
Evaluation of Resilience of randomized RNS
implementation

Jérôme Courtois1, Lokman Abbas-Turki2, Jean-Claude Bajard1

1Sorbonne Universités, UPMC, CNRS, LIP6, Paris, France
2 Laboratoire de Probabilités et Modéles Aléatoires, UMR 7599, UPMC

Abstract. Randomized moduli in Residue Number System (RNS) gen-
erate effectively large noise and make quite difficult to attack a secret key
K from only few observations of Hamming distances H = (H0, ..., Hd−1)
that result from the changes on the state variable. Since Hamming dis-
tances have gaussian distribution and most of the statistic tests, like
NIST’s ones, evaluate discrete and uniform distribution, we choose to
use side-channel attacks as a tool in order to evaluate randomisation of
Hamming distances . This paper analyses the resilience against Corre-
lation Power Analysis (CPA), Differential Power Analysis (DPA) when
the cryptographic system is protected against Simple Power Analysis
(SPA) by a Montgomery Powering Ladder (MPL). While both analy-
sis use only information on the current state, DPA Square crosses the
information of all the states. We emphasize that DPA Square performs
better than DPA and CPA and we show that the number of observations
S needed to perform an attack increases with respect to the number of
moduli n. For Elliptic Curves Cryptography (ECC) and using a Monte
Carlo simulation, we conjecture that S = O((2n)!/(n!)2).

Keywords: RNS, moduli randomization, Monte Carlo, ECC, side channel at-
tack, DPA, CPA, DPA Square

1 Introduction

Side channel attacks or faults attacks are among the most effective attacks on all
implementations of cryptographic protocols. As sophisticated as the mathemat-
ical model used can be for proving the robustness, unprotected implementation
could leak out some fundamental information. Among the most usual leakage
exploitations, we find those establishing correlations between leakage consump-
tion or electromagnetic radiation recorded during successive runs with the same
secret. Leaks are recorded mainly due to variations in the level of the memory
points from one to zero in the calculation. The commonly accepted model is
based on the differences of Hamming weight of the successive execution states
usually assumed proportional to power consumption [21]. The attacker makes a
guess on the secret; with respect to the input values and he/she can determine
what could be the state transition of the observed leakages using usually DPA

or CPA [8, 18] or other more recent attacks like second-order DPA [25], template
attacks [9] and Mutual Information Analysis (MIA) [6]. For a survey on the
different attacks and countermeasures, we refer the reader to [11].

The state transitions depend clearly on the data representation which should
be also an assumption made by the attacker. The randomization with respect to
an arithmetic system ensures that the computations involved in the execution use
different representation for the variables from one execution to another, reducing
significantly any prediction on the state transitions for an attacker. We focus in
this paper on RNS representation based on the Chinese Remainder Theorem
where each value is coded by its residues over a set of co-prime numbers which
represents the base of the system.

Beyond the fact that RNS allows natural randomization, the arithmetic is
completely independent from the chosen field. Therefore, the methods presented
in the paper will be suitable for any cryptosystem such as RSA, ECC, Euclidean
Lattice or others. RNS is also adapted to an increase in key sizes induced by
the progress of the cryptanalysis and RNS computations can be efficiently par-
allelized [2]. For further benefits of RNS, we refer to [13].

In [4], the authors introduce a Leak Resistant Arithmetic (LRA) using RNS
with randomization of moduli. The RNS system is very easy to randomize, es-
pecially since there is a great diversity of moduli. Moreover, with Montgomery
multiplication algorithm [26], the Montgomery factor strengthen the random
behaviour. The goal of randomization according to the involved moduli is to
make as unpredictable as possible the secret from the Hamming distance (num-
ber of different bits) between two consecutive states that can be detected in the
consumption or in any other leak. As sketched on Figure 1, we distinguish two
randomness sources given by both the configuration of moduli C and the key K.

Cryptographic
system with RNS

A

Moduli configuration C

AKey K

A

H0

H1

Hd-1

Hamming
Distances

A
A

...

Fig. 1. Hamming distances with respect to randomness sources

H = (H0, ...,Hd−1) are the Hamming distances computed through the ex-
ecution of the Montgomery Power Ladder (MPL) algorithm associated, in our
examples of this paper, to ECC. When the implementation is public and is free of
bugs, it is clear that the random vector H = (H0, ...,Hd−1) is completely mea-
surable with respect to the couple of random variables (K,C). Consequently,
more the noise generated by C is important more the link between K and H
will be difficult to establish. The perfect noise would be the one that mimics an
independence between K and H. Without loss of generality, let us denote in-
formally L(H,K), L(H|K), L(H) and L(K) respectively the probabilistic joint
distribution of (H,K), the conditional distribution of H knowing K and the

2

marginal distribution of H and K. The perfect noise must fulfill

L(H,K) := L(H|K)L(K) = L(H)L(K). (1)

or equivalently L(H|K) = L(H) meaning that K must not provide any infor-
mation on H. Although 1 is impossible to obtain because each Hi as a function
of K and C will always depend on K, it tells us that the independence of the
coordinates of H = (H0, ...,Hd−1) is not necessary to have a perfect noise.

