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Abstract

Lattice-based cryptography has been accepted as a promising candidate for public key cryptogra-
phy in the age of quantum computing. Discrete Gaussian sampling is one of fundamental operations
in many lattice-based cryptosystems. In this paper, we discuss a sub-problem of discrete Gaus-
sian sampling, which is to sample from a centered discrete Gaussian distribution DZ,σ,c over the
integers Z with parameter σ > 0 and center c = 0. We propose three alternative rejection sam-
pling algorithms for centered discrete Gaussian distributions with parameter σ in two specific forms.
The first algorithm is designed for the case where σ is an positive integer, and it requires neither
pre-computation storage nor floating-point arithmetic. While the other two algorithms are fit for
parameter σ = k ·

√
1/(2 · ln 2) with a positive integer k, and they require fixed look-up tables of very

small size (e.g. 128 bits and 320 bits respectively) but are much more efficient than the first algo-
rithm. The experimental results show that our algorithms have better performance than that of two
rejection sampling algorithms proposed by Karney in 2016 and by Ducas et al. in 2013 respectively.
The expected numbers of random bits used in our algorithms are significantly smaller than that of
random bits used in Karney’s rejection sampling algorithm.

1 Introduction

Lattice based cryptography has gained much popularity in recent years. Many classical cryptographic
primitive can be realized efficiently using lattice, providing conjectured security against quantum com-
puters. Some advanced schemes that go beyond classical public key cryptography can also be built up
based on lattices, like fully homomorphic encryption (FHE) [5, 13], identity based encryption (IBE) [2, 1],
attribute based encryption (ABE) [4] and (some forms of) multi-linear maps [10, 12]. Lattice-based cryp-
tography has been considered as a promising candidate for public key cryptography in the age of quantum
computing.

Discrete Gaussian sampling, which is to sample from a discrete Gaussian distribution DΛ,σ,c with
parameter σ > 0 and center c ∈ Rn over an n-dimensional lattice Λ, plays a fundamental role in lattice-
based cryptography. Discrete Gaussian sampling is not only one of fundamental operations in many
lattice-based cryptosystems but also at the core of security proofs of these cryptosystems [22, 14, 27, 24,
19]. It has been considered by the cryptography research community as one of the fundamental building
blocks of lattice-based cryptography [25, 21, 7, 20, 11, 23].

An important sub-problem of discrete Gaussian sampling is to sample from a discrete Gaussian dis-
tribution DZ,σ,c over the integers Z with parameter σ > 0 and center c ∈ R. Sampling from a discrete
Gaussian distribution over the integers Z, denoted by SampleZ, is usually a kernel subroutine in discrete
Gaussian sampling algorithms for a distribution over a general n-dimensional lattice. Furthermore, since
SampleZ is far more efficient and simpler than discrete Gaussian sampling over a general lattice, in some
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lattice-based cryptosystems, including some encryption and signature schemes [18, 16, 19, 3], the oper-
ations involving discrete Gaussian sampling are just SampleZ. In recent years, therefore, some efforts
have been made to improve the performance of SampleZ.

The commonly used methods (techniques) for sampling from a discrete Gaussian distribution over the
integers Z are the inversion method (using a cumulative distribution table), the rejection sampling method
[14, 7, 15], the Knuth-Yao method (using a discrete distribution generating (DDG) tree) [6, 28, 9], and the
‘reduction and recombination’ technique [26, 23], which was developed from the convolution properties of
(discrete) Gaussian distributions [25]. From an implementation standpoint, a good sampling algorithm
for a discrete Gaussian distribution (not necessarily over the integers Z) should not only be fast, but also
have a negligible statistical distance to the target distribution. From the perspective of complexity, a
good sampling algorithm should have low entropy consumption, i.e., it uses a smaller number of random
bits on average to generate a sample from the target distribution. The methods of sampling from a
continuous Gaussian distribution are not trivially applicable for the discrete case. A good sampling
algorithm that is not only fast but also accurate for discrete Gaussian distributions is very important for
the implementations of lattice-based cryptosystems.

1.1 Related Work

The first SampleZ algorithm, which was given by Gentry et al. in [14], uses rejection sampling method.
This algorithm is not very efficient, because it uses (high-precision) floating-point arithmetic and requires
at least about 10 trials on average before outputting an integer in order to get a negligible statistical
distance to the target discrete Gaussian distribution over the integers Z. In 2013, Ducas et al. present
an efficient sampling algorithm for centered discrete Gaussian distributions (center c = 0) [7]. It uses
rejection sampling from a specific Gaussian distribution, called the binary discrete Gaussian distribution,
with (relative) probability density 2−x

2

for x ≥ 0. The average number of rejections is smaller than 1.47,
and hence its performance is much better than that of SampleZ algorithm in [14].

In [25], C. Peikert suggested to use a cumulative distribution table (CDT) to sample DZ,σ,c more
efficiently when c ∈ R is known in advanced. One tabulates the CDT of the desired distribution, and
generates a random deviate in [0, 1) at sampling time, then performs a binary search through the table to
locate the output. This method is also called the inversion method and it can lead to the best sampling
efficiency. In order to satisfy a negligible statistical distance, however, it requires a large pre-computation
storage varied with the parameter of the distribution.

Knuth-Yao method is a technical framework, which can simulate any discrete distribution [6]. A
sampling algorithm based on Knuth-Yao method also require pre-computation storage varied with the
parameter of the distribution, though the storage size can be smaller than that of an algorithm based on
the inversion method [9, 28]. The main advantage of Knuth-Yao method is that it consumes a smaller
number of random bits, which may lead to better performance especially when random bits are generated
by a hardware device.

In 2016, C. Karney proposed an algorithm for sampling exactly from a discrete distribution over
the integers Z [15]. This algorithm also uses rejection sampling method and it is a discretization of his
algorithm for sampling exactly from the normal distribution. Karney’s algorithm is generic, i.e., it is fit for
any discrete Gaussian distribution DZ,σ,c with arbitrary and varying (rational) parameters. Meanwhile,
it uses no floating point arithmetic and does not need any pre-computation storage. The experimental
results show that Karney’s algorithm also has considerable sampling efficiency.

Very recently, D. Micciancio et al. extended and generalized the ‘reduction and recombination’ tech-
nique [23], which was developed by T.Pöppelmann et al. from Peikert’s (discrete) Gaussian convolution
lemma [26, 25]. The main idea is to reduce the general sampling problem to the recombination of a rela-
tively small number of samples coming from a Gaussian distribution with a fixed and rather small value
of σ > 0. Their sampling algorithms are fit for discrete Gaussian distributions with arbitrary and varying
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parameters, and have good performance according to their experimental results. A theoretical advantage
of Karney’s algorithm is that it exactly samples from the target distributions, while the algorithms given
by D.Micciancio et al. are approximately close to the target distributions.

