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Abstract. We construct a mathematical group in which an interactive
variant of the very general Uber assumption holds. Our construction
uses probabilistic indistinguishability obfuscation, fully homomorphic
encryption, and a pairing-friendly group in which a mild and standard
computational assumption holds. While our construction is not practical,
it constitutes a feasibility result that shows that under a strong but generic,
and a mild assumption, groups exist in which very general computational
assumptions hold. We believe that this grants additional credibility to
the Uber assumption.
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1 Introduction

Cyclic groups in cryptography Cyclic groups (such as subgroups of the
multiplicative group of a finite field, or certain elliptic curves) are a popular
mathematical building block in cryptography. Countless cryptographic construc-
tions are formulated in a cyclic group setting. Usually these constructions are
accompanied by a security reduction that transforms any adversarial algorithm
that breaks the scheme into an algorithm that solves a computational problem
in that group. Among the more popular computational problems are the (com-
putational or decisional) Diffie-Hellman problem [26], or the discrete logarithm
problem.

The currently known security reductions of several relevant cryptographic
schemes require somewhat more exotic computational assumptions, however. For
instance, the security of the Digital Signature Algorithm is only proven in a
generic model of computation [14] (see also [15]). Moreover, the semi-adaptive
(i.e., IND-CCA1) security of the ElGamal encryption scheme requires a “one-
more type” assumption [34]. The currently most efficient structure-preserving
signature schemes require complex interactive assumptions [1, 2]. Finally, some
proofs (e.g., [24, 32, 5, 25]) even require “knowledge assumptions” that essentially
state that the only way to generate new group elements is as linear combinations
of given group elements (with extractable coefficients).

While more exotic assumptions can thus be very helpful for constructing cryp-
tographic schemes, their use also has a downside: reductions to more exotic (and
less investigated) assumptions tend to lower our confidence in the corresponding
scheme. (See [12] and [33] for two very different views on this matter.)
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The Uber-assumption family An example of a somewhat exotic but very gen-
eral and strong class of computational assumptions in a cyclic group setting is the
“Uber” assumption family ([9], see also [12]). Essentially, this assumption states
that no efficient adversary A can win the following guessing game significantly
better than with probability 1/2. The game is formulated in a group G = 〈g〉 of
order q, and is parameterized over polynomials P1, . . . , Pl, P

∗ ∈ Zq[X1, . . . , Xm].
Initially, the game chooses secret exponents s1, . . . , sm ∈ Zq uniformly, and hands
A the group elements gPi(s1,...,sm), and a challenge element Z ∈ G with either
Z = gP

∗(s1,...,sm) or independently random Z. Given these elements, A has to
guess if Z is random or not.1

Depending on the numberm of variables, and the concrete polynomials Pi and
P ∗, the Uber assumption generalizes many popular existing assumptions, such as
the Decisional Diffie-Hellman assumption, the k-Linear family of assumptions, and
so-called “q-type assumptions”. However, it is a priori not at all clear how plausible
such general assumptions are. In fact, there are indications that, e.g., q-type
assumptions are indeed easier to break than, say, the discrete log assumption [22].

Fortunately, a number of cryptographic constructions that rely on q-type
assumptions can be transported into composite-order groups, with the advantage
that now their security holds under a simpler, subgroup indistinguishability
assumption [21, 20]. However, this change of groups will not work for every
cryptographic construction, and currently we only know how to perform this
technique for a subclass of q-type assumptions.

Our contribution In this work, we shed new light on the plausibility of Uber-
style assumptions. Concretely, we construct a group in which an interactive
variant of Uber-style assumptions (in which the adversary may choose the Pi
and P ∗ adaptively) holds. We believe that this lends additional credibility to the
Uber assumption itself, and also strengthens plausibility results obtained from
the Uber assumption (see [12] for an overview).

Our construction assumes subexponentially secure indistinguishability obfus-
cation (iO, a very strong but generic assumption), a perfectly correct additively
homomorphic encryption scheme for addition modulo a given prime, and a
pairing-friendly group in which a standard assumption (SXDH, the symmetric
external Diffie-Hellman assumption) holds. We stress that we consider our result
as a feasibility result. Indeed, due to the use of indistinguishability obfuscation,
our construction is far from practical. Still, our result shows that even interac-
tive generalizations of the Uber assumption family are no less plausible than
indistinguishability obfuscation (plus a standard assumption in cyclic groups and
additively homomorphic encryption).

Before describing our results in more detail, we remark that the group we
construct actually has non-unique element encodings (much like in a “graded
encoding scheme” [27], only without any notion of multilinear map). It is hence
possible to compare and operate with group elements, but it is not directly
1 Owing to the original application, the Uber assumption family was formulated in [9]
in a setting with a pairing-friendly group, with a final challenge in the target group.
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possible to use, e.g., the encoding of group elements to hide an encrypted
message. (In particular, it is not immediately possible to implement, say, the
ElGamal encryption scheme with our group as there is no obvious way to decrypt
ciphertexts. Signature schemes, however, do not require unique encodings of
group elements and can hence be implemented using our group.) Furthermore,
due to technical reasons our construction requires the maximum degree of the
adversarially chosen polynomials to be bounded a priori.

