
A New Functional Encryption for
Multidimensional Range Query?

Jia Xu1, Ee-Chien Chang2, and Jianying Zhou3

1 Singapore Telecommunications Limited
jia.xu@singtel.com

2 National University of Singapore
changec@comp.nus.edu.sg

3 Singapore University of Technology and Design
jianying zhou@sutd.edu.sg

Abstract. Functional encryption, which emerges in the community recently, is a general-
ized concept of traditional encryption (e.g. RSA and AES). In traditional encryption scheme,
decrypting a ciphertext with a correct decryption key will output the original plaintext asso-
ciated to the ciphertext. In contrast, in functional encryption scheme, decrypting a ciphertext
with a correct decryption key will output a value that is derived from both the plaintext and
the decryption key, and the decryption output would change when different correct decryp-
tion key is used to decrypt the same ciphertext. We propose a new functional encryption
scheme for multidimensional range query. Given a ciphertext that is the encryption of some
secret plaintext under a public attribute (a multidimensional point), and a decryption key
corresponding to a query range and a function key. If the public attribute point is within
the query range, a user is able to decrypt the ciphertext with the decryption key to obtain
a value, which is the output of a pre-defined one-way function with the secret plaintext and
the function key as input. In comparison, in previous functional encryption for range query, a
decryption will simply output the original secret plaintext when the attribute point is within
the query range.

Keywords: Functional Encryption, Multidimensional Range Query, Polymorphic Property

1 Introduction

The concept of functional encryption emerges recently, as a generalization of traditional encryption.
Informally, in traditional encryption scheme (e.g. public key cipher like RSA and private key cipher
like AES), decrypting a ciphertext CT of a secret plaintext Msg with correct decryption key will
output the original plaintext Msg. In a functional encryption scheme, decrypting a ciphertext CT
with “correct decryption key” SKk will obtain only a function value f(k,Msg) of the plaintext Msg
and the function key k, and nothing more. It will be more interesting when the function f is one-
way, such that the original plaintext Msg remains secret after several function values f(kj ,Msg)’s
for different function keys kj are revealed.

To the best of our knowledge, almost all previous instances of functional encryption schemes
(for example, attribute-based encryption or predicate encryption) implements a functionality F of

? This work was partly supported by SUTD start-up research grant SRG-ISTD-2017-124.

the following type:

F (k, (x,Msg)) =

{
Msg (if Predicate(x, k) = True);
⊥ (otherwise)

(1)

where Predicate is pre-defined. In this paper, we are interested in a more general functionality:

F (k, (x,Msg)) =

{
f(k,Msg) (if Predicate(x, k) = True);
⊥ (otherwise)

(2)

where f is some one-way function. Few works have been devoted to the latter type of functionality
(Eq (2)). Very recently, Gorbunov et al. [1] proposed a function encryption method for any multi-
variable polynomial function, using Secure Multi-party Computation. The supported functionality
belongs to the latter style (Eq (2)). In this paper, we will propose a more efficient functional en-
cryption scheme which implements functionality in Equation (2) for a particular one-way function f
(defined later) with Predicate replaced by multidimensional range query, using a novel technique.

1.1 Overview of Our Technique

We observe that some (HIBE) encryption scheme (KeyGen,Enc,Dec), e.g. BBG HIBE scheme [2],
satisfies a polymorphic property : From a pair of keys (pk, sk) ∈ KeyGen(1κ), a plaintext M , an
identity id, and a random coin r, one can efficiently find multiple tuples (pkj , skj ,Mj , rj), 1 ≤ j ≤ n,
such that for any 1 ≤ j ≤ n, (pkj , skj) ∈ KeyGen(1κ) is a valid key pair and

Encpk(id,M ; r) = CT = Encpkj (id,Mj ; rj).

From the opposite point of view, a ciphertext CT can be decrypted into value Mj using the de-
cryption key skj , 1 ≤ j ≤ n. We can view these decrypted values Mj ’s as a function of the original
plaintext M which is used to produce the ciphertext CT, i.e. decrypting CT using decryption key
skj will generate the function value f(j,M) := Mj of the plaintext M . Hence, such polymorphic
property may lead to a new way to construct functional encryption schemes [3,4,5,6].

1.2 Application

Besides the theoretical merit as an example of a new kind of functional encryption paradigm, our
proposed scheme can also be used to authenticate multidimensional range queries. Here we give a
brief description in a nutshell: A data owner encrypts his multidimensional data points (Msg,x)
(e.g. netflow, log, or sensor data in a cyber-physical system) using our functional encryption scheme,
and outsources all ciphertexts to a cloud. Later, the data owner could choose a multidimensional
query range R and a nonce 4 ρ, and sends a delegation key w.r.t. (R, ρ) to the cloud. Then the cloud
tries to decrypt each ciphertext using this delegation key. If the corresponding point x is within the
query range R, then decryption will succeed and the cloud is able to obtain a one-way function value
f(ρ,Msg), which could serve as a proof that x ∈ R. The cloud could find and count all ciphertexts
of data points within the query range, and sends corresponding proofs to the data owner. This is the
basic idea how our proposed scheme can be used to authenticate multidimensional count queries.
How to aggregate all individual proofs to reduce total proof size using some homomorphism, and
how to prevent miss-counting or double counting, requires other non-trivial techniques. More details
are provided in our technical report [7].

