
The Multiplicative Complexity of 6-variable Boolean
Functions

\c Ca\u gda\c s \c Cal{\i}k \cdot Meltem S\"onmez Turan \cdot 
Ren\'e Peralta

Abstract The multiplicative complexity of a Boolean function is the mini-
mum number of AND gates that are necessary and sufficient to implement
the function over the basis (AND, XOR, NOT). Finding the multiplicative
complexity of a given function is computationally intractable, even for func-
tions with small number of inputs. Turan et al. [1] showed that n-variable
Boolean functions can be implemented with at most n  - 1 AND gates for
n \leq 5. A counting argument can be used to show that, for n \geq 7, there exist
n-variable Boolean functions with multiplicative complexity of at least n. In
this work, we propose a method to find the multiplicative complexity of Bool-
ean functions by analyzing circuits with a particular number of AND gates
and utilizing the affine equivalence of functions. We use this method to study
the multiplicative complexity of 6-variable Boolean functions, and calculate
the multiplicative complexities of all 150 357 affine equivalence classes. We
show that any 6-variable Boolean function can be implemented using at most
6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions
which have multiplicative complexity 6.

Keywords Affine equivalence \cdot Boolean functions \cdot Circuit complexity \cdot 
Cryptography \cdot Multiplicative complexity

Mathematics Subject Classification (2000) 94A60 \cdot 06E30

\c Ca\u gda\c s \c Cal{\i}k
National Institute of Standards and Technology
Tel.: +1-301-975-4024
Fax: +1-301-975-8670

Meltem S\"onmez Turan
National Institute of Standards and Technology \&
Dakota Consulting Inc.

Ren\'e Peralta
National Institute of Standards and Technology



2 \c Cal{\i}k et al.

1 Introduction

Multiplicative complexity is a complexity measure defined as the minimum
number of multiplications (AND gates) that are necessary and sufficient to
implement a function with a circuit over the basis (AND, XOR, NOT). In
many protocols for multi-party computation (e.g., [2]), fully homomorphic
encryption (e.g., [3]), and zero-knowledge proofs (e.g., [4]), processing AND
gates is more expensive than processing XOR gates. Moreover, the cost of some
of the countermeasures against side channel attacks is related to the number of
AND gates in the implementation. For example, the complexity of higher-order
masking schemes for S-boxes mainly depends on themasking complexity, which
is defined as the minimum number of nonlinear field multiplications required
to evaluate a polynomial representation of an (n,m)-bit S-box over \BbbF 2n [5].

The multiplicative complexity of a random n-variable Boolean function is
at least 2n/2  - O(n) with high probability [6]. Determining the multiplicative
complexity of a given function is computationally intractable, even for small
number of variables. It is known that if one-way functions exist, then given
a truth table for a Boolean function of n bits, it is not possible to compute
the multiplicative complexity in polynomial time in the size of the truth table
[7]. Turan and Peralta [1] showed that n-variable Boolean functions can be
implemented with at most n  - 1 AND gates for n \leq 5. Using a counting ar-
gument, Codish et al. [8] showed that there exist n-variable Boolean functions
with multiplicative complexity at least n, for n \geq 7. It is also known that
the multiplicative complexity of functions having algebraic degree d is at least
d - 1. This is called the degree bound. There are very few classes of functions for
which lower bounds better than the degree bound are known (see [9]). Prior
to our present work, no specific n-variable function had been proven to have
multiplicative complexity larger than n - 1.

We propose a method to find the multiplicative complexity of Boolean
functions. We use this method to study the multiplicative complexity of 6-
variable Boolean functions. The method used by Turan and Peralta in [1]
uses heuristics that do not provide optimal solutions for 6-variable Boolean
functions. Here, the problem of finding the multiplicative complexity distri-
bution of 6-variable Boolean functions is reduced to finding the multiplicative
complexities of the 150 357 affine equivalence classes constructed in [10]. The
multiplicative complexity of each class is determined by processing all circuits
with a particular number of AND gates and then identifying the classes that
could be generated by those circuits. We give a complete distribution of the
multiplicative complexities of 6-variable Boolean functions and show that they
can be implemented with at most 6 AND gates. Our techniques also enable us
to exhibit specific 6-variable functions which have multiplicative complexity 6.

The organization of the paper is as follows. Section 2 gives definitions
and preliminary information about Boolean functions and affine equivalence
relations. Section 3 provides algorithms to construct and evaluate circuits.
Section 4 focuses on the multiplicative complexity of 6-bit Boolean functions.
Section 5 concludes the paper.