This paper studies the distinguishability between L(H|K) and L(H|K ′)
(K 6= K ′) with respect to the number of moduli n randomized in the RNS
representation, denoted also by RNSn. Nevertheless, because studying L(H|K)
for the whole vector H is computationally barely possible, we develop a strategy
based on few Hamming distances ∼ 10 that provide the most valuable informa-
tion on the key K. Unlike DPA and CPA that use only the marginal information
associated to each step, our conditional strategy combined with DPA Square use
a cross-information based on ∼ 10 Hamming distances. This DPA Square notion
extends naturally the DPA when we assume that H = (H0, ...,Hd−1) has a mul-
tivariate Normal distribution. DPA Square has the monotonicity benefit since
the size S of the sample that makes an attack possible increases with respect to
n. Therefore, our main contribution can be summarized in the following points:

1) We show that the cryptographic system has to be resilient with respect to
cross-information attack and not only attacks that use marginal information.

2) The randomization makes CPA inefficient and we explain why MIA applied
to the randomization fails.

3) The DPA results are inconsistent with the level of randomization and we
show that second-order DPA does not overcome this inconsistency.

4) We present the DPA Square with an asymptotic error which can be used as
a threshold for an attack.

5) Unlike DPA, the size S to perform an attack with DPA Square is monotonous.

The contributions 1) to 5) are general and can be applied for other crypto-
graphic protections. We make the strong assumption that the attacker has access
to the Hamming distances. The noise created by the random moduli would add
to the hardware noise in real applications. Our work studies the impact of moduli
randomization on Hamming distances independent from hardware aspects. We
use 112 bits ECC curve essentially to illustrate the results and conjecture that
S = O((2n)!/(n!)2). The results are quite similar when dealing with Edward
curves of 255 bits [7]. We focus on ECC as it is well suited for the evaluation of
moduli randomization countermeasure because the arithmetic is dominant and
the DPA is efficient. Indeed, all the probability tools like: Total variation, covari-
ance matrix, asymptotic error of Monte Carlo can be reused in the same fashion
for other systems. We point out also that our work is different from [27] where
the authors study protection against memory addressing attack. Indeed, our pa-
per focuses on the resilience of randomization when the system is supposed to
be protected against memory addressing attacks.

3

The rest of this paper is arranged as follows. In Section 2, we briefly describe
the moduli randomization of the RNS representation in the Montgomery algo-
rithm applied for ECC. Section 3 explains the main reasons why a resilience of
a system should rather focus on ∼ 10 successive Hamming distances. Section 4
details our attack based on DPA Square and studies the size S of observations
needed to achieve it.

There is not material implementation in this study because it is not useful
or even counterproductive because we want to know the added noise by the
randomization of moduli.

2 MPL using RNS representation applied to ECC

In Section 2.1, we explain briefly the randomization technic based on RNS rep-
resentaion for Montgomery multiplication. Then, Section 2.2 clarifies the way
the Hamming distances are computed through the successive steps of the MPL.

2.1 Montgomery for RNS modular multiplication

In [26], P. Montgomery introduced an algorithm of modular multiplication to
avoid trial division by large numbers. The RNS version of this algorithm is the
starting point of the randomization used in [1]. We summarize this method with
a presentation that is quite similar to the one in [3].

We denote |a|m = a mod m and J1, nK := {1, ...n}. When a and m are co-
prime, we set |a|−1m := a−1 mod m to be the inverse of a modulo m. Introducing
the RNS basis Bn = {m1, ...,mn} of pairwise coprime moduli, the Chinese Re-
mainder Theorem ensures the existence of a ring isomorphism between ZM and
Zm1

× · · · × Zmn
with M =

∏n
i=1mi. Thus, for any positive integer X strictly

smaller than M

X =

(
n∑
i=1

xi |Mi|−1mi
Mi

)
mod M (2)

with xi := |X|mi
= X mod mi and Mi = M/mi.

Let B̃n = {m̃1, ..., m̃n} be another RNS basis of pairwise coprime moduli
that are also coprime with Bn i.e. mi and m̃j are coprime for each i ∈ J1, nK and

j ∈ J1, nK. For a number X that is strictly smaller than M̃ =
∏n
i=0 m̃i, we use the

notation {x̃1, ..., x̃n} for the decomposition of X on B̃n. Using these notations
as well as the standard definition of the usual RNS operations (addition +RNS ,
multiplication ×RNS , opposite (−X)RNS and the division /RNS explained in
[3]), Algorithm 1 presents the modular multiplication.