4 Here the nonce ρ is crucial to prevent cloud from abusing delegation keys across different queries.

1.3 Contribution

– We propose a functional encryption scheme, by exploiting a special property (we call it “poly-
morphic property”) of the BBG HIBE scheme [2]. Under this functional encryption scheme,
given a secret message Msg and a public identity x, which is a d-dimensional point in domain
[1,Z]d where system parameter Z is an integer, a ciphertext can be generated using the pri-
vate5 key. A decryption key w.r.t. a d-dimensional rectangular range R and a random nonce
ρ can also be derived from the private key. With this decryption key and the ciphertext for
message Msg under identity x, the decryption algorithm will output Ωρ·Msg iff x ∈ R, where
Ω is a part of key of the functional encryption scheme. The size6 of a public/private key is
in O(1), the size of a ciphertext is in O(d), and the size of a decryption key is in O(d log2Z).
The application of our functional encryption scheme in authenticating multidimensional range
queries 7 is demonstrated in the technical report [7].

– We define weak-IND-sID-CPA security following the IND-sID-CPA security formulation given by
Boneh et al. [2]. We prove that the proposed functional encryption scheme is weak-IND-sID-
CPA secure (as defined in Section 3.3), if BBG HIBE scheme [2] is IND-sID-CPA secure (See
Theorem 2).

1.4 Organization

The rest of this paper is organized as below. Section 2 reviews related works. Section 3 constructs
a new functional encryption scheme for multidimensional range query, and Section 4 presents the
security formulation and analyzes the correctness and security of the proposed scheme. At the end,
Section 5 concludes this paper.

2 Related Works

Functional encryption [3,4,5,6,8,1,9,10,11] is a new and more general notion to capture all of previous
public encryption (e.g. RSA), private encryption (e.g. AES), identity based encryption (e.g. [12]),
attribute-based encryption (e.g. [13]), and predicate encryption (e.g. [14]). Some works [3,4,9] aimed
to formulate the security of generic functional encryption, some [11,8,1] constructed functional
encryption for a somewhat generic class of functionalities, and some [10] analyzed the lower bound
of functional encryption scheme.

In particular to functional encryption supporting multidimensional range query, Shi et al. [15]
proposed a predicate encryption scheme called MRQED (Multi-dimensional Range Query over En-
crypted Data). Under their scheme, given a message and an identity, which is a d-dimensional point,
a ciphertext can be generated. A short decryption key for a d-dimensional rectangular range can
be generated from the master secret key. From this decryption key and the ciphertext, the orig-
inal message can be decrypted, iff the identity point associated with the ciphertext is within the

5 Unlike [3,4], our functional encryption scheme is a symmetric key encryption system. However, in the
case that dimension d = 1, our functional encryption scheme can become a public key encryption scheme.

6 Since the private key contains O(d) random elements from Z∗p and O(`) random elements from G̃, its
size can be reduced from O(` + d) to O(1) (precisely, O(1) number of secret seeds, and each seed with
length equal to the security parameter κ), using a pseudorandom function.

7 Note that authenticating multidimensional range queries is very useful when outsourcing multidimen-
sional dataset (e.g. network flow or log data in cyber physical system) to cloud

query range. There is a subtle but crucial difference between MRQED scheme and our implemen-
tation of functional encryption scheme: After a successful decryption, MRQED scheme reveals the
message, whereas our functional encryption scheme reveals only a function value of the message.
Precisely, the functionalities supported by MRQED [15] and this paper are given in Equation (3)
and Equation (4), respectively.

MRQED: F (k = (R), (x,Msg)) =

{
Msg (if x ∈ R);
⊥ (otherwise)

(3)

This paper: F (k = (ρ,R), (x,Msg)) =

{
f(ρ,Msg) (if x ∈ R);
⊥ (otherwise)

(4)

where f is some one-way function and will be defined later.
On the other hand, MRQED has its own advantages over our proposed functional encryption

scheme —MRQED [15] is a public key encryption scheme and has a stronger security model.
Other recent works in functional encryption include [16,17,18,19,20].

3 Construction of A New Functional Encryption Scheme

3.1 Polymorphic Property of BBG HIBE Scheme

We observe that the BBG HIBE scheme [2] satisfies the polymorphic property: An encryption of a

message M can be viewed as the encryption of another message M̂ under different key. Precisely,

let CT and ĈT be defined as follows, we have CT = ĈT:

CT = Encrypt(params, id,M ; s) =
(
Ωs ·M, gs,

(
hI11 · · ·h

Ik
k · g3

)s)
under key: params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(
Ωsz · M̂, ĝsz,

(
ĥI11 · · · ĥ

Ik
k · ĝ3

)sz)
,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ`, Ω = e(g1, g2)), ̂master-key = gαz2 (5)

where ` is the maximum depth of the HIBE scheme, k ≤ ` is the length of identity id, M̂ =

MΩs(1−z), ĝ = gz
−1 mod p, ĝ3 = gz

−1 mod p
3 , ĥi = hz

−1 mod p
i for 1 ≤ i ≤ ` and identity id =

(I1, . . . , Ik) ∈
(
Z∗p
)k

. To be self-contained, the description of this BBG HIBE scheme is given in
Appendix A (on page 14). One can verify the above equality easily.

