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Abstract. Masking and hiding schemes represent a well-researched and
successful option to follow when considering side-channel countermea-
sures. Still, such measures increase the implementation cost in term of
power consumption, clock cycles, and random numbers generation. In
fact, the higher the order of protection against side-channel adversaries,
the higher the implementation cost of countermeasures. S-boxes repre-
sent the most vulnerable part in an implementation when considering
side-channel adversary. In this paper, we investigate how to generate
S-boxes that have improved resilience against varying orders of side-
channel attacks while minimising the implementation costs. We examine
whether S-boxes generated against a certain order of attack also rep-
resent a good solution when considering different order of attacks. We
demonstrate that we successfully generated S-boxes resilient against a
certain physical attack order but the improvements are small. As a re-
sult, S-boxes that are resilient against first order attacks stay resilient
against higher-order attacks, which saves computational power during
the design of higher-order side-channel attacks resilient S-boxes.

Keywords: S-box construction, Genetic algorithms, Higher-order side-channel
analysis, Correlation power analysis.

1 Introduction

For decades, designers estimated the security level of a cryptographic algorithm
independently of its implementation in a cryptographic device. Since the first
publication on implementation attacks in 1996, the physical attacks have become
an active research area [1]. A side-channel attack (SCA) represents a process
that exploits physical leakages (measured on cryptographic devices) in order
to extract sensitive information (e.g., the key used in a symmetric encryption
algorithm). The ability to secure devices against side-channel attacks represents
a critical requirement for the industry due to several publications on real-world
physical attacks against (certified and uncertified) industrial products [2, 3].

The Internet of Things (IoT) represents an attractive target for physical
attacks (see e.g., Ronen et al. [4]) since the target device is in the vicinity of the
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adversary (which facilitates the analysis of physical properties). The widespread
adoption of IoT, its extreme constraints (in term of area and power consumption)
as well as the hostile environments in which the IoT is manipulated raise the
need of lightweight countermeasures against side-channel attacks. This paper
analyses the protection of the nonlinear part (called S-boxes) of ciphers, which
is often targeted by implementation attacks. More precisely, this paper focuses on
lightweight countermeasures in which the S-boxes (also called (n,m) functions)
are intrinsically more resilient against side-channel attacks.

In 2014, Picek et al. generated S-boxes of various sizes providing improved
resistance to physical attacks [5]. They used genetic programming and genetic
algorithms to evolve S-boxes minimising the transparency order metric that re-
lates to the side-channel resistance of the S-boxes. The main advantage of these
approaches (compared to the exhaustive search) lies in the execution time of
the research: exhaustive search generates 2m·2

n

different n × n S-boxes4 while
genetic algorithms optimise this search in an automatic way. At the same year,
Picek et al. obtained two S-boxes of sizes 4× 4 and 8× 8 by exploiting genetic
algorithms optimising the confusion coefficient property, which represents an-
other metric related to the side-channel resistance of the S-boxes [6]. One year
later, Picek et al. built a 4 × 4 S-box using genetic algorithms optimising the
improved transparency order metric [7]. Recently, Lerman et al. provided new
S-boxes minimising the success probability of actual physical attacks [8]. They
provided 4×4 and 5×5 S-boxes that possess increased resistance against various
real-world attacks exploiting actual leakages.

In this paper, we focus on 4 × 4 and 5 × 5 S-boxes since we deem those
sizes to have the most impact in the future design of lightweight ciphers (as
already reported by several papers [9–11]). We aim to give an answer to the
following question: “Should we take into account the key-enumeration during
the design of S-boxes?”. This approach is of high importance since (as reported
in this paper) the designers of S-boxes can concentrate only on the first order
success probability of side-channel adversaries. We also provide a new 5×5 S-box
reaching a lower first order success rate compared to the previously published 5×
5 S-boxes. Eventually, this paper highlights that the best S-box (which minimises
the success probability of physical attacks) depends on the physical noise level
in the leakages. This result demonstrates the requirement to select S-boxes as
a function of the cryptographic device executing these S-boxes, and it confirms
the assumption of Lerman et al. [8].

The rest of this paper is organised in the following way. Section 2 discusses
the general notions about S-boxes, side-channel attacks, and search strategy.
Section 3 presents the experimental setting, the experiments, and discusses the
obtained results. Finally, Section 4 concludes the paper.