Compared to the rejection sampling, an algorithm based on the inversion method or the Knuth-
Yao method may be faster and consumes a smaller number of random bits, but it has a larger pre-
computation storage, especially for attaining a closer statistical distance to the target distribution or
sampling from distributions with large σ or varying c. Whereas, the main advantage of the rejection
sampling is that it may produce samples exactly from the target distribution with much less, or even
no, pre-computation storage. For examples, Ducas’s algorithm only needs a look-up table of size 4kb
for sampling a centered discrete Gaussian distribution with σ ≈ 271 [7], and Karney’s algorithm does
not need any pre-computation storage for an approximate distribution [15]. From this point of view,
algorithms based on the rejection sampling may be more appropriate for use in resource-constrained
devices. It is interesting to improve the sampling efficiency of the algorithms based on the rejection
sampling.

In this paper, we discuss rejection sampling algorithms for a centered discrete Gaussian distribution
DZ,σ over the integers Z with parameter σ > 0 and (omitted) center c = 0. We consider centered
discrete Gaussian distributions because some lattice-based cryptosystems, such as [18, 16, 19, 3], only
require sampling from centered discrete Gaussian distributions. Also, we note that the performance
of existing rejection sampling algorithms may be further improved exclusively for a centered discrete
Gaussian distribution.

1.2 Our Contribution

We propose three alternative rejection sampling algorithms for centered discrete Gaussian distribution
DZ,σ over the integers Z with parameter σ in two specific forms. The first one does not need any pre-
computation storage, while the other two require fixed look-up tables of very small size. All of them
do not use floating-point arithmetic. We demonstrate the correctness and efficiency of our proposed
algorithms both through theoretical analysis and practical software experimentation.

(1) For the parameter σ that is a positive integer, we present a rejection sampling algorithm without
pre-computation storage (Algorithm 4), which consumes a smaller number of random bits and has better
sampling efficiency compared to Karney’s algorithm.

(2) For the parameter σ that is a real number in the form of k ·
√

1/(2 · ln 2) with positive integer k,
we give a rejection sampling algorithm (Algorithm 5) using a fixed look-up table of very small size (e.g.
128 bits), which consumes a smaller number of random bits and much better performance compared to
our first proposed algorithm (Algorithm 4).

(3) We also provide a time-memory trade-off version of Algorithm 5 by using the Knuth-Yao method,
which has better sampling efficiency at the cost of storing a bigger (but still very small) fixed look-up
table.

The experimental results show that they all have better sampling efficiency. In our implementation
environment (the g++ compiler, enabling -Os optimization option, on a laptop computer with Intel i7-
6820hq and 8GB RAM), our most efficient algorithm for sampling DZ,σ with σ = 254 ·

√
1/(2 · ln 2) ≈ 215

generates about 12.67× 106 samples per second, i.e., about 0.0789µs per sample.

1.3 Techniques

The ‘half exponential Bernoulli trial’ algorithm given by Karney is one of basic techniques in our proposed
algorithms [15]. It is adapted from Von Neummann’s algorithm for sampling from the exponential
distribution e−x for real x > 0. It aims at generating a Bernoulli random value b without using floating-
point exponential computation, where b is true with probability 1/

√
e. In this paper, we improve on
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this technique by giving a algorithm (Algorithm 6) for generating a Bernoulli random value b without

using floating-point exponential computation, where b is true with probability e−(ln 2)(z/k2) = 2−z/k
2

and
k, z are two positive integers such that z < k2. It requires a fixed look-up table that stores the binary
expansion of ln 2 with adequate precision (e.g. 128 bits).

In addition, we present an efficient implementation of the Knuth-Yao method for the binary discrete
Gaussian distribution DZ,σ2

with σ2 =
√

1/(2 · ln 2). It requires a fixed look-up table of very small size
(192 bits) instead of the whole probability matrix (even a trimmed one), which is usually involved in a
generic implementation of the Knuth-Yao method.

2 Preliminaries

In this section, we recall the basic notion of rejection sampling and remark three typical rejection sampling
algorithms for discrete Gaussian distributions over the integers Z.

Trough the paper, we denote the set of real numbers by R, the set of integers by Z, and the set of non-
positive integers by Z+ respectively. We extend any real function f(·) to a countable set A by defining
f(A) =

∑
x∈A f(x). The Gaussian function on R with parameter σ > 0 and center c ∈ R evaluated

at x ∈ R can be defined by ρσ,c(x) = exp
(
− (x−c)2

2σ2

)
. The subscripts σ and c are taken to be 1 and 0

respectively when omitted. For c ∈ R and real σ > 0, the discrete Gaussian distribution over the integers
Z is defined by DZ,σ,c = ρσ,c(x)/ρσ,c(Z) for x ∈ Z, where parameter σ can also be called the standard
deviation of the discrete Gaussian distribution.

2.1 Basic Rejection Sampling

Rejection sampling is a basic technique used to generate observations from a distribution. It is a type of
Monte Carlo method. The rejection sampling method generates sampling values from a target distribution
X with arbitrary probability density function f(x) by using a proposal distribution Y with probability
density function g(x). The idea is that one can generate a sample value from X by instead sampling from
Y and accepting the sample from Y with probability f(x)/Mg(x), repeating the draws from Y until a
value is accepted, where M is a constant with M ≥ 1 such that f(x) ≤Mg(x) for all values of x (or for
almost all values of x). This requires that the support of Y includes (almost includes) that of X. It is
not hard to prove that if f(x) ≤Mg(x) for all x then the rejection sampling procedure produces exactly
the distribution of X, otherwise, if f(x) ≤Mg(x) for almost all x then it produces a distribution within
a negligible statistical distance of the distribution of X (one may refer to [18]).

The first SampleZ algorithm, which was given by Gentry et al. in [14], uses rejection sampling from
the uniform distribution over [c− τσ, c+ τσ] by outputting a uniform integer x with probability ρ(x) =
exp(−(x− c)2/(2σ2)). Ducas and Nguyen suggested to use lazy floating-point arithmetic to compute the
probability efficiently and speedup the whole sampling procedure [8]. However, this algorithm requires
about 2τ/

√
2π trails on average, where τ is determined so that the probability that |x − c| ≥ τ · σ is

negligible. More precisely, according to the inequality given by W. Banaszczyk, we need an integer τ
such that 2 · exp(−τ2/2) is negligible [14, 18]. We set τ = 12, then 2 · exp(−τ2/2) ≈ 1.0× 10−31, which
is acceptably negligible value. Then 2τ/

√
2π ≈ 10, which means that this algorithm requires about 10

trails on average, and so it is not very efficient even using the lazy floating-point arithmetic.