3.2 Define Identities based on Binary Interval Tree

An identity is a sequence of elements from Z∗p. To apply HIBE scheme, we intend to construct two
mappings, named ID and IdSet, to associate identities to integers or integer intervals:

– ID(·) maps an integer x ∈ [Z] into an identity ID(x) ∈
(
Z∗p
)`

, where ` = dlogZe is the height of
identity hierarchy tree of the BBG HIBE scheme.

– IdSet(·) maps an integer interval [a, b] ⊆ [Z] into a set of O(`) identities, where each identity is
a sequence of at most ` elements from Z∗p.

The two mappings ID and IdSet are required to satisfy this property: For any x ∈ [a, b] ⊆ [Z],
there is a unique identity id in the set IdSet([a, b]), such that identity id is a prefix of identity ID(x).
If x 6∈ [a, b], then there is no such identity id in IdSet([a, b]). For each dimension ι ∈ [d], we will
construct such mappings IDι and IdSetι using a binary interval tree [15]. The resulting mappings
are made public.

Binary Interval Tree. The binary interval tree is constructed as below: First, we build a complete
ordered binary tree with 2` leaf nodes. Next, we associate an integer interval to each tree node in
a bottom-up manner: (1) Counting from the leftmost leaf, the j-th leaf is associated with interval
[j, j]; (2) For any internal node, the associated interval is the union of the two intervals associated
to its left and right children respectively. As a result, the interval associated to the root node is
[1, 2`]. An example of binary interval tree with size 8 is showed in Figure 1.

Constructions of Mappings IDι and IdSetι for dimension ι. Let H : Z2`+1 × Z2`+1 × [d] → Z∗p
be a collision resistant hash function. Let (v1, v2, . . . , vm) be the unique simple path from the
root node v1 to the node vm in the binary interval tree. We associate to node vm the identity
(H(a1, b1, ι), . . . ,H(am, bm, ι)) ∈

(
Z∗p
)m

, where [aj , bj] is the interval associated to node vj , 1 ≤ j ≤
m.

For any x ∈ [Z], we define IDι(x) as the identity associated to the x-th leaf node (counting from
the left). For any interval [a, b] ⊆ [Z], we find the minimum covering set MCSa,b, which is a set {vj :
vj is a tree node, 1 ≤ j ≤ n} with minimal size such that the intervals associated to vj ’s form a par-
tition of the interval [a, b], and define IdSetι([a, b]) := {idj : idj is the identity associated to node vj , vj ∈
MCSa,b}. One can verify that the newly constructed mappings IDι and IdSetι satisfy the property
mentioned in the beginning of Section 3.2. Furthermore, the set IdSetι([a, b]) contains O(`) identities
and each identity is a sequence of at most ` elements from Z∗p.

[1,1] [2,2]

[3,4]

[3,3] [4,4] [5,5] [6,6] [7,7] [8,8]

[5,6] [7,8][1,2]

[5,8][1,4]

[1,8]

Fig. 1. Binary Interval Tree with 8 leaf nodes.

3.3 Construction of Functional Encryption Scheme

Let (Setup, KeyGen, Encrypt, Decrypt) be the BBG Hierarchical Identity Based Encryption (HIBE)
scheme proposed by Boneh, Boyen and Goh [2] (the description of this scheme is in Appendix A

on page 14). Based on this HIBE scheme, we construct a functional encryption scheme FE =
(f Setup, f Enc, f KeyGen, f Dec) as below.

f Setup(1λ, d,Z) : security parameter λ, dimension d, maximum integer Z; the domain of points

is [Z]d

1. Let ` = dlogZe. Run algorithm Setup(`, λ) to obtain bilinear groups (p,G, G̃, e), public param-
eter params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)) and master private key master-key = gα2 ,

such that p is a λ bits prime, G, G̃ are cyclic multiplicative groups of order p, e : G×G→ G̃ is
a bilinear map, g is a generator of G, α ∈ Zp, g1 = gα ∈ G, and g2, g3, h1, . . . , h` ∈ G.

2. Let IDι and IdSetι, ι ∈ [d], be the mappings as in Section 3.2.
3. Choose d random elements τ1, . . . , τd from Z∗p and let τ = (τ1, . . . , τd).

4. Let pk = (p,G, G̃, e, Ω) and sk = (pk, params, master-key, τ). Make IDι’s and IdSetι’s public
and output (pk, sk).

f Enc(Msg,x, sk) : message Msg ∈ Z∗p, d-dimensional point x

1. Treat the d-dimensional point x as (x1, . . . , xd) ∈ [Z]d; recall that the private key sk is
(pk, params,master-key, τ), where τ = (τ1, . . . , τd).

2. Choose d random elements s1, . . . , sd from Zp with constraint Msg = −
∑d
j=1 sj · τj (mod p).

3. Choose d random elements σ1, . . . , σd from G̃ with constraint
∏d
j=1 σj = Ω−

∑d
j=1 sj .

4. For each j ∈ [d], encrypt σj under identity IDj(xj) with random coin sj to obtain ciphertext cj
as follows

cj ← Encrypt(params, IDj(xj), σj ; sj). (6)

5. Output ciphertext CT = (c1, . . . , cd).

f KeyGen(R, ρ, sk) : d-dimensional rectangular range R, function key ρ ∈ Z∗p

1. Treat the d-dimensional rectangular range R ⊆ [Z]d as Cartesian product A1 ×A2 . . . ×Ad,
where Aj ⊆ [Z] for each j ∈ [d]; recall that the private key sk is (pk, params,master-key, τ),
where τ = (τ1, . . . , τd).