The Multiplicative Complexity of 6-variable Boolean Functions 3

2 Preliminaries on Boolean Functions

Let \BbbF 2 be the finite field with two elements and let \BbbF n
2 denote the n-dimensional

vector space over \BbbF 2. An n-variable Boolean function f is a mapping from \BbbF n
2

to \BbbF 2. Let Bn be the set of n-variable Boolean functions, clearly | Bn| = 22
n

.
A Boolean function f \in Bn can be represented uniquely by the multivariate
polynomial defined by

f(x1, . . . , xn) =
\bigoplus 
u\in \BbbF n

2

aux
u (1)

where au \in \BbbF 2 and xu = xu1
1 xu2

2 \cdot \cdot \cdot xun
n is a monomial composed of the vari-

ables for which ui = 1. This polynomial is called the algebraic normal form
(ANF) of f . The degree of a Boolean function is the highest number of vari-
ables in a monomial for which au = 1 in its ANF representation. The Boolean
functions of the form f(x) = a1x1 + . . .+ anxn + a0, where ai \in \BbbF 2, are called
affine functions. If a0 = 0, f is called a linear function.

The Walsh transform of an n-variable Boolean Function f at point w \in \BbbF n
2

is defined as
Wf (w) =

\sum 
x\in \BbbF n

2

( - 1)f(x)\oplus w\cdot x, (2)

where w\cdot x is the inner product w1x1+. . .+wnxn. The vector [Wf (0), . . . ,Wf (2n  - 1)]
is called the Walsh spectrum of f .

The autocorrelation of an n-variable Boolean Function f at point w \in \BbbF n
2

is defined as
Rf (w) =

\sum 
x\in \BbbF n

2

( - 1)f(x)\oplus f(x\oplus w). (3)

The vector [Rf (0), . . . , Rf (2n  - 1)] is called the autocorrelation spectrum of f .

Definition 1 An affine transformation (A, a, b, c) from f to g in Bn is a
mapping of the form g(x) = f(Ax + a) + b \cdot x + c, where A is a non-singular
n \times n matrix over \BbbF 2, and a, b \in \BbbF n

2 and c \in \BbbF 2. We call (A, a) the inner
transformation and (b, c) the outer transformation.

Two functions f, g are affine equivalent if there exist affine transformations
between them. Affine equivalence is an equivalence relation. An algorithm to
check whether two functions are equivalent is given in [10]. This algorithm also
outputs an affine transformation between the input functions, if one exists.
Constructing all equivalence classes is feasible for n \leq 6. In 1972, Berlekamp
and Welch [11] described the 48 classes on 5-variable Boolean functions. In
1991, Maiorana [12] classified the 150 537 classes on 6-variable Boolean func-
tions. This result was independently verified by Fuller [10] and Braeken et al.
[13]. For n = 7, Hou [14] determined the number of equivalence classes to be
\approx 265.78.

Properties of Boolean functions such as multiplicative complexity, algebraic
degree, the set of absolute values in the Walsh spectrum, and the set of absolute



4 \c Cal{\i}k et al.

values in the autocorrelation spectrum remain unchanged after applying an
affine transformation. These properties are said to be affine invariant [15]
and they provide a useful tool for showing whether two functions are affine
equivalent or not.

3 Boolean Circuits and Topologies

Definition 2 A Boolean circuit C with n inputs and 1 output is a directed
acyclic graph where the inputs and the gates are the nodes, and the edges
correspond to the Boolean-valued wires. The fanin and fanout of a node is the
number of wires going in and out of the node, respectively. The nodes with
fanin zero are called the input nodes and are labeled with an input variable
from Xn = \{ x1, . . . , xn\} . The circuits we consider here have exactly one node
with fanout zero, which is called the output node. AND gates have fanin two.
XOR gates have fanin one or more.

Each Boolean circuit C with n input nodes computes a Boolean function
f \in Bn. When a Boolean vector \=x \in \{ 0, 1\} n is fed to the input nodes, the
logic gates compute the function where the output node gets the value f(\=x).
Any Boolean function can be evaluated using the basis \Omega = \{ AND (\wedge ), XOR
(\oplus ), NOT (\neg ) \} . Since \neg x = x\oplus 1, it is also possible to replace the NOT gates
with XOR gates, when the constant 1 is allowed to be used as an input node.

It is not hard to verify that a circuit computing the function f can be put
in the following canonical form without changing the number of AND gates
(see figure 3b for an example).

1. the circuit output is an XOR gate;
2. outputs of AND gates are inputs to XOR gates, and never inputs to AND gates;
3. inputs of AND gates are outputs of XOR gates;
4. inputs of XOR gates are either inputs to the circuit or outputs of AND gates;
5. there are no negation gates;
6. if f(0) = 0 then the constant 1 is not used;
7. if f(0) = 1 then the constant 1 is an input to the output XOR gate. This is the

only use of the input 1 in the circuit;
8. the set of AND gates is labeled as A = \{ a1, . . . , ak\} ;
9. the AND gates are numbered topologically, with no gate being an ancestor of a

lower-numbered gate;
10. XOR gates have fanout one (for intermediate gates) or zero (for the output gate);
11. the set of XOR gates is labeled as B = \{ b1, . . . , b2k+1\} ;
12. ai has inputs b2i - 1 and b2i, and the output node is b2k+1.

Fig. 1: Canonical form for a circuit computing the function f

Unless otherwise specified, we will be assuming that circuits are in canon-
ical form. The notation defined in Figure 2 will be useful in the rest of this
paper.