2.2 Binary Method

The SampleZ algorithm proposed by Ducas et al. in [7] is far more efficient than the algorithm given by
Gentry et al. in [14], though it was designed exclusive for a centered discrete Gaussian distribution over
the integers, namely DZ,σ,c with σ = kσ2 and c = 0, where k is a positive integer and σ2 =

√
1/(2 · ln 2).
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This algorithm uses rejection sampling from the binary discrete Gaussian distribution, denoted by DZ+,σ2
,

instead of the uniform distribution in SampleZ algorithm in [14]. Firstly, it samples an integer x ∈ Z+

from DZ+,σ2
, then samples y ∈ Z uniformly in {0, 1, 2, · · · , k} and accepts z = kx + y with probability

exp(−(y2 + 2kxy)/2k2σ2
2), finally, it outputs a signed integer, z or −z, with equal probabilities because

of the symmetry of the target distribution (see Algorithm 11 and Algorithm 12 in [7]).
On one hand, Sampling from DZ+,σ2

can be very efficient using only unbiased random bits (see
Algorithm 10 in [7]). In fact, this procedure is a combination of the rejection sampling and the inversion
method. In our implementation environment, one can get at least about 60.06× 106 samples per second
from DZ+,σ2

, and each sample costs only about 2.556 random bits on average.
On the other hand, the target and the proposed probability density function are f(x) = ρσ(x)/ρσ(Z+)

and g(x) = ρσ2
(x)/ρσ2

(Z+) respectively. It was shown that f(x) ≤Mg(x) with M ≤ 1.47 for all x ∈ Z+.
This implies that the rejection sampling procedure itself will not lead to any statistical discrepancy. Its
statistical distance to the target distribution only depends on the precision of computing the exponential
function exp(−(y2 +2kxy)/2σ2) with σ = kσ2, and its average number of rejections is not more than 1.47.
A pre-computed look-up table is required for computing the exponential function exp(−(y2 +2kxy)/2σ2).
The size of the table varies with the parameter σ. For examples, the size is 2.3kb for σ ≈ 107 and 4kb for
σ ≈ 271 according to the estimations given by Ducas et al. in [7], which is not very small but acceptable.

In addition, one may note that Lumbroso’s algorithm [17], which is designed for drawing discrete
uniform random variables within a given range, can be applied to speed up the procedure of sampling
y ∈ Z uniformly in {0, 1, 2, · · · , k} (for not very large k). In our implementation environment, for instance,
one can get about 4.386 × 106 samples per second from DZ,σ with σ ≈ 215 by using the algorithms
presented by Ducas et al. in [7] and Lumbroso’s algorithm.

2.3 Karney’s Algorithm

Karney’s algorithm is described as Algorithm 1 in this paper. It samples an integer k ∈ Z+ with (relative)

probability density e−k
2/2 instead of sampling the binary discrete Gaussian distribution in [7]. Step 1

and 7 are two kernel subrotines in Algorithm 1. They can be realized without floating point arithmetic
by repeatedly applying Algorithm 2 and Algorithm 3 respectively [15].

Algorithm 1 [15] Sampling DZ,σ,c for σ, c ∈ Q
Input: rational number σ and c
Output: an integer z according to DZ,σ,c

1: sample k ∈ Z+ with (relative) probability density e−k
2/2

2: set s← ±1 with equal probabilities
3: set i0 ← dkσ + sce and set x0 ← (i0 − (kσ + sc))/σ
4: sample j ∈ Z uniformly in {0, 1, 2, · · · , dσe − 1}
5: set x← x0 + j/σ and goto step 1 if x ≥ 1
6: goto step 1 if k = 0 and x = 0 and s < 0
7: accept x with probability e−

1
2x(2k+x) otherwise goto step 1

8: return s(i0 + j)

Algorithm 2 is adapted from Von Neummann’s algorithm for sampling from the exponential distribu-
tion e−x for real x > 0. More precisely, the probability that the length of the longest decreasing sequence
is n is xn/n!− xn+1/(n+ 1)!, and the probability that n is even is exactly equal to

(1− x) +

(
x2

2!
− x3

3!

)
+ . . .+ =

∞∑
n=0

(
xn

n!
− xn+1

(n+ 1)!

)
= e−x.
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Algorithm 2 [15] Generating a Bernoulli random value b which is true with probability 1/
√
e

Output: a Boolean value b according to B1/
√
e

1: sample uniform deviates u1, u2, . . . with ui ∈ [0, 1) and determine the maximum value n ≥ 0 such
that 1/2 > u1 > u2 > . . . > un

2: return true if n is even, or false if otherwise

Algorithm 3 [15] Generating a Bernoulli random value b which is true with probability exp(x 2k+x
2k+2 ) with

integer k > 0 and real x ∈ [0, 1)

Output: a Boolean value b according to exp(−x 2k+x
2k+2 )

1: set y ← x, n← 0.
2: sample uniform deviates z with z ∈ [0, 1); go to step 6 unless z < y.
3: set f ← C(2k + 2); if f < 0 go to step 6.
4: sample uniform deviates r ∈ [0, 1] if f = 0, and go to step 6 unless r < x.
5: set y ← z, n← n+ 1; goto step 2.
6: return true if n is even, or false if otherwise

Algorithm 2 provides a method of sampling an integer k ∈ Z+ with (relative) probability density

e−k
2/2. To end this, one can select an integer k ≥ 0 with probability exp

(
(−1/2)k

)
· (1 − 1/

√
e
)
,

then accept k as the sample with probability exp
(
(−1/2)k(k − 1)

)
by repeatedly applying Algorithm 2.

Moreover, by replacing 1/2 with p/q in Algorithm 2 we can get a Bernoulli random value b which is true
with probability e−p/q, where p, q are positive integers such that p < q.

The main idea behind Alg, 3 is to sample two sets of uniform deviates u1, u2, . . . and v1, v2, . . ., and
to determine the maximum value n ≥ 0 such that x > u1 > u2 > . . . > un and vi < (2k + x)/(2k + 2).
Then, n is even, which means it returns true, with the probability

1− x
(

2k + x

2k + 2

)
+
x2

2!

(
2k + x

2k + 2

)2

− x3

3!

(
2k + x

2k + 2

)3

+ . . . = exp

(
−x2k + x

2k + 2

)
.

It is clear that one can obtain a Bernoulli random value which is true with probability exp(−(1/2)x(2k+
x)) by applying Algorithm 3 k+ 1 times at most for given k and x. Let m = 2k+ 2. The function C(m)
is a random selector that outputs −1, 0 and 1 with probability 1/m, 1/m and 1 − 2/m respectively. It
is used for avoiding performing arithmetic on real x.

Finally, in Algorithm 1, step 5 ensures that x is in the allowed range for invoking Alg, 3 in step 7. If
σ is an integer, it was pointed out that step 5 can be omitted since ‘x ≥ 1’ cannot happen in this case.
Step 6 is designed to avoid double counting 0 when c is an integer.

Karney’s algorithm (Algorithm 1) has at least two advantages over the algorithms given by Ducas et al.
in [7]. It needs neither (high-precision) exponential computation nor pre-computation storage, and it is fit
for any discrete Gaussian distribution DZ,σ,c with arbitrary and varying (rational) parameters (standard
deviation σ and center c). Furthermore, it has a slightly better performance in our implementation
environment. For instance, one can get about 4.751× 106 samples per second from DZ,σ,c with σ = 215
and c = 0 by using Karney’s C++ library ‘RandomLib’, in which the source code of Algorithm 1 is
encapsulated as a .hpp file named ‘DiscreteNormal.hpp’1.

In this paper, the software implementation of our three proposed sampling algorithms is also based
on the adaptions of ‘DiscreteNormal.hpp’ as well as the runtime environment provided by ‘RandomLib’.