2. For each dimension j ∈ [d], generate a set δj in this way:
(a) For each identity id ∈ IdSetj(Aj), generate the private key did, using algorithm KeyGen and

taking the value master-keyρτj as the master key.
(b) Set δj ← {did : id ∈ IdSetj(Aj)}.

3. Output delegation key δ = (δ1, δ2, . . . , δd).

f Dec(CT,x,R, δ, pk) : ciphertext CT, d-dimensional point x, d-dimensional

rectangular range R, delegation key δ

1. Treat the d-dimensional rectangular range R ⊆ [Z]d as Cartesian product A1 ×A2 . . . ×Ad,
where Aj ⊆ [Z] for each j ∈ [d]. Let us write the ciphertext CT as (c1, . . . , cd), and the
d-dimensional point x as (x1, . . . , xd).

2. For each dimension j ∈ [d], generate t̃j in this way: If xj 6∈ Aj , then output ⊥ and abort.
Otherwise, do the followings:

(a) Find the unique identity id∗ ∈ IdSetj(Aj) such that id∗ is a prefix of identity IDj(xj).
(b) Parse δ as (δ1, . . . , δd) and find the private key did∗ ∈ δj = {did : id ∈ IdSetj(Aj)} for

identity id∗.
(c) Generate the private key dj for the identity IDj(xj) from private key did∗ , using algorithm

KeyGen.

(d) Decrypt cj using algorithm Decrypt with decryption key dj , and denote the decrypted
message as t̃j .

3. Output t̃ =
∏

1≤j≤d t̃j ∈ G̃.

4 The Constructed Functional Encryption Scheme is Correct and
Secure

In this section, we analyze the correctness and security of the newly constructed functional encryp-
tion scheme.

4.1 Correctness

Let us define a key-ed function family {fρ : Z∗p → G̃}ρ∈Z∗p as below: Let Ω ∈ G̃ be as in f Setup of
Section 3.3.

f1(Msg) = ΩMsg; ∀ρ ∈ Z∗p, fρ(Msg) = f1(Msg)ρ ∈ G̃. (7)

Lemma 1 (FE is correct) The functional encryption scheme FE described in Section 3.3 satisfies
this property: For any public-private key pair (pk, sk) ← f Setup(1λ, d,Z), for any message Msg ∈
Z∗p, for any point x ∈ [Z]d, for any rectangular range R ⊆ [Z]d, for any ρ ∈ Z∗p, if CT ←
f Enc(Msg,x, sk) and δ ← f KeyGen(R, ρ, sk), then

f Dec(CT, x, R, δ, pk) =

{
fρ(Msg) (if x ∈ R)
⊥ (otherwise)

(8)

Most of previous functional encryption schemes [5] (e.g. attribute-based encryption [13], and
predicate encryption [14]), if not all, allow the decryptor to obtain the original plaintext Msg from
a ciphertext of Msg in “good” case (e.g. if the attribute of plaintext and/or the decryption key
satisfy the designated predicate), and nothing otherwise. In contrast, our functional encryption
scheme FE only allows the decryptor to obtain f1(Msg)ρ in “good” case, from a ciphertext of Msg,
where f1 is a one-way function. Unlike [3,4], our functional encryption scheme is a symmetric key
system. Our security formulation is weaker than previous works (e.g. [3,4]).

4.2 Proof of Correctness

Proof (of Lemma 1). We observe that the BBG HIBE scheme [2] satisfies the polymorphic property:

An encryption of a messageM can be viewed as the encryption of another message M̂ under different

key. Precisely, let CT and ĈT be defined as follows, we have CT = ĈT:

CT = Encrypt(params, id,M ; s) =
(
Ωs ·M, gs,

(
hI11 · · ·h

Ik
k · g3

)s)
under key: params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2

ĈT = Encrypt(p̂arams, id, M̂ ; sz) =
(
Ωsz · M̂, ĝsz,

(
ĥI11 · · · ĥ

Ik
k · ĝ3

)sz)
,

under key: p̂arams = (ĝ, g1, g2, ĝ3, ĥ1, . . . , ĥ`, Ω = e(g1, g2)), ̂master-key = gαz2 (9)

where identity id = (I1, . . . , Ik) ∈
(
Z∗p
)k

, M̂ = MΩs(1−z), ĝ = gz
−1 mod p, ĝ3 = gz

−1 mod p
3 and

ĥi = hz
−1 mod p
i for 1 ≤ i ≤ `. To be self-contained, the description of this BBG HIBE scheme [2] is

given in Appendix A. One can verify the above equality easily.
Let (pk, sk)← f Setup(1λ), message Msg ∈ Z∗p, point x ∈ [Z]d, R be a d-dimensional rectangular

range, and ρ ∈ Z∗p. Let CT← f Enc(Msg,x, sk), δ ← f KeyGen(R, ρ, sk), and y ∈ G̃.
We consider dimension j ∈ [d] and apply the polymorphic property of BBG scheme (Equa-

tion (9)): Take M = σj , s = sj and z = ρτj . Then M̂ = MΩs(1−z) = σjΩ
sj(1−τjρ).

