU problem with
the associated lattice Λqh′ of dimension much smaller than Λqh. A solution for this
NTRU problem in L will later be lift to a solution for the NTRU problem in the
full field K, and hence solves NTRU problem with large (overstretched) modulus
q. At Eurocrypt 2017, Kirchner and Fouque [12] proposed a variant of the attack
and claim that their attack is more efficient than that of Albrecht et al.’s and
Cheon et al.’s. Their idea is to exploit the presence of orthogonal basis within
the cyclotomic number ring and hence instead of mapping the public key down
to the subfield, they use the projected lattices to the subring corresponding to
the subfield. Their implementation results show that their attack is applicable
with smaller modulus q compared to the subfield attack by Albrecht et al. The
aforementioned attacks [1,4,12] against overstretched NTRU problem then can
break several instances of NTRU-based cryptosystems, such as multilinear maps
GGH13 [8], and fully homomorphic encryption LTV [13] and YASHE [3].

Our contribution. In this paper, we use tighter bound for norms of elements in
the corresponding subfield from Kirchner and Fouque [12] and use the Hermite
factor for approximating the output of a lattice reduction algorithm (e.g., LLL)
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to analyze the subfield attack by Albrecht et al. [1]. As a result, we derive better
choice for the subfield for which the attack is applicable with smaller modulus
q. Our implementation results support our theoretical estimation for the choice
of the subfield (see Table 1):

– For the same n = 211, with the choice of subfield L such that |K : L| = 4
while Albrecht et al. (cf. Table 5 in [1]) chose L such that |K : L| = 8, we can
break the NTRU problem with log(q) = 72 while Albrecht et al. succeeded
with log(q) = 95; it is a tradeoff that we have to work on a higher dimension
lattice. Our succeeded modulus log(q) = 72 for n = 211 is close to log(q) = 70
of Kirchner and Fouque which is the smallest succeeded modulus and both
have the same choice for the subfield to attack.

– For n = 212, with the choice of subfield L such that |K : L| = 8 while
Albrecht et al. (cf. Table 6 in [1]) chose L such that |K : L| = 16 (same as
Kirchner and Fouque), we can break the NTRU problem with log(q) = 135
while Albrecht et al. succeeded with log(q) = 190. Our succeeded modulus
log(q) = 120 for n = 212 is better than log(q) = 144 of Kirchner and Fouque.

What we notice from experimental results of Kirchner and Fouque is that, al-
though their method succeeded with small modulus q, it does not guarantee the
success of larger modulus, whereas the subfield attack yields the exact limit of
success, like in our and Albrecht et al.’s experiments.

2 Preliminaries

Let n be a 2-power number and m = 2n. Let K = Q[x]/(xn+1) be the cyclotomic
number field. Let L be the subfield of K of degree n′ with n = rn′. Let G be
the Galois group of K over Q and H the subgroup of G fixing L. Let R = OK =
Z[x]/(xn+1) be the ring of integers of K. Define the relative norm NK/L : K→ L
by

NK/L(a) =
∏
ψ∈H

ψ(a).

and denote L : L ↪→ K be the canonical inclusion.

The number field K (or L) is viewed as a Euclidean Q-vector space by en-
dowing with the inner product

〈a, b〉 =
∑
e

e(a)ē(b),

where e ranges over all the n (or n′) embeddings e : K → C and ē its complex
conjugate. This defines a Euclidean norm denoted by ‖.‖. Define the operator
norm |.| as

|a| = sup
x∈K∗

‖ax‖
‖x‖

.
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It is easy to check that |a| is equal to maxe |e(a)|, the maximal absolute complex
embedding of a, and that ‖L(a)‖2 = r‖a‖2, |L(a)| = |a|. Moreover for any a ∈ K,
one has

|a| ≤ ‖a‖ ≤
√
n · |a|,

and using the inequality of arithmetic and geometric means yields

|NK/Q(a)| ≤
(
‖a‖√
n

)n
. (1)

The discriminant of the number field K is denoted by ∆K. One has that√
|∆K| = Vol(OK) and

Vol(aOK) =
∣∣NK/Q(a)

∣∣ ·√|∆K|.

