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Abstract

We consider the endomorphism ring computation problem for super-
singular elliptic curves, constructive versions of Deuring’s correspondence,
and the security of Charles-Goren-Lauter’s cryptographic hash function.
We show that constructing Deuring’s correspondence is easy in one di-
rection and equivalent to the endomorphism ring computation problem
in the other direction. We also provide a collision attack for special but
natural parameters of the hash function, and we prove that for general
parameters its preimage and collision resistance are also equivalent to
the endomorphism ring computation problem. Our reduction and attack
techniques are of independent interest and may find further applications
in both cryptanalysis and the design of new protocols.

1 Introduction

The recent search for new “post-quantum” cryptographic primitives and the on-
going international PQC competition sponsored by NIST has motivated a new
era of research in the mathematics of cryptography. Ideas for cryptographic
primitives based on hard mathematical problems are being actively proposed
and examined. This paper focuses on isogeny-based cryptography, and in partic-
ular on the hardness of computing endomorphism rings of supersingular elliptic
curves and its possible applications in cryptography.

In 2006, Charles, Goren, and Lauter introduced the hardness of finding paths
in Supersingular Isogeny Graphs into cryptography and used it for construct-
ing cryptographic hash functions. Since then, this problem and related hard
problems have been used as the basis for key exchange protocols [16], signature
schemes [29, 13], and public key encryption [10].

There exists a one to one correspondence due to Deuring [9] between super-
singular j-invariants and maximal orders in a quaternion algebra, up to some
equivalence relations. Following this correspondence, candidate hard problems
underlying the security of Charles-Goren-Lauter hash function can be naturally
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translated into problems expressed in terms of elements and ideals of a quater-
nion algebra. An a priori plausible strategy to cryptanalyse the hash function
would therefore involve the following three steps:

1. Translate an isogeny problem into its quaternion algebra equivalent.

2. Solve the problem in the quaternion algebra.

3. Translate the solution back into a solution for the isogeny problem.

This motivates explicit versions of Deuring’s correspondence for completing the
first and last step of this strategy, namely algorithms to translate j-invariants
into maximal orders in the quaternion algebra and conversely.

In this paper, we report our successes and failures in implementing this
strategy. We solved the second step with coauthors in [18], and the present
paper contains additional techniques that essentially allow to solve the third
step. On the other hand, we found that the first step and in fact the security
of the hash function are equivalent to computing the endomorphism ring of a
supersingular elliptic curve, a problem that is emerging as the core candidate
hard problem in isogeny-based cryptography.

1.1 Contributions of this paper

More precisely, in this paper we consider the following five problems (we refer
to subsequent sections for precise descriptions of these problems):

1. Constructing Deuring’s correspondence from maximal orders to supersin-
gular invariants.

2. Constructing Deuring’s correspondence from supersingular invariants to
maximal orders.

3. Computing endomorphism rings of supersingular elliptic curves.

4. Computing preimages and collisions for the hash function when the initial
vertex is chosen at random.

5. Computing preimages and collisions for the hash function when the initial
vertex is chosen by the attacker.

We provide efficient algorithms for the first and last of these problems, and
efficient reductions between the other three problems.

1.2 Related work

The endomorphism ring computation problem and constructive versions of Deur-
ing’s corespondence have been studied in the past independently of their cryp-
tographic applications [17, 5], and all known algorithms for these problems have
required exponential time. Here we provide a polynomial time algorithm for
computing Deuring’s correspondence in one direction.
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Computing Deuring’s correspondence in the other direction has sometimes
been identified with the endomorphism ring computation problem, since in a
sense both of them output some description of the endomorphism ring. The
output formats required for both problems are however very different and it is
a priori not easy to go from one to another. Our reductions accomplish that by
using the quaternion `-isogeny algorithm from [18] and additional techniques.

To the best of our knowledge there has not been any progress on the security
of Charles-Goren-Lauter hash function since the initial arguments and attempts
presented in their paper [6]. While they based preimage and collision resistance
on some isogeny degrees of a special form, we show that these properties in
fact only rely on the hardness of computing endomorphism rings of supersin-
gular elliptic curves. Paradoxically we also give a new partial attack on the
construction for specific but natural parameters.

Relationships between various isogeny problems were discussed in the pre-
liminary sections of [12, 13], based on an earlier version of our paper. Here we
make some of the results that were mentioned there explicit.

Recently there have been several partial attacks on isogeny-based proto-
cols [12, 25, 14, 21]. These attacks target the key exchange protocol of Jao-De
Feo [16] in specific attack models and are complementary to our work.

1.3 Follow-up work

After we showed them our results, Eisentraeger-Hallgren-Morrisson developed
a different approach for some of the reductions presented in Section 3. They
presented this approach in IACR eprint 2017/986, without any comparison with
our paper.

While our reductions only rely on plausible number theory heuristics, theirs
additionally require an oracle to solve an ad hoc problem that they introduce,
namely the action on ` torsion. Unfortunately they do not provide an algorithm
for this oracle, so (up to the use of slightly different number theory heuristics)
their reductions are strictly weaker than ours. Their paper also develops an
extensive proof to bound representations of endomorphism rings of supersingular
elliptic curves. This bound is also clear from Algorithm 2 and Proposition 6
in this paper, and it in fact directly follows from the Ramanujan property of
isogeny graphs.

1.4 Outline

We recall various preliminaries in Section 2. In Section 3 we give our reductions
between computing endomorphism rings of supersingular elliptic curves, con-
structing Deuring’s correspondence from j-invariants to maximal orders, and
the security of Charles-Goren-Lauter hash function. In Section 4 we provide
an algorithm to construct Deuring’s correspondence from maximal orders to
j-invariants and a partial attack on the hash function. Section 5 concludes the
paper.
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2 Preliminaries

2.1 Supersingular isogeny graphs

Let p be a prime, and let E be a supersingular elliptic curve defined over a field
of characteristic p. Up to isomorphism the curve can in fact be defined over
Fp2 . An isogeny φ : E → E′ is a nonconstant morphism from E to E′ that
maps the identity into the identity. The degree of an isogeny ϕ is the degree of
ϕ as a morphism. An isogeny of degree ` is called an `-isogeny. An isogeny can
be identified with its kernel [28]. Given a subgroup G of E, we can use Vélu’s
formulae [27] to compute an isogeny ϕ : E → E′ with kernel G and such that
E′ ∼= E/G. Given a prime `, the torsion group E[`] contains exactly `+ 1 cyclic
subgroups of order `, each one corresponding to a different isogeny of degree `.
For each isogeny ϕ : E → E′, there is a unique isogeny ϕ̂ : E′ → E, which is
called the dual isogeny of ϕ, satisfying ϕϕ̂ = ϕ̂ϕ = [degϕ].