The Multiplicative Complexity of 6-variable Boolean Functions 5

Let Si be the set of AND gates that are inputs to the ith XOR gate bi. Let Li be the
set of inputs to bi not in Si. Note that the elements of Li are either input nodes or the
constant 1.

Fig. 2: The L and S sets

Notation: Given a set V of nodes, let \scrX V denote the Boolean function com-
puted as

\bigoplus 
v\in V v. 1 The output of the i-th XOR gate is Fbi = \scrX Li

\oplus \scrX Si
, and

the output of the i-th AND gate is

Fai = (\scrX L2i - 1
\oplus \scrX S2i - 1

) \wedge (\scrX L2i
\oplus \scrX S2i

). (4)

Definition 3 Given a circuit, the ordered list (L1, . . . , L2k+1, S1, . . . , S2k+1) is
called the trace of the circuit. The ordered list [(S1, S2), (S3, S4) . . . , (S2k - 1, S2k)]
shows the relations between the AND gates, and is called the topology of the
circuit. The ordered list (L1, . . . , L2k+1) shows the linear inputs to the XOR
gates, and is called the input to the topology. S2k+1 is called the output mask.

Note that the trace of a circuit does not contain all the information about the
circuit. So it is not possible to reconstruct a circuit from its trace.

By using the gate numbering given in Figure 1, the topology of the circuit
can be expressed in graphical form. We use the procedure of Algorithm 1.

input : \{ (S2i - 1, S2i)\} 1\leq i\leq k

output: A digraph

\bfone for i from 1 to k do
\bftwo add node ai to graph;
\bfthree if S2i - 1 is not empty, create an XOR node with output to ai and inputs the

elements of S2i - 1;
\bffour repeat the previous step with S2i;

\bffive end
\bfsix bypass XOR gates with fan-in 1.

Algorithm 1: Mapping topologies to directed graphs

Our depictions of topologies will not show the direction of edges (they
point down) or the labels of gates (we are only interested in the structure of
each graph). Table 1 contains topologies with 3 AND gates, along with their
graphical representation.

Example 1 The function f = x1x2x3 + x1x3 + x1x4 + x2x3 + x4 has multi-
plicative complexity 2, as is clear from f = x1(x2x3 + x3 + x4) + x2x3 + x4. A
circuit in canonical form that computes f is depicted in figure 3b. The trace
for that circuit is

(\{ x3\} , \{ x2\} , \{ x3, x4\} , \{ x1\} , \{ x4\} , \emptyset , \emptyset , \{ a1\} , \emptyset , \{ a1, a2\} ).
1 We abuse notation here, identifying a node with the function it computes.



6 \c Cal{\i}k et al.

k Topology Graph Representation

1 [(\emptyset , \emptyset )] ∧

2 [(\emptyset , \emptyset ), (\emptyset , \emptyset )] ∧ ∧

2 [(\emptyset , \emptyset ), (\emptyset , \{ a1\} )]
∧

∧

3 [(\emptyset , \emptyset ), (\emptyset , \emptyset ), (\emptyset , \emptyset )] ∧ ∧ ∧

3 [(\emptyset , \emptyset ), (\emptyset , \emptyset ), (\emptyset , \{ a2\} )]
∧ ∧

∧

3 [(\emptyset , \emptyset ), (\emptyset , \emptyset ), (\emptyset , \{ a1, a2\} )]

∧ ∧

∧

3 [(\emptyset , \emptyset ), (\emptyset , \emptyset ), (\{ a1\} , \{ a2\} )]
∧ ∧

∧

3 [(\emptyset , \emptyset ), (\emptyset , \{ a1\} ), (\emptyset , \{ a1\} )] ∧ ∧
∧

3 [(\emptyset , \emptyset ), (\emptyset , \{ a1\} ), (\emptyset , \{ a2\} )]

∧
∧

∧

3 [(\emptyset , \emptyset ), (\emptyset , \{ a1\} ), (\emptyset , \{ a1, a2\} )]

∧
∧

∧

3 [(\emptyset , \emptyset ), (\emptyset , \{ a1\} ), (\{ a1\} , \{ a2\} )]

∧
∧

∧

Table 1: List of topologies with up to 3 AND gates

The topology of the circuit is [(\emptyset , \emptyset ), (\{ a1\} , \emptyset )]. The input to the topol-
ogy is (\{ x3\} , \{ x2\} , \{ x3, x4\} , \{ x1\} , \{ x4\} ), and the output mask is \{ a1, a2\} . The
graphical representations of the circuit and its topology are given in Figure 3.

Definition 4 Given a circuit in canonical form, a numbering of the AND
gates is a proper numbering, if no gate is an ancestor of a lower-numbered gate
(i.e. if the numbering does not violate topological ordering).

Definition 5 Two topologies are said to be isomorphic if one results from a
proper re-numbering of the AND gates of the other.

Definition 6 A Boolean function f is computable by a topology T if it is
computable by a circuit whose topology is T . The set of Boolean functions
that are computable by a topology T is denoted B(T ).