Lemma 1 ([12, Lemma 1]). Let M ⊆ Kd be a discrete OK-module of rank 1.
Then for any 0 6= v ∈M , one has

Vol(M) ≤
(
‖v‖√
n

)n
·
√
|∆K|.

Proof. Since the rank of M is 1, one can build a K-linear isometry from R⊗M
to K ⊗ R. Hence we can assume that d = 1. Let v be a non-zero vector in M ,
then vOK ⊆M , which implies

Vol(M) ≤ Vol(vOK) = NK/Q(v) ·
√
|∆K| ≤

(
‖v‖√
n

)n
·
√
|∆K|,

where the last inequality follows from (1).

Definition 2 (Gaussian Distribution). Given s > 0, the discrete Gaussian
distribution over the lattice L with zero mean is defined as DL,s(x) = ρs(x)/ρs(L)
for any x ∈ L, where ρs(x) = exp(−π‖x‖2/s2), ρs(L) =

∑
x∈L ρs(x).

Lemma 3. For any lattice L, any t ≥ 1, then

Prx←DL,s

[
‖x‖ > st

√
n

2π

]
< exp(−n(t− 1)2/2).

It follows from Lemma 3 (by taking t =
√

2π) that ‖x‖ ≤ s
√
n with high

probability.

Definition 4 (NTRU Problem). Given a ring R = Z[x]/(xn + 1) as above, a
modulus q, a distribution D on R, and a target norm B. The NTRU problem is
defined as the following: given h = [gf−1]q where f, g are sampled from D (with
the condition that f is invertible modulo q), find a vector (x, y) ∈ R2 such that
(x, y) 6= (0, 0) mod q and of Euclidean norm less than B in the lattice

Λqh = {(x, y) ∈ R2 : hx− y = 0 mod q}.
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One can express a basis B for Λqh as follows

B =

(
qIn h
0 In

)
(2)

where In is the identity matrix of degree n and h stands for an n × n matrix
whose i-th column is the coefficient vector of the polynomial xi−1 ·h mod xn+1.

Remark 5. Coppersmith and Shamir [6] showed that recovering short enough
vectors may be sufficient; the NTRU Problem is essentially to recover the secret
key (f, g). Hence, in order to attack the NTRU problem, we need to find a short
non-zero vector (x, y) of Λqh. We follow Albrecht et al. [1] to require that the
solution (x, y) to have norm at most q3/4.

Heuristic 6 (Lattice reduction algorithms). There is an algorithm which, given
as input a basis of a d-dimensional integer lattice L, outputs a non-zero vector
v of L such that

‖v‖ ≤ δL ·Vol(L)1/d.

Here δL = cd is the Hermite factor of a lattice reduction used for the lattice L.
One has ([7]):

(i) c ∼= 1.0219 for LLL algorithm on average for d ≥ 100.
(ii) c ∼= 1.0128 for BKZ algorithm with block size 20 on average.

Remark 7. Heuristic 6 holds for random lattices (cf. [7]). For NTRU lat-
tices (2), if the modulus q is large, then the NTRU lattices (2) contain vec-
tors shorter than (0, . . . , 0, q, 0, . . . , 0), and hence a lattice reduction algorithm
(e.g. LLL) can recover a multiple of the secret key. Experiments in Table 2 and
Table 3 show that the root Hermite factor c for which our attack succeeds is much
smaller than the approximation in Heuristic 6.

3 Overview of the subfield lattice attack

Let K = Q[x]/(xn + 1) with n a 2-power. Denote by L = Q[xr]/(xn + 1) a
subfield of K with n = rn′. Let DOK,s be the discrete Gaussian distribution over
OK with standard deviation s, and let q be an integer. We consider the NTRU
problem with f, g withdrawn from DOK,s such that f is invertible modulo q. Set
h = gf−1 mod q and consider the NTRU lattice

Λqh = {(x, y) ∈ O2
K | hx = y mod q}.