If we have two isogenies ϕ : E → E′ and ϕ′ : E′ → E such that ϕϕ′ and ϕ′ϕ
are the identity in their respective curves, we say that ϕ,ϕ′ are isomorphisms,
and that E,E′ are isomorphic. Isomorphism classes of elliptic curves over Fq
can be labeled with their j-invariant [23, III.1.4(b)]. In this paper we write
j(E) for the j-invariant of E. By convention given a j-invariant j 6= 0, 1728 we
write E(j) for the curve defined by the equation y2 = x3 + 3j

1728−jx + 2j
1728−j .

We also write E(0) and E(1728) for the curves with equations y2 = x3 + 1 and
y2 = x3 + x respectively.

For any prime ` 6= p, one can construct a so-called `-isogeny graph, where
each vertex is associated to a supersingular j-invariant, and an edge between two
vertices is associated to a degree ` isogeny between the corresponding curves.
Isogeny graphs are regular with regularity degree ` + 1; they are undirected
since to any isogeny from j1 to j2 corresponds a dual isogeny from j2 to j1.
Isogeny graphs are Ramanujan, i.e. they are optimal expander graphs, with
the consequence that random walks on the graph quickly reach the uniform
distribution [15].

2.2 Charles, Goren and Lauter hash function

The first cryptographic construction based on supersingular isogeny problems
is a hash function proposed by Charles, Goren and Lauter [6]. The security of
this construction relies on the hardness of computing some isogenies of special
degrees between two supersingular elliptic curves.

More precisely, consider an `-isogeny graph over Fp2 , where p is a “large”
prime and ` is a “small” prime. The authors suggest to take p = 1 mod 12
to avoid some annoying backtracking issues. The message is first mapped into
{0, . . . , `− 1}∗, with some padding if necessary. At each vertex, a deterministic
ordering of the edges is fixed (this can be done by sorting the j-invariants of the
`+1 neighbours). An initial vertex j0 is also fixed, as well as an initial incoming
direction.
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Given a message (m1,m2, . . . ,mN ) ∈ {0, . . . , `− 1}∗, an edge of j0 (exclud-
ing the incoming edge) is first chosen according to the value of m1, and the
corresponding neighbour E1 is computed. Then an edge of j1 (excluding the
edge between j0 and j1) is chosen according to the value of m2, and the corre-
sponding neighbour j2 is computed, etc. The final invariant jN reached by this
computation is mapped to {0, 1}n in some deterministic way (here n ≈ log p)
and the value obtained is returned as the output of the hash function.

Clearly the function is preimage resistant if and only if, given two super-
singular invariants j1 and j2, it is computationally hard to compute a positive
integer e and an isogeny ϕ : E(j1)→ E(j2) of degree `e. Moreover it is collision
resistant if and only if, given one supersingular invariant j, it is computationally
hard to compute a positive integer e and an endomorphism ϕ : E(j)→ E(j) of
degree `e.

In this paper we give two new results on the security of this construction. On
the one hand (Section 3.3), we show that for a randomly chosen starting point j0
the function is preimage and collision resistant if and only if the endomorphism
ring computation problem is hard: loosely speaking this means computing some
endomorphisms of E(j) but not necessarily of the correct norms. The interest of
this result lies in that computing endomorphisms of elliptic curves is a natural
problem to consider from an algorithmic number theory point of view, and
it has indeed been studied since Kohel’s thesis in 1996. On the other hand
(Section 4.2), we also show that the collision resistance problem is easy for
some particular starting points.

2.3 Deuring correspondence

The endomorphism ring of a supersingular elliptic curve is isomorphic to a
maximal order in the quaternion algebra Bp,∞ over Q ramified only at p and
∞. A quaternion algebra is generated as a Q-module by four elements {1, i, j, k}
where i2 = a, j2 = b, ij = −ji and k = ij for some integers a, b, and is often
denoted by (a, b). We refer to Vignéras [26] for the arithmetic of quaternion
algebras and the definitions and properties of the trace, reduced norm, orders
and ideals.

Pizer [22] gave the following explicit description of Bp,∞ for all p along with
a basis for one maximal order.

Proposition 1 [22, p 368–369] Let p > 2 be a prime. Then we can define Bp,∞
and a maximal order O0 as follows:

p (a, b) O0

3 mod 4 (−p,−1) 〈1, j, j+k2 , 1+i2 〉
5 mod 8 (−p,−2) 〈1, j, 2−j+k4 , −1+i+j2 〉
1 mod 8 (−p,−q) 〈 1+j2 , i+k2 , j+ckq , k〉

where in the last row q = 3 mod 4, (p/q) = −1 and c is some integer with
q|c2p + 1. Assuming that the generalized Riemann hypothesis is true, there
exists q = O(log2 p) satisfying these conditions.
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We represent quaternion algebra elements as linear combinations of 1, i, j, k,
where moreover q is minimal in the case p = 1 mod 8. We stress that in all
cases the maximal orders O0 given by Proposition 1 contain 〈1, i, j, k〉 as a
small index subring.

Deuring [9] showed that supersingular elliptic curves over Fp (up to isomor-
phism) are in one-to-one correspondence with maximal orders of Bp,∞ (up to
conjugation by an invertible element of Bp,∞). More precisely, Deuring’s corre-
spondence associates to a supersingular invariant j any maximal order O such
that O ∼= End(E). Moreover any left ideal I of O corresponds to an isogeny
φI : E → EI with kernel

kerφI = {P ∈ E|α(P ) = 0,∀α ∈ I}.

This is a 1-1 correspondence provided that the degree of φI is coprime to p. In
addition, we can identify the right order of I, OR(I) with the endomorphism
ring of EI .