4

Algorithm 1 RNSn modular multiplication

Input A residue base Bn = {m1, ...,mn} where M =
∏n

i=0mi

A residue base B̃n = {m̃1, ..., m̃n} where M̃ =
∏n

i=0 m̃i with gcd(M, M̃) = 1

A modulus N expressed in Bn and B̃n with gcd(N,M) = 1, gcd(N, M̃) = 1,

0 < (n+ 2)2N < M and 0 < (n+ 2)2N < M̃

An Integer A expressed in Bn and B̃n

An Integer B expressed in Bn and B̃n with AB < NM
Output An integer R expressed in Bn and B̃n such that R mod N = ABM−1 mod N

Procedure
Q← ((−(A×RNS B))RNS)/RNSN in base Bn

Extension 1 Of Q from Bn to B̃n

R← (A×RNS B +RNS Q×RNS N)/RNSM in base B̃n

Extension 2 of R from B̃n to Bn

end Procedure

Since many modular multiplications are needed in ECC or RSA, one should
consider the Montgomery form of A and B as inputs to Algorithm 1. This trick
allows to circumvent dealing with ABM−1 mod N as an output. We recall that
the Montgomery form of A is given by AM mod N . Once MM̃ mod N is known,
this form can be obtained with Algorithm 1 applied to A and MM̃ mod N
provided that we exchange Bn and B̃n since

A× |MM̃ |N × M̃−1 = AM mod N.

To recover the appropriate expression, we need to perform a final pass in
Algorithm 1 for 1 and (AM)(BM)M−1 mod N that yields to

|(AM)(BM)M−1|N × |1|N ×M−1 = AB mod N.

We point out that precomputing |MM̃ |N instead of |M2|N , as proposed in [3],
is justified by the randomization procedure explained latter in this section.

For extension 1 in Algorithm 1, we use a raw method to prevent heavy
computations due to mixed radix systems [5] . Thus, to extend in base B̃n =
{m̃1, ..., m̃n}, we calculate

q̃j =

∣∣∣∣∣
n∑
i=1

∣∣∣qi ∣∣M−1i ∣∣
mi

∣∣∣
mi

Mi

∣∣∣∣∣
m̃j

for each j ∈ J1, nK (3)

we obtain Q̃ =

n∑
i=1

∣∣∣qi ∣∣M−1i ∣∣
mi

∣∣∣
mi

Mi = Q+ α×M with α ∈ J1, nK (4)

To evaluate α, we use Shenoy-Kumaresan method [28, 3] for extension 2 in Al-
gorithm 1. In contrast to Kawamura Extension [17], Shenoy-Kumaresan allows
a larger choice of moduli it also involves an extra modulo mx since

α =

∣∣∣∣∣∣
∣∣∣M̃−1∣∣∣

mx

(

n∑
j=1

∣∣∣∣x̃j ∣∣∣M̃−1j ∣∣∣
m̃j

M̃j

∣∣∣∣
mx

− |X|mx
)

∣∣∣∣∣∣
mx

. (5)

5

Subsequently, xi = |X|mi
can be computed using

xi =

∣∣∣∣∣∣
n∑
j=1

∣∣∣∣x̃j ∣∣∣M̃−1j ∣∣∣
m̃j

M̃j

∣∣∣∣
m̃j

− |αM |m̃j

∣∣∣∣∣∣
mi

. (6)

The Shenoy-Kumaresan extension requires that N has to fulfill (n+ 2)2N <
M . The latter inequality with AB < NM makes R < (n + 2)N . To obtain
R < 2N at the very end of an ECC, we use mixed radix representation [5].

2.2 Measuring Hamming distances in our implementation

ECC is usually implemented as an asymmetric cryptographic algorithm in par-
ticular for the Integrated Encryption and Decryption Scheme [22, 30]. Alice en-
crypts a text with the public key of Bob. The cyphertext contains a point G of
the elliptic curve. With his private key K, Bob calculates [K]G to decrypt the
cyphertext. ECC is more commonly implemented for the Diffie-Hellman protocol
to exchange key via the network.

Before each ECC execution, we perform a random pick of nmoduli {m1, ...,mn}
among {µ1, .., µ2n} for base Bn and the remaining moduli set the base B̃n. This
random choice is based on a standard drawing without replacement.

To compute [K]G on an elliptic curve and protect against Simple Power
Analysis (SPA)[15], we use the binary version of MPL detailed in Algorithm 2.
First, we compute both the Montgomery Form A0 of G and A1 the double of
A0. Then, if the bit value bi of K is one, A0 is added to A1 memorized in A0

and A1 is doubled. Otherwise, A1 is added to A0 memorized in A1 and A0 is
doubled.

The elliptic curve domain of E(FN) is defined by: A finite field FN with N
a prime number, two elements a and b ∈ FN , an equation E : y2 ≡ x3 + ax +
b mod N , G(xG, yG) a point base of E(FN) and nG is a prime number that is
the order of G on E(FN).

In our implementation, we use the elliptic curves recommended by Certicom
[30] employing Jacobian coordinates that avoid the division and reduce compu-
tations [24, 10, 14]. Each point is defined by three Jacobian coordinates (X;Y ;Z)
with the affine representation (X/Z2;Y/Z3). Although there is no uniqueness of
the Jacobian representation, computing the Hamming distances on (X;Y ;Z)
produce more information than computing them on (X/Z2;Y/Z3).

Associated to the equation E is Y 2 = X3 + aXZ4 + bZ6, (X;−Y ;Z) is the
inverse of (X;Y ;Z) and the infinite point is chosen to be equal to (1; 1; 0). The
addition and doubling operations can be found in [24].