Related work Pass et al. [37] introduce semantically secure multilinear (and
graded) encoding schemes (of groups). A semantically secure encoding scheme
guarantees security of a class of algebraic decisional assumptions. On a high level,
the security property requires that encodings are computationally indistinguish-
able whenever there is no way to distinguish the corresponding elements using
only generic operations. The generic multilinear encoding model implies semantic
security of a multilinear encoding scheme. Furthermore, Pass et al. show that
many existing iO candidates [28, 13, 4] that are proven secure in the generic mul-
tilinear encoding model can also be proven secure assuming semantically secure
encoding schemes. Hence, this result relaxes the necessary assumptions to prove
the security of certain iO constructions. Bitansky et al. [7] slightly strengthen the
security property of encoding schemes formulated in [37]. Assuming the resulting
security property allows to prove that existing obfuscation candidates [4] provide
virtual grey-box security2.

In [3] Albrecht et al. construct a group scheme providing a multilinear map
from iO. This result complements earlier results that construct iO from multilinear
maps [28, 40]. The notion of encoding schemes used in [3] is a direct adaption of
the “cryptographic” multilinear group setting from [10]. In contrast to [37, 7], the
encoding scheme of Albrecht et al. provides an extraction algorithm producing a
unique string for all encodings that are equal with respect to the equality relation
of the scheme. Furthermore, [3] requires a publicly available sampling algorithm
that produces encodings for given exponents. Hence, the encoding scheme of [3]
grants adversaries slightly more power.

In this paper we use a similar notion of encoding schemes as in [3]. Furthermore,
[37, 7] define the security property for encoding schemes implicitly. We, in contrast,
consider a concrete strong interactive hardness assumption that holds in our
encoding scheme.

Technical approach The assumption we consider is defined similarly to the
Uber assumption above, only with an interactive and adaptive choice of arbitrary
(multivariate) polynomials Pi, P ∗ over Zq, where q is the order of the group.
That is, there is a secret point s := (s1, . . . , sm) ∈ Zmq , and A may freely and

2 An obfuscator O satisfies virtual grey-box security for a class of circuits C if for any
circuit C ∈ C, a PPT adversary given O(C) can not compute significally more about
C than a simulator given unbounded computational resources and polynomially many
queries to the circuit C.
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adaptively choose the Pi and P ∗ during the course of the security game. To avoid
trivialities, we require that P ∗ does not lie in the linear span of the polynomials
Pi. We call this assumption the Interactive Uber assumption. For convenience
only, we will describe our approach assuming only univariate polynomials in the
Interactive Uber assumption. However, we will see that similar techniques yield
security even for multivariate polynomials.

Our starting point is a recent work by Albrecht et al. [3], which constructs a
group with a multilinear map from (probabilistic) iO, an additively homomorphic
encryption scheme, a dual mode NIZK proof system, and a group G in which (a
variant of) the Strong Diffie-Hellman assumption [8] holds. For our purposes, we
are not interested in obtaining a multilinear map, however, and we would also like
to avoid relying on a strong (i.e., q-type) assumption to begin with. Moreover, [3]
only proves relatively mild computational assumptions in the constructed group.

In a nutshell, a group element in the construction of [3] has the form

(gz, C = Enc(z), π), (1)

where z ∈ Z is the discrete logarithm of that group element, g ∈ G is a generator
of the used existing group G, Enc is the encryption algorithm of an additively
homomorphic encryption scheme, and π is a non-interactive zero-knowledge proof
of consistency. Concretely, π proves that C encrypts the discrete logarithm z
of gz, or that C encrypts a polynomial f with f(w) = z, for a fixed value w
committed to in the public parameters.

In their security analysis, Albrecht et al. [3] crucially use a “switching lemma”
that states that different encodings (gz,Enc(z), π) and (gf(w),Enc(f), π′) are
computationally indistinguishable whenever f(w) = z. This allows to switch
to, and argue about encodings with higher-degree f . Note, however, that any
such encoding must also carry a valid gz = gf(w). Hence, changing the values
z = f(w) in such encodings with higher-degree f (as is often required to prove
security) would seem to already necessitate Uber-style assumptions. Indeed,
Albrecht et al. require a variant of the Strong Diffie-Hellman assumption, a
q-type assumption.