When p = 3 mod 4 the curve y2 = x3 +x is supersingular with invariant j =
1728. This curve corresponds to a maximal orderO0 with Z-basis {1, i, 1+k2 , i+j2 }
under Deuring’s correspondence, and there is an isomorphism of quaternion
algebras θ : Bp,∞ → End(E0) ⊗ Q sending (1, i, j, k) to (1, φ, π, πφ) where π :
(x, y)→ (xp, yp) is the Frobenius endomorphism, and φ : (x, y)→ (−x, ιy) with
ι2 = −1. More generally, it is easy to compute j-invariants corresponding to
the maximal orders given by Proposition 1.

Proposition 2 There is a polynomial time algorithm that given a prime p > 2,
computes a supersingular invariant j0 ∈ Fp such that End(E(j0)) ∼= O0 (where
O0 is as given by Proposition 1 together with a map φ ∈ End(E(j0))) such that
θ : Bp,∞ → End(E(j0)) ⊗ Q : (1, i, j, k) → (1, φ, π, πφ) is an isomorphism of
quaternion algebras.

Proof: Consider Algorithm 1 below. Step 1 can be executed in time polyno-
mial in log p using complex multiplication, as in Bröker’s algorithm [4]. The
cardinality of J is equal to the class number of Q(

√
−q), and this is bounded

by q. To compute φ in Step 3 one can simply compute all isogenies of degree
q using Vélu’s formulae and identify the one corresponding to an endomor-
phism. The map φ defines an isomorphism of quaternion algebras θ : Bp,∞ →
End(E(j0)) ⊗ Q : (1, i, j, k) → (1, φ, π, πφ). To perform the check in Step 4,
one applies θ to the numerators of O0 basis elements, and check whether the
resulting maps annihilate the D torsion, where D is the denominator. �

In this paper we will be interested in constructing Deuring’s correspondence
for arbitrary maximal orders and supersingular j invariants. This could a priori
have three different meanings, given by Problems 1, 2 and 3 below.

Problem 1 (Deuring Correspondence List.) Build a list of all pairs (j,O)
where j is a supersingular invariant and the endomorphism ring of E(j) is
isomorphic to O.
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Algorithm 1 Computing Deuring correspondence for special orders

Require: A prime p.
Ensure: A supersingular invariant j0 ∈ Fp such that O0

∼= End(E(j0)), and an
endomorphism φ ∈ End(E(j0)) such that n(φ) = q and Tr(φ) = 0.

1: Compute J a set of supersingular invariants j such that E(j) has complex
multiplication by RD, the integer ring of Q(

√
−q).

2: for j ∈ J do
3: Compute φ an endomorphism of degree q of E(j).
4: if End(E(j)) ∼= O0 then
5: return j and φ.
6: end if
7: end for

This problem was considered by Cerviño in [5]. His algorithm computes repre-
sentation numbers for all supersingular elliptic curves and all maximal orders
of Bp,∞, and then compares the two lists of representation numbers to realize
Deuring’s correspondence. Since representation numbers of size up to O(p1/2)
may be needed to distinguish any pair of orders, the algorithm runs in time
at least O(p2) times a polynomial function of log p. A similar approach was
followed in [20].

As there are roughly p/12 supersingular invariants and they require O(log p)
bits to represent, any algorithm for Problem 1 will at best run in a time
O(p log p). We can hope for more efficient algorithms if we are only interested
in constructing the correspondence for a given order or curve.

Problem 2 (Constructive Deuring Correspondence.) Given a maximal
order O ⊂ Bp,∞, return a supersingular j invariant such that the endomor-
phism ring of E(j) is isomorphic to O.

Problem 3 (Inverse Deuring Correspondence.) Given a supersingular in-
variant j, compute a maximal order O ∈ Bp,∞ such that the endomorphism ring
of E(j) is isomorphic to O.

The j-invariant is naturally represented as an element of Fp2 , and it is unique
up to Galois conjugation. The maximal order is unique up to conjugation by an
invertible quaternion element, and it can be described by a Z-basis, namely four
elements 1, ω2, ω3, ω4 ∈ Bp,∞ such that O = Z + ω2Z + ω3Z + ω4Z. Choosing a
Hermite basis makes this description unique.

In this paper we will provide a polynomial time algorithm for Problem 2
(Section 4.1). We will also explicit connections between Problem 2 and the
endomorphism ring computation problem, where instead of a maximal order in
Bp,∞ one needs to output a basis for End(E(j)).

2.4 The endomorphism ring computation problem

Given an elliptic curve, it is natural to ask to compute its endomorphism ring.
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Problem 4 (Endomorphism ring computation problem.) Given a super-
singular invariant j, compute the endomorphism ring of E(j).

The endomorphism ring can be returned as four rational maps that form a
Z-basis with respect to scalar multiplication (in fact 3 maps, since one of these
maps can always be chosen equal to the identity map). The maps themselves
can usually not be returned in their canonical expression as rational maps, as
in general this representation will require a space larger than the degree, and
the degrees can be as big as p.

Various representations of the maps are a priori possible. We believe that
any valid representation should be concise and useful, in the sense that it must
require a space polynomial in log p to store, and it must allow the evaluation of
the maps at arbitrary elliptic curve points in a time polynomial in both log p
and the space required to store those points. To the best of our knowledge these
two conditions are sufficient for all potential applications of Problem 4. When
its degree is a smooth number, an endomorphism can be efficiently represented
as a composition of small degree isogenies. In Section 3.1 we will consider a
more general representation.

A first approximation to a solution to Problem 4 was provided by Kohel
in his PhD thesis [17], and later improved by Galbraith [11] using a birthday
argument. The resulting algorithm explores a tree in an `-isogeny graph (for
some small integer `) until a collision is found, corresponding to an endomor-
phism. The expected cost of this procedure is O(

√
p) times a polynomial in

log p. Repeating this procedure a few times, possibly with different values of
`, we obtain a set of endomorphisms which generate a subring of the whole
endomorphism ring, and heuristically one expects that they actually generate
the whole endomorphism ring. The endomorphism ring computation problem
was also considered in [8] for curves defined over Fp. The identification pro-
tocol and signature schemes developed in [13] explicitly rely on its potential
hardness for security. We remark that significant progress has been made since
Kohel’s thesis on the endomorphism ring computation problem in the ordinary
case [3]. However these improvements use the commutative nature of the endo-
morphism ring of ordinary curves, and it is not clear how they could be adapted
to supersingular curves.