1‘RandomLib’ is available at http://randomlib.sourceforge.net/.
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3 An Improved Implementation of Karney’s Algortihm

In this section, we show that Karney’s Algortihm (Algorithm 1) can be implemented more efficiently if
one only needs samples from a centered discrete Gaussian distribution over the integers DZ,σ with an
integer σ.

3.1 On Accepting x with Probability e−
1
2
x(2k+x)

With notations in Algorithm 1, when σ is an integer and c = 0, we can see that j/σ will be assigned to x
since x0 = 0 in this case. Thus, in step 7, we need to generate a Bernoulli random value b which is true
with probability

exp

(
−1

2

(
j

σ

)(
2k +

(
j

σ

)))
= exp

(
−2jkσ + j2

2σ2

)
=

(
1√
e

)bi/σ2c

exp(−r
2

),

where i = 2jkσ + j2 and r = i/σ2 − bi/σ2c, i.e., r < 1 is the fractional part of i/σ2. This means that
we only need to generate bi/σ2c Bernoulli deviates according to B1/

√
e by repeatedly applying Algorithm

2 in step 7. If no false value is generated in this procedure, then the algorithm returns the result with
probability e−r/2, otherwise it restarts. Note that r/2 can also be written as p/q with p = i mod (σ2)
and q = 2σ2. As mentioned in Section 2.3, the Bernoulli random value which is true with probability
e−r/2 = e−p/q can be obtained by applying the adapted version of Algorithm 2.

Therefore, for centered discrete Gaussian distribution over the integers with an integer standard
deviation, we can avoid using Karney’s implementation method (Algorithm 3) in step 7 of Algorithm 1

to get a Bernoulli random value which is true with probability e−
1
2x(2k+x), where x = j/σ. Based on

these observation, for centered discrete Gaussian distribution over the integers with an integer standard
deviation σ, we give Algorithm 4 as an improved implementation of Karney’s algorithm.

Algorithm 4 Sampling DZ,σ with integer σ

Input: an integer σ
Output: an integer z according to DZ,σ

1: sample k ∈ Z+ with (relative) probability density e−k
2/2

2: set s← ±1 with equal probabilities
3: sample j ∈ Z uniformly in {0, 1, 2, · · · , σ − 1} and set j ← j + 1 if s = 1
4: set i← 2jkσ + j2

5: sample bi/2σ2c Bernoulli deviates according to B1/
√
e and goto step 1 unless all of them are 1.

6: set r ← i/2σ2 − bi/2σ2c
7: return s(kσ + j) with probability e−r/2 otherwise goto step 1

Moreover, in Algorithm 4 we set j ← j + 1 if s = 1 so that it returns 0 only in the case that s = −1
and k = j = 0, and we can avoid double counting 0 in advance.

3.2 The Expected Bits Consumption of Algorithm 4

We estimate the expected number of random bits used in Algorithm 4 and in Algorithm 1 respectively.
We try to show that average bits consumption of Algorithm 4 is lower than that of Algorithm 1. Since
the front part of Algorithm 1 and that of Algorithm 4 consume the same number of random bits, we
only need to compare the average bits consumption of step 7 in Algorithm 1 with that of steps 5-7 in
Algorithm 4.
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Hereinafter, we consider the binary representation (and implementation) of a uniform deviate u ∈
[0, 1). From an implementation standpoint, the expected number of random bits we need for determining
the relation between u and another newly-generated uniform deviate u′ ∈ [0, 1) (determine u < u′ or
u > u′) is at most

1 · 1

2
+ 3 · 1

22
+ 5 · 1

23
+ . . . =

∞∑
i=1

2i− 1

2i
= 3

if only the most significant bit of u is determined and all the other digits of u needs to be randomly
generated on-the-fly if necessary, while the expected number is at least

1 · 1

2
+ 2 · 1

22
+ 3 · 1

23
+ . . . =

∞∑
i=1

i

2i
= 2

if each binary digit of u is given in advance. Thus, if one wants to sample uniform deviates u1, u2, . . .
with ui ∈ [0, 1) and determine the maximum value n ≥ 0 such that x > u1 > u1 > . . . > un for a given
x ∈ [0, 1), the expected number of random bits she/he needs is at most

2

(
x0

0!
− x1

1!

)
+ 5

(
x1

1!
− x2

2!

)
+ 8

(
x2

2!
− x3

3!

)
+ . . .

=

∞∑
n=1

(3n− 1)

(
xn−1

(n− 1)!
− xn

n!

)
= −1 + 3ex.

This equation also implies that the larger x the greater number of random bits are used for getting a
Bernoulli random value b which is true with probability e−x. In particular, when x = 1/2, i.e., the
expected number of random bits we need for applying Algorithm 2 is at most

∞∑
n=1

(3n− 2)

(
(1/2)n−1

(n− 1)!
− (1/2)n

n!

)
= −2 + 3

√
e ≈ 2.946.

This is because it costs only one random bit to determine the relation between 1/2 and a uniform deviate
u′ ∈ [0, 1).

With the notations of Algorithm 4, j/σ can be roughly viewed as a random deviate in [0, 1] since j
is uniformly taken from {0, 1, 2, · · · , σ − 1} or {1, 2, 3, · · · , σ}. For a given k ∈ Z+ the expectation of
i/σ2 = (2jkσ + j2)/σ2 is equal to

σ−1∑
j=0

1

σ

(
2k

(
j

σ

)
+

(
j

σ

)2
)
≤
∫ 1

0

(2ku+ u2)du =
1

3
+ k ≤

σ∑
j=1

1

σ

(
2k

(
j

σ

)
+

(
j

σ

)2
)

This implies that Algorithm 4 generates k Bernoulli deviates on average according to B1/
√
e by repeatedly

calling Algorithm 2, then it returns the output with probability e−r/2, where r = 1/3 on average.
For a given k ≥ 0 we denote by Ek the average bits consumption of steps 5–7 in Algorithm 4. It is

not hard to see that

Ek ≈
(
k(−2 + 3e1/2)− 1 + 3e1/6

)(
e−1/2

)k
+

k∑
i=1

i
(
− 2 + 3e1/2

)(
e−1/2

)i−1(
1− e−1/2

)
for k ≥ 0. Meanwhile, the value of k is determined with probability Pk = e(−k2/2)

/∑∞
j=0 e

−j2/2.

Therefore, for a random variable k ≥ 0, the average bits consumption of steps 5–7 in Algorithm 4 can be
roughly upper-bounded by

∑∞
k=0 PkEk ≈

∑3
k=0 PkEk ≈ 3.482.
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3.3 The Expected Bits Consumption of Algorithm 3

In this subsection, with a similar idea, we discuss the average bits consumption of Algorithm 3, i.e., step
7 of Algorithm 1.

For a given k, there are three cases in which the algorithm goes to step 6 and returns the result before
it goes to step 2. (1) z > y with probability (1−x); (2) f = −1 with probability x(1/(2k+ 2)); (3) f = 0
and r > x with probability x(1/(2k + 2))(1 − x). For simplicity, we let m = 2k + 2. Generally, after
restarting n − 1 times (n ≥ 1), there are three cases in which the algorithm goes to step 6 and returns
the result before it goes to step 2 again.
(1) z > y with probability

pk,x,n(z > y) =

(
x

m
+

2k

m

)n−1(
xn−1

(n− 1)!
− xn

n!