Clearly, if two topologies are isomorphic, then the sets of functions com-
putable by each are the same. We state this as a proposition.



The Multiplicative Complexity of 6-variable Boolean Functions 7

∧

x2 x3 x4x1

∧

(a) Circuit

x2 x3

∧

∧

x1 x3 x4

x4

a1

a2

b1b2

b3b4

b5

(b) Canonical form

∧
∧

(c) Topology

Fig. 3: Circuit and topology computing f .

Proposition 1 If topologies T and T \prime are isomorphic, then B(T ) = B(T \prime ).

3.1 Evaluating Topologies

Without loss of generality, the remainder of this paper only considers functions
f for which f(0) = 0. These functions have negation-free circuits that are
optimum with respect to multiplicative complexity. Any function for which
f(0) = 1 is of the form f(\=x) = g(\=x) + 1 where g(0) = 0.

The aim of this section is to construct the set of Boolean functions that are
computable by a topology T = [(S1, S2), . . . , (S2k - 1, S2k)]. The set B(T ) can
be obtained by exhaustively evaluating the following family of circuit traces

(L\ast 
1, . . . , L

\ast 
2k+1, S1, . . . , Sk, S

\ast 
2k+1),

where L\ast 
i is any subset of \{ x1, . . . , xn\} and S\ast 

2k+1 is any subset of \{ a1, . . . , ak\} .
However, going over all possible L\ast 

i 's for i = 1, . . . , 2k + 1 and S\ast 
2k+1 quickly

becomes inefficient, since there are (2n)2k+1 \times 2k = 22kn+k+n possible choices
for these sets (e.g., there are 271 choices for a topology with 5 AND gates when
n = 6).

Theorem 1 Let f \in Bn be computable by a topology T . If f \prime is affine equiv-
alent to f , then f \prime is also computable by T .

Proof Let C = (L1, . . . , L2k+1, S1, . . . , S2k+1) be the trace of a circuit with
topology T that computes f . If f \prime is affine equivalent to f , then there exists
an affine transformation (A, a, b, c) satisfying f \prime (x) = f(Ax+ a)+ bx+ c. The
circuit generated by applying the inner transformation Ax + a to the inputs
\{ x1, . . . , xn\} , and adding outer transformation bx + c to L2k+1 constructs f \prime .
Since the topology of the circuit is not affected by the affine transformation, f \prime 

is computable by T . \sqcap \sqcup 

Theorem 1 implies that either all or none of the functions in an equivalence
class are computable by a topology T . We say that the equivalence class of
f \in Bn is computable by a topology T , if f is computable by T . Hence, in order
to construct B(T ), we may construct the list of equivalence classes that are
computable by T .



8 \c Cal{\i}k et al.

Corollary 1 Consider two circuits with traces

(L1, . . . , L2k+1, S1, . . . , Sk, S2k+1) and

(L\prime 
1, . . . , L

\prime 
2k+1, S1, . . . , Sk, S2k+1).

If there exists an inner transformation (A, a) that transforms \scrX Li
\rightarrow \scrX L\prime 

i
for

i = 1, . . . , 2k, then the circuits compute affine equivalent functions.

To see why the corollary holds, note that the outer transformation (b, c)
affecting \scrX L\prime 

2k+1
is a specific case of an affine transformation and hence does

not change the equivalence class of a function.
Corollary 1 implies that it is not necessary to evaluate an input to a circuit

if a respectively affine equivalent input has already been evaluated, because the
computed functions will be from the same equivalence class. Thus, the problem
is to find a maximal set of inputs (L1, . . . , L2k) such that no two are affine
equivalent with respect to an inner transformation. This problem corresponds
to enumerating all m-dimensional subspaces in a 2k-dimensional vector space,
where m varies depending on k. The number of subspaces of dimension m in
a vector space of dimension 2k over a finite field of 2 elements is equal to the
Gaussian binomial coefficient

\bigl( 
2k
m

\bigr) 
2
[16]. This is approximately 226 inputs for

m = 6, k = 5. The algorithm to construct the subspaces is given in [17]. In its
simplest form, to generate a sufficient set of inputs of dimension m, for each
component in an input we either introduce a new variable, or choose a linear
combination of the previously used variables, by taking into account that the
exact number of variables to be used is m.

Example 2 Consider the vector space consisting of all linear functions on vari-
ables x1, x2, x3, x4. Denote by (a1, a2, a3, a4) the subspace generated by all

linear functions
\sum 4

i=1 aixi where ai \in \{ 0, 1\} . A maximal set of 3-dimensional
subspaces in a 4-dimensional vector space (m = 3, 2k = 4) is as follows:

(a1, a2, a3, 0), (a1, a2, a3, a1), (a1, a2, a3, a2),
(a1, a2, a3, a1 + a2), (a1, a2, a3, a3), (a1, a2, a3, a1 + a3),
(a1, a2, a3, a2 + a3), (a1, a2, a3, a1 + a2 + a3), (a1, a2, 0, a3),
(a1, a2, a1, a3), (a1, a2, a2, a3), (a1, a2, a1 + a2, a3),
(a1, 0, a2, a3), (a1, a1, a2, a3), (0, a1, a2, a3)

Notation: In,k denotes the set of subspaces of \{ 0, 1\} 2k of dimension at most
min\{ n, 2k\} 

3.2 Constructing Topologies

All topologies with k AND gates have the form [(S1, S2), . . . , (S2k - 1, S2k)],
where S2i - 1, S2i \subseteq \{ a1, . . . , ai - 1\} . The sets S2i - 1 and S2i can take 2i - 1 dif-
ferent values, so the total number of topologies with k AND gates is

k\prod 
i=1

(2i - 1)2 = 2
\sum k

i=1 2(i - 1) = 2k
2 - k.