We observe that Problems 3 and 4 take the same input, and their outputs
are also “equal” in the sense they are isomorphic. For this reason the two prob-
lems have sometimes been referred to interchangeably. We stress, however, that
being isomorphic does not a priori guarantee that the isomorphism is efficiently
computable, the same way as discrete logarithms can be computed in the addi-
tive group Zp−1 but not in the multiplicative group F∗p. In particular, a solution
to Problem 3 does not a priori provide a uesful description of the endomorphism
ring so that one can for example evaluate endomorphisms at given points. Sim-
ilarly, a solution to Problem 3 does not a priori provide a Z-basis for an order
in Bp,∞, and this is necessary for example to apply the algorithms of [18].

It turns out that the two problems are equivalent: in Sections 3.1 and 3.2
below, we provide efficient algorithms to go from a representation of the endo-

8



morphism ring as a Z basis over Q to a representation as rational maps and
conversely.

2.5 Quaternion `-isogeny algorithm

The quaternion `-isogeny problem was introduced and solved in [18] as a step
forward in the cryptanalysis of Charles-Goren-Lauter hash function, following
the general strategy outlined in Section 1.

We refer to [18, 13] for a full description of the algorithm and its powersmooth
version as well as their analysis. For our purposes the following proposition will
be sufficient.

Lemma 3 [18, 13] Under various heuristic assumptions, there exist two poly-
nomial time algorithms that given I a left ideal of O0, returns J another left
ideal of O0 in the same class as I, with a norm N such that N ≈ p7/2. More-
over for the first algorithm we have N = peii with peii < log p and for the second
algorithm we have N = `e for some integer e and some small prime `.

Interestingly, [13] also proves that (after a minor tweak) the outputs of these
algorithms only depend on the ideal class of their inputs and not on the partic-
ular ideal class representative.

Many of our algorithms and reductions below will use these algorithms as
black boxes. Their correctness will therefore rely on the same heuristics, and
possibly some more.

2.6 Translating O0 ideals to isogenies

Let O0 be a maximal order given by Proposition 1, let E0 be a corresponding
supersingular elliptic curve, and let I be a left O0 ideal of norm N . Following
Deuring’s correspondence this ideal corresponds to an isogeny φ : E0 → E1

of degree N . This isogeny is uniquely defined by its kernel, which is a cyclic
subgroup of order N in E0. Following Waterhouse [28] one can identify the
correct subgroup by evaluating the maps corresponding to an O0 basis at a
generator of each subgroup. Moreover when N is composite, the kernel can be
represented more efficiently as a product of cyclic subgroups whose orders are
powers of primes, and similarly the isogenies are represented more efficiently as
a composition of prime degree isogenies. The details of such an algorithm can
be found in [13], which also analyzes its complexity. The following proposition
will be sufficient for our purposes.

Proposition 4 There exists an algorithm which, given an O0 left ideal I of
norm N =

∏
i p
ei
i , returns an isogeny φ : E0 → E1 corresponding to this ideal

through Deuring’s correspondence. Moreover the runtime complexity of this al-
gorithm is polynomial in maxi p

ei
i .

We stress that this translation algorithm requires to know the endomorphism
ring of E0, and that it is only efficient when maxi p

ei
i is small.
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2.7 Isogeny-based cryptography

A few years after Charles, Goren and Lauter designed their hash function, Jao
and De Feo proposed a variant of the Diffie-Hellman protocol based on super-
singular isogeny problems, which is now known as the supersingular isogeny key
exchange protocol [16]. We briefly describe it here in a way to encompass both
the original parameters and the generalization recently suggested by Petit [21].

The parameters include a large prime p, a supersingular curve E, and two
coprime integers NA and NB . Alice and Bob select cyclic subgroups of E of
order respectively NA and NB ; they compute the corresponding isogenies and
they exchange the values of the end vertices respectively E/GA or E/GB . The
shared key is the value j(E/〈GA, GB〉). This shared key could a priori not be
computed by any party from E/GA, E/GB and their respective secret keys only,
so Alice (resp. Bob) additionally sends the images of a basis of E[NB ] by φA
(resp. a basis of E[NA] by φB).

Jao-De Feo suggested to use NA = 2eB ≈ p1/2 ≈ NB = 3eB such that
(p− 1)/NANB is a small integer for efficiency reasons; in [21] Petit argued that
choosing NA ≈ NB ≈ p2 both powersmooth numbers is a priori better from
a security point of view while preserving polynomial time complexity for the
protocol execution. It was shown by Gabraith-Petit-Shani-Ti [13] that comput-
ing the endomorphism ring of E and EA is sufficient to break the key exchange
for the parameters suggested by Jao-De Feo. The argument uses the fact that
isogenies generated for Jao-De Feo’s parameters are of relatively small degree,
and this does not seem to apply to Petit’s paramters.

The security of Jao-De Feo’s protocol relies on the hardness of computing
isogenies of a given degree between two given curves, when provided in addition
with the action of the isogeny on a large torsion group. This problem is not
known to be equivalent to the endomorphism ring computation problem. Recent
results by Petit [21] show that revealing the action of isogenies on a torsion
group does make some isogeny problems easier to solve, though at the moment
his techniques do not apply to Jao-De Feo’s original parameters. In this paper
we show the equivalence of the endomorphism ring computation problem with
some relevant problems, and we solve some other problems. We believe that the
security of the key exchange protocol lies between these hard and easy problems,
but leave its study to further work.

The interest in isogeny-based cryptography has recently increased in the
context of NIST’s call for post-quantum cryptography algorithms [1]: indeed
at the moment the best algorithms to solve supersingular isogeny problems
all require exponential time in the security parameter, even when including
quantum algorithms. Besides the hash function and the key exchange protocols,
there are now constructions based on isogeny problems for public key encryption,
identification protocols and signatures [10, 29, 13]. Constructions in the first
two papers build on the key exchange protocol and rely on similar assumptions.
The second signature scheme in [13], however, only relies on the endomorphism
computation problem.
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3 Equivalent Hard Problems in Supersingular
Isogeny Graphs

In this section we consider the following problems:

• A constructive version of Deuring’s correspondence, from j invariants to
maximal orders in Bp,∞ (Problem 3).

• The endomorphism ring computation problem (Problem 4).

• The preimage and collision resistance of Charles-Goren-Lauter hash func-
tion, for a randomly chosen initial vertex.