In case x ∈ R. If x ∈ R, then the HIBE decryption will succeed in the process of f Dec
(Section 3.3). Note that during decryption for dimension j, we use decryption key derived from
master-keyρτj . Let t̃j be as in Step 2(d) of f Dec for decrypting ciphertext CT. We have

t̃j = M̂ = σjΩ
sj(1−τjρ), j ∈ [d]. (10)

Combining all d dimensions, and applying the two equalities (see algorithm f Enc in Section 3.3)

Msg = −
∑d
j=1 sjτj mod p and

∏d
j=1 σj = Ω−

∑d
j=1 sj we have,

f Dec(CT, x, R, δ, pk) = t̃ =

d∏
j=1

t̃j =

d∏
j=1

(
σjΩ

sj(1−τjρ)
)

=

d∏
j=1

σj ·
d∏
j=1

Ωsj ·

 d∏
j=1

Ω−sjτj

ρ

= Ω−
∑d
j=1 sj ·

d∏
j=1

Ωsj ·
(
ΩMsg

)ρ
= ΩρMsg

= fρ(Msg).

In case x 6∈ R. Let R = A1 × A2 . . . × Ad as in Step 1 of f Dec. If x 6∈ R, then for some
dimension j ∈ [d], x[j] 6∈ Aj , and f Dec will output ⊥ (Step 2 of f Dec in Section 3.3).

4.3 Security

We formulize the security requirement of our functional encryption scheme by modifying the IND-
sID-CPA security game [2]. The resulting weak-IND-sID-CPA security game between an adversary A
and a challenger C is defined as below:

Commit: The adversary A chooses the target point x∗ from the space [Z]d and sends it to the
challenger C.
Setup: The challenger C runs the setup algorithm f Setup and gives A the resulting system param-
eters pk, keeping the secret key sk to itself.

Challenge: The challenger C chooses two plaintexts Msg0,Msg1 at random from the message space
Z∗p, and chooses a random bit b ∈ {0, 1}. C sets the challenge ciphertext to CT = f Enc(Msgb, x

∗,
sk), and sends (CT, f1(Msg0), f1(Msg1)) to the adversary A.

Learning Phase: The adversary A adaptively issues queries to the challenger C, where each query
is one of the following:

– Delegation key query (R, ρ), where x∗ 6∈ R: In response to this query, C runs algorithm
f KeyGen(R, ρ, sk) to generate the delegation key δ, and sends δ to A.

– Anonymous delegation key query (R): In response to this query, C chooses ρ at random from
the space Z∗p and runs algorithm f KeyGen(R, ρ, sk) to generate the delegation key δ, and sends
δ to A.

– Encryption query (Msg,x): In response to this query, C runs f Enc(Msg,x, sk) to obtain a
ciphertext, and sends the ciphertext to A.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins if b = b′.

We refer to the above adversary A as a weak-IND-sID-CPA adversary. We define the advantage
of the adversary A in attacking the scheme FE as

Advweak-IND-sID-CPA
FE,A =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
We will show in the following theorem that: if the BBG HIBE scheme is IND-sID-CPA secure (as

defined in [2]), then the functional encryption scheme FE constructed in Section 3.3 is weak-IND-
sID-CPA secure. Note that the above security definition is weak in the sense that the two challenged
messages Msg0 and Msg1 are chosen randomly instead of adversarially. Compared to Gorbunov et
al. [1] which only allows a pre-defined number of delegation queries (they called “q-Collusions”),
the above security definition allows practically unlimited number of delegation key queries.

Theorem 2 Suppose there exists a weak-IND-sID-CPA adversary AFE, which runs in time tFE and
has non-negligible advantage ε against the functional encryption scheme FE (constructed in Sec-
tion 3.3) with one chosen delegation key query and Naq chosen anonymous delegation key queries
and Nenc chosen encryption queries. Then there exists an IND-sID-CPA adversary ABBG, which has
advantage ε

2d against the BBG HIBE scheme [2] with O(d`) chosen private key queries and zero
chosen decryption query, and runs in time tFE +O(d` · tmax · (Naq +Nenc)), where tmax is the max-
imum time for a random sampling (within a space of size at most p), a BBG encryption Encrypt,
or a BBG key generation KeyGen.

4.4 Proof of Security

Proof (of Theorem 2).

The proof idea. Let AFE be the weak-IND-sID-CPA adversary against the functional encryption
scheme FE as in Theorem 2. We try to construct an IND-sID-CPA adversary ABBG against BBG based
on AFE: Choose two random messages m0 and m1, and send them to the BBG challenger. After
receiving the challenge ciphertext CT for message mb where b ∈ {0, 1}, guess b = 0 and construct
a FE challenge (f1(Msg0), f1(Msg1),CTFE) based on the BBG challenge CT. If the adversary AFE

wins the weak-IND-sID-CPA game, then output a guess b′ = 0; otherwise output a guess b′ = 1.
We argue that if indeed b = 0, then the forged FE challenge is valid, and the hypothesis is

applicable: AFE wins with probability 1/2+ ε. If b = 1, the forged FE challenge is invalid, we cannot
apply the hypothesis. However, in this case the forged FE challenge is independent on the value of
Msga. Hence, in case of b = 1, AFE wins (in guessing the value a ∈ {0, 1}) with probability exactly
1/2.

Recall that the BBG HIBE scheme is (Setup,KeyGen,Encrypt,Decrypt) and the functional encryp-
tion scheme FE is (f Setup, f Enc, f KeyGen, f Dec). Now let us construct the IND-sID-CPA adversary
ABBG against BBG. ABBG will simulate the weak-IND-sID-CPA game where ABBG takes the role of
challenger and invokes AFE in the hypothesis as the adversary.