Algorithm 2 shows exactly at which step of MPL we choose to compute the
Hamming distances for ECC in RNS. We remind that M is the product of the
moduli of base Bn.

6

Algorithm 2 Montgomery Powering Ladder for ECC in RNSn

Input A point G = (X;Y ; 1) in Jacobian coordinates written in RNS representation
A key K with a binary representation K = 2d−1b0 + 2d−2b1 + ...+ 2bd−2 + bd−1

Output
A0 = [K]G in Jacobian coordinates
(Hi)i∈{0,..,d−1}, the Hamming distances

Procedure
Choose a random base permutation
A0 = (|XM |N , |YM |N , |M |N), Montgomery form of G
A1 = [2]A0

H0=Hamming Weight of (A0, A1)
for i=1 to d-1 do

A′0 = A0 et A′1 = A1

Abi
= Abi

+Abi

Abi = [2]Abi

Hi = Hamming distance between (A0, A1) and (A′0, A
′
1)

end for
Result A0 = (|X ′M |N , |Y ′M |N , |Z′M |N)) in Montgomery form
Return to the Non-Montgomery form with mixed radix [5]
A0 = (|X ′|N , |Y ′|N , |Z′|N)

end Procedure

3 A conditional attack strategy and limitations of CPA,
DPA, second-order DPA and MIA

Since Hamming distances have gaussian distribution (see figure 3 b) and most
of the statistic tests, like NIST’s ones [31], evaluate discrete and uniform dis-
tribution, we choose to use side-channel attacks as a tool in order to evaluate
randomisation of Hamming distances.

The randomization of moduli generates effectively noisy data. Because of
the lack of structure in Hamming distances, it is quite difficult for an attacker
to develop a denoising procedure. Consequently, an attack should target the
Hamming distances that provide the most exploitable information on the secret
key K. When the latter fact is studied in Section 3.1, Section 3.2 shows that
CPA is impossible to use and the size S of observations to achieve a DPA attack
is not monotonous with respect to the number of moduli. Section 3.3 discusses
the adaptation of more recent attacks to RNS randomization.

From now on, we denote S the size of simulations.

3.1 Sufficient information and conditional attack

The following three properties of Hamming distances are presented:

α) For fixed choice of moduli, the first Hamming distances are the one that
provide the strongest information (dependence) on the secret K.

7

β) For fixed choice of moduli, the correlation between Hamming distances de-
creases significantly with respect to the lag that separates each couple.

γ) Under randomization of moduli, each Hamming distance Hi has a normal
distribution. This remark shall not make completely absurd the assumption
that the whole vector H is Gaussian.

These are important properties as they allow to put in place an efficient attack
based on the first few Hamming distances. Once the first few bits associated
to the first Hamming distances are known, we attack only few following bits
conditionally on the fact that we found the first and so on till we find the whole
secret K.

As for property α), at each step i of MPL detailed in Algorithm 2, we study
the dependence between the random variables K and Hi that take respectively
their values on integers in [0, 2p[and [min(Hi),max(Hi)] (Maximum/minimum
taken on the realizations of these bounded random variables). In order to reduce
the complexity of computations and increase the Monte Carlo accuracy, we use
appropriate subdivisions (appropriate parameters p′, q and λ) of:

a) [0, 2p[=

2p
′
−1⋃

k=0

Ik =

2p
′
−1⋃

k=0

[k2p−p
′
, (k + 1)2p−p

′
[, (p′ < p)

and

b) [min(Hi),max(Hi)] =

q−1⋃
j=0

Hij

with

Hi0 = [min(Hi),min(Hi) + λ[,Hiq−1 = [max(Hi)− λ,max(Hi)],

Hij = [min(Hi) + λ+ jε,min(Hi) + λ+ (j + 1)ε[

for

j = 1, . . . q − 2 where ε =
max(Hi)−min(Hi)− 2λ

q − 2

and the choice of λ is closely linked to the mean and the standard deviation of Hi

which has a Gaussian distribution. The accuracy of Monte Carlo was quantified
thanks to the 95% confidence interval; with 95% chance we have at most a 10%
relative error.

As introduced informally in (1), the dependence is quantified through the dis-
tance between the probability of the product P

(
Hi ∈ Hij ,K ∈ Ik

)
= P (K ∈ Ik)

P
(
Hi ∈ Hij |K ∈ Ik

)
and the the product of probabilities P

(
Hi ∈ Hij

)
P (K ∈ Ik).

For the subdivisions a) and b), we compute this distance using the Total Varia-
tion to Independence (TVI) [20] given by

TVIi =
1

2

2p
′
−1∑

k=0

q−1∑
j=0

P (K ∈ Ik)
∣∣∣P (Hi ∈ Hi

j

)
− P

(
Hi ∈ Hi

j |K ∈ Ik
)∣∣∣ (7)

8

The value of P (K ∈ Ik) is known since we draw uniformly an integer value on
[0, 2p[. However, the value P

(
Hi ∈ Hij |K ∈ Ik

)
, and subsequently P

(
Hi ∈ Hij

)
,

is approximated using Monte Carlo simulation. For more mathematical details
on Monte Carlo simulation we refer the reader to [16].