We show that all these problems are heuristically equivalent, in the sense
that there exist efficient reductions from one problem to another under plausible
heuristics assumptions.

The first two problems have the same inputs and in a sense their outputs are
also equal, so it is perhaps no surprise to the reader that they are equivalent.
However, the two problems differ in the way the output should be represented: as
a maximal order in Bp,∞ for Problem 3, and as four rational maps for Problem 4.
Sections 3.1 and 3.2 below clarify the steps from one representation to the other.

It should also be clear intuitively that (heuristically at least) an algorithm
to find preimages or collisions for the hash function can be used to compute
endomorphism rings. The other implication is perhaps not as intuitive, and
our solution crucially requires the tools developed in [18]. These reductions are
discussed in Section 3.3 below.

3.1 Endomorphism Ring Computation is not harder than
Inverse Deuring Correspondence

Let us first assume that we have an efficient algorithm for Problem 3, returning
a Z basis for a maximal order as discussed above. Algorithm 2 below uses this
algorithm to solve Problem 4.

The maps returned by Algorithm 2 are of the form φ =
∑4

i=1 cijϕ
−1φiϕ

N where
N is a smooth number, cij ∈ Z, {φi}i=1,2,3,4 form a basis for the endomorphism
ring of a special curve E0, and ϕ : E0 → E(j) is an isogeny of degree N , given
as a composition of low degree isogenies. This is arguably not the most natural
representation of endomorphisms, but it still allows to efficiently evaluate them
at arbitrary points, as shown by Algorithm 3 and Lemma 5 below.

Lemma 5 Let K be an extension of Fp2 where P lies. Assume that logN and
maxi p

ei
i are polynomial in log p. Then Algorithm 3 can be implemented to run

in time polynomial in log |K|.

Proof: Let Q such that Qi = miQ. We have NQ = P , hence S = φ(P ) since φ
is a homomorphism. This proves correctness of the algorithm. Although Q may
lie on a very large extension of Fp2 , each of the Qi lies on a reasonably small
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Algorithm 2 Reduction from Problem 4 to Problem 3

Require: A supersingular invariant j.
Ensure: Four maps that generate End(E(j)).
1: Use an algorithm for Problem 3 to obtain a maximal order O ≈ End(E(j)).
2: Compute an ideal I connecting O0 and O.
3: Compute an ideal J with powersmooth norm in the same class as I.
4: Translate the ideal J into an isogeny ϕ : E0 → E.
5: Let N be the norm of J .
6: Let 1, φ2, φ3, φ4 generating End(E(j0)).
7: Let 1, ω2, ω3, ω4 generating O, and let 1, ω2,0, ω3,0, ω4,0 ∈ O0 corresponding

to 1, φ2, φ3, φ4.

8: Find integers cij such that ωi =
∑

j cijωj,0

N .

9: return N , ϕ, cij implicitly representing the maps
∑4

i=1 cijϕ
−1φiϕ

N for each i.

Algorithm 3 Endomorphism evaluation

Require: A curve E, an isogeny ϕ : E0 → E with powersmooth degree N ,

and integers a, b, c, d defining an endomorphism φ = ϕ−1(a+bφ2+cφ3+dφ4)ϕ
N ∈

End(E).
Require: A point P ∈ E.
Ensure: φ(P ).
1: Let N =

∏
i pi

ei and let mi = N/peii .
2: for all i do
3: Compute Qi such that peii Qi = P .
4: Compute Si = ϕ−1(a+ bφ2 + cφ3 + dφ4)ϕ(Qi)
5: end for
6: Compute S such that Si = miS.
7: return S.

extension, namely the extension degree is polynomial in log p. Step 3 involves
some univariate polynomial factorization, a task that is polynomial in both the
degree of the polynomial and the logarithm of the field order. In Step 4 the
isogeny ϕ and its inverse can be evaluated stepwise, and evaluating the map
a+ bφ2 + cφ3 +dφ4 at an arbitrary point involves 4 scalar multiplications, three
additions and the evaluation of the maps φi ∈ End(E(j0)) at certain points.

Following Waterhouse [28], Theorem 4.1 and its proof, the endomorphism
ring is defined over an extension of K of degree at most 6. Therefore for any
endomorphism φ, we have S = φ(P ) in the same extension field. Since the
mi are known and gcd(m1,m2, . . . ,mk) = 1, there exist integers ni such that∑
nimi = 1 (moreover these numbers can be computed efficiently with about

k executions of the extended Euclide algorithm, or alternatively some lattice
reduction). We then have S =

∑
i niSi. �

Proposition 6 Under plausible heuristic assumptions, the reduction from Prob-
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lem 4 to Problem 3 provided by Algorithm 2 can be implemented to run in a time
polynomial in log p.

Proof: In Step 2, the ideal I can be computed as I = NO0 +NO0O, where N
is the index of O0∩O in either O0 or O. This can be done in a time polynomial
in logB. By Lemma 3 the output of Step 3 is an ideal of norm N =

∏
peii

such that S = maxi p
ei
i = O(log p). The translation algorithm runs in a time

polynomial in S, hence in log p. The other steps also run in polynomial time.
�

3.2 Inverse Deuring Correspondence is not harder than
Endomorphism Ring Computation

Let us now assume that we have an efficient algorithm for Problem 4, returning
four maps generating the endomorphism ring, in some format that allows effi-
cient evaluation of the maps at arbitrary points. Algorithm 4 below uses this
algorithm and then constructs a sequence of linear transformations that bring
1, α, β, γ to four orthogonal maps 1, ι, λ, ιλ corresponding to 1, i, j, k ∈ Bp,∞.
Composing the inverses of these maps then gives a Z-basis for O.

Let B be a bound on the degrees of the maps α, β, γ returned in Step 1 of
Algorithm 4. We analyze the complexity of the algorithm through the following
lemmas and proposition.

Lemma 7 There exists an algorithm for Step 2 that runs in time polynomial
in log p and logB.

Proof: Given two endomorphisms α, β, one can compute their inner product
〈α, β〉 = αβ̄ + βᾱ ∈ Z by evaluating it on an appropriate set of small prime
order torsion points then applying the Chinese remainder theorem, following
a strategy similar to Schoof’s point counting algorithm (see [17, Theorem 81]).
Applying this algorithm to every pair of maps from (1, α, β, γ) gives the result. �

Lemma 8 There exists an algorithm for Steps 3 and 9 that runs in time poly-
nomial in log p and logB.