Group elements in our group To avoid making Uber-style assumptions in
the first place, we simply omit the initial gz value in encodings of group elements,
and modify the consistency proof from Eq. (1). That is, group elements in our
group are of the form

(C = Enc(z), π), (2)
where Enc is the encryption algorithm of an additively homomorphic encryption
scheme, and π is a proof of knowledge of some (potentially constant) polynomial
f ′ with f ′(w) = z or f ′(w) = f(w) (in case C encrypts a polynomial f). The
value w is some point in Zq that is fixed, but hidden, in the public parameters
of our group, where q is the group order. The proof of knowledge is realized
through an additional encryption C ′ that contains the polynomial f ′. Hence,
group elements are actually of the form

(C = Enc(z), C ′ = Enc(f ′), π). (3)
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In a nutshell, such an encoding implicitly represents the group element gf(w) =
gf
′(w), where f and f ′ are the polynomials defined by C and C ′ respectively. For

clarity, we sometimes omit the component C ′ in this overview.
More precisely, C and C ′ contain representation vectors #»

f and
#»

f ′ of the
polynomials f and f ′ with respect to a basis {a1, . . ., ad} of Zdq . That is, given a
vector #»

f that is encrypted in C, the coefficients of the corresponding polynomial
f are defined as follows

(a1 | . . . | ad)−1 · #»

f (4)

using the homomorphic mapping between polynomials over Zq and vectors in
Zdq . This basis is not public, but committed to in the public parameters. The
reason for using a hidden basis is that we need to deal with adaptive queries. We
postpone the details to a subsequent paragraph. In this overview, however, we
will pretend the ciphertexts C and C ′ contain mere polynomials.

Intuitively, the crux of the matter for the proof of security will be to remove
the dependency on the point w. This changes the group structure to be isomorphic
to Zdq which makes it possible to argue with linear algebra.

A public sampling algorithm allows to produce arbitrary encodings of group
elements. Given an exponent z, the sampling algorithm produces the ciphertexts C
and C ′ using the constant polynomials f := f ′ := z and produces the consistency
proof accordingly. We remark that our group allows for re-randomization of
encodings assuming some natural additional properties of the homomorphic
encryption scheme.

The group operation is performed in a similar way to [3]. Namely, suppose
we want to add two encodings (Enc(f1), π1) and (Enc(f2), π2). The resulting
(Enc(f3), π3) should satisfy f3 = f1 +f2 as abstract polynomials. Hence, Enc(f3)
can be computed homomorphically from Enc(f1) and Enc(f2). To compute the
proof π3, however, we require an obfuscated circuit CAdd that extracts f1, f2, and
generates a fresh proof using the knowledge of f3 = f1 + f2 as witness. Thus,
the implementation of CAdd needs to know both decryption keys for C and C ′.
(The details are somewhat technical and similar to [3], so we omit them in this
overview.) We prove that it is possible to implement a circuit C ′′Add that has almost
the same functionality as CAdd but produces a simulated proof of consistency
that is identically distributed to a real one. Hence, the implementation of C ′′Add
does not need to know the decryption keys. Therefore, exploiting the security of
the used obfuscator, we are able to unnoticeably replace the obfuscation of CAdd
with an obfuscation of C ′′Add.

We note that our modification to omit the entry gz from the encodings in
Eq. (1) makes it nontrivial to decide whether two given encodings represent
the same group element, or, equivalently, to decide whether a given encoding
represents the identity element of the group. Recall that an encoding (C =
Enc(f), π) represents the group element gf(w). (This operation is trivial in the
setting of Albrecht et al., since their encodings carry a value gz = gf(w).) Thus,
our construction needs to provide a public algorithm that tests whether a given
encoding (C = Enc(f), π) represents the identity element of the group, i.e. that
tests whether f(w) = 0.
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At this point two problems arise. First, this public algorithm must be able to
obtain at least one of the polynomials that are encrypted in C and C ′ respectively.
Second, the value w must not be explicitly known during the proof of security
as our strategy is to remove the dependency on w. We solve both problems by
using an obfuscated circuit CZero for testing whether a given encoding represents
the identity element. More precisely, given an encoding (C = Enc(f), π), CZero
decrypts C (using one fixed decryption key) to obtain the polynomial f . In order
to avoid the necessity to explicitly know the value w, CZero factors the univariate
polynomial f (in Zq[X]), and obtains the small set {x1, . . . , xn} of all zeros of f .3
As mentioned above, the value w is fixed but hidden inside the public parameters.
Particularly, we store the value w in form of a point function obfuscation (i.e., in
form of a publicly evaluable function po : Zq → {0, 1} with po(x) = 1⇔ x = w,
such that it is hard to determine the value w given only the function description
po). The zero testing circuit CZero treats an encoding as the identity element if f
is the zero polynomial or w ∈ {x1, . . . , xn}.

Observe that this implementation of CZero only requires one decryption key
allowing to apply the Naor-Yung strategy [36]. Furthermore, CZero does not
need to know the value w in the clear. Hence, using an obfuscation of this
implementation of CZero avoids both problems described above.