Construction of IND-sID-CPA adversary ABBG against BBG HIBE scheme based on AFE

BBG Commit :

FE Commit : Adversary AFE chooses a random point x∗ = (x1, . . . , xd) ∈ [Z]d. AFE sends x∗ to FE
challenger ABBG as the target identity.

BBG adversary ABBG chooses ξ ∈ [d] at random and sends target identity id∗ = IDξ(xξ) ∈
(
Z∗p
)`

to
BBG challenger CBBG.

BBG Setup : BBG challenger CBBG runs setup algorithm Setup, and give ABBG the resulting system pa-
rameter params, keeping the master-key private.

BBG Phase 1 : Adversary ABBG does nothing.
BBG Challenge : Adversary ABBG chooses m0,m1 at random from the plaintext space G̃, and sends

(m0,m1) to the challenger CBBG. CBBG picks a random bit b ∈ {0, 1} and sends the challenge ciphertext
CT = Encrypt(params, id∗,mb; s) to ABBG.

BBG Phase 2 :

FE Setup :ABBG chooses d random elements τ1, . . . , τd from Z∗p and let τ = (τ1, . . . , τd). Let (p,G, G̃, e, Ω)

be a part of params, where p is a prime, both G and G̃ are cyclic multiplicative group of or-
der p, e : G × G → G̃ is a bilinear map, and Ω ∈ G̃. Let pk = (p,G, G̃, e, Ω) and sk =
(pk, params,master-key, τ). ABBG sends pk to AFE.
Note: ABBG does not know master-key.

FE Challenge : The FE challenger ABBG chooses a random bit a ∈ {0, 1} and a random message
Msg1−a from the message space Z∗p. ABBG will decide Msga and generate the challenge ciphertext
CTFE in this way:
1. Parse the BBG challenge ciphertext as CT = (A,B,C), where A = Ωsmb.
2. Choose (d− 1) random elements s1, . . . , sξ−1, sξ+1, . . . , sd (i.e. excluding sξ) from Z∗p.
3. Choose d random elements σ1, . . . , σd from G̃ with constraint

d∏
j=1

σj = (Ωsmb)
−1m0 ·Ω

−
∑

1≤j≤d
j 6=ξ

sj

4. For each j ∈ [d] and j 6= ξ, encrypt σj under identity IDj(xj) with random coin sj to obtain
ciphertext cj as follows

cj ← Encrypt(params, IDj(xj), σj ; sj). (11)

5. Define cξ based on the BBG challenge ciphertext CT = (Ωsmb, B,C):

cξ = (Ωsmb ·m−1
0 · σξ, B, C).

6. Define Msga = −
∑
j∈[d] sj · τj (mod p), where unknown sξ ∈ Zp is defined by Ωsξ = Ωsmb ·

m−1
0 . Although the value Msga is unknown since sξ is unknown, ABBG can still compute

f1(Msga):

f1(Msga) = ΩMsga =
(

(Ωsmb)
−1 ·m0

)τξ
·Ω

−
∑

1≤j≤d
j 6=ξ

sj ·τj

ABBG computes f1(Msg1−a) = ΩMsg1−a .
7. Set the challenge ciphertext to CTFE = (c1, . . . , cd), and send (CTFE, f1(Msg0), f1(Msg1)) to
AFE.

FE Learning Phase :
1. AFE issues a delegation key query (R, ρ), where x∗ 6∈ R and R = A1 ×A2 . . .×Ad ⊆ [Z]d: If

xξ ∈ Aξ, then ABBG aborts and outputs a random bit b′ ∈ {0, 1} (Denote this event as E1).
Otherwise, simulate the procedure of f KeyGen:
(a) The private key is sk = (pk, params,master-key, τ = (τ1, . . . , τd)), where ABBG has only

pk, params and τ , and does not know master-key (which is kept securely by the BBG
challenger CBBG).

(b) For each j ∈ [d], generate a set δj in this way:
– For each identity id ∈ IdSetj(Aj), issue a private key query with identity id to BBG

challenger CBBG and get reply did.
Note: The BBG private key query (id) is valid, i.e. id 6= id∗ and id is not a prefix of
id∗. This is implied by the following two properties satisfied by our constructions of IDι
and IdSetι in Section 3.2: (1) For any i, j ∈ [d], x, y ∈ [Z], if IDi(x) and IDj(y) share
a non-empty prefix, then i = j; (2) For any ∈ [a, b] ⊆ [Z], iff x ∈ [a, b], there exits an
identity id in the set IdSetj([a, b]), such that id is a prefix of identity IDj(x).

– For each identity id ∈ IdSetj(Aj), parse the key did as (K0,K1, Υk, . . . , Υ`) and set
d′id = (K

ρτj
0 ,K

ρτj
1 , Υ

ρτj
k , . . . , Υ

ρτj
`).

– Set δj ← {d′id : id ∈ IdSetj(Aj)}.
(c) Send δ = (δ1, δ2, . . . , δd) to AFE as the delegation key w.r.t. (R, ρ).
Note: AFE can make at most one delegation key query.