Proof: We focus on Step 3, and Step 9 is similar. Given the Gram matrix
one can apply the Gram-Schmidt orthogonalization process to obtain a new
basis (1, α′, β′, γ′). It remains to show that α′β′ is a scalar multiple of γ′ so
that we can normalize γ′ to obtain the result. It suffices to show that α′β′ is
orthogonal to 1, α′ and β′. Indeed we have 〈α′β′, 1〉 = α′β′ + β̄′ᾱ′ = 〈α′, β̄′〉 =
−〈α′, β̄′〉 = 0; we have 〈α′β′, α′〉 = α′β′ᾱ′ + α′β̄′ᾱ′ = n(α′)Tr(β′) = 0; and
similarly 〈α′β′, β′〉 = α′β′β̄′ + β′β̄′ᾱ′ = n(β′)Tr(α′) = 0. �
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Algorithm 4 Reduction from Problem 3 to Problem 4

Require: A supersingular invariant j.
Ensure: A maximal order O ⊂ Bp,∞ such that End(E(j)) ≈ O.
1: Use an algorithm for Problem 3 to obtain four maps 1, α, β, γ generating

End(E(j)), in a format that allows efficient evaluation at elliptic curve
points.

2: Compute the Gram matrix associated to the sequence (1, α, β, γ).
3: Find a rational invertible linear transformation sending (1, α, β, γ) to some

(1, α′, β′, α′β′), where 1, α′, β′, α′β′ generate an orthogonal basis for Bp,∞
over Q.

4: if the numerators and denominators of n(α) and n(β) are not easy to factor
then

5: Apply a random invertible linear transformation to (α, β, γ).
6: Go to Step 3.
7: end if
8: Find a, b, c ∈ Q such that n(ι) = q, where ι = aα′ + bβ′ + cα′β′.
9: Find a rational invertible linear transformation sending (1, α′, β′, α′β′) to

(1, ι, δ, ιδ) for some δ ∈ Bp,∞ where 1, ι, δ, ιδ generate an orthogonal basis
for Bp,∞ over Q.

10: if the numerator and denominator of n(δ) is not easy to factor then
11: Apply a random invertible linear transformation to (α, β, γ).
12: Go to Step 3.
13: end if
14: Find a, b ∈ Q such that n(δ)(a2 + b2q) = p. Let λ = aδ + bιδ.
15: Find a rational invertible linear transformation sending (1, ι, δ, ιδ) to

(1, ι, λ, ιλ).
16: Invert and compose all linear transformations to express 1, α, β, γ in the

basis (1, ι, λ, ιλ), and deduce a basis of O in Bp,∞.
17: return the basis of O.

Lemma 9 Given the factorizations of the numerators and denominators of both
n(α′) and n(β′), there exists an algorithm for Step 8 that runs in time polynomial
in log p and logB.

Proof: Finding such a, b, c ∈ Q satisfying the condition amounts to finding
a′, b′, c′, d ∈ Z such that a′2n(α′) + b′2n(β′) + c′2n(α′)n(β′) = d2q. According to
Denis Simon [24, Section 8] his algorithm solves this Diophantine equation in
polynomial time. �

Lemma 10 Given the factorizations of the numerator and denominator of n(δ),
there exists an algorithm for Step 14 that runs in time polynomial in log p and
logB.

Proof: Note that 〈δ, ιδ〉 is by construction the orthogonal space of 〈1, ι〉, and
this space must contain an element of norm p, so the equation has a solution.

14



Given factorizations for both the numerator and the denominator of δ one can
use Cornacchia’s algorithm [7] to solve Step 14. �

Proposition 11 Under plausible heuristic assumptions, the reduction provided
by Algorithm 4 can be implemented to run in polynomial time.

Proof: In Steps 4 and 10 the algorithm requires that some numbers are easy to
factor. In Step 4 we may expect these numbers to behave like random numbers
of the same sizes. In Step 10 p must divide numerator of n(δ). We may expect
that both the cofactor and the denominator factor like random numbers of the
same size. One can require all those numbers to be large primes, or a product
of large primes and small cofactors, two properties that will be satisfied with
a probability inversely proportional to a polynomial function of log p. Steps 5
and 11 randomize α, β, γ so that we expect the conditions to be satisfied after a
number of steps that is polynomial in log p. By the four lemmas before we then
expect that the whole reduction runs in a time polynomial in log p. �

The reduction provided by Algorithm 4 and its runtime analysis relies on
several heuristics, namely the probability to obtain suitable norms in Steps 4
and 10 as discussed in the above proposition, and the runtime algorithm of
Denis Simon’s algorithm for Step 8.

3.3 Preimage and Collision Resistance of CGL Hash Func-
tion

In this section we show that hardness of the endomorphism ring computation
problem is equivalent to the security of Charles-Goren-Lauter hash function.

Proposition 12 Assume there exists an efficient algorithm for the endomor-
phism ring computation problem. Then there is an efficient algorithm to solve
the preimage and collision problems for Charles-Goren-Lauter hash function.

Proof: By standard arguments on hash functions it is enough to focus on
preimage resistance. Our reduction of this problem to the endomorphism ring
computation problem is given in Algorithm 5. Besides two black box calls to
an algorithm for the endomorphism ring computation problem, it uses other
efficient algorithms described in this paper, including Algorithm 2 to translate
a description of an endomorphism ring as rational maps into a description of
a maximal order in Bp,∞, both the ` power and the powersmooth versions of
the quaternion isogeny algorithm, and the translation algorithm from ideals to
isogenies. All these routines are efficient by the lemmas and propositions of this
paper. �

The reverse direction may look easier a priori. By standard arguments on
hash functions it is sufficient to prove the claim with respect to a collision
algorithm. A collision for Charles-Goren-Lauter’s hash function gives a non
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Algorithm 5 Reduction from preimage resistance to endomorphism ring com-
putation

Require: Two supersingular invariants js, jt ∈ Fp2 .
Ensure: A sequence of j invariants js = j0, j1, . . . , je = jt such that for any i

there exists an isogeny of degree ` from E(ji) to E(ji+1).
1: Compute End(E(js)) and End(E(jt)).
2: Compute Os ≈ End(E(js)) and Ot ≈ End(E(jt)) with Algorithm 2.
3: Compute ideals Is and It connecting O0 respectively to Os and Ot.
4: Compute ideals Js and Jt with norm `e for some e, in the same classes as
Is and It respectively.