4 (2n)! if we only consider permutations.
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2 Background

This section provides general notions on S-boxes, their properties and bounds,
as well as on physical attacks (e.g., physical leakages, correlation power analysis,
and i-th order success rate).

2.1 General Notions

Let n,m be positive integers – n,m ∈ N+. We denote by Fn
2 the n-dimensional

vector space over F2 and by F2n the finite field with 2n elements. The set of
all n-tuples of elements in the field F2 is denoted by Fn

2 , where F2 is the Galois
field with two elements. For any set S, we denote S\{0} by S∗. The usual inner
product of a and b equals a · b =

⊕n
i=1 aibi in Fn

2 .
The Hamming weight wH(a) of a vector a, where a ∈ Fn

2 , is the number of
non-zero positions in the vector. An (n,m)-function is any mapping F from Fn

2

to Fm
2 . An (n,m)-function F can be defined as a vector F = (f1, · · · , fm), where

the Boolean functions fi : Fn
2 → F2 for i ∈ {1, · · · ,m} are called the coordinate

functions of F.
The component functions of an (n,m)-function F are all the linear combina-

tions of the coordinate functions with non all-zero coefficients. Since for every n,
there exists a field F2n of order 2n, we can endow the vector space Fn

2 with the
structure of that field. The addition of elements of the finite field F2n is denoted
with “+”, as usual in mathematics. Since we often identify Fn

2 with F2n and
when there is no ambiguity, the addition of vectors of Fn

2 , n > 1 is denoted with
“+” as well.

2.2 S-box Properties

An (n,m)-function F is balanced if it takes every value of Fm
2 the same number

2n−m of times.
The Walsh-Hadamard transform of an (n,m)-function F is (see e.g., [12]):

WF (a, v) =
∑
x∈Fm

2

(−1)v·F (x)+a·x, a, v ∈ Fm
2 . (1)

The nonlinearity NF of an (n,m)-function F equals the minimum nonlinear-
ity of all its component functions v · F , where v ∈ Fm∗

2 [12, 13]:

NF = 2n−1 − 1

2
max
a ∈ Fn

2

v ∈ Fm∗
2

|WF (a, v)|. (2)

Let F be a function from Fn
2 into Fm

2 with a ∈ Fn
2 and b ∈ Fm

2 . We denote:

DF (a, b) = {x ∈ Fn
2 : F (x) + F (x+ a) = b} . (3)

The entry at the position (a, b) corresponds to the cardinality of the difference
table DF (a, b) and is denoted as δ(a, b). The differential uniformity δF is then
defined as [14]:

δF = max
a 6=0,b

δ(a, b). (4)
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2.3 S-box Bounds

The nonlinearity of any (n,m) function F is bounded above by the so-called
covering radius bound:

NF ≤ 2n−1 − 2
n
2−1. (5)

There exists a better bound when m = n – the Sidelnikov-Chabaud-Vaudenay
bound [15]:

NF ≤ 2n−1 − 2
n−1
2 . (6)

Eq. (6) is an equality if and only if F is an Almost Bent (AB) function.

Functions that have differential uniformity equal to 2 are called the Almost
Perfect Nonlinear (APN) functions. Every AB function is also APN, but the
converse does not hold in general. AB functions exist only in an odd number of
variables, while APN functions also exist for an even number of variables. When
discussing the differential uniformity for permutations, the best possible (and
known) value is 2 for any odd n and also for n = 6. For n even and larger than
6, this is an open question.

To conclude, for 4×4 S-boxes, the best nonlinearity as well as differential uni-
formity equals 4. When discussing 5×5 S-box size, the best possible nonlinearity
equals 12 and the best possible differential uniformity equals 2.

2.4 Side-Channel Attacks

We assume that the adversary wants to retrieve the secret key used when the
cryptographic device (that executes a known encryption algorithm) encrypts
known plaintexts and provides known ciphertexts. In order to find the key, the
adversary targets a set of key-related information (called the target intermediate
values) with a divide-and-conquer approach. The divide-and-conquer strategy
extracts information on separate parts of the key (e.g., the adversary extracts
each byte of the key independently) and then combines the results in order to
get the full secret key. In the rest of the paper, we systematically use the term
key to denote the target of our attacks, though in fact, we address one part of
the key at a time.