The subfield attack by Albrecht et al. [1] works in three steps as the following.

– Step 1: Norming down the public vector h to an element h′ in the subfield L
– Step 2: Using a lattice reduction algorithm of the lattice Λqh′ in the subfield

L which has dimension smaller than the original lattice.
– Step 3: Lifting up the results from Step 2 to the full field K and prove that

they are short vectors in the lattice Λqh, which are short multiples of secret
key (f, g).
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3.1 Norming down to the subfield

Let h′ = NK/L(h), g′ = NK/L(g) and f ′ = NK/L(f). Then f ′, g′ ∈ OL and (f ′, g′)
is a vector of the following lattice

Λqh′ =
{

(x′, y′) ∈ O2
L | h′x′ = y′ mod q

}
and depending on the parameters, it may be an unusually short one. We now have
reduced our NTRU problem in the full field K (for the lattice Λqh) to the NTRU
problem in the subfield L (for the lattice Λqh′). The lattice Λqh′ has dimension

2n′ and volume q2n
′
.

3.2 Lattice reduction in the subfield

We now apply a lattice reduction algorithm (cf. Theorem 6) to the lattice Λqh′
we obtain a non-zero vector (x′, y′) ∈ Λqh′ of norm

‖(x′, y′)‖ ≤ δL ·Vol(Λqh′)
1/2n′ .

where δL = c2n
′

is the Hermite factor of the lattice Λqh′ , and c is a constant
depending on the corresponding lattice algorithm (cf. Theorem 6).

The following shows that if the vector (x′, y′) is short enough then it must
be an OL-multiple of (f ′, g′).

Theorem 8 ([12, Theorem 8]). Let f ′, g′ ∈ OL be such that 〈f ′〉 and 〈g′〉 are
coprime ideals and that h′f ′ = g′ mod qOL for some h′ ∈ OL. If (x′, y′) ∈ Λqh′
has length satisfying

‖(x′, y′)‖ < n′q

‖(f ′, g′)‖
then (x′, y′) = v(f ′, g′) for some v ∈ OL.

Proof. We first prove that B = {(f ′, g′), (F ′, G′)} is a basis of theOL-module Λqh′
for some (F ′, G′) ∈ O2

L. By coprimity, there exist (F ′, G′) such that f ′G′−g′F ′ =
q ∈ OL. We note that

f ′(F ′, G′)− F ′(f ′, g′) = (0, q);

g′(F ′, G′)−G′(f ′, g′) = (−q, 0);

[f ′−1]q(f
′, g′) = (1, h′) mod q.

Hence the module M generated by B contains qO2
L and (1, h′), i.e., Λqh′ ⊆ M .

Moreover, detL(B) = f ′G′ − g′F ′ = q = detL{(1, h′), (0, q)}, we have Vol(M) =
|∆L|qn

′
= Vol(Λqh′) and therefore M = Λqh′ .

Denote by Λ = (f ′, g′)OL and by Λ∗ the projection of (F ′, G′)OL orthogonally
to Λ. We have Vol(Λ)Vol(Λ∗) = qn

′
∆L. Let 0 6= u ∈ Λ∗ be a shortest vector in

Λ∗. By Lemma 1, one has

Vol(Λ) ≤
(
‖(f ′, g′)‖√

n′

)n′
|∆L|1/2, and Vol(Λ∗) ≤

(
‖u‖√
n′

)n′
|∆L|1/2.
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We deduce that λ1(Λ∗) = ‖u‖ ≥ n′q/‖(f ′, g′)‖. The hypothesis implies that
‖(x′, y′)‖ < λ1(Λ∗). Hence (x′, y′) ∈ Λ as desired.

Remark 9. It is proven in [1, Section 2.2] that with high probability (approx-
imately 75%), f ′ and g′ are coprime. However, the experiments succeeded even
when they are not coprime.