Switching of encodings Similarly to Albrecht et al. [3] we prove a “switching
lemma” that states that encodings (C1 = Enc(f1), π1) and (C2 = Enc(f2), π2)
are computationally indistinguishable whenever f1(w) = f2(w). In other words,
encodings of the same group element are computationally indistinguishable.
To prove this lemma, we exploit the security of the used double-encryption in
a similar way as in the IND-CCA proof of Naor and Yung [36]. Particularly,
when using an obfuscation of the circuit C ′′Add, it is not necessary to know both
decryption keys to produce public parameters for the group. We recall that the
circuit CZero only knows the decryption key to decrypt the first component of
encodings. Furthermore, it is possible to produce a consistency proof without
knowing the content of the ciphertexts C and C ′ by simply simulating it in the
same way C ′′Add does. Therefore, we can reduce to the IND-CPA security of the
encryption scheme. In order to apply the same argument for the first component
of encodings, we need the circuit CZero to forget about the first decryption key.
We accomplish that by replacing the obfuscation of CZero with an obfuscation
of the circuit CZero that uses only the second decryption key instead of the first
one. This is possible due to the security of the obfuscator and the soundness of
the proof system. Then, we can use the same argument as above to reduce to
the IND-CPA security of the encryption scheme.

Obtaining the Interactive Uber assumption in our group We recall that
the Interactive Uber assumption (in one variable) generates one secret point
3 We note that there are probabilistic polynomial time algorithms that factor univariate
polynomials over finite fields, for instance the Cantor-Zassenhaus algorithm [18].
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s ∈ Zq uniformly at random at which all queried polynomials are evaluated. To
show that the Interactive Uber assumption holds in our group, we first set up that
secret point s as c·w for some independent random c from Z×q , where w is the secret
value of our group introduced above. Hence, a polynomial P that is evaluated at
s = c ·w can be interpreted as a (different) polynomial in w. Particularly, given a
polynomial P (X), the polynomial P (X) := P (c ·X) satisfies the equation P (s) =
P (w). Thus, an encoding that contains the polynomial P (X) determines the
exponent of the represented group element to equal P (w) = P (c · w) = P (s). This
observation paves the way for using higher-degree polynomials P (X) to produce
encodings for oracle answers and the challenge. As the resulting group elements (i.e.
the corresponding exponents) remain the same, the “switching lemma” described
above justifies that this modification is unnoticeable. Furthermore, by a similar
argument as above, we simulate the proofs of consistency π for every produced
encoding, in particular for the encodings that are produced by the addition
circuit.4 As the consistency proof can now be produced independently of the basis
{a1, . . . , ad}, we are able to unnoticeably “erase” this basis from the commitment
in the public parameters.

Our goal now is to alter the structure of the group in the following sense. By
definition, our group is isomorphic to the additive group Zq. We aim to alter that
structure such that our group is isomorphic to the additive group of polynomials
in Zq[X] (of bounded degree). Particularly, we alter the equality relation that
is defined on the set of encodings such that two encodings are considered equal
only if the thereby defined polynomials are equal as abstract polynomials. For
that purpose, we remove the dependency on the point w by altering the point
function obfuscation po such that it maps all inputs to 0. Therefore, the zero
testing circuit CZero only treats an encoding that contains the zero polynomial
as an encoding of the identity element of the group. As the value w is never
used explicitly in the game (as all the proofs of consistency are simulated), this
modification is unnoticeable due to the security property of the point function
obfuscation po. This is a crucial step paving the way for employing arguments
from linear algebra to enable randomization.

The final step requires to randomize the challenge encoding such that there
is no detectable difference between a real challenge and a randomly sampled one.
First, we recall that encodings do not encrypt polynomials in the plain. The
encodings contain the representation of polynomials with respect to some basis
{a1, . . . , ad}. That is, given a polynomial P (X), the encoding corresponding to
gP (s) encrypts the vectors

#»

f =
#»

f ′ = (a1 | . . . | ad) · P (c ·X)︸ ︷︷ ︸
=P (X)

, (5)

where P (c · X) is interpreted as a vector of coefficients in the natural way.
Therefore, the only information about the matrix (a1| . . . |ad) is given by matrix
4 More precisely, we again use an obfuscation of C′′Add instead of an obfuscation of CAdd
as described above.
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vector products. To avoid trivialities, the challenge polynomial P ∗ can be assumed
not to lie in the span of the queries P1, . . . , Pl, which is why P ∗(c ·X) does not
lie in the span of P1(c ·X), . . . , Pl(c ·X). Hence, we may resort to an information-
theoretic argument. More precisely, an adversary that is able to adaptively
ask for matrix vector products, information-theoretically learns nothing about
matrix vector products that are linearly independent of its queries. Therefore,
the polynomial that is contained in the real challenge encoding information-
theoretically looks like a randomly sampled polynomial (with bounded degree)
given that the matrix (a1| . . . |ad) is uniformly distributed.