During the execution of the encryption algorithm, the cryptographic device
processes a function F (e.g., the S-box of the block cipher AES):

F : P ×K → Y (7)

y = Fk(p),

that outputs the target intermediate value y and where k ∈ K is a key-related
information (e.g., one byte of the secret key), and p ∈ P represents information
known by the adversary (e.g., one byte of the plaintext).
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Physical Characteristics Let jT y be the j-th leakage (also known as trace)
measured when the device manipulates the target value y. In the following, we
represent each leakage with one real value measured when the analysed crypto-
graphic device manipulates the target value y, i.e.:

jT y = L (y) + jεy, (8)

= L (Fk (p)) + jεy, (9)

where jεy ∈ R is the noise of the trace jT y following for example the Gaussian
distribution with zero mean, and L is the (deterministic) leakage function. The
function L can be linear (e.g., the weighted sum of each bit of the input value)
or nonlinear (e.g., the weighted sum of products of bits of the input value).
Evaluators often model linear leakage functions as the Hamming weight of the
manipulated value y for software implementations.

A side-channel attack is a process during which an attacker analyses leakages
measured on a target device in order to extract information on the secret value.
Several side-channel attacks exist but we focus on classical attacks exploiting
correlation power analysis (presented by Coron et al. [16]) since 1) they represent
the most efficient attacks when the leakage model fit to the leakage function in
univariate settings [17], and 2) we assume no assumption error and no estimation
error (of the estimation of the leakage function) leading to the evaluation of the
S-boxes with the worst-case (univariate) side-channel adversaries.

Correlation Power Analysis Correlation power analysis recover the secret
key from a cryptographic device by selecting the key that maximises the de-
pendence between the actual leakage and the estimated leakage based on the
assumed secret key. More precisely, correlation power analysis selects the secret
key k̂ such that:

k̂ ∈ arg max
k∈K

∥∥∥∥ρ(T̂(k), T )∥∥∥∥, (10)

where ‖x‖ denotes the Euclidean norm of x, ρ (X ,Y) represents the Pearsons
correlation between two vectors X and Y, and:

– T =
[
1T , ...,NaT

]
represents a vector of Na attack traces measured when the

target device manipulates the S-box (where iT denotes the i-th measurement
on the target device and Na is the number of attack traces), and

– T̂(k) =
[
L̂(F(k ⊕ p[1]), . . . , L̂(F(k ⊕ p[Na])

]
refers to a vector of estimated leak-

ages (with a leakage model L̂) parametrised with the output of the S-box
combining (with the exclusive-or operation denoted ⊕) an estimated key k
and known plaintext p[i] associated to iT .

i-th order Success Rate The designers of cryptographic devices measure
the resistance of an implementation against a physical attack by using (among
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others) the first order Success Rate (1oSR) [18]. The first order success rate (also
known as the first order success probability) represents the probability that the
physical attack ranks the actual key in the first position of the list of keys sorted
by the physical attack in decreasing order of likelihood. Similarly, the i-th order
success rate denotes the probability that the physical attack ranks the actual
key among the i first positions of the list of keys. This metric relates to a side-
channel adversary applying key enumeration algorithms (in which the adversary
outputs a set of keys from the most probable one to the least probable one).

3 Resilient S-boxes Against Key-enumeration

This section extends the analysis of S-boxes (generated by genetic algorithms
and reported in [5,7,8]) by considering side-channel adversaries exploiting a CPA
with a key-enumeration. More precisely, we aim to verify whether the generated
S-boxes, that minimise the first order success rate, minimise also a higher order
success rate. We also provide results of newly generated S-boxes taking into
account the key enumeration during their design as well as the multiplicative
complexity of such S-boxes.

3.1 Scenarios under Consideration

Leakages generation We generated synthetic leakages having 1 points related
to the Hamming weight of the S-Box:

jT y = L (y) + jεy = HW (SBox (p⊕ k)) + jεy. (11)

This leakage function models the measurements collected during the execu-
tion of (serial) software implementations (which represent a realistic scenario in
IoT) [19]. We assume no estimation/assumption error, which leads the adversary

to consider the Hamming weight model during the attack: L̂(·) = L(·) = HW(·).
We estimated the success rate by generating 100 000 sets of attack leakages.