)
;

(2) f = −1 with probability

pk,x,n(f = −1) =

(
x

m
+

2k

m

)n−1(
xn

n!

)(
1

m

)
;

(3) f = 0 and r > x with probability

pk,x,n(f = 0; r > x) = pk,x,n(f = −1)(1− x).

Here, it can be verified that

∞∑
n=1

(
pk,x,n(z > y) + pk,x,n(f = −1) + pk,x,n(f = 0; r > x)

)
= 1.

The random selector C(m) with k ≥ 1 uses dlog2(m − 1)e random bits if returns f = −1 or f = 0,

and uses 1 +
∑l−2
i=0 i · (1/2i) random bits on average if returns f = 1. Based on our previous discussions,

it costs at least 2 random bits on average to determine the relation between z and y. Hence, for a given
k ≥ 1 the average bits consumption of Algorithm 3, denoted by ek(x), satisfies

ek(x) >

∞∑
n=1

(
2n+ (n− 1)el

)
· pk,x,n(z > y)

+

∞∑
n=1

(
2n+ (n− 1)el + l

)
· pk,x,n(f = −1)

+

∞∑
n=1

(
2n+ (n− 1)el + l + 2

)
· pk,x,n(f = 0; r > x),

where el = 1 +
∑l−2
i=0 i · (1/2i) and l = dlog2(m− 1)e.

In particular, when k = 0 the random selector C(2k + 2) = C(2) returns −1 or 0 using only one
random bit, which means that we can switch the orders of step 2 and step 3 in Algorithm 3 to save bits
consumption. Then, after restarting n− 1 times (n ≥ 1), the three cases in which the algorithm goes to
step 6 and returns the result before it goes to step 2 again are as follows:
(1) f = −1 with probability

p0,x,n(f = −1) =

(
1

2

)n(
xn−1

(n− 1)!

)
xn−1;
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(2) z > y with probability

p0,x,n(z > y) =

(
1

2

)n
xn−1

(
xn−1

(n− 1)!
− xn

n!

)
;

(3) f = 0 and r > x with probability

p0,x,n(f = 0; r > x) =

(
1

2

)n
xn−1

(
xn

n!

)
(1− x).

Thus, when k = 0 the average bits consumption of Algorithm 3, denoted by e0(x), is at least

∞∑
n=1

(5n− 4) · p0,x,n(f = −1) +

∞∑
n=1

(5n− 2) · p0,x,n(z > y) +

∞∑
n=1

(5n) · p0,x,n(f = 0; r > x).

Let’s go back to Algorithm 1. The average number of step 7 invoking Algorithm 3, denoted by tk(x),
is equal to

k∑
i=1

i ·
(

exp

(
−x2k + x

2k + 2

))i−1(
1− exp

(
−x2k + x

2k + 2

))

+(k + 1)

(
exp

(
−x2k + x

2k + 2

))k
,

for a given k ≥ 1. Then, in Algorithm 1, step 7 costs about ek(x) · tk(x) bits at least on average for k ≥ 1
and e0(x) bits at least for k = 0.

Finally, since it is supposed that σ is an integer and c = 0, the random variable x = j/σ can be
roughly viewed as a random deviate in [0, 1]. Therefore, in Algorithm 1, the average bits consumption of
step 7 with varied k and x is roughly lower-bounded by

∞∑
k=0

Pk

(∫ 1

0

ek(x)tk(x)dx

)
≈

3∑
k=0

Pk

(∫ 1

0

ek(x)tk(x)dx

)
,

where Pk is the probability density of the random variable k and t0(x) = 1.
After some routine (numerical) calculations, we have the value is approximately equal to 4.777. To

verify our estimations, we also test the practical average number of random bits used in step 7 of Algorithm
1 and that of random bits used in steps 5–7 of Algorithm 4 respectively. They are about 5.075 and 3.20
random bits respectively. To a conclusion, the expected number of random bits used in Algorithm 4 is
significantly smaller than that of random bits used in Algorithm 1,

4 Removing Pre-computed Tables in Binary Method

In Algorithm 4 as well as in Algorithm 1, we note that it accounts for a large part of the running time
of the whole algorithm to sample k ∈ Z+ with (relative) probability density e−k

2/2 (to execute step
1). In the algorithms given by Ducas et al. in [7], which are called the binary method in section 2.2
in this paper, on the contrary, it is very fast to sample x ∈ Z+ with the (relative) probability density

exp(−x2/(2σ2
2)) = 2−x

2

, where σ2 =
√

1/(2 · ln 2). The main drawback of the binary method is that
it needs a pre-computed table to generate a Bernoulli random value b which is true with probability
exp(−(y2 + 2kxy)/2σ2). Although the table is not big (e.g. about 4kb for σ = 271), it has to be pre-
computed before sampling for every different σ = kσ2. Therefore, it is interesting to sample DZ,kσ2

without a pre-computed table.
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In this section, we propose an alternative algorithm, which samples DZ,kσ2 for a given k ≥ 1 and does
not require a pre-computed table except a fixed look-up table of very small size. Compared to Algorithm
4, the experimental results show that our proposed algorithm in this section has a significant increase in
the sampling efficiency. Furthermore, from the perspective of complexity, we will show that the average
bits consumption of our proposed algorithm in this section is smaller than that of Algorithm 4.

4.1 The Proposed Algorithm

In this section, we use the notations of section 2.2. Since σ2 =
√

1/(2 · ln 2) and σ = kσ2, it follows that
exp(−(y2 + 2kxy)/2σ2) is equal to

exp

(
− ln 2 ·

(⌊
y2 + 2kxy

k2

⌋
+

{
y2 + 2kxy

k2

}))
= exp

(
− ln 2 ·

⌊
y2 + 2kxy

k2

⌋)
· exp

(
− ln 2 ·

{
y2 + 2kxy

k2

})
where {

y2 + 2kxy

k2

}
=
y2 + 2kxy

k2
−
⌊
y2 + 2kxy

k2

⌋
=
(
(y2 + 2kxy) mod k2

)
/k2

is the fractional part of (y2 + 2kxy)/k2. Then the Bernoulli value b can be obtained by generating
by2 + 2kxy/k2c Bernoulli deviates according to B1/2 and one Bernoulli random value which is true with
probability

exp(−(ln 2){y2 + 2kxy/k2}).

If no false value is generated in this procedure, then we have b = 1, otherwise b = 0. Based on this
observation, we get Algorithm 5.

Algorithm 5 Sampling DZ,kσ2
for k ∈ Z+

Input: a positive integer k
Output: an integer z according to DZ,kσ2

1: sample x ∈ Z according to DZ+,σ2

2: sample y ∈ Z uniformly in {0, 1, 2, · · · , k}
3: set s← ±1 with equal probabilities and set j ← j + 1 if s = −1
4: set z ← kx+ y
5: sample b(y2 + 2kxy)/k2c Boolean values according to B1/2 and restart unless all of them are true
6: accept z with probability exp(−(ln 2){(y2 + 2kxy)/k2}) and goto step 1 if otherwise
7: return s · z

It is clear that a Bernoulli deviate according to B1/2 is equivalent to a uniform random bit. Thus,
the only remaining problem is to generate a Bernoulli random value which is true with probability
exp(−(ln 2){(y2 + 2kxy)/k2}). We address this problem via Algorithm 6.