The Multiplicative Complexity of 6-variable Boolean Functions 9

However, this formula counts many topologies redundantly in the sense that
there are many topologies computing the same set of Boolean functions. In
addition to isomorphic topologies, redundant topologies can result from some
transformations on pairs (S2k - 1, S2k) corresponding to the AND gates that
define the output of AND gate ai (see equation 4). Next, we derive some of
these transformations.

Notation: Given two sets Si, Sj \subseteq \{ a1, . . . , ak\} of AND gates, we denote by
Si\oplus Sj the symmetric difference of Si and Sj , i.e., the set of elements that are
contained in Si or Sj but not in both.

Remark 1 Let h = (f + l1)(g + l2) with f, g, l1, l2 \in \scrB n. Let l3 = 1 + l1 + l2.
Then it follows that

h = (f + l1)(f + g + l3)

h = (f + g + l3)(g + l2)

Proposition 2 Let T = [(S1, S2), . . . , (S2k - 1, S2k)] be a topology. Let T \prime be
the topology formed by replacing (S2i - 1, S2i) by (S2i - 1, S2i - 1 \oplus S2i), and let
T \prime \prime be the topology formed by replacing (S2i - 1, S2i) by (S2i - 1 \oplus S2i, S2i). Then
B(T ) = B(T \prime ) = B(T \prime \prime ).

Proof Let Fai = (\scrX L2i - 1 \oplus \scrX S2i - 1) \wedge (\scrX L2i \oplus \scrX S2i) be a function generated by
AND gate ai. Then,

Fa
\prime 
i
= (\scrX L2i - 1

\oplus \scrX S2i - 1
) \wedge (1\oplus \scrX L2i

\oplus \scrX L2i - 1
\oplus \scrX S2i

\oplus \scrX S2i - 1
)

and

Fa
\prime \prime 
i
= (1\oplus \scrX L2i

\oplus \scrX L2i - 1
\oplus \scrX S2i

\oplus \scrX S2i - 1
) \wedge (\scrX L2i

\oplus \scrX S2i
)

are the same functions by Remark 1. \sqcap \sqcup 

Proposition 2 implies that for any pair (S2i - 1, S2i) in a topology, any choice
of two input pairs from the set \{ S2i - 1, S2i, S2i - 1 \oplus S2i\} for AND gate ai will
not change the set of functions computable by the topology. This motivates
the following definition.

Definition 7 The following six pairs are said to be equivalent.

(S2i - 1, S2i)

(S2i, S2i - 1)

(S2i - 1, S2i - 1 \oplus S2i)

(S2i - 1 \oplus S2i, S2i - 1)

(S2i - 1 \oplus S2i, S2i)

(S2i, S2i - 1 \oplus S2i)



10 \c Cal{\i}k et al.

From now on we will identify the pair (S2i - 1, S2i) with AND gate ai where
doing so will not cause confusion.

We represent a set S \subseteq \{ a1, . . . , ak\} by a k-bit mask (v1, . . . , vk), each
vi denoting the existence of ai in S. Since each gate has two sets of inputs,
(S2i - 1, S2i) is represented by a 2k-bit vector.

Definition 8 The minimal representation of an AND gate ai = (S2i - 1, S2i)
in a topology is the lexicographically smallest among the set of equivalent
gates listed in Definition 7.

We use Algorithm 2 to construct the set of topologies with k AND gates.
The exhaustive list of topologies having up to 3 AND gates after removing the
redundant ones is shown in Table 1.

input : k
output: Set of topologies with k AND gates, Tk

\bfone T0 = \emptyset ;
\bftwo for (i = 1 to k) do
\bfthree S \leftarrow \emptyset ;
\bffour for each topology t in Tk - 1 do
\bffive for all choices of (S2k - 1, S2k) do
\bfsix If (S2k - 1, S2k) is minimal representation;
\bfseven t\prime \leftarrow add ak = (S2k - 1, S2k) to t;
\bfeight If t\prime is not isomorphic to any of the topologies in S, S \leftarrow S \cup t\prime ;

\bfnine end
\bfone \bfzero Tk \leftarrow S.