Target functions We focus on seven 4×4 S-boxes used by Joltik [20], Klein [21],
Minalpher [22], Prince [23], Prøst [24], Present [25], and Rectangle [26].

Regarding the 5×5 S-boxes, we focus on the S-boxes exploited by SC2000 [27]
and Primate [28]. These 5 × 5 S-boxes have the best possible cryptographic
properties: a nonlinearity of 12 and a differential uniformity of 2. In the sequel,
we refer to these (4 × 4 and 5 × 5) S-boxes as unoptimised S-boxes since the
designers did not optimise these S-boxes with respect to minimising the success
rate of physical attacks.

The optimised S-boxes represent nonlinear functions designed to minimise
the first order success rate of physical attacks and already published in the side-
channel literature. These optimised 4×4 S-boxes are the following: EvolvedCC [6],
EvolvedTO [7], EvolvedSR1, and EvolvedSR2 [8]. The optimised 5×5 S-boxes are
the following: EvolvedSR4, EvolvedSR7, EvolvedSR8, and EvolvedSR9 [8]. Table 1
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reports all these (unoptimised and optimised) S-boxes with their cryptographic
properties. The new optimised S-boxes are nonlinear functions generated with
genetic algorithm by taking into account the key enumeration and the noise level
during the S-box generation. Table 2 provides the new optimised 4×4 and 5×5
S-boxes.

Search strategy As a search technique used to generate S-boxes, we use genetic
algorithms (GAs) since it represents a method that is easy to implement while
being very efficient as reported in related work. Genetic algorithms are generic
population-based metaheuristic optimization technique inspired by biological
evolution and phenomena like mutation, recombination, and selection [29]. Can-
didate solutions to the optimization problem play the role of individuals in a
population, and the fitness function determines the quality of the solutions.
Evolution of the population takes place after the repeated application of the
above operators. In our algorithm, we encode solutions as lists of values between
0 and 2n−1 where n is the size of the S-box. Next, we use 3-tournament selection
where three solutions are randomly selected and the worst one is discarded. The
remaining two solutions are used by the crossover operator (order crossover) to
create a new offspring. The order crossover works by first randomly selecting two
crossover points and copying everything between those two points from the first
parent to the offspring. Then, starting from the second crossover point in the
second parent, the unused numbers are copied in the order they appear in that
parent [29]. Finally, we use the toggle mutation where we randomly select two
values and swap them. The initial population is created uniformly at random
and the population size equals 200 individuals. As a stopping criterion, we use
the number of evaluations without improvement, which we set to 150 genera-
tions. In order to obtain S-boxes with as high as possible nonlinearity and as
low as possible differential uniformity, we use the following expression:

fitnesst = NF + (2n − δF )). (12)

Then, only those solutions that have good enough values of cryptographic prop-
erties are further evolved (while retaining those cryptographic properties) so
they have low SCA success probability, which gives us the fitness function used
in our experiments:

fitness = fitnesst + (1− SR). (13)

We note that for 4 × 4 S-box size, we consider only S-boxes that are optimal:
bijective, with nonlinearity and differential uniformity equal to 4 [30]. For 5× 5
size, there are no such classification so we consider S-boxes that are either AB
(having the best possible nonlinearity of 12 and differential uniformity of 2) or
S-boxes with one step worse properties, i.e., nonlinearity of 10 and differential
uniformity of 4.

Multiplicative complexity of S-boxes Multiplicative Complexity (MC) of
an S-box is important for its secure implementation. Here we will refer to the
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Size Type Name NF δF MC S-box