Obtaining the multivariate Interactive Uber assumption The main diffi-
culty that arises from generalizing our results to the multivariate Interactive Uber
assumption is that we do not have a polynomial-time algorithm that computes
all zeros of a multivariate polynomial. Hence, the zero testing circuit CZero needs
to know the point ω := (ω1, . . . , ωm) ∈ Zmq in the clear to explicitly evaluate the
polynomial f that is defined by a given encoding. Our previous proof strategy,
however, crucially relies on removing the dependency on w such that CZero only
treats encodings containing the zero polynomial as encodings of the identity ele-
ment. This is equivalent to altering the group structure such that it is isomorphic
to the additive group of polynomials over Zq (of bounded degree).

Although the zero testing circuit CZero knows ω in the clear, it is nevertheless
possible to pursue a similar strategy. Our solution is to gradually alter CZero
such that it “forgets” the components ωi of ω one by one. Particularly, we define
intermediate circuits C(i)

Zero that test if the polynomial

F
(f)
i (X1, . . . , Xi) := f(X1, . . . , Xi, ωi+1, . . . , ωm) (6)

equals the zero polynomial in Zq[X1, . . . , Xi]. Observe that the original circuit
CZero tests whether F (f)

0 ≡ 0. Our goal is to unnoticeably establish C(m)
Zero as zero

testing circuit, as it realizes the stricter equality relation we aim for.
In order to unnoticeably replace an obfuscation of C(i)

Zero with an obfuscation
of C(i+1)

Zero , we first alter the implementation of C(i)
Zero such that it performs the

test whether F (f)
i is the zero polynomial by evaluating it at a randomly sampled

point r ∈ Ziq. Applying the Schwartz-Zippel lemma upper bounds the statistical
distance of the output distributions of the two circuits enabling to reduce this
step to the security of the obfuscator.

Furthermore, the condition that F (f)
i (r) = F

(f)
i+1(r, ωi+1) = 0 is equivalent to

the condition that the univariate polynomial F (f)
i+1(r, Xi+1) is zero at the point

ωi+1. This can be implemented in a similar manner as in the univariate case
using a point function obfuscation of ωi+1. In addition, this circuit contains a
conceptional logical or statement testing whether the polynomial F (f)

i+1(r, Xi+1)
equals the zero polynomial. Using a similar argument as above we are able to
alter the point function obfuscation for ωi+1 to a point function obfuscation that
never triggers.
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Hence, our zero testing circuit effectively only tests whether F (f)
i+1(r, Xi+1)

equals the zero polynomial in Zq[Xi+1]. Applying the Schwartz-Zippel lemma
again, we are able to unnoticeably alter the implementation of the zero testing
circuit such that it tests whether F (f)

i+1 equals the zero polynomial in X1, . . . , Xi+1
concluding the argument.

Roadmap After fixing notation and recalling some basic definitions in Section 2,
we present our main group construction in Section 3. In Supplementary Section A
we prove several technical lemmas that facilitate proving our main theorem. Our
main theorem, Theorem 1, states the validity of (our variant of) the Interactive
Uber assumption relative to the group construction from Section 3. In particular,
in Supplementary Section A.1 we prove that it is hard to decide whether public
parameters of the group are generated honestly or such that all proofs of consis-
tency are simulated. In Supplementary Section A.2, we prove a “switching lemma”
for encodings of group elements and in Supplementary Section A.3 we prove the
above mentioned information-theoretic argument that enables the randomization
of the challenge in the main proof. Finally, Theorem 1 appears in Supplementary
Section B.

2 Preliminaries

2.1 Notation

For n ∈ N, let 1n denote the string consisting of n times the digit 1. For a
probabilistic algorithm A, let y ← A(x) denote that y is the output of A on
input x. The randomness which A uses during the computation can be made
explicit by y ← A(x; r), where r denotes the randomness. Let λ denote the
security parameter. We assume that the security parameter is implicitly given to
all algorithms as 1λ.

Let G be a group and let h be a fixed generator of G. Then, [n] denotes the
group element hn.

Let n ∈ N be a number, let K be a field, and let Kn denote the vector space
of n-tuples of elements of K. Further, for any i ∈ {1, . . . , n}, let ei ∈ Kn be the
vector such that the i-th entry of ei equals 1 and any remaining entry equals
0. Then, the set {e1, e2, . . . , en} denotes the standard basis of Kn. Let b1, . . . ,
bi ∈ Kn, then 〈b1, . . . , bi〉 ⊆ Kn denotes the span of those vectors.