\bfone \bfone end

\bfone \bftwo end

Algorithm 2: Iterative construction of topologies

3.3 Finding the Multiplicative Complexity of a Boolean Function

In this section, we propose an algorithm to find the multiplicative complexity
of a given Boolean function. Let f \in Bn be a Boolean function with degree
d. It is known that the multiplicative complexity of f is at least d  - 1. The
first step of the algorithm is to use Algorithm 2 to construct the topologies
with k = d  - 1 AND gates. Then, the set of

\bigl( 
2k
m

\bigr) 
2
inputs for the topologies

are constructed as explained in Section 3.1. If f is computable by any of the
topologies, the algorithm outputs k, else k is incremented by one, and a new

k 1 2 3 4 5 6
| Tk| 1 2 8 84 3 170 475 248

Table 2: The number of topologies up to 6 AND gates



The Multiplicative Complexity of 6-variable Boolean Functions 11

input : Boolean function f
output: Multiplicative complexity of f

\bfone d\leftarrow degree of f ;
\bftwo k \leftarrow d - 1;
\bfthree while (true) do
\bffour Construct Tk using Algorithm 2;
\bffive Construct In,k;
\bfsix for each topology t in Tk do
\bfseven for each input (L1, . . . , L2k) in In,k do
\bfeight for each S2k+1 \subseteq \{ a1, . . . , ak\} do
\bfnine C \leftarrow (L1, . . . , L2k, 0, S1, . . . , S2k+1);

\bfone \bfzero f \prime \leftarrow the Boolean function that C computes;
\bfone \bfone if f \prime is affine equivalent to f then
\bfone \bftwo return k;
\bfone \bfthree end

\bfone \bffour end

\bfone \bffive end

\bfone \bfsix end
\bfone \bfseven k = k + 1;

\bfone \bfeight end

Algorithm 3: Finding the multiplicative complexity of a Boolean
function

set of topologies is evaluated, until f is computable by one of the topologies,
as given in Algorithm 3.

The algorithm is practical when the number k of AND gates is small. The
algorithm can also be used for providing lower bounds on the multiplicative
complexity of a given function, when it does not find a solution up to a par-
ticular value of k, establishing a lower bound of k + 1.

4 Multiplicative Complexity of 6-bit Boolean Functions

In this section, our aim is to find the multiplicative complexities of all Bool-
ean functions in 6-variables. The number of affine equivalence classes in \scrB 6 is
known to be 150 357. In this work, we use the representative functions com-
puted in [10].

Our method can be summarized as follows: We iteratively construct and
evaluate topologies until at least one function from each affine equivalence
class is computed (See Algorithm 4). The algorithm identifies the set of affine
equivalence classes generated by a topology, by going over all linear inputs
and the output masks. Given a topology, a function is computed by providing
a set of linear function inputs to this topology and combining the outputs of
the AND gates with an output mask. For each function that is computed from
a topology, the algorithm checks whether the function is affine equivalent to
a Boolean function from the input set. If so, it means that this is the first
time a function from this equivalence class is computed and the multiplicative
complexity of this class is assigned the value k, and the function is removed



12 \c Cal{\i}k et al.

from the set of input functions. The construction of topologies, described in
Section 3.2, is independent of the number of variables the topology will be
evaluated for. The input generation and determining the affine equivalence
classes of functions is described in Sections 4.2 and 4.1, respectively.

It should be noted that an equivalence class may be generated by distinct
topologies having a different number of AND gates. An equivalence class is
assigned a multiplicative complexity value k, if it was generated by a topology
having k AND gates and was not previously generated with a topology that
had less than k AND gates. This is guaranteed by processing the topologies
in order with respect to the number of AND gates.

input : n, Set of representatives of \scrB 6 \{ f1, . . . , f150357\} 
output: Multiplicative complexity of MC[fi]

\bfone k = 1;
\bftwo S \leftarrow \{ f1, . . . , f150357\} ;
\bfthree while (S \not = \emptyset ) do
\bffour Construct Tk using Algorithm 2;
\bffive Construct In,k;
\bfsix for each topology [(S1, S2), . . . , (S2k - 1, S2k)] in Tk do
\bfseven for each input (L1, . . . , L2k) in In,k do
\bfeight for each S2k+1 \subseteq A do
\bfnine C \leftarrow (L1, . . . , L2k, 0, S1, . . . , S2k+1);

\bfone \bfzero f \prime \leftarrow the Boolean function that C computes;
\bfone \bfone if f \prime is affine equivalent an fi \in S then
\bfone \bftwo MC[fi] = k;
\bfone \bfthree Remove fi from S;
\bfone \bffour if S = \emptyset then
\bfone \bffive return MC[f1],. . . ,MC[f150357];
\bfone \bfsix end

\bfone \bfseven end

\bfone \bfeight end

\bfone \bfnine end

\bftwo \bfzero end
\bftwo \bfone k = k + 1;

\bftwo \bftwo end

Algorithm 4: Finding Multiplicative Complexity of 6-bit Boolean
Functions

4.1 Determining the Equivalence Classes of Functions

An important step in finding the set of equivalence classes that is computable
by a topology is determining the equivalence class of a specific function that
is generated from that topology. It is crucial that this process be performed
efficiently, since it will be repeated for each set of inputs supplied to a topology.
An equivalence class is represented by a representative function from that class
whose selection can be arbitrary.