4 × 4

U

Joltik 4 4 6 E,4,B,2,3,8,0,9,1,A,7,F,6,C,5,D

Klein 4 4 8 7,4,A,9,1,F,B,0,C,3,2,6,8,E,D,5

Minalpher 4 4 8 B,3,4,1,2,8,C,F,5,D,E,0,6,9,A,7

Prince 4 4 8 B,F,3,2,A,C,9,1,6,7,8,0,E,5,D,4

Prøst 4 4 6 0,4,8,F,1,5,E,9,2,7,A,C,B,D,6,3

Present 4 4 7 C,5,6,B,9,0,A,D,3,E,F,8,4,7,1,2

Rectangle 4 4 6 6,5,C,A,1,E,7,9,B,0,3,D,8,F,4,2

O

EvolvedCC 4 4 7 6,4,7,8,0,5,2,A,E,3,D,1,C,F,9,B

EvolvedTO 4 4 6 2,0,C,6,A,E,F,7,3,1,8,4,9,D,B,5

EvolvedSR1 4 4 8 2,4,8,0,F,B,7,D,6,5,E,3,1,9,C,A

EvolvedSR2 4 4 7 F,E,0,A,1,8,9,B,7,6,4,C,5,2,3,D

5 × 5

U
SC2000 12 2 20

14,1A,07,1F,13,0C,0A,0F,16,1E,0D,0E,04,18,09,12

1B,0B,01,15,06,10,02,1C,17,05,08,03,00,11,1D,19

Primate 12 2 10
01,00,19,1A,11,1D,15,1B,14,05,04,17,0E,12,02,1C

0F,08,06,03,0D,07,18,10,1E,09,1F,0A,16,0C,0B,13

O

EvolvedSR4 10 4 20
0A,1C,01,13,04,08,12,10,06,05,03,0D,02,18,09,00

0F,1B,1A,11,14,1D,0B,0E,16,07,15,19,0C,17,1E,1F

EvolvedSR7 10 4 20
1B,13,17,16,0B,0F,0D,1A,03,06,01,09,02,14,08,11

10,12,00,0A,1F,18,05,0C,1D,1C,04,07,0E,1E,15,19

EvolvedSR8 12 2 10
00,0E,1C,16,19,01,0D,11,13,08,02,1D,1A,17,03,0A

07,0B,10,18,04,1E,1B,05,15,0C,0F,12,06,09,14,1F

EvolvedSR9 12 2 10
00,07,0E,0B,1C,10,16,18,19,04,01,1E,0D,1B,11,05

13,15,08,0C,02,0F,1D,12,1A,06,17,09,03,14,0A,1F

Table 1: Properties of evolved S-boxes when considering correlation power anal-
ysis. Values of S-boxes are given in hexadecimal format. Notations O and U
represent optimised and unoptimised S-boxes with respect to side-channel anal-
ysis. The notation NF represents nonlinearity, δF differential uniformity, and
MC multiplicative complexity.

MC of an S-box as the minimum number of AND gates (or instructions in case
of a software implementation) that one would need to implement the S-box.
MC is important because the amount of randomness that one needs for masked
implementation grows fast with the number of AND operations required for the
implementation (i.e., it is easier to mask an XOR operation compared to AND).
We estimate the MC of each S-box using equivalence classes presented in the
work by Turan et al. [31], where their work gives a way to compute the MC
for 4-bit and 5-bit Boolean functions. Note that in the case of some equivalence
classes of 5-bit Boolean functions the MC estimate is the upper bound, thus
we also Present the upper bound of MC in our tables. The results show that
the multiplicative complexity for our new S-boxes is similar to the previously
obtained ones, which points us that optimising S-boxes for different orders of
attack does not bring a negative impact with respect to the MC.
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Size Name NF δF MC Order σ S-box

4 × 4

Ev4x4 1oSR σ0.5 4 4 8 1 0.5 1,9,4,5,B,6,D,A,C,0,3,F,2,7,8,E

Ev4x4 2oSR σ0.5 4 4 8 2 0.5 8,1,F,A,4,9,6,7,0,3,E,B,2,C,D,5

Ev4x4 3oSR σ0.5 4 4 7 3 0.5 1,F,2,0,D,C,8,7,5,9,3,B,4,6,E,A

Ev4x4 4oSR σ0.5 4 4 7 4 0.5 0,8,C,1,F,B,9,D,7,E,6,A,2,3,5,4

Ev4x4 1oSR σ2 4 4 8 1 2 9,C,3,5,F,E,1,2,7,B,0,4,D,6,A,8

Ev4x4 2oSR σ2 4 4 7 2 2 D,1,2,E,3,8,A,9,5,B,6,C,4,7,F,0

Ev4x4 3oSR σ2 4 4 8 3 2 6,5,E,2,1,A,B,8,C,9,D,4,3,7,F,0

Ev4x4 4oSR σ2 4 4 8 4 2 7,8,D,4,3,2,E,5,C,6,9,A,B,0,F,1

5 × 5

Ev5x5 1oSR σ1 Nf12 δF 2 12 2 10 1 1
1F,11,03,1E,06,09,1D,01,0C,0A,12,07,1B,1C,02,16