3.3 Lifting up the short vector

Assume that we have found a short non-zero vector (x′, y′) ∈ O2
L in the lattice

Λqh′ subject to the condition of Theorem 8, i.e., (x′, y′) is a short multiple of
(f ′, g′). We now lift up (x′, y′) to (x, y) ∈ O2

K by computing

x = L(x′) and y = L(y′) · h/L(h′) mod q (3)

where L : L ↪→ K is the canonical inclusion map of L ⊂ K.
Obviously (x, y) ∈ Λqh. It follows from Theorem 8 that x′ = vf ′, y′ = vg′ for

some v ∈ OL. Let f̄ = L(f ′)/f, ḡ = L(g′)/g and h̄ = L(h′)/h. Note also that
f̄ , ḡ and h̄ are integers over K. We write

x = L(x′) = L(v) · f̄ · f mod q

y = L(y′) · h/L(h′) = L(v) · f̄ · g mod q

and hence (x, y) = u · (f, g) is a multiple of (f, g), for u = L(v) · f̄ ∈ OK.

4 Revisiting Albrecht et al.’s attack [1]

In this section, we analyse the subfield attack proposed by Albrecht et al. [1].
First, we analyse in Section 4.1 theoretically the modulus q and yield better
choice of r for which the subfield attack is feasible with smaller modulus q. In
Section 4.2, we compare the theoretical estimation and implementation results.

4.1 Theoretical analysis

SetD = s
√
n to be the upper bound for the norm of a secret polynomial sampling

from the discrete Gaussian distribution DOK,s over OK (see Lemma 3). Hence
for f, g ← DOK,s, one has ‖f‖, ‖g‖ ≤ D. Let L be the subfield of K of degree n′,
i.e., n = rn′, and let

f ′ = NK/L(f), g′ = NK/L(g), h′ = NK/L(h).

Then
‖f ′‖ ≤

√
n′Dr, ‖g′‖ ≤

√
n′Dr,

and hence
‖(f ′, g′)‖ ≤

√
2n′Dr.
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Table 1. Comparison of succeeded modulus log(q) for the subfield attacks. We use
LLL algorithm as in Albrecht et al. and Kirchner-Fouque.

log(n) t = log(r) Succeeded log(q) Method Estimated log(q)

9 2 40 Ours 44

10 2 52 Ours 63

11 3 95 Albrecht et al. [1] 109

11 2 70 Kirchner and Fouque [12]

11 2 72 Ours 98

12 4 190 Albrecht et al. [1] 208

12 4 144 Kirchner and Fouque [12]

12 3 120 Ours 148

Applying a lattice reduction algorithm to the lattice Λqh′ , we obtain a non-zero
vector (x′, y′) of norm

‖(x′, y′)‖ ≤ c2n
′√
q,

and therefore

‖(x′, y′)‖ · ‖(f ′, g′)‖ ≤ c2n
′√

2n′Dr√q.

It follows from Lemma 1 that if

c2n
′√

2n′Dr√q < n′q (4)

then (x′, y′) will be a multiple of (f ′, g′). Inequality (4) is equivalent to

4n′ log(c) + 2r log(s) + r log(n) + 1− log(n′) < log(q). (5)

Notice that

4n′ log(c) + 2r log(s) + r log(n) =
4n log(c)

r
+ r(2 log(s) + log(n))

≥ 2
√

4n log(c)(2 log(s) + log(n))

with equality if and only if

r =

√
4n log(c)

2 log(s) + log(n)
. (6)

Hence the choice of r in (6) optimizes the left-hand side of (5), and hence yields
the estimation of the modulus q that makes NTRU problem vulnerable to the
subfield attack.

4.2 Implementation results

In Table 1, we show our choice of r, which is the index of the subfield L in K,
to which we apply the subfield attack, and compare the actual succeeded values
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of log(q) by our, Albrecht et al.’s [1] and Kirchner-Fouque’s experiments. As in
previous works of Albrecht et al. and Kirchner-Fouque, we use LLL algorithm in
our experiments. We take s =

√
2/3, and use constant c = 1.0219 (see Heuris-

tic 6) for estimating the choice of r. Experimental results for the cases n = 211

and n = 212 can be seen from Table 2 and Table 3 respectively. The requirement
for success of the attack is that the obtained solution (x, y) is a multiple of (f, g)
and has norm at most q3/4 (following Albrecht et al. [1]).