2. AFE issues an anonymous delegation key query (R): Choose a random element Z ∈ G̃. For
each anonymous delegation key query (R), choose ρ ∈ Z∗p at random, run the algorithm
f KeyGen(R, ρ, sk′), where sk′ = (pk, params, Z, τ) (i.e. taking Z as the master key), and get
output δ. Send δ to AFE as the delegation key w.r.t. R.
Note: (1) ABBG can answer anonymous delegation key query without the help of BBG challenger
CBBG. (2) There exists an unknown ω, such that Z = master-keyω. The generated delegation key
δ corresponds to range R and (unknown) function key ρω, where ρω is uniformly distributed
in Z∗p as desired.

3. AFE issues an encryption key query (Msg,x): Run the encryption algorithm: C← f Enc(Msg,x, sk)
and send the resulting ciphertext C to AFE as the reply.
Note: ABBG can run algorithm f Enc, since it requires only pk, params, τ .

FE Guess : Adversary AFE outputs a bit a′ ∈ {0, 1}.
BBG Guess : If a = a′, adversary ABBG outputs b′ = 0. Otherwise, ABBG outputs b′ = 1.

The constructed BBG adversary ABBG made O(d`) private key query and zero decryption query

to the BBG challenger CBBG. Let id∗ = IDξ(xξ) = (I1, . . . , I`) ∈
(
Z∗p
)`

. Recall that the two BBG
ciphertexts CT and cξ are

CT = (A, B, C) =
(
Ωs ·mb, g

s,
(
hI11 . . . hI`` · g3

)s)
∈ G̃×G2

cξ = (Ωsξ · σξ, B, C) =
(
Ωsξ · σξ, gs,

(
hI11 . . . hI`` · g3

)s)
∈ G̃×G2

where Ωsξ = Ωsmb ·m−10 . If b = 0, then sξ = s and thus cξ is a valid BBG encryption of σξ under
identity IDξ(xξ) with random coin sξ. Consequently, the FE scheme simulated by ABBG is identical
to a real one from the view of AFE (even if AFE is computationally unbounded). If b = 1, then sξ
is independent on s. As a result, in the FE scheme simulated by ABBG, the challenging ciphertext
CTFE is independent on the value of Msga. Note that adversary AFE does not know m0,m1.

Let the d-dimensional range R = A1 × . . .×Ad. Define set S#:

S# = {j ∈ [d] : x∗[j] 6∈ Aj}

Since x∗ 6∈ R, S# is not empty and |S#| ≥ 1. We have

Pr[¬E1] = Pr[ξ ∈ S#] =
|S#|
d
≥ 1

d
.

Note that adversary ABBG has two terminal cases: (1) If event E1 occurs, ABBG outputs a random
bit b′ ∈ {0, 1}. (2) If event E1 does not occur, ABBG outputs b′ = 0 iff AFE outputs a′ = a.

In case of E1: Conditional on event E1, Pr[b = b′] = 1/2.

In case of ¬E1: Suppose event E1 does not occur. Then b′ = 0⇔ a = a′ and b′ = 1⇔ a 6= a′. We
have Pr[b′ = 0|b = 0] = Pr[a = a′|b = 0] and Pr[b′ = 1|b = 1] = Pr[a 6= a′|b = 1].

As a result, conditional on event ¬E1,

Pr[b = b′] = Pr[b = b′ = 0] + Pr[b = b′ = 1]

= Pr[b = 0]Pr[b′ = 0|b = 0] + Pr[b = 1]Pr[b′ = 1|b = 1]

= Pr[b = 0]Pr[a = a′|b = 0] + Pr[b = 1]Pr[a 6= a′|b = 1]

=
1

2
×
(

1

2
+ ε

)
+

1

2
× 1

2

=
1

2
+

1

2
ε

Combining the two cases (E1 and ¬E1), we obtain the advantage of ABBG against BBG scheme
in the IND-sID-CPA game:

AdvABBG

BBG +
1

2
= Pr[E1]× 1

2
+ Pr[¬E1]×

(
1

2
+

1

2
ε

)
=

1

2
+
ε

2
Pr[¬E1] ≥ 1

2
+

ε

2d

The adversary ABBG wins the game with probability at least 1/2 + ε/(2d) using O(d`) private
key queries and running in time tFE + O(d` · tmax · (Naq + Nenc)), where tmax is the maximum
time for random sampling (within a space of size at most p), BBG encryption Encrypt, or BBG
key generation KeyGen, and Naq (Nenc, respectively) is the number of anonymous delegation key
queries (encryption key queries, respectively) made by AFE.

5 Conclusion

In this paper, we constructed a new functional encryption scheme for multidimensional range query,
using a new technique. The proposed functional encryption scheme allows a user with a valid cipher-
text and a correct decryption key to obtain only a one-way function value of the plaintext, where
the plaintext remains secure, assuming that the multidimensional point associated to the ciphertext
is within the query range associated to the decryption key. Our functional encryption scheme is
designed by exploiting the polymorphic property of existing BBG HIBE scheme: encryption of a
message can be viewed as encryption of another message under a different key.

References

1. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional Encryption with Bounded Collusions via Multi-
party Computation. In: CRYPTO ’12: Annual International Cryptology Conference on Advances in
Cryptology. 162–179

2. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext.
In: EUROCRYPT ’05: Annual International Conference on Advances in Cryptology. (2005) 440–456

3. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: (will appear
in) TCC ’11: Theory of Cryptography Conference. (2011) http://eprint.iacr.org/2010/543.

4. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556
(2010) http://eprint.iacr.org/.

5. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption:
Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: EUROCRYPT ’10:
Annual International Conference on Advances in Cryptology. (2010) 62–91

6. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Relations from the
Decisional Linear Assumption. In: CRYPTO ’10: Annual International Cryptology Conference on
Advances in Cryptology. (2010) 191–208

7. Xu, J., Chang, E.C.: Authenticating aggregate range queries over multidimensional dataset. Cryptology
ePrint Archive, Report 2010/050 (2010) http://eprint.iacr.org/.

8. Waters, B.: Functional Encryption for Regular Languages. In: CRYPTO ’12: Annual International
Cryptology Conference on Advances in Cryptology. 218–235

9. Barbosa, M., Farshim, P.: Semantically Secure Functional Encryption, Revisited. Cryptology ePrint
Archive, Report 2012/474 (2012) http://eprint.iacr.org/.

10. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional Encryption: New Perspectives
and Lower Bounds. Cryptology ePrint Archive, Report 2012/468 (2012) http://eprint.iacr.org/.

11. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: CCS ’10:
ACM conference on Computer and communications security. 463–472

12. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM J. Comput. 32(3)
(2003) 586–615

13. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: EUROCRYPT ’05: Annual International
Conference on Advances in Cryptology. (2005) 457–473

14. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equa-
tions, and Inner Products. In: EUROCRYPT ’08: Annual International Conference on Advances in
Cryptology. (2008) 146–162

15. Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-Dimensional Range Query over
Encrypted Data. In: SP ’07: IEEE Symposium on Security and Privacy. (2007) 350–364

16. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate Indistinguishability
Obfuscation and Functional Encryption for All Circuits. SIAM J. Comput. 45(3) (June 2016) 882–929

http://eprint.iacr.org/2010/543
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

17. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional Encryption Without Obfuscation. In: TCC
’16: Theory of Cryptography Conference. 480–511

18. Waters, B.: A Punctured Programming Approach to Adaptively Secure Functional Encryption. In:
Advances in Cryptology – CRYPTO 2015. 678–697

19. GoldwasserS, S., Gordon, D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A., Shi, E., Zhou, H.S.:
Multi-input Functional Encryption. In: Advances in Cryptology EUROCRYPT 2014. 578–602

20. Ben A. Fisch, Dhinakaran Vinayagamurthy, D.B.S.G.: Iron: Functional Encryption using Intel SGX.
Cryptology ePrint Archive, Report 2016/1071 (2016) http://eprint.iacr.org/2016/1071.

A BBG HIBE

We restate the BBG HIBE scheme proposed by Boneh et al. [2], to make this paper self-contained.

Let p be a λ bits safe prime, and e : G × G → G̃ be a bilinear map, where the orders of G and G̃
are both p. The HIBE scheme contains four algorithms (Setup,KeyGen,Encrypt,Decrypt), which are
described as follows.

Setup(`)

To generate system parameters for an HIBE of maximum depth `, select a random generator
g ∈ G, a random α ∈ Zp, and set g1 = gα. Next, pick random elements g2, g3, h1, . . . , h` ∈ G.
The public parameters and the master key are

params = (g, g1, g2, g3, h1, . . . , h`, Ω = e(g1, g2)), master-key = gα2 .

KeyGen(did|k−1, id)

To generate a private key did for an identity id = (I1, . . . , Ik) ∈
(
Z∗p
)k

of depth k ≤ `, using the
master secret key master-key, pick a random r ∈ Zp and output

did =
(
gα2 ·

(
hI11 . . . hIkk · g3

)r
, gr, hrk+1, . . . , h

r
`

)
∈ G2+`−k

The private key for id can be generated incrementally, given a private key for the parent identity

id|k−1 = (I1, . . . , Ik−1) ∈
(
Z∗p
)k−1

. Let

did|k−1 =

(
gα2 ·

(
hI11 . . . h

Ik−1

k−1 · g3
)r′

, gr
′
, hr

′

k , . . . , h
r′

`

)
= (K0,K1,Wk, . . . ,W`)

be the private key for id|k−1. To generate did, pick a random t ∈ Zp and output

did =

(
K0 ·W Ik

k ·
(
hI11 . . . hIkk · g3

)t
, K1 · gt, Wk+1 · htk+1, . . . ,W` · ht`

)
.

This private key is a properly distributed private key for id = (I1, . . . , Ik) for r = r′ + t ∈ Zp.

Encrypt(params, id,M ; s)

To encrypt a message M ∈ G̃ under the public key id = (I1, . . . , Ik) ∈
(
Z∗p
)k

, pick a random
s ∈ Zp and output

CT =
(
Ωs ·M, gs,

(
hI11 . . . hIkk · g3

)s)
∈ G̃×G2. (12)

http://eprint.iacr.org/2016/1071

Decrypt(did,CT)

Consider an identity id = (I1, . . . , Ik). To decrypt a given ciphertext CT = (A,B,C) using the
private key did = (K0,K1,Wk+1, . . . ,W`), output

A · e(K1, C)

e(B,K0)
.

For a valid ciphertext, we have

e(K1, C)

e(B,K0)
=

e
(
gr,
(
hI11 . . . hIkk · g3

)s)
e
(
gs, gα2

(
hI11 . . . hIkk · g3

)r) =
1

e(gs, gα2)
=

1

e(g1, g2)s
=

1

Ωs
. (13)

	Lecture Notes in Computer Science