5: for J ∈ {Js, Jt} and corresponding E ∈ {E(js), E(jt)} do
6: Compute a sequence of ideals Ji = O0q +O0`

i for i = 0, . . . , e
7: for all i do
8: Compute Ki with powersmooth norm in the same class as Ii.
9: Translate Ki into an isogeny ϕi : E0 → Ei.

10: end for
11: Deduce a sequence (j0, j(E1), j(E2), . . . , je = j(E)).
12: end for
13: return (j(Es), . . . , j0, . . . , j(Et)) the concatenation of both paths.

scalar endomorphism of the curve; four linearly independent endomorphisms
give a full rank subring of the endomorphism ring; and heuristically one expects
that a few of such maps will be sufficient to generate the whole ring. To compute
the endomorphism ring one would therefore calls the collision finding algorithms
multiple times until the resulting maps generate the full endomorphism rings.
This strategy, however, has a potential caveat: the collision algorithm might
be such that it always returns the same endomorphism. In Algorithm 6 we get
around this problem by performing a random walk from the input invariant
j, calling the collision algorithm on the end vertex of the random walk, and
concatenating paths to form endomorphisms of E(j).

Proposition 13 Assume there exists an efficient preimage or collision algo-
rithm for Charles-Goren-Lauter’s hash function. Then under plausible heuristic
assumptions there is an efficient algorithm to solve the endomorphism ring com-
putation problem.

Proof: The reduction algorithm for collision resistance is given by Algorithm 6
below. Note that in Step 7 the discriminant can be computed from the Gram
matrix, which by Lemma 7 can be efficiently computed. Heuristically, one ex-
pects that the loop will be executed at most O(log p) times. Indeed let us assume
that after adding some elements to the subring we have a subring of index N .
Then we can heuristically expect any new randomly generated endomorphism
to lie in this subring with a probability only 1/N . Moreover when it does not
lie in the subring, the element will decrease the index by a non trivial integer
factor of N . �
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Algorithm 6 Reduction from endomorphism ring computation to collision re-
sistance
Require: A supersingular invariant j ∈ Fp2 .
Ensure: The endomorphism ring of E(j).
1: Let R = 〈1〉 ⊂ End(E(j)).
2: repeat
3: Perform a random walk in the graph, leading to a new vertex j′.
4: Apply a collision finding algorithm on j′, leading to an endomorphism

of E(j′).
5: Deduce an endomorphism φ of E(j) by concatenating paths.
6: Set R ← 〈R, φ〉.
7: Compute the discriminant of R.
8: until disc(R) = 4p2.
9: return a Z basis for R.

4 Some Easy Problems in Supersingular Isogeny
Graphs

The previous section relied heavily on the quaternion `-isogeny algorithm of
Kohel-Lauter-Petit-Tignol to derive the computational equivalence of several
problems. In this section, we provide two additional applications of this al-
gorithm. First, we give an algorithm for constructing Deuring correspondence
from maximal orders in Bp,∞ to supersingular j-invariants. Second, we give a
polynomial time collision algorithm against Charles-Goren-Lauter hash function
when a special curve is chosen as the initial point.

4.1 Constructive Deuring’s correspondence, from quater-
nion orders to j-invariants

In this section we provide an efficient algorithm to solve Problem 2. Algorithm 7
first computes an ideal connecting O0 to O. Then it uses the quaternion `-
isogeny algorithm from ANTS 2014 (or rather, its powersmooth version) to
compute another ideal in the same class but with a norm N =

∏
peii such that

maxi p
ei
i is small. It finally translates that ideal into an isogeny φ : E0 → E1

that corresponds to it via Deuring’s correspondence.
Let 〈1, ω2, ω2, ω3〉 be a basis forO, letM ∈ GL(4,Q) such that (1, ω2, ω2, ω3) =

M(1, i, j, k), and let B be a bound on the numerators and denominators of all
coefficients of M .

Proposition 14 (Constructive Deuring Correspondence.) Under plausi-
ble heuristic assumptions, Algorithm 7 can be implemented to run in a time
polynomial in both logB and log p.

Proof: The analysis is similar to the proof of Proposition 6. �
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Algorithm 7 Constructive Deuring correspondence, from quaternions to max-
imal orders.
Require: Maximal order O ⊂ Bp,∞.
Ensure: Supersingular invariant j such that End(E(j)) ≈ O.
1: Compute an ideal I that is a left ideal of O0 and a right ideal of O.
2: Compute an ideal J in the same class as I but with powersmooth norm.
3: Compute an isogeny φ : E0 → EI that corresponds to J via Deuring’s

correspondence.
4: return j(EI).

We remark that this algorithm is implicitly used in the recent identification
protocol of Galbraith, Silva and Petit [13].

4.2 An attack on CGL hash function

It was shown in [6] that computing collisions or preimages for Charles-Goren-
Lauter hash function amounts to computing large `-power degree isogenies be-
tween two (possibly isomorphic) elliptic curves. The hardness arguments for
these problems then essentially relied on the following arguments:

1. In general, these isogenies must have a degree so large that they cannot
be efficiently computed with current algorithms.

2. The best known algorithms for these problems were variants of birthday
searches, with an exponential complexity in the parameter’s size [11].

Paradoxically, the quaternion `-isogeny algorithm [18] leads to both the security
arguments of Section 3.3 and to a partial attack against the hash function. More
precisely, in this section we present a collision attack for the hash function when
the initial point used in the random walk is a special elliptic curve E0 as defined
in Section 2.3.

Our attack is summarized by Algorithm 8 below. We first compute a collision
for a “quaternion version” of Charles-Goren-Lauter hash function. This then
essentially amounts to finding q ∈ 〈1, i, j, k〉 ⊂ O0 with n(q) = `e for some
e, which defines a sequence of ideals Ii corresponding to a path from O0 to
q−1O0q ≈ O0. Applying the translation algorithm directly to this sequence of
ideals would have a prohibitive cost because `e is larger than p. To solve this
problem we first replace each ideal in the sequence by another ideal in the same
class but with powersmooth norm, and we apply the translation algorithm to
each of them individually to obtain corresponding isogenies. The end vertices
of these isogenies form a sequence of j-invariants that define a collision for the
original elliptic curve version of Charles-Goren-Lauter hash function.