2.2 Assumptions

Let (Gλ)λ∈N be a family of finite cyclic groups. If it is clear from the context,
we write G instead of Gλ. We assume that the order q := |G| of the group is
known and prime. Let GensG be the set of generators of G. We assume that we
can efficiently sample elements uniformly at random from GensG .
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A very basic and well-established cryptographic assumption is the decisional
Diffie-Hellman (DDH) assumption. The DDH assumption states that the distri-
butions ([x], [y], [x · y]) and ([x], [y], [z]) are computationally indistinguishable
for x, y, z ← Zq.
Definition 1 (Decisional Diffie-Hellman (DDH) assumption). For any
PPT adversary A, the advantage Advddh

G,A(λ) is negligible in λ, where

Advddh
G,A(λ) := Pr

[
A(1λ, [x], [y], [x · y]) = 1

∣∣ x, y ← Zq
]

− Pr
[
A(1λ, [x], [y], [z]) = 1

∣∣ x, y, z ← Zq
]

and q is the order of the group G.
Let (G1, G2, e) be finite cyclic groups of prime order |G1| = |G2| and let

e : G1 × G2 → GT be a pairing (i.e. a non-degenerate and bilinear map). The
groups G1, G2, GT , as well as the pairing e depend on the security parameter. For
greater clarity, we omit this dependency in this setting.

A natural extension of the DDH assumption to the bilinear setting is the
symmetric external Diffie-Hellman (SXDH) assumption. The SXDH assumption
states that the DDH assumption holds in both groups G1 and G2.

2.3 Point obfuscation

In our construction we employ a cryptographic primitive that is called point
obfuscation [16, 39]. A point obfuscation serves the purpose to hide a certain
point, but to enable a test whether a given value is hidden inside. Equivalently,
this notion can be seen as an “obfuscation” of a point-function that evaluates
to 1 at exactly this given point and to 0 everywhere else. We require that it is
infeasible to distinguish a point obfuscation that triggers at a randomly sampled
point from a point obfuscation that never triggers. This security requirement is
rather weak compared to similar notions [6].
Definition 2 (Point obfuscation). A point obfuscation for message space
Mλ is a PPT algorithm PObf.
PObf(1λ, x)→ po On input a message x ∈ Mλ ∪ {⊥}, PObf produces a de-

scription of the point function

po : Mλ → {0, 1}, y 7→
{

1 if y = x

0 otherwise
.

We require the following two properties to hold:

Correctness: For any x, y ∈ Mλ and any po ← PObf(1λ, x), po(y) 7→ 1 if
and only if x = y.

Soundness: For any PPT adversary A, the advantage Advpo
PObf,A(λ) is negligible

in λ, where

Advpo
PObf,A(λ) := Pr

[
A(1λ, po) = 1

∣∣ po← PObf(1λ, x), x←Mλ

]
− Pr

[
A(1λ, po) = 1

∣∣ po← PObf(1λ,⊥)
]
.
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An adaption of a construction proposed in [16] yields a point obfuscation PObf
with message space Zp based on the DDH assumption. Furthermore, a point
obfuscation with message space Zp can be used to construct a point obfuscation
for message space Zq, where q is a prime such that pq is negligible in λ. For further
details, we refer the reader to Supplementary Section C.

Remark 1. According to a reviewer of TCC 2017, a point obfuscation with
message space {0, 1}poly(λ) can be constructed from an injective one-way function
F together with a corresponding hardcore bit B.

Given a string x, the tuple (F (x), B(x)) is the obfuscation of x. The tuple
(F (y), 1−B(y)) is an obfuscation of ⊥, where y is a random element from the
message space.

2.4 Subset membership problems

The notion of subset membership problems was introduced in [23]. Informally, a
hard subset membership problem specifies a set, such that it is intractable to
decide whether a value is inside this set or not. Let L = (Lλ)λ∈N be a family
of families of languages L ⊆ Xλ in a universe Xλ = X . Further, let R be an
efficiently computable witness relation, such that x ∈ L if and only if there exists
a witness w ∈ {0, 1}poly(|x|) with R(x, w) = 1, where poly is a fixed polynomial.
We assume that we are able to efficiently and uniformly sample elements from L
together with a corresponding witness, and that we are able to efficiently and
uniformly sample elements from X \ L.

Definition 3 (Hard subset membership problem). The subset membership
problem (SMP) L ⊆ X is hard, if for any PPT adversary A, the advantage

Advsmp
L,A(λ) := Pr

[
A(1λ, x) = 1

∣∣ x← L
]
− Pr

[
A(1λ, x) = 1

∣∣ x← X \ L]
is negligible in λ.

For our construction we need a family L = (Lλ)λ∈N such that for any L ∈ Lλ
and any x ∈ L, there exists exactly one witness r ∈ {0, 1}∗ with R(x, w) = 1.