18,0F,14,10,05,13,0E,0B,17,08,19,15,04,1A,0D,00

Ev5x5 2oSR σ1 Nf12 δF 2 12 2 10 2 1
1F,11,03,17,06,0A,0F,19,0C,12,14,10,1E,02,13,15

18,1B,05,1C,09,08,01,1A,1D,0E,04,0D,07,16,0B,00

Ev5x5 3oSR σ1 Nf12 δF 2 12 2 10 3 1
1F,14,09,06,12,0F,0C,15,05,1B,1E,04,18,10,0B,07

0A,03,17,1A,1D,02,08,13,11,0D,01,19,16,1C,0E,00

Ev5x5 4oSR σ1 Nf12 δF 2 12 2 10 4 1
1F,05,0A,11,14,1B,03,0D,09,1E,17,01,06,04,1A,19

12,18,1D,16,0F,10,02,1C,0C,0B,08,0E,15,07,13,00

Ev5x5 1oSR σ1 Nf10 δF 4 10 4 10 1 1
1F,06,0C,1D,18,1A,1B,08,11,16,15,05,17,14,10,0E

03,1E,0D,04,0B,12,0A,07,0F,02,09,13,01,19,1C,00

Ev5x5 2oSR σ1 Nf10 δF 4 10 4 20 2 1
00,1A,15,07,0B,0C,0E,05,16,03,18,1B,1C,0F,0A,01

0D,13,06,12,11,1D,17,10,19,09,1E,08,14,04,02,1F

Ev5x5 3oSR σ1 Nf10 δF 4 10 4 20 3 1
00,12,05,13,0A,01,07,0B,14,08,02,18,0E,03,16,17

09,19,10,15,04,0C,11,1B,1C,1A,06,1D,0D,1E,0F,1F

Ev5x5 4oSR σ1 Nf10 δF 4 10 4 20 4 1
1F,06,0C,17,18,05,0F,1C,11,09,0A,08,1E,01,19,15

03,1B,12,0E,14,04,10,1A,1D,07,02,0D,13,16,0B,00

Table 2: Properties of new optimised S-boxes when considering correlation power
analysis. The genetic algorithms optimise each S-box as a function of its size, its
nonlinearity (NF ), differential uniformity (δF ), the order of the success rate as
well as the standard deviation of the noise in the leakages.

Finally, in Table 3 we list the equivalence classes where all the investigated
4×4 S-boxes belong. In total, there are 16 optimal classes as defined by Leander
and Poschmann. [30]. Interestingly, it can be seen that S-boxes optimized in
previous works favours classes G0 and G1 while our new S-boxes are in classes
G13, G14, and G15. This could indicate that those classes have better side-channel
resilience when considering various orders of attack.

3.2 Impact of the Noise in the Generation of S-boxes

The first experiment analyses the impact of the noise during the generation
of S-boxes by genetic algorithms. We focus on the first order success rate of
CPA against 4× 4 S-boxes. Figure 1 shows the success probability of CPA as a
function of the number of attack traces in which the standard deviation of the
noise equals 0.5, 1, and 2 (which leads to a signal-to-noise ratio of 4.27, 1.07,
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Name Class

Joltik G8

Klein G4

Minalpher G4

Prince G13

Prøst G8

Present G1

Rectangle G1

EvolvedCC G1

EvolvedTO G1

EvolvedSR1 G0

EvolvedSR2 G1

Ev4x4 1oSR σ0.5 G14

Ev4x4 2oSR σ0.5 G14

Ev4x4 3oSR σ0.5 G15

Ev4x4 4oSR σ0.5 G15

Ev4x4 1oSR σ2 G13

Ev4x4 2oSR σ2 G14

Ev4x4 3oSR σ2 G13

Ev4x4 4oSR σ2 G14

Table 3: Optimal 4 × 4 S-boxes and their equivalence classes (classes use the
same order as presented by Turan et al. [31]).

and 0.27). Interestingly, the generated S-boxes optimised by genetic algorithm
for a noise level x minimise the success rate when the standard deviation of
the physical noise in the leakages equals x. In other words, the noise level in the
leakages impacts the selection of the best S-boxes, which stresses the usefulness of
the selection of S-boxes as a function of the device executing the S-box operation
(as reported by Lerman et al. [8]).