One can see that Algorithm 6 is adapted from Algorithm 2. More precisely, we can take any bit in the
binary expansion of p/q since p/q is a rational number, where p, q are positive integers such that p < q.
This means that we can handle with the probability e−p/q by applying the technique in Algorithm 2.
For the probability exp(−(ln 2){(y2 + 2kxy)/k2}), however, we are not able to determine the bits in the
binary expansion of (ln 2){(y2 +2kxy)/k2} for different k, x and y without (high-precision) floating-point
operations. Thus, we can say that Algorithm 6 provides a technique for determining the relation between
(ln 2)(z/k2) and a uniform deviate u1 ∈ [0, 1). It does not need floating-point operations during run-
time, if the binary expansion of ln 2, that is long enough (e.g. 128 bits), has been stored as a fixed look-up
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Algorithm 6 Generate a Bernoulli random value b which is true with probability exp(−(ln 2)(z/k2)),
where k, z are positive integers such that z < k2.

Input: positve integers k, z, t such that z < k2 and t ≥ 1
Output: a Bernoulli random value b which is true with probability exp(−(ln 2)(z/k2))
1: set u1 ← 0, i← 0 and p← (ln 2) · 2t
2: sample a uniform integer v ∈ [0, 2t)
3: set i← i+ 1, u1 ← u1 + v/2it and q ← vk2

4: return true if bpc > bq/zc or goto step 8 if bpc < bq/zc
5: set p← (p− bpc) · 2t and q ← q(modz)
6: update the uniform integer v ∈ [0, 2t)
7: set q ← (q · 2t + vk2) and goto step 3
8: sample uniform deviates u2, u3 . . . with ui ∈ [0, 1] and determine the maximum value n ≥ 1 such that
u1 > u2 > u3 > . . . > un

9: return true if n is even, or false if otherwise

table. In addition, the expected number of random bits Algorithm 6 consumes is at most −1 + 3ex with
x = (ln 2)(z/k2) according to our estimation in section 3.2.

4.2 The Correctness of Algorithm 6

In step 1, p is assigned to be the t most significant bits of the binary expansion of ln 2. In step 4, if
bpc > bq/zc = b(vk2)/zc, then we have 2t(ln 2) > (vk2)/z, which follows that (ln 2)(z/k2) > v/2t. It is
equivalent to obtaining a uniform deviate u1 = (v/2t) that is strictly less than the value of (ln 2)(z/k2).
On the contrary, if bpc < bq/zc, then it is equivalent to obtaining a uniform deviate u1 that is strictly
more than the value of (ln 2)(z/k2). Otherwise, if bpc = bq/zc, i.e., b2t(ln 2)c = b(vk2)/zc. This means
that we get a uniform deviate u1, but in this moment we cannot determine whether it is less than the
value of (ln 2)(z/k2) or not.

In steps 5–7, the algorithm is designed to further compare the uniform deviate with the value of
(ln 2)(z/k2). The correctness is based on the following observation. Let v1, v2, . . . , vn be n integers such
that vi ∈ [0, 2t) for each i ≥ 1. For the simplicity, we define Gt(i) and Ht(k, z; v1, v2, . . . , vi) as follows:

Gt(i) = 2t{Gt(i− 1)}

and

Ht(k, z; v1, . . . , vi) = 2t{Ht(k, z; v1, . . . , vi−1)}+
vik

2

z
,

where i ≥ 2. For i = 1, let Gt(1) = 2t(ln 2) and Ht(k, z; v1) = v1k
2/z. More explicitly, we have

Gt(i) = 2t{· · · 2t{2t︸ ︷︷ ︸
i

(ln 2)} · · · }

and

Ht(k, z; v1, v2, . . . , vi) = 2t{· · · 2t{2t︸ ︷︷ ︸
i−1

{v1k
2

z
}+

v2k
2

z
} · · · }+

vik
2

z
.

Suppose that bGt(i)c = bHt(k, z; v1, v2, . . . , vi)c for each integer i = 1, 2, . . . , n − 1, but bGt(n)c >
bHt(k, z; v1, v2, . . . , vn)c. In this case, we have

Gt(n) > Ht(k, z; v1, v2, . . . , vn),
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which implies that {Gt(n− 1)} = Gt(n)/2t and

Gt(n)

2t
>
Ht(k, z; v1, v2, . . . , vn)

2t
= {Ht(k, z; v1, v2, . . . , vn−1)}+

vnk
2

2tz
.

They follows that

{Gt(n− 1)}+ bGt(n− 1)c

> {Ht(k, z; v1, v2, . . . , vn)}+ bHt(k, z; v1, v2, . . . , vn−1)c+
vnk

2

2tz
,

as bGt(n− 1)c = bHt(k, z; v1, v2, . . . , vn−1)c. Thus, we have

Gt(n− 1) > Ht(k, z; v1, v2, . . . , vn−1) +
vnk

2

2tz
.

If n− 1 > 1, with similar arguments, applying bGt(i)c = bHt(k, z; v1, v2, . . . , vi)c with i = n− 2, we get

Gt(n− 2) > Ht(k, z; v1, v2, . . . , vn−2) +
vn−1k

2

2tz
+
vnk

2

22tz
.

We continue working backwards until finally we obtain

Gt(1) > Ht(k, z; v1) +
v2k

2

2tz
+
v3k

2

22tz
+ . . .+

vnk
2

2(n−1)tz
,

which means that

2t(ln 2) >
v1k

2

z
+
v2k

2

2tz
+
v3k

2

22tz
+ . . .+

vnk
2

2(n−1)tz
.

It follows that
(ln 2)z

k2
>
v1

2t
+
v2

22t
+
v3

23t
+ . . .+

vn
2nt

.

This is equivalent to obtaining a uniform deviate

u1 =
v1

2t
+
v2

22t
+
v3

23t
+ . . .+

vn
2nt
∈ [0, 1],

which is strictly less than the value of (ln 2)(z/k2).
Furthermore, if

bGt(i)c = bHt(k, z; v1, v2, . . . , vi)c

for each integer i = 1, 2, . . . , n− 1, but

bGt(n)c < bHt(k, z; v1, v2, . . . , vn)c.

Then, we essentially get a uniform deviate u1 that is strictly more than the value of (ln 2)(z/k2). So the
algorithm should return true in this case.

Note that Gt(i) with 1 ≤ i ≤ n are corresponding to the binary expansion of ln 2 of length nt bits,
i.e.,

ln 2 = Gt(1)/2t +Gt(2)/22t + . . .+Gt(n)/2nt + . . . .

When implementing the algorithm, we do not need to compute the exact value of p, since it is corre-
sponding to Gt(i), and can be always taken from the binary expansion of ln 2.