In Figure 2, we calculate TVIi for each step in MPL either for a fixed choice of
moduli or when they are randomized. Consequently, when the moduli configura-
tion is fixed we draw only independent keys {Kl}1≤l≤S and when the moduli are
randomized we draw independent couples {(Kl, Cl)}1≤l≤S of keys and moduli
configurations. The Monte Carlo approximation is then given either by

P
(
Hi ∈ Hij ,K ∈ Ik

)
≈ 1

S

S∑
l=1

1{Hi(Kl)∈Hi
j

⋂
Kl∈Ik}.

or by

P
(
Hi ∈ Hij ,K ∈ Ik

)
≈ 1

S

S∑
l=1

1{Hi(Kl,Cl)∈Hi
j

⋂
Kl∈Ik}.

We simulate with S = 8×106 or S = 106 in order to have a sufficiently accurate
results to compute TVI. We use the random number generator proposed in [19]
that is appropriate computationally and statistically for Monte Carlo simulation.

Fig. 2. Total variation as a function of the calculation step.

According to Figure 2, randomizing moduli reduces effectively TVI for all
Hamming distances. Also, according to Figure 2 when conditioning on the choice
of moduli, we see clearly that TVI almost vanishes for Hamming distances of
a rank bigger than 10 which confirms property α). This observation can be
explained by the fact that the first ∼ 10 Hamming distances depend strongly on
the first ∼ 10 bits of the key. Because a large choice of combinations of bits can
produce the same value on each {Hi}i>10, the dependence between {Hi}i>10

and the key is reduced significantly.

9

Regarding property β), we approximate the covariance of each couple of
Hamming distances with a Monte Carlo simulation on keys for a fixed choice of
moduli

Cov(Hi, Hj) ≈
1

S

S∑
l=1

Hi(K
l)Hj(K

l)− 1

S

S∑
l=1

Hi(K
l)

1

S

S∑
k=1

Hj(K
k).

We get the results presented in Figure 3 (a) for the covariance H1, H4, H8

and H10 with the other Hamming distances. In Figure 3 (a), the fact that
|Cov(Hi, Hi±l)|l≥0 decreases with respect to the lag l is due to the gap in bits
that separates Hi and Hi±l.

It is property γ) that makes the covariance very important. Indeed, in a mul-
tivariate Gaussian vector, each two coordinates are independent if and only if
their covariance is equal to zero. When it is not obvious to show numerically
the multivariate Normal distribution, a chi Square test does not disapprove the
Gaussian distribution of each Hamming distance Hi when moduli are random-
ized. We also present in Figure 3 (b) a histogram associated to H10 that shows a
bell-shaped distribution. For more mathematical details on multivariate Normal
distribution, we refer the reader to [16].

Fig. 3. (a) RNS10, Cov(Hj , Hi)j=1,4,8,10. (b) Frequency of H10, 2e6 computations.

3.2 Unreliable CPA and inconsistent DPA

The essential result of Section 3.1 is that an effective attack should be based
on the first ∼ 10 computation steps. Once the bits associated to some of these
steps are known, one should fix them to continue an attack with the following
∼ 10 computation steps and so on. This conditional strategy (conditioning on
the bits found) not only uses the marginal information of each step but must
use the cross-information of the ∼ 10 successive steps. Indeed, according to
Figure 2, the first ∼ 5 Hamming distances have almost the same strength of

10

dependence on the secret key K and we waste information if we use only the
marginal distributions.

Unfortunately, CPA and DPA attacks are not conceived to take advantage
of this cross-information. Although CPA and DPA are attacks on power con-
sumption, we apply them directly on Hamming distances. We focus rather on
the pure software information without hardware noise which can be justified
by leakage models presented in [21] between the power consumption and the
Hamming distances.

A CPA attack on Hamming distances is based on the correlation that exists
at step i between observations Hi(K,C

l) on the real key K and simulations
Hi(K

′, Cl+S) on the guessed one K ′ which yields

ξi =

1

S

S∑
l=1

[
Hi(K,C

l)−Hi(K,C)
] [
Hi(K

′, Cl+S)−Hi(K
′, C)

]
√√√√ 1

S

S∑
l1=1

[
Hi(K,C

l1)−Hi(K,C)
]2 1

S

S∑
l2=1

[
Hi(K

′, Cl2+S)−Hi(K
′, C)

]2 (8)

where

Hi(K,C) =
1

S

S∑
j=1

Hi(K,C
j) and Hi(K

′, C) =
1

S

S∑
k=1

Hi(K
′, Ck+S). (9)

The lag +S is not usual in the expression (8) of ξi, but it is natural since the
moduli configurations {Cl}1≤l≤S used by the system attacked is supposed to be
independent from the moduli configuration {Cl}S+1≤l≤2S used by the attacker.
The independence of the sequence {Cl}1≤l≤2S makes the use of CPA completely
irrelevant as shown in Figure 4. We use 0xdeeefbf7 as the key under attack and
0xffffffff is used as a distinguisher.

Fig. 4. RNS5, Correlation between 0×ffffffff and 0×deeefbf7, 50000 and 100000
samples. Nothing appears at bit 2 and the correlations are too small.