The Multiplicative Complexity of 6-variable Boolean Functions 13

Deciding on whether or not two given functions are affine equivalent is done
by making use of the affine transformation invariant properties of functions,
i.e., algebraic degree, absolute Walsh spectrum distribution, and absolute auto-
correlation spectrum distribution. We call the values these three metrics take
the signature of a function. For n \leq 5, the signature of a function is sufficient
to determine its class because the signatures of functions in different classes
are different. However, for n = 6 there are a total number of 30 883 distinct
signatures, which is less than the number of equivalence classes, implying that
some equivalence classes have the same signature. Indeed, 17 234 of the sig-
natures belong to a unique class, whereas the remaining 13 649 signatures are
shared by two or more classes, with the maximum number of classes having
the same signature being 564.

Suppose we want to determine the equivalence class of a function f . That
is, we want to know which of the 150 357 representatives is affine equivalent to
f . If the signature of f is among the 17 234 signatures that uniquely identifies
its class, then the representative is the one associated with the signature.
Otherwise, it is the case that f is affine equivalent to one of the representatives,
say f1, ..., . . . , fm, m \geq 2, whose signatures are equal to that of f 's. Then, we
use the methods described in [10], namely the local connectivity and indicator
functions to eliminate the representatives that could not be affine equivalent
to f until we're left with a single candidate, which will be the representative
that f is affine equivalent to.

4.2 Evaluating Topologies

As described in Section 3.1, for a given n, the inputs to a topology with k
AND gates are the functions that correspond to the subspaces of dimension
m in a vector space of dimension 2k, where 1 \leq m \leq min(2k, n). In [1], it was
shown that any Boolean function on n-variables has multiplicative complexity
at most n  - 1 for n \leq 5. This implies that if we want to evaluate a topology
with k \leq 5 AND gates, the functions generated by this topology must be affine
equivalent to a function that has at most k + 1 variables. This observation
lets us reduce the number of dimensions m that must be considered when
generating the inputs. Table 3 provides the list of dimensions m in a vector
space of dimension 2k for n = 6.

Table 3: Size of the input combinations for evaluating topologies.

k (m, 2k) Number of input vectors
1 (2,2) 1
2 (3,4), (4,4) 16
3 (4,6), (5,6), (6,6) 715
4 (5,8),(6,8) 107 950
5 (6,10) 53 743 987
6 (6,12) 230 674 393 235



14 \c Cal{\i}k et al.

4.3 Results

The algorithms for constructing and evaluating the topologies have been im-
plemented in the C++ programming language. The construction of topologies
up to 5 AND gates took less than a minute on a standard desktop PC, whereas
topologies with 6 AND gates could be generated in approximately one day.
The task of identifying the equivalence classes generated by the topologies de-
manded more computation due to the large number of input combinations to
be evaluated. We exploited the inherent parallelism of this process by running
it on a cluster, with each node processing a certain subset of the topologies.
The nodes in the cluster had dual Intel Xeon E5-2630 v3 processors2 (3.20
GHz, 8 cores) and 64GB memory. The total computation took 38 422 core
hours.

Table 4 shows the results of the computation. The number of functions
having a particular multiplicative complexity was calculated by adding the
total number of functions in each equivalence class. After running Algorithm
4 up to 5 AND gates, there were still 931 equivalence classes on 6-variables that
could not be generated, implying that their multiplicative complexity should
be at least 6. The task of evaluating all topologies having 6 AND gates with all
possible inputs was not feasible due to the large number of topologies and input
combinations. Therefore, we randomly picked a subset of those topologies, and
computed the remaining set of equivalence classes. This process completed in
the order of hours as it was sufficient to generate one function from each class
to conclude that these functions had multiplicative complexity 6.

The results can be accessed online at [18], which contains one representative
from each affine equivalence class, along with a circuit for that function with
a minimum number of multiplications.

Table 4: Multiplicative complexity distribution of the equivalence classes and
functions for n = 6.

MC \#classes \#functions log2(\#functions)
0 1 128 7.00
1 1 83 328 16.34
2 3 73 757 184 26.13
3 24 281 721 079 808 38.03
4 914 7 944 756 861 878 272 52.81
5 148 483 18 344 082 080 963 133 440 63.99
6 931 94 716 954 089 619 456 56.39

2 Commercial equipment and software referred to in this paper are identified for informa-
tional purposes only, and does not imply recommendation of or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose.