– For n = 211, we choose r = 22 which is the same as Kirchner-Fouque and
different from Albrecht et al. (vs. r = 23). We succeeded with log(q) = 72,
which is much smaller than log(q) = 90 by Albrecht et al. and close to
log(q) = 70 by Kirchner-Fouque.

– For n = 212, we choose r = 23 whereas Albrecht et al. and Kirchner-Fouque’s
chose r = 24. We succeeded with log(q) = 120 which is smaller than log(q) =
190 by Albrecht et al. and log(q) = 144 by Kirchner-Fouque.

The last column of Table 1 gives our estimated values of breakable log(q)
in the subfield attack which are larger than the results from experiments. One
reason is that our estimation for the upper bound of the norms of NK/L(f) and
NK/L(g) is not tight; for example, for n = 212, our estimated for log(‖(f ′, g′)‖)
is around 57.75 while it is approximately 46 by experiments.

Table 2 shows our implement results for the subfield attack against NTRU
problem for n = 211 in which we choose the subfield L ≤ K with |K : L| = r and
log(r) = 2 according to (6). Note that for the case log(q) = 70, 71, the attack
is successful, i.e. the obtained results are multiple of the secret key (f, g), but
they are not short enough as required. Table 3 shows our implement results for
the subfield attack against NTRU problem for n = 212 in which we choose the
subfield L ≤ K with |K : L| = r and log(r) = 3 according to (6). Experimental
results for n = 29 and n = 210 are shown in the Appendix.

5 Conclusion

In this work, we exploit technical results from Kirchner and Fouque [12] to re-
analyze the subfield attack by Albrecht et al. [1] against the overstretched NTRU
problem. We derives better choices of the subfields for which the attack is suc-
cessful with smaller modulus. Our experiments show that our succeeded modulus
is much smaller than that of Albrecht et al. [1]. However, with our choices of
subfields, we have to work with lattices of higher dimensions (as twice as those
of Albrecht et al.) and hence the attack takes longer. Our implementation results
for the case n = 211 (with same choice of subfield) are close to that of Kirchner
and Fouque [12] (log(q) = 72 vs. log(q) = 70), while for the case n = 212 (with
different choice of subfield), we can break the NTRU problem with smaller mod-
ulus (log(q) = 120 vs. log(q) = 144). Whereas Kirchner and Fouque’s method
can break NTRU problem with smaller modulus q in some cases (e.g, n = 211),
it does not guarantee to succeed with bigger q, in contrast to the subfield attack
which gives the exact limit of success. Recently, Cheon et al. [5] proposed an
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Table 2. Implementation results for n = 211 and log(r) = 2. Here we work with lattices
of dimension 2n′ = 1024. The third column rhf stands for root Hermite factor obtained
from our experiments (cf. the constant c in Heuristic 6)

log(q) log(‖(f ′, g′)‖) rhf log(‖(x′, y′)‖) log(‖(x, y)‖) Is ‖(x, y)‖ ≤ q3/4?

95 21.40 0.9925 36.37 36.75 Yes
94 21.19 0.9934 37.30 37.66 Yes
93 21.37 0.9933 36.61 36.90 Yes
92 21.20 0.9936 36.63 36.81 Yes
91 21.28 0.9938 36.44 36.66 Yes
90 21.34 0.9942 36.42 36.60 Yes
89 21.30 0.9944 36.33 36.47 Yes
88 21.27 0.9949 36.49 36.55 Yes
87 21.35 0.9952 36.45 36.57 Yes
86 21.12 0.9959 37.05 37.24 Yes
85 21.17 0.9958 36.35 36.61 Yes
84 21.24 0.9962 36.42 36.78 Yes
83 21.15 0.9966 36.54 36.63 Yes
82 21.27 0.9973 37.11 37.28 Yes
81 21.26 0.9971 36.29 36.53 Yes
80 21.26 0.9979 37.00 37.13 Yes
79 21.18 0.9978 36.31 36.45 Yes
78 21.53 0.9983 36.56 36.75 Yes
77 21.22 0.9989 36.92 37.18 Yes
76 21.30 0.9992 36.87 37.17 Yes
75 21.28 0.9992 36.46 36.66 Yes
74 21.12 0.9996 36.42 36.49 Yes
73 21.45 1.0003 36.97 37.03 Yes
72 21.33 1.0005 36.80 36.92 Yes