To obtain an element with a power of ` norm in Step 1, we fix e large
enough then pick random values of y and z until the equation w2 + qx2 =
`e − p(y2 + qz2) can be solved with Cornacchia’s algorithm. This solution is
described in Algorithm 9.
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Algorithm 8 Collision attack on CGL hash function for special initial points

Require: Special j0 and O0 as defined in Section 2.3.
Ensure: A sequence of j invariants j0, j1, . . . , je = j0 such that for any i there

exists an isogeny of degree ` from E(ji) to E(ji+1).
1: Compute e ∈ N and q ∈ 〈1, i, j, k〉 ⊂ O0 with n(q) = `e.
2: Compute a sequence of ideals Ii = O0q +O0`

i.
3: for all i do
4: Compute Ji with powersmooth norm in the same class as Ii.
5: Translate Ji into an isogeny ϕi : E0 → Ei.
6: end for
7: return (j0, j(E1), j(E2), . . . , j(Ee) = j0).

Algorithm 9 Power of ` norm element in O0

Require: Maximal order O0 ⊂ Bp,∞ as defined in Section 2.3.
Ensure: e ∈ N and q ∈ O0 with n(q) = `e.
1: Let e = d2 log pe.
2: Choose random y, z smaller than

√
p/q.

3: Let N ← `e − p(y2 + qz2).
4: Find w, x ∈ Z such that w2 + qx2 = N if there are some, otherwise go to

Step 2.
5: return q = w + xi+ yj + zk.

Proposition 15 There exists an algorithm that computes a collision for Charles-
Goren-Lauter hash function when the initial vertex is a special curve, in a time
polynomial in log p.

Proof: In Algorithm 9 we expect that the Equation in Step 4 will have solu-
tion for a proportion 1/2q log p of the random choices (y, z), so we expect this
algorithm to run in time polynomial in log p. Note that e = d2 log pe, and that
Steps 4 and 5 in Algorithm 8 both run in a time polynomial in log p. We con-
clude that the runtime of Algorithm 8 is also polynomial in log p. �

We remark that we described our attack only for the maximal orders O0

defined in Section 2.3, but it can be extended to other maximal orders as long
as the corresponding curve is known or can be computed, and as long as elements
of norm a power of ` can be found in the order. This is the case for “special”
orders, as defined in [18].

The attack provided by Algorithm 8 can be extended into a “backdoor at-
tack” where an entity in charge of deciding the initial vertex for the hash function
play the role of the attacker. This entity could take a random walk from j0 to
another curve E and publish this j(E) as the initial vertex for the hash func-
tion. Due to the random walk the vertex j(E) will be uniformly distributed,
hence the function will be collision resistant based on the assumption that the
endomorphism ring computation problem is hard (see Proposition 13). How-
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ever, the entity can concatenate the path from j0 to j and the collision around
j0 to obtain a collision around j.

To the best of our knowledge, there exists no efficient algorithm to sample
supersingular j invariants that does not involve this random walk procedure, so
the backdoor attack cannot really be avoided. On the other hand, by inspecting
such a collision, it is easy to recover a path to O0 and that will reveal that a
backdoor was inserted. In that sense, the backdoor mechanism may not be too
much of an issue in practice.

5 Conclusion

In the context of NIST’s post-quantum cryptography call [1], there is a lot of
interest in cryptosystems based on isogeny problems. In this paper we build on
the quaternion `-isogeny algorithm of Kohel-Lauter-Petit-Tignol [18] to solve
some relevant problems in this area and to develop reductions between other
relevant problems.

One consequence of our work is a new one-way function based on the hard-
ness of computing the endomorphism ring of supersingular elliptic curves. In-
deed on the one hand we provided an efficient algorithm to compute Deuring’s
correspondence in one direction, from maximal orders to j invariants, and on
the other hand we showed the equivalence of the other direction with solving
the endomorphism ring computation problem.

We also considered the security of Charles, Goren and Lauter’s hash func-
tion [6]. We showed that for randomly chosen initial vertices both collision
and resistance of this function are equivalent to hardness of the endomorphism
ring computation problem, and we provided an efficient collision algorithm for
special parameters and discussed the potential impact of this attack.

Our work confirms that the endomorphism ring computation problem is a
key problem for isogeny-based cryptography, as was already suggested in [12,
13, 21]. The problem has now been studied for more than twenty years under
different forms [17, 5], but clearly not as extensively as classical problems like
integer factorization. We stress that the security of Jao and De Feo’s key ex-
change protocol relies on problems that are potentially easier to solve than the
endomorphism ring computation problem. All these problems should now be
under additional scrutiny in the context of NIST’s call.

Most of our results are true under the general heuristic assumption that
“numbers generated following certain distributions behave like random num-
bers of the same size, unless there is a good reason for this to be false”. We
believe that any failure of this general heuristic will suggest improvements to
our algorithms rather than modify our general conclusions.
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6 Historical Comments and Acknowledgements

This work started in 2010 when Christophe Petit, then at Université catholique
de Louvain, visited Kristin Lauter in San Diego. Most of the results of this paper
were obtained between then and 2012. A draft including an early version of the
ANTS algorithm [18] was circulated among a few experts; talks were given on
its content; and parts of it were either cited or developed in other publications
that needed it. This has led to a situation were, for example, the equivalence of
Problem 4 and isogeny problems is well-accepted among experts [13, Section 2.1]
but no justification of this fact is publicly accessible.

As the importance of our results has grown with the community interest in
isogeny-based cryptography, we have finally come to revisit our draft and make
its contents publicly available, so that cryptographers and cryptanalysts can
build on our techniques in their own work.

In the summer of 2017 we heard that Eisentraeger-Hallgren-Morrisson were
trying to solve similar problems and we showed them all our results. They
later found the approach developed in IACR eprint 2017/986. We compare this
approach with ours in Section 1.3.

Between 2008 and now we have had many interesting discussions on the
problems discussed in this paper and on isogeny-based cryptography in gen-
eral, in particular with Steven Galbraith, David Kohel, Luca De Feo, Jérome
Plût, Damien Robert and Yan Bo Ti. These discussions have improved our
understanding of these problems, fueled our research, and influenced this new
write-up of our results. Many thanks to all of you.
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