Regarding the DPA based on Hamming distances, its value is given at each
step i by

11

DPAi = Hi(K,C)−Hi(K
′, C), (10)

where Hi(K,C) and Hi(K
′, C) are defined in (9). Unlike for CPA attack, the

lag +S involved in the expression of DPAi is less disturbing because, by the
law of large numbers, 1

S

∑S
k=1Hi(K

′, Ck+S) and 1
S

∑S
k=1Hi(K

′, Ck) converge
to the same value as S →∞. As a consequence, although not perfect, the DPA
can be used for an attack when S is big enough. The fact that we do not know
how big S must be (except doing very coarse domination) makes DPA difficult
to use. Indeed, as shown in Figure 5, sometimes we even need a bigger S for an
RNS with less randomized moduli!

Fig. 5. RNS6 and RNS7: DPA between 0 × ffffffff and 0 × deeefbf7 with re-
spectively 1000000 and 90000 samples. A jump appears for the bit 2 for RNS7 as we
expected but the jump is not obvious for RNS6 and we needed more samples to have
this little jump

3.3 Further attacks: Second order DPA, MIA and template attack

Like in Section 3.2, we focus only on the pure software information given by
Hamming distances. Generally DPA, MIA and template attack are used when
the leakage information is observed with a hardware noise. In our pure software
study, the noise is due to the RNS randomization that reduces the dependence
between the secret K and Hamming distances.

We make a simulation of second order DPA (2ODPA) as follow:

2ODPA0 = DPA0 (11)

2ODPAi = DPAi+1 −DPAi if i > 0 (12)

12

Fig. 6. RNS6: Second order DPA between 0×ffffffff and 0×deeefbf7 with 1000000
samples.

According to Figure 6, we see that the second order DPA on Hamming dis-
tances does not improve the results of DPA presented in Figure 5 (left part).
This can be explained by the absence of a heterogeneity in the code between
two steps of computations and thus between two successive Hamming distances.
Moreover, the second order DPA defined in [25] (Proposition 2) involves marginal
information since it averages on the realizations of one random variable defined
as the difference between the power consumptions of two successive steps.

Applying template attack [9] on Hamming distances should provide better
results than DPA. Indeed, template attack is based on a maximum likelihood
approach with a learning phase. The performance of this method is however
limited by equation (2) of [9] related, in our context, to

∑p
i=0 |DPAi| with DPAi

expressed in (10). As a future work, we would like to compare DPA Square with
template attack on RNS randomized systems.

Regarding MIA [6] applied to Hamming distances, we saw clearly in Fig-
ure 2 that the TVI is almost equal to zero when we perform randomization.
Consequently, it is computationally very complex to develop an attack based
on the mutual information for RNS randomized systems. MIA implementation
involves the approximation of the logarithm of a probability which is much more
computationally involving than the probability itself.

4 A conditional attack strategy with DPA Square,

Thanks to the marginal Gaussian behaviour of Hamming distances announced
in property γ) of Section 3.1, it is not absurd to assume that the vector H
of Hamming distances has a multivariate Normal distribution. With the latter
assumption, H is completely specified by its mean vector and its covariance
matrix. Section 4.1 presents the mathematical tools for DPA Square and Section
4.2 provides. the numerical results.

Since the attack is performed by parts using ∼ 10 successive Hamming dis-
tances, without a loss of generality, we will denote them by (H0, ...,Hd−1). Con-

13

sequently, from now on, H0 and Hd−1 designate respectively the first and the
last Hamming distance involved in each part of the attack.

4.1 Theoretical basis of DPA Square

When the DPA is an attack on the mean vector of H, the DPA Square is an
attack on its covariance matrix. The DPA Square has then a big advantage on
the DPA because it uses the cross-information given by the different Hamming
distances. We have chosen the name DPA Square instead of second-order DPA
since the latter was already used for another DPA concept in [25]. The second-
order DPA uses differences of differences of Hamming distances whereas the DPA
square uses the difference of elements of the covariance matrix.

Unlike the DPA, which is unpredictable (see figure 5), the number of samples
to succeed the DPA square is increasing with respect to the number of moduli
as we can see on figure 9. Among the original contributions of this paper is the
asymptotic quantification of the number of observations needed for an attack.
This contribution was possible thanks to DPA square in contrast to DPA which
is much less conclusive.

Assume H = (H0, ...,Hd−1) Gaussian, its mean value is E(H) and let σ2(Hi)
be the variance of each coordinate. For a fixed key K, studying the covari-
ance matrix of H(K) is equivalent to study the covariance matrix of Y (K) =

(Y0(K), ..., Yd−1(K)) with Yi(K) = Hi(K)−E(Hi(K))
σ(Hi(K)) which will be denoted by

ΓK = E (tY (K)Y (K)) which provides

ΓK =


var(Y0(K)) cov(Y0(K), Y1(K)) . . . cov(Y0(K), Yd−1(K))

cov(Y1(K), Y0(K)) var(Y1(K)) . . . cov(Y1(K), Yd−1(K))
...

...
. . .