Let G = {Gλ} be a family of finite cyclic groups of prime order such that the
DDH assumption holds. A possible instantiation of a hard SMP meeting our
requirements is the Diffie-Hellman language Ldh := (Ldh

λ )λ∈N. For any λ ∈ N,
Ldh
λ := {Lg,h | g, h ∈ GensG}, Xλ = GensG×GensG , and Lg,h := {(gr, hr) | r ∈ Zq},

where q = |Gk|. The SMP Lg,h ⊆ X is hard for randomly chosen generators g,
h← GensG . Given (gr, hr) ∈ Lg,h, the corresponding unique witness is r ∈ Zq.

2.5 Non-interactive commitments

Non-interactive commitment schemes are a commonly used cryptographic primi-
tive [30]. They enable to commit to a chosen value without revealing this value.
Additionally, once committed to a value, this value cannot be changed. In con-
trast to the notion of point obfuscations, a commitment scheme prevents to test
whether a particular value is hidden inside a commitment.

11



Definition 4 (Perfectly binding non-interactive commitment scheme
(syntax and security)). A perfectly binding non-interactive commitment
scheme for message spaceMλ is a triple of PPT algorithms Com = (ComSetup,
Commit, Open).
ComSetup(1λ)→ ck On input the unary encoded security parameter, the algo-

rithm ComSetup outputs a commitment key ck.
Commitck(m)→ (com, op) On input the commitment key ck and a message

m ∈Mλ, Commit outputs a tuple (com, op).
Openck(com, op)→ m̃ On input the commitment key ck and a commitment-

opening pair (com, op), Open outputs the committed message m if op is a
valid opening for com. Otherwise, Open outputs ⊥.

We require Com to be perfectly correct, perfectly binding, and computationally
hiding.

Correctness Com is correct if for any λ ∈ N, any ck ← ComSetup(1λ), and
any m ∈Mλ, Openck(Commitck(m)) = m.

Perfectly binding Com is perfectly binding if it is not possible to find a
commitment that has valid openings for more than one message, i.e. for any
(possibly unbounded) adversary A, Advbinding

Com,A (λ) = 0, where

Advbinding
Com,A (λ) := Pr

[
Expbinding

Com,A (λ) = 1
]
.

Computationally hiding Com is computationally hiding if commitments for
different messages are computationally indistinguishable, i.e. for any PPT
adversary A, Advhiding

A (λ) is negligible, where

Advhiding
Com,A(λ) := Pr

[
Exphiding

Com,A(λ) = 1
]
− 1

2 .

The games Expbinding
Com,A (λ) and Exphiding

Com,A(λ) are defined in Fig. 1.

Experiment Expbinding
Com,A (λ)

ck ← ComSetup(1λ)

(c, o1, o2)← A(1λ, ck)
m1 ← Openck(c, o1), m2 ← Openck(c, o2)
if m1 6= ⊥ ∧m2 6= ⊥ ∧m1 6= m2 then

return 1
return 0

Experiment Exphiding
Com,A(λ)

ck ← ComSetup(1λ)

(m0,m1, st)← A(1λ, ck, find)
b← {0, 1}, (c, o)← Commitck(mb)

b′ ← A(1λ, c, st, attack)
if b = b′ then return 1
return 0

Fig. 1. The description of the Binding game Expbinding
Com,A (λ) (left) and the Hiding game

Exphiding
Com,A(λ) (right).

Such a commitment scheme can be obtained from a group in which the DDH
assumption holds.
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2.6 Dual mode NIWI proof system

The notion of dual mode NIWI proof systems abstracts from the NIWI proof
system proposed in [31]. A similar abstraction was used in [3].

Definition 5 (Dual mode NIWI proof system (syntax and security)).
A dual mode non-interactive witness-indistinguishable (NIWI) proof system for
a relation R is a tuple of PPT algorithms Π = (SetupΠ , K, S, Prove, Verify,
Extract).
SetupΠ(1λ)→ (gpk, gsk) On input the unary encoded security parameter, SetupΠ

outputs a group key gpk and, additionally, may output some related infor-
mation gsk. The relation R is an efficiently computable ternary relation
consisting of triplets of the form (gpk, x, w) and defines a group-dependent
language L. The language L consists of the statements x, such that there
exists a witness w with (gpk, x, w) ∈ R.

K(gpk, gsk)→ (crs, tdext) On input the group keys gpk and gsk, K outputs a
binding common reference string (CRS) crs and a corresponding extraction
trapdoor tdext.

S(gpk, gsk)→ (crs,⊥) On input the group keys gpk and gsk, S outputs a hiding
CRS crs.

Prove(gpk, crs, x, w)→ π On input the public group key gpk, the CRS crs, a
statement x, and a corresponding witness w, Prove produces a proof π.

Verify(gpk, crs, x, π)→ {0, 1} On input the public group key gpk, the CRS crs,
a statement x, and a proof π, Verify outputs 1 if the proof is valid and 0 if
the proof is rejected.

Extract(tdext, x, π)→ w On input the extraction trapdoor tdext, a statement x,
and a proof π, Extract outputs a witness w.