3.3 New Optimised vs. Optimised vs. Unoptimised S-boxes

This section compares the unoptimised 4× 4 S-boxes with respect to optimised
S-boxes. We focus on the first, second, third, and fourth order success rates.
Figures 2 and 3 report the results by considering a standard deviation of the
noise equal to 0.5 and 2 (which leads to a signal-to-noise ratio of 4.27 and 0.27).
Interestingly, as already reported for the masking countermeasures [32], Figure 2
highlights that all the (optimised and unoptimised) 4×4 S-boxes provide similar
success rate when the leakages contain a low noise. Figure 3 exhibits that the
generated S-boxes, that minimise the first order success rate, minimise also a
higher order success rate. We can see that the higher the order of the success
rate, the lower the difference between the optimised and the unoptimised S-
boxes.
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(a) σ = 0.5
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(b) σ = 1
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(c) σ = 2

Fig. 1: Success rate of correlation power analysis on 4× 4 S-boxes as a function
of the number of attack traces. The standard deviation of the noise equals σ.
The S-boxes have nonlinearity equal to NF = 4 and differential uniformity equal
to δF = 4. Each S-box was generated by genetic algorithms minimising the first
order success rate given a fixed noise level.
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(a) First order success rate.
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(b) Second order success rate.
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(c) Third order success rate.
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(d) Fourth order success rate.

Fig. 2: Success rates (different orders) of correlation power analysis on 4× 4 S-
boxes as a function of the number of attack traces. The standard deviation of
the noise equals σ = 0.5. The S-boxes have nonlinearity equal to NF = 4 and
differential uniformity equal to δF = 4.
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(a) First order success rate.
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(b) Second order success rate.
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(c) Third order success rate.
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Fig. 3: Success rate of correlation power analysis on 4× 4 S-boxes as a function
of the number of attack traces. The standard deviation of the noise equals σ = 2.
The S-boxes have nonlinearity equal to NF = 4 and differential uniformity equal
to δF = 4.
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4 Conclusion

Providing side-channel countermeasures represents a complex task when consid-
ering the IoT. The rationale is that the IoT has extreme constraints in terms
of area and power consumption. In this paper, we investigate lightweight side-
channel countermeasures minimising the implementation costs. More precisely,
we investigate whether the key-enumeration should be considered when design-
ing side-channel attacks resilient S-boxes. Genetic algorithms provide S-boxes
that reduce the success probabilities of side-channel adversaries while keeping
the same power consumption, clock cycles and multiplicative complexity as an
unprotected S-box. The results exhibit that there is no advantage to take into
account the key-enumeration in order to build higher order resilient S-boxes.
In other words, S-boxes minimising the first order success rate, minimise also
a higher order success rate. Consequently, the designers of S-boxes can save
computational power by only focusing on the first order success probability of
physical attacks.

We present new 5 × 5 S-boxes that have optimal cryptographic properties
(nonlinearity equal to 12 and differential uniformity equal to 2) but require a
high level of physical noise in order to be useful when compared to unoptimised
S-boxes. Future work will focus on the generation of 5× 5 S-boxes having good
cryptographic properties as well as being resilient against side-channel attacks
executed in the low noise level contexts. It would be of interest to understand
why the physical noise level impacts the choice of the best S-box. Finally, since
we recognise several classes for 4× 4 size that seem to be favoured by our search
strategy, we plan to conduct additional experiments where we concentrate only
on the S-boxes belonging to those classes.
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S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing ap-
plications - extended abstract. In Wang, X., Sako, K., eds.: Advances in Cryptology
- ASIACRYPT 2012 - 18th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Beijing, China, December 2-6, 2012.
Proceedings. Volume 7658 of Lecture Notes in Computer Science., Springer (2012)
208–225

24. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalcin,
T.: Prøst (2014) CAESAR submission.

25. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In Paillier, P., Verbauwhede, I., eds.: Cryptographic Hardware and Embedded Sys-
tems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13,
2007, Proceedings. Volume 4727 of Lecture Notes in Computer Science., Springer
(2007) 450–466

26. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTAN-
GLE: a bit-slice lightweight block cipher suitable for multiple platforms. SCIENCE
CHINA Information Sciences 58(12) (2015) 1–15



17

27. Shimoyama, T., Yanami, H., Yokoyama, K., Takenaka, M., Itoh, K., Yajima, J.,
Torii, N., Tanaka, H.: The block cipher SC2000. In Matsui, M., ed.: Fast Software
Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April 2-
4, 2001, Revised Papers. Volume 2355 of Lecture Notes in Computer Science.,
Springer (2001) 312–327

28. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1.02 (Sept 2014) CAESAR sub-
mission.

29. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer-
Verlag, Berlin Heidelberg New York, USA (2003)

30. Leander, G., Poschmann, A.: On the Classification of 4 Bit S-Boxes. In Carlet,
C., Sunar, B., eds.: Arithmetic of Finite Fields. Volume 4547 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2007) 159–176

31. Turan, M.S., Peralta, R.: The multiplicative complexity of boolean functions on
four and five variables. In Eisenbarth, T., Öztürk, E., eds.: Lightweight Cryptog-
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A Success rates for 5 × 5 S-boxes

When considering 5×5 size, we observe similar behaviour (having a nonlinearity
equal to NF = 12 and a differential uniformity equal to δF = 2) in which the
standard deviation of the physical noise equals 2 and 4, leading to a signal-to-
noise ratio of 0.32 and 0.08, respectively. Still, 5×5 S-boxes generated by genetic
algorithms (with NF = 12 and δF = 2) provide a higher resiliency against side-
channel adversary (compared to other unoptimised S-boxes) when the leakages
contain a high level of physical noise. In other words, the higher the level of
noise, the higher the resiliency of these optimised 5× 5 S-boxes against physical
attacks. Finally, we observe that optimised 5 × 5 S-boxes (taking into account
only the first order success rate during the generation of the S-boxes) provide
similar success rates to the new optimised S-boxes (taking into account the order
of the success rate during the generation of the S-boxes). In the case of 5× 5 S-
boxes with nonlinearity equal to 10 and differential uniformity equal to 4, we see
that the new optimised S-box reach a lower first order success rate compared to
the previously published 5×5 S-boxes. Still, all the 5×5 S-boxes (with NF = 10
and δF = 4) provide similar results when considering higher-order success rate.



18

0 20 40 60 80 100 120 140 160 180 200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

number of attack traces

su
cc

es
s 

ra
te

Type of the S−box

Unoptimised S−box
Optimised S−box
New Optimised S−box

(a) First order success rate.
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(b) Second order success rate.
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(c) Third order success rate.
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(d) Fourth order success rate.

Fig. 4: Success rate of correlation power analysis on 5× 5 S-boxes as a function of
the number of attack traces. The standard deviation of the noise equals σ = 2.
The S-boxes have nonlinearity equal to NF = 12 and differential uniformity
equal to δF = 2.
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(a) First order success rate.
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(b) Second order success rate.
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(c) Third order success rate.
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(d) Fourth order success rate.

Fig. 5: Success rate of correlation power analysis on 5× 5 S-boxes as a function of
the number of attack traces. The standard deviation of the noise equals σ = 4.
The S-boxes have nonlinearity equal to NF = 12 and differential uniformity
equal to δF = 2.
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(a) First order success rate.
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(b) Second order success rate.
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(c) Third order success rate.
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(d) Fourth order success rate.

Fig. 6: Success rate of correlation power analysis on 5× 5 S-boxes as a function of
the number of attack traces. The standard deviation of the noise equals σ = 2.
The S-boxes have nonlinearity equal to NF = 10 and differential uniformity
equal to δF = 4.
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(a) First order success rate.
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(b) Second order success rate.
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(c) Third order success rate.
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(d) Fourth order success rate.

Fig. 7: Success rate of correlation power analysis on 5× 5 S-boxes as a function of
the number of attack traces. The standard deviation of the noise equals σ = 4.
The S-boxes have nonlinearity equal to NF = 10 and differential uniformity
equal to δF = 4.
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