...
cov(Yd−1(K), Y0(K)) cov(Yd−1(K), Y1(K)) . . . var(Yd−1(K))


Using a sample of size S, ΓK is approximated by Γ̃K and we compute Γ̃K

′

associated to a guessed key K ′

Γ̃K =
1

S

S∑
j=1

tY (K,Cj)Y (K,Cj), Γ̃K
′

=
1

S

S∑
j=1

tY (K ′, Cj+S)Y (K ′, Cj+S)

then compute the distance using Frobenius norm ‖ · ‖.
Thanks to the Central Limit Theorem, we can assume that Γ̃K = ΓK + δK

and Γ̃K
′

= ΓK
′

+ δK
′

where
√
SδK and

√
SδK

′
are asymptotically matrices of

centred Gaussian variables with a variances smaller or equal to 1. We define then
the DPA Square

DPA2 = 2‖Γ̃K − Γ̃K
′
‖2. (13)

14

Because

‖Γ̃K − Γ̃K
′
‖2 =

∑
0≤i,j≤d−1

(ki,j − k′i,j + δi,j − δ′i,j)2

≤ 2
∑

0≤i,j≤d−1

(ki,j − k′i,j)2 + (δi,j − δ′i,j)2

and
√
S(δi,j−δ′i,j) has asymptotically a normal distribution Gi,j with a variance

smaller or equal to 2 thus

E
[
‖Γ̃K − Γ̃K

′
‖2
]
≤ 2

∑
0≤i,j≤d−1

(ki,j − k′i,j)2 + 2E

 ∑
0≤i,j≤d−1

(

√
2√
S
Gi,j)

2


≤ 2

∑
0≤i,j≤d−1

(ki,j − k′i,j)2 +
4

S

∑
0≤i,j≤d−1

E
[
G2
i,j

]

E
[
‖Γ̃K − Γ̃K

′
‖2
]
≤ 2

∑
0≤i,j≤d−1

(ki,j − k′i,j)2 +
4d2

S
= 2‖ΓK − ΓK

′
‖2 +

4d2

S
.

(14)

This latter expression tells that one has to use S big enough to do an attack

and decrease the asymptotic error term 4d2

S when compared to 2‖ΓK − ΓK′‖2.

4.2 Numerical results of DPA Square

In order to have an efficient attack based on DPA Square, 2‖ΓK − ΓK′‖2 has

to be bigger than 4d2

S . Because we do not know the value of 2‖ΓK − ΓK′‖2, we

replace it in our attacks by DPA2 = 2‖Γ̃K − Γ̃K′‖2.

As showed in the following figures, attacking our RNS5 requires S ≥ 4000 to
have a jump of DPA2 above the estimated error (using two independent Monte

Carlo) and the asymptotic one 4d2

S . These figures show an attack on the key
0xdeeefbf7 with the bit 2, 7, 11, 15, 21 and 28 at zero.

15

Fig. 7. DPA2 in RNS5 on ECC112 with S = 4000: Each new jump over 4d2

S
gives the

index of the bit that is equal to zero.

Regarding RNS10, we needed S ≥ 2500000 to do our attack illustrated for
two bits in Figure 8.

Fig. 8. DPA2 in RNS10 on ECC112 with S = 2500000: Each new jump over 4d2

S
gives

the index of the bit that is equal to zero.

Figure 9 shows the evolution in average of the required number of observa-
tions S to perform an attack. It is quite remarkable to see that S should be of
the order of (2n)!/(n!)2 which represents the number of combinations in a an
RNSn.

16

Fig. 9. Attack with DPA2: Size of observations S to attack the first 10 bits of 0xdeeefbf7
with respects to the number of moduli

Finally we show some results of DPA Square implementation on Edward
curve 25519 in Figure 10.

Fig. 10. DPA2 in RNS9 on ECC Edward 25519 of 255 bits with S = 750000: Each

new jump over 4d2

S
gives the index of the bit that is equal to zero.

17

5 Conclusion and future work

In this work, we presented the notion of DPA Square that takes advantage of the
cross-information in the Hamming distances. This provides an efficient attack
even for cryptographic systems protected by RNS randomization. We showed
however that this efficiency decreases as the number of needed observations is of
the order of (2n)!/(n!)2.

We have started testing further the RNS randomization, especially we would
like to provide t-test [12, 29] results in a future work. We are also projecting to
implement template attack [9] on RNS randomization and compare it with DPA
Square.

References

1. J.A. Ambrose, H. Pettenghi and L. Sousa, “DARNS:A randomized multi-modulo
RNS architecture for double-and-add in ECC to prevent power analysis side channel
attacks”, Asia and South Pacific Design Automation Conference, pp. 620–625, 2013.

2. S. Antao, J.C. Bajard and L. Sousa, “RNS-Based Elliptic Curve Point Multiplication
for Massive Parallel Architectures”, The Comput. J. Oxford J., vol. 55(5), pp. 629–
647, 2011.

3. J.C. Bajard, L.S. Didier and P. Kornerup, “Modular Multiplication and Base Ex-
tensions in Residue Number Systems”, IEEE symposium on computer arithmetic,
pp. 59–65, 2001.