The Multiplicative Complexity of 6-variable Boolean Functions 15

Among the set of functions having multiplicative complexity 6, we list
below all representatives with degree 4:

f1 = x3x5 + x3x4 + x2x4 + x2x3x6 + x2x3x4x5 + x1x6 + x1x5 + x1x4x5 + x1x3 + x1x3x4

+ x1x3x4x6 + x1x2x5x6

f2 = x4x5 + x3x4x5 + x2x5 + x2x4 + x2x4x6 + x1x5x6 + x1x4 + x1x3 + x1x2x4x5

+ x1x2x3x6

f3 = x3x5 + x3x4 + x2x4 + x2x3x6 + x2x3x4x5 + x1x4 + x1x4x5 + x1x3 + x1x3x4

+ x1x3x4x6 + x1x2x5x6

f4 = x3x5 + x3x4 + x2x4 + x2x3 + x2x3x6 + x2x3x4x5 + x1x6 + x1x5 + x1x4x5

+ x1x3x4 + x1x3x4x6 + x1x2 + x1x2x5x6

f5 = x4x6 + x4x5 + x3x5 + x2x3x6 + x2x3x4x5 + x1x5 + x1x3 + x1x3x5 + x1x3x4

+ x1x3x4x6 + x1x2 + x1x2x5x6 + x1x2x4

5 Conclusion

We explored the multiplicative complexity of 6-variable Boolean functions and
showed that they can be implemented using at most 6 AND gates. More specif-
ically, we computed the distribution of affine equivalence classes and the num-
ber of Boolean functions with multiplicative complexity k for k = 0, . . . , 6.
We were able to exhibit specific 6-variable functions which have multiplicative
complexity 6.

6 Acknowledgments

We thank Ray Perlner for his suggestions on enumerating the subspaces of a
vector space, and Lu\'{\i}s Brand\~ao for helpful comments and suggestions.

References

1. Meltem Turan S\"onmez and Ren\'e Peralta. The Multiplicative Complexity of Boolean
Functions on Four and Five Variables, pages 21--33. Springer International Publishing,
Cham, 2015.

2. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Luca Aceto, Ivan Damg\r ard, Leslie Ann Goldberg, Magn\'us M.
Halld\'orsson, Anna Ing\'olfsd\'ottir, and Igor Walukiewicz, editors, Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Pro-
gramming \& Track C: Security and Cryptography Foundations, volume 5126 of Lecture
Notes in Computer Science, pages 486--498. Springer, 2008.

3. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages
309--325. ACM, 2012.



16 \c Cal{\i}k et al.

4. Joan Boyar, Ivan Damg\r ard, and Ren\'e Peralta. Short non-interactive cryptographic
proofs. J. Cryptology, 13(4):449--472, 2000.

5. Claude Carlet, Louis Goubin, Emmanuel Prouff, Micha\"el Quisquater, and Matthieu
Rivain. Higher-order masking schemes for s-boxes. In Anne Canteaut, editor, Fast Soft-
ware Encryption - 19th International Workshop, FSE 2012, Washington, DC, USA,
March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture Notes in Computer
Science, pages 366--384. Springer, 2012.

6. Joan Boyar, Ren\'e Peralta, and Denis Pochuev. On the multiplicative complexity of
Boolean functions over the basis (\wedge , \oplus , 1). Theor. Comput. Sci., 235(1):43--57, 2000.

7. Magnus Gausdal Find. On the complexity of computing two nonlinearity measures.
In Computer Science - Theory and Applications - 9th International Computer Science
Symposium in Russia, CSR 2014, Moscow, Russia, June 7-11, 2014. Proceedings, pages
167--175, 2014.

8. Michael Codish, Lu\'{\i}s Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp. When
six gates are not enough. CoRR, abs/1508.05737, 2015.

9. J. Boyar and R. Peralta. Tight bounds for the multiplicative complexity of symmetric
functions. Theoretical Computer Science, 396(1-3):223--246, 2008.

10. Joanne Elizabeth Fuller. Analysis of affine equivalent boolean functions for cryptogra-
phy. PhD thesis, Queensland University of Technology, 2003.

11. Elwyn R. Berlekamp and Lloyd R. Welch. Weight distributions of the cosets of the (32,
6) Reed-Muller code. IEEE Transactions on Information Theory, 18(1):203--207, 1972.

12. James A. Maiorana. A classification of the cosets of the Reed-Muller code\scrR (1,6). Math.
Comput., 57(195):403--414, 1991.

13. An Braeken, Yuri Borissov, Svetla Nikova, and Bart Preneel. Classification of Boolean
Functions of 6 Variables or Less with Respect to Some Cryptographic Properties, pages
324--334. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

14. Xiang-Dong Hou. AGL (m, 2) acting on R (r, m)/R (s, m). Journal of Algebra,
171(3):927--938, 1995.

15. Claude Carlet. Boolean functions for cryptography and error correcting codes. In
Y. Crama and P.L. Hammer, editors, Boolean Models and Methods in Mathematics,
Computer Science and Engineering, chapter 8. Cambridge Univ. Press, Cambridge,
UK, 2010.

16. Donald E Knuth. Subspaces, subsets, and partitions. Journal of Combinatorial Theory,
Series A, 10(2):178 -- 180, 1971.

17. Jay Goldman and Gian-Carlo Rota. On the foundations of combinatorial theory iv
finite vector spaces and eulerian generating functions. Studies in Applied Mathematics,
49(3):239--258, 1970.

18. NIST Computer Security Division. SLP's for 6-variable predicates,
https://github.com/usnistgov/Circuits/tree/master/slp.