13



In addition, Ht(k, z; v1, v2, . . . , vi) can be computed iteratively. More precisely, for i ≥ 2 we always
have

{Ht(k, z; v1, . . . , vi)} =
(q2t + vik

2) mod z

z
,

where q is an integer such that 0 ≤ q < z and {Ht(k, z; v1, . . . , vi−1)} = q/z.
Consequently, in the algorithm, we iteratively compute Ht(k, z; v1, v2, . . . , vi), and compare it with

Gt(i), until we have some integer n ≥ 2 such that

bGt(i)c = bHt(k, z; v1, v2, . . . , vi)c

for each integer i = 1, 2, . . . , n− 1, but

bGt(n)c > bHt(k, z; v1, v2, . . . , vn)c or bGt(n)c < bHt(k, z; v1, v2, . . . , vn)c.

The rest of two steps of the algorithm follows from Algorithm 2.

4.3 The Expected Bits Consumption of Algorithm 5

In this subsection, we compare the expected bits consumption of Algorithm 5 with that of Algorithm 4.
To this end, we discuss the expected number of random bits which are used for step 1 of Algorithm 4,
i.e., sampling k ∈ Z+ with (relative) probability density e−k

2/2.
We assume that k ≥ 0 is an integer which is generated with probability exp

(
− (1/2)k

)(
1 − 1/

√
e
)
.

The probability of accepting k as the sample is exp
(
− (1/2)k(k − 1)

)
. In particular, if k = 0 or k = 1,

then k is output as the sample directly. Let n = k(k − 1). By abuse of notation, let tk be the expected
number of applying Algorithm 2 that we need for accepting or rejecting a given k ≥ 2. We have

tk = n

(
1√
e

)n−1

+

n−1∑
i=1

i

(
1√
e

)i−1(
1− 1√

e

)
.

Based on our previous discussions in section 3.2, it costs at least 2 random bits on average to determine
the relation between two random deviates in [0, 1). Then the expected number of random bits that we
need for applying Algorithm 2 one time is at least

∞∑
n=1

(2n− 1)

(
(1/2)n−1

(n− 1)!
− (1/2)n

n!

)
= −1 + 2

√
e ≈ 2.2974.

Therefore, the expected number of random bits that we need for accepting or rejecting a given k ≥ 2 as
sample in Algorithm 4 is at least tk(−1 + 2

√
e). For instance, we have t2(−1 + 2

√
e) = (1 + 1/

√
e) (−1 +

2
√
e) when k = 2 and tk(−1 + 2

√
e) ≈ (

√
e− 2e) / (1−

√
e) when k ≥ 3.

Finally, since the random variate k is selected as k = 0, 1, . . . , i, . . . with probability 1−1/
√
e, (1/

√
e)(1−

1/
√
e), . . . , (1/

√
e)i(1 − 1/

√
e), . . . respectively, the number of random bits which are used for sampling

k ∈ Z+ with (relative) probability density e−k
2/2 is roughly lower-bounded by

(−1 + 2
√
e)

(
1− 1√

e

)
+ 2(−1 + 2

√
e)

1√
e

(
1− 1√

e

)
+

∞∑
k=2

(
(k + 1)(−1 + 2

√
e) + tk(−1 + 2

√
e)
)
e−k/2

(
1− 1√

e

)
≈ 7.676.

The practical average number of random bits used for the sampling procedure we obtain from our
experimental measurement is about 9.475. The estimated lower-bounded is significantly smaller than the
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practical value possibly because the expected number of random bits we need for applying Algorithm 2
one time is usually more than −1 + 2

√
e. As mentioned in section 2.2, it costs only about 2.556 random

bits on average to get a sample from the binary discrete Gaussian distribution DZ+,σ2
. Therefore, from

the perspective of complexity, we say that Algorithm 5 is far more efficient than Algorithm 4.

5 A Faster Rejection Algortihm Using Knuth-Yao Method

As mentioned in Section 1, a sampling algorithm based on the Knuth-Yao method consumes a smaller
number of random bits and thus is potentially faster than the algorithms based on other sampling
methods. In this section, we describe an algorithm based on Knuth-Yao method for sampling the binary
discrete Gaussian distribution DZ,σ2

. It requires a fixed look-up table of size only 128 bits (or 192 bits).
Then, applying this algorithm to Algorithm 5 we get a further increase in the sampling efficiency of
Algorithm 5 at the cost of storing a fixed look-up table of size only 320 bits, which consists of the look-up
table for sampling DZ,σ2

and the binary expansion of ln 2.

5.1 Knuth-Yao Method for Binary Discrete Gaussian Distribution

The Knuth-Yao sampling method performs a random walk along with a binary tree called the discrete
distribution generating (DDG) tree [6, 9]. A DDG tree can be determined by the probabilities of the
sample points of the discrete random variate. A DDG tree consists of two types of nodes: intermediate
nodes and terminal nodes. A terminal node has no child node and is labeled with sample point j. An
intermediate node has two child nodes in the next level of the DDG tree. Let X be a random variate
to generate with probability p0, p1, . . . , pj , . . .. A DDG tree satisfies

∑
i≥0(tij/2

i) = pj , where tij is the
number of the terminal nodes labeled j on the ith level. Another way to formulate the equation given
above for the DDG tree is that there is a terminal node labeled j on level i if and only if the ith binary
digit of pj is one.

During a sampling operation a random walk is performed starting from the root of the DDG tree. An
edge is chosen at each level uniformly at random, according to a uniformly random bit. The sampling
operation terminates when the random walk hits a terminal node, in which case it outputs the label of
the node j.

In practice, a DDG tree does not need to be stored before a sampling operation. It can be constructed
on-the-fly from a table called probability matrix. Consider the binary expansions of the probabilities of
the sample points. They can be written in the form of binary matrix, which is called the probability
matrix and denoted by M. For i, j ≥ 0, let pj = pj0 + pj12−1 + pj22−2 + . . .+ pji2

−i + . . . be the binary
expansion of the probability of the jth sample point, where pji ∈ {0, 1}. In the probability matrix M,
the jth row Mj is equal to (pj0, pj1, . . . , pji, . . .), and exactly corresponds to the binary expansion of the
probability of the jth sample point. Based on the analysis of the relative distance of the internal nodes
in the DDG tree, the Knuth-Yao sampling method can be described as Algorithm 7, which introduced
by S. S. ROY et al. in [28].

For a discrete distribution with infinite support, the number of sample points as well as the binary
expansions of their probabilities is potentially infinite, which results in a probability matrix of infinite
size. In practice, one has to truncate the binary expansions of the probabilities but ensure adequate
precision at the same time. For instance, the probability matrix M with λ+ 1 rows in Algorithm 7 is a
truncated one such that the probability density of sample point λ+ 1 is a negligible value. The number
of columns of matrix M is also finite such that the number of the algorithm going back to step 2 is never
more than the number of columns.