71 21.27 1.0223 68.17 74.70 No
70 21.33 1.0225 67.89 73.70 No

attack against overstretched NTRU problem which exploits the existence of the
sublattice in the NTRU lattice similar to that of Kirchner and Fouque. Their
attack can apply for NTRU problem with general modulus polynomial φ(x) and
they also give an improved subfield attack. One of our future work is to give a
complete comparison between those attacks against overstretched NTRU prob-
lem.
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Table 3. Implementation results for n = 212 and log(r) = 3. Here we work with lattices
of dimension 2n′ = 1024

log(q) log(‖(f ′, g′)‖) rhf log(‖(x′, y′)‖) log(‖(x, y)‖) Is ‖(x, y)‖ ≤ q3/4?

150 46.31 0.9898 59.88 60.35 Yes
149 45.71 0.9903 60.12 60.62 Yes
148 46.11 0.9951 59.75 60.25 Yes
147 46.22 0.9910 60.23 60.82 Yes
146 46.91 0.9913 60.13 60.56 Yes
145 45.47 0.9914 59.81 60.48 Yes
144 46.11 0.9918 59.97 60.28 Yes
143 45.79 0.9921 59.84 60.22 Yes
142 45.87 0.9924 59.84 60.22 Yes
141 45.55 0.9929 60.05 60.51 Yes
140 46.20 0.9934 60.31 60.58 Yes
135 46.45 0.9948 59.88 60.28 Yes
130 46.26 0.9965 59.82 60.36 Yes
125 45.90 0.9984 60.14 60.42 Yes
120 45.77 0.9998 59.83 60.17 Yes

115 46.34 1.0225 90.41 119.21 No
100 45.87 1.0224 82.81 104.21 No
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Appendix

Table 4 and Table 5 show implementation results for the case n = 29 and n = 210

respectively, with the same choice of subfield L such that |K : L| = 4.

Table 4. Implementation results for n = 29 and log(r) = 2

log(q) log(‖(f ′, g′)‖) rhf log(‖(x′, y′)‖) log(‖(x, y)‖) Is ‖(x, y)‖ ≤ q3/4?

44 17.07 0.9950 20.16 20.39 Yes
43 17.11 0.9960 20.03 20.40 Yes
42 17.19 0.9978 20.22 20.34 Yes
41 17.15 0.9997 20.40 20.63 Yes
40 17.18 0.9996 19.85 20.14 Yes

39 17.12 1.0228 27.83 41.71 No
38 17.21 1.0215 26.87 40.67 No
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Table 5. Implementation results for n = 210 and log(r) = 2

log(q) log(‖(f ′, g′)‖) rhf log(‖(x′, y′)‖) log(‖(x, y)‖) Is ‖(x, y)‖ ≤ q3/4?

63 19.31 0.9926 26.07 26.23 Yes
62 19.24 0.9931 25.95 26.09 Yes
61 19.15 0.9942 26.27 26.43 Yes
60 19.14 0.9943 25.85 26.09 Yes
59 19.31 0.9955 26.23 26.58 Yes
58 19.46 0.9964 26.38 26.61 Yes
57 19.21 0.9965 25.95 26.37 Yes
56 19.14 0.9976 26.24 26.50 Yes
55 19.40 0.9982 26.22 26.48 Yes
54 19.19 0.9988 26.16 26.24 Yes
53 19.09 0.9996 26.21 26.49 Yes
52 19.08 1.0000 26.05 26.22 Yes

51 19.22 1.0223 41.83 54.24 No
50 19.43 1.0221 41.15 53.19 No
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