4. J.C. Bajard, L. Imbert, P.Y. Liardet, Y. Teglia, “Leak Resistant Arithmetic”, Cryp-
tographic Hardware and Embedded Systems, Springer LNCS vol. 3156, pp. 62–75,
2004.

5. J.C. Bajard and T. Plantard, RNS bases and conversions. LIRMM UMR 5506,
University of Montpellier 2, France.

6. L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.X. Standaert and N. Veyrat-
Charvillon, “Mutual Information Analysis: a Comprehensive Study”, J. Cryptol.
24, pp. 269–291, 2011.

7. D.J. Bernstein, T. Lange, ”Faster addition and doubling on elliptic curves” in:
Asiacrypt 2007 vol. 19, pp. 29–50, 2007.

8. E. Brier, C. Clavier and F. Olivier, “Correlation Power Analysis with a Leakage
Model”, Cryptographic Hardware and Embedded Systems, Springer LNCS vol.
3156, pp. 16–29, 2004.

9. S. Chari, J. R. Rao and P. Rohatgi, “Template Attacks”, Cryptographic Hardware
and Embedded Systems, Springer LNCS vol. 2523, pp. 13–28, 2003.

10. H. Cohen and G. Frey, Handbook of Elliptic and Hyperelliptic Cryptography. Chap-
man & Hall, 2006.

11. J. Fan, I. Verbauwhede, “An Updated Survey on Secure ECC Implementations:
Attacks, Countermeasures and Cost”, in: Naccache, D. (ed.) Quisquater Festschrift,
Springer LNCS vol. 6805, pp. 265–282, 2012.

12. G. Goodwill, B. Jun, J. Jaffe and P. Rohatgi, A testing methodology
for side channel resistance validation. In NIST non-invasive attack test-
ing workshop, 2011. http://csrc.nist.gov/news events/non-invasive-attack-testing-
workshop/papers/08 Goodwill.pdf .

13. N. Guillermin, Implémentation matérielle de coprocesseurs haute performance pour
la cryptographie asymétrique. PhD thesis, Université Rennes 1, 2012.

18

14. D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography.
Springer, 2004

15. T. Izu and T. Takagi, “A fast parallel elliptic curve multiplication resisitant
against side channel attacls”, International Workshop on Public Key Cryptogra-
phy, Springer LNCS vol. 2274, pp. 280–296, 2002.

16. J. Jacod and P. Protter, Probability Essentials, second edition, Springer-Verlag,
2003.

17. H. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-Rower Architecture for
Fast Parallel Montgomery Multiplications”, EUROCRYPT, pp. 523–538, 2000.

18. P. Kocher, J. Jaffe, B. Jun and P. Rohatgi, “Introduction to differential power
analysis”, J. Cryptogr Eng, 1, pp. 5–27, 2011.

19. P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton, “An Objected-Oriented
Random-Number Package with Many Long Streams and Substreams”, Operations
Research, vol. 50(6), pp. 1073–1075, 2002.

20. D.A.Levin, Y. Peres and E. L. Wilmer, “Markov Chains and Mixing Times”, Amer-
ican Mathematical Soc. ISBN 9780821886274

21. S. Mangard, E. Oswald and T. Popp, Power Analysis Attacks, Springer, 2007.
22. G. Mart́ınez, H. Encinas, S. Ávila: A Survey of the Elliptic Curve Integrated En-

cryption Scheme, JCSE, 2, 2 (2010), 7-13.
23. M. Medwed and C. Herbst, “Randomizing the Montgomery Multiplication to Repel

Template Attacks on Multiplicative Masking”, in COSADE, 2010.
24. N. Meloni, “New Point Addition Formulae for ECC Applications”, International

Workshop on the Arithmetic of Finite Fields, vol. 4547, pp. 189–201, 2007.
25. T.S. Messerges, “Using second-order power analysis to attack DPA resistant soft-

ware”, Cryptographic Hardware and Embedded Systems, Springer LNCS vol. 1965,
pp. 238–251, 2000.

26. P. Montgomery, “Modular multiplication without trial division”, Mathematics of
Computation , vol. 44(170), pp. 519–521, 1985.

27. G. Perin, L. Imbert, L. Torres and P. Maurine, “Attacking Randomized Exponen-
tiations Using Unsupervised Learning”, COSADE, Springer LNCS vol. 4547, pp.
144–160, 2014.

28. A.P . Shenoy and R. Kumaresan, “Fast base extension using a redundant modulus
in RNS”, IEEE Transactions on Computer, vol. 38(2), pp. 292–296, 1989.

29. T. Schneider and A. Moradi, “Leakage assessment methodology”, J. Cryptographic
Engineering, vol. 6(2), pp. 85–99, 2016.

30. September 20, 2000 Version 1.0 and 2.0: STANDARDS FOR EFFICIENT CRYP-
TOGRAPHY Recommended Elliptic Curve Domain Parameters, Certicom Re-
search.

31. NIST Special Publication 800-22rev1a (dated April 2010), A Statistical Test Suite
for the Validation of Random Number Generators and Pseudo Random Number
Generators for Cryptographic Applications

19