Now we deal with binary discrete Gaussian distribution DZ,σ2
with σ2 =

√
1/(2 · ln 2). Its probability

density function is 2−x
2

/w, where w =
∑∞
i=0 2−i

2

> 1 is a constant. Note that 2−x
2

/w can be viewed as
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Algorithm 7 [28] Knuth-Yao sampling method for a discrete distribution

Input: probability matrix M with λ+ 1 rows
Output: sample value x
1: set j ← 0 and d← 0
2: sample a uniformly random bit r
3: set d← 2d+ 1− r
4: for i← λ down to 0 do
5: set d← d−M[i][j]
6: return i if d = −1, or continue if otherwise
7: end for
8: set j ← j + 1 and goto step 2

a ‘BitShiftRight’ operation on 1/w, i.e., shifting the binary bits in the real 1/w to the right by x2 places
and padding with zeros on the left. In other words, if 1/w = w12−1 + w22−2 + . . .+ wi2

−i + . . ., then

2−x
2

/w = w12−1−x2

+ w22−2−x2

+ . . .+ wi2
−i−x2

+ . . . .

This means that the probability matrix for DZ,σ2
can be constructed and invoked on-the-fly from the

binary expansion of the real 1/w, which can be pre-computed offline. More specifically, let m be the
binary expansion of the real 1/w. The entry of the probability matrix for DZ,σ2 on the i-th row and jth
column is exactly equal to the (j− i2)th bit of m, denoted by m[j− i2], and equal to 0 if j− i2 < 0. Thus,
from Algorithm 7 we have the following sampling algorithm for binary discrete Gaussian distribution
DZ,σ2

.

Algorithm 8 Sampling DZ,σ2
with σ2 =

√
1/(2 · ln 2)

Input: binary vector m and positive integer λ (e.g. λ = 11) such that 2−(λ+1)2
/
w < 10−31 is negligible.

Output: an integer i from DZ,σ2

1: set j ← 0 and d← 0
2: sample a uniformly random bit r
3: set d← 2d+ 1− r
4: for i← λ down to 0 do
5: continue unless j − i2 ≥ 0
6: set d← d−m[j − i2]
7: return i if d = −1, or continue if otherwise
8: end for
9: set j ← j + 1 and goto step 2

Our experimental results shows that the average number of the algorithm going back to step 2, namely
the average number of random bits the algorithm consumes for generating one sample, is about 2.031.
This means that a binary expansion of the real 1/w of size 128 bits is (more than) sufficient for Algorithm
8.

5.2 Using Look-up Tables

The expected number of the random bits Algorithm 8 used may not decide the final efficiency of the
sampling operation, though it is the primary performance characteristic of a sampler analyzed in the
random bit model. Hence, in this subsection, we try to further optimize the performance of Algorithm 8
for practical use.
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Our overall idea fully follows from [28], i.e., to avoid the costly bit-scanning operation especially for
the software implementation firstly, and then to use a small pre-computed table that directly maps the
initial random bits into a sample value with large probability or into an intermediate node in the DGG
tree (an intermediate state in Algorithm 8) with small probability.

When three bits {b0, b1, b2} are given as the bits pool of Algorithm 8, i.e., each random bit r in
Algorithm 8 is taken in turn from {b0, b1, b2}, we observe that it returns a sample value i ∈ {0, 1}
if b0 + 2b1 + 22b2 6= 0 and it falls into an intermediate state if otherwise. Further, when eight bits
{0, 0, 0, b3, b4, . . . , b7} are given as the bits pool of Algorithm 8, it returns a sample value i ∈ {0, 1, 2}
if b3 + 2b4 + . . . + 24b7 6= 0, 16 and it falls into an intermediate state if otherwise. Based on these two
facts, we use two look-up tables, TabChar of size 8 bits and TabLong of size 64 bits. The look-up table
TabChar records 7 possible sample values corresponding to the first three bits b0, b1, b2, while TabLong
records 30 possible sample values corresponding to the following five bits b3, b4, . . . , b7. In other words, if
the first three bits b0, b1, b2 are not all zero, then we look-up TabChar to get a sample value, otherwise
we may look-up TabLong according to the following five bits b3, b4, . . . , b7. Finally, if b0, b1, b2 are all zero
and b3 + 2b4 + . . .+ 24b7 = 0, 16 respectively, then we set j = 8 and set d = 1, 0 respectively, and invoke
Algorithm 8 starting from step 2.

The above procedure can be described as the following algorithm. For simplicity, let TabChar [k] with
0 ≤ k ≤ 7 be the kth bit in TabChar and TabLong [k] with 0 ≤ k ≤ 31 be the integer whose binary
expansion are exactly the 2k-th bit and the (2k + 1)-th bit in TabLong .

Algorithm 9 Sampling DZ,σ2
with σ2 =

√
1/(2 · ln 2)

Output: an integer i from DZ,σ2

1: sample a uniformly random integer k ∈ [0, 3]
2: if k = 0 then
3: sample a uniformly random integer k ∈ [0, 31]
4: return TabLong [k] unless k = 0 or k = 16
5: set j ← 8
6: set d← 1 if k = 0 or d← 0 if k = 16
7: invoke Algorithm 8 and start from step 2
8: else
9: return TabChar [k]

10: end if

5.3 Experimental Results

We implement Algorithm 4, Algorithm 5 and Algorithm 9 respectively by adapting the ‘DiscreteNor-
mal.hpp’ file in the ‘RandomLib’ library as mentioned in the end of section 3, and by using the runtime
environment provided by ‘RandomLib’.

Figure 1 shows the performance of our three sampling algorithms compared to Karney’s algorithm
(Algorithm 1). For centered discrete Gaussian distributions over the integers with parameter σ from 50
to 1000 with step size 50, 2 one can get about 5.9 × 106 samples per second by using Algorithm 4 and
about 10.1×106 samples per second by using Algorithm 5. The performance gains from using Knuth-Yao
method is also substantial. One can get about 12.7 × 106 samples per second by using Algorithm 5 in
combination with Algorithm 9. Also, we test our proposed algorithms for σ from 1000 to 20000 with step
size 1000. The experimental results show that our proposed algorithms have no significant performance
change, and thus they allow for efficient constant time (software) implementations and provide resilience
against timing side-channel attacks for not very large σ.

2The parameter σ is approximately (not exactly) from 50 to 1000 for Algorithm 5.
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Figure 1: Performance of our sampling algorithms compared to Karney’s algorithm

6 Limitations of Our Proposed Algorithms

A disadvantage of Algorithm 5 is that it only sample from a discrete Gaussian distribution with σ that
is an integer multiple of σ2 =

√
1/(2 · ln 2). It seems more natural to use an integer σ as the standard

deviation of a centered discrete Gaussian distribution, though there is no evidence to show that an integer
σ must be better than a σ being an integer multiple of σ2.

Another drawback of Algorithm 5 as well as Algorithm 4 is that a very large σ will cause a substantial
decrease in performance. This is mainly because we need to compute (y2 + 2kxy)/k2 for each trial in
Algorithm 5. When σ is very large, for example σ ≥ 215, the value of (y2 + 2kxy)/k2 may exceed the
range of the int type, and we have to use long int type to compute the value. Experimental results
show that its performance decreases to about 8.62×106 samples per second for σ from 215 to 222. While,
the performance of Karney’s algorithm remained basically stable at about 4.7× 106 samples per second
until σ ≥ 223.
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