We require Π to meet the following requirements:

CRS indistinguishability Common reference strings generated via K(gpk,
gsk) and S(gpk, gsk) are computationally indistinguishable, i.e.

Advcrs
Π,A(λ) := Pr

[
Expcrs

Π,A(λ) = 1
]
− 1

2

is negligible in λ, where Expcrs
Π,A(λ) is defined as in Fig. 2.

Perfect completeness under K and S For any λ ∈ N, any (gpk, gsk) ←
SetupΠ(1λ), any CRS (crs, ·)← K(gpk, gsk), any (x, w) such that (gpk, x,
w) ∈ R, and any π ← Prove(gpk, crs, x, w), Verify(gpk, crs, x, π)→ 1. The
same holds for any (crs, ·)← S(gpk, gsk).

Perfect soundness under K For any λ ∈ N, any (gpk, gsk) ← SetupΠ(1λ),
any (crs, ·) ← K(gpk, gsk), any statement x such that there exists no witness
w with (gpk, x, w) ∈ R, and any π ∈ {0, 1}∗, Verify(gpk, crs, x, π)→ 0.

Perfect extractability under K For any λ ∈ N, any key pair (gpk, gsk) ←
SetupΠ(1λ), any (crs, tdext)← K(gpk, gsk), any (x, π) such that Verify(gpk,
crs, x, π)→ 1, and for any w ← Extract(tdext, x, π), w is a satisfying witness
for the statement x, i.e. (gpk, x, w) ∈ R.
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Perfect witness-indistinguishability under S For any λ ∈ N, any (gpk,
gsk) ← SetupΠ(1λ), any (crs, ·) ← S(gpk, gsk), any (x, w0) and (x, w1)
with (gpk, x, w0), (gpk, x, w1) ∈ R, the output of Prove(gpk, crs, x, w0)
and the output of Prove(gpk, crs, x, w1) are identically distributed.

Experiment Expcrs
Π,A(λ)

(gpk, gsk)← SetupΠ(1λ)
(crs0, ·)← K(gpk, gsk), (crs1, ·)← S(gpk, gsk)

b← {0, 1}, b′ ← A(1λ, gpk, crsb)
if b′ = b then return 1
return 0

Fig. 2. The description of the CRS inistinguishability game Expcrs
Π,A(λ).

An exemplary dual mode NIWI proof system satisfying computational CRS
indistinguishability, perfect completeness, perfect soundness, perfect extractability,
and perfect witness-indistinguishability is the proof system proposed by Groth
and Sahai in [31]. The soundness, in particular the indistinguishability of common
reference strings, of this construction can for instance be based on the SXDH
assumption. The Groth-Sahai proof system allows perfect extractability for
group elements, however, does not provide a natural way to extract scalars.
Nevertheless, perfect extractability can be achieved by using the proof system
for the bit representation of the particular scalars [35].

2.7 Probabilistic indistinguishability obfuscation

The notion of probabilistic circuit obfuscation was proposed in [17]. Informally,
probabilistic circuit obfuscation enables to conceal the implementation of proba-
bilistic circuits while preserving their functionality. Let C = (Cλ)λ∈N be a family
of sets Cλ of probabilistic circuits. The set Cλ contains circuits of polynomial
size in λ. A circuit sampler for C is defined as a set of (efficiently samplable)
distributions S = (Sλ)λ∈N, where Sλ is a distribution over triplets (C0, C1, z)
with C0, C1 ∈ Cλ such that C0 and C1 take inputs of the same length and
z ∈ {0, 1}poly(λ).

Definition 6 (Probabilistic indistinguishability obfuscation for a class
of samplers S, [3, 17]). A probabilistic indistinguishability obfuscator (pIO)
for a class of samplers S over the probabilistic circuit family C = (Cλ)λ∈N is a
uniform PPT algorithm piO, such that the following properties hold:

Correctness On input the unary encoded security parameter 1λ and a circuit
C ∈ Cλ, piO outputs a deterministic circuit Λ of polynomial size in |C|
and λ. For any λ ∈ N, any C ∈ Cλ, any Λ ← piO(1λ, C), and any inputs
m ∈ {0, 1}∗ (of matching length), there exists a randomness r, such that
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C(m; r) = Λ(m).
Furthermore, for every non-uniform PPT distinguisher D, every λ ∈ N, every
C ∈ Cλ, and every auxiliary input z ∈ {0, 1}poly(λ), the advantage

Advpio-c
C,z,D(λ) := Pr

[
Exppio-c

C,z,D(λ) = 1
]
− 1

2

is negligible in λ, where Exppio-c
C,z,D(λ) is defined as in Fig. 3.

Security with respect to S For any circuit sampler S = {Sλ}λ∈N, for any
non-uniform PPT adversary A, the advantage

Advpio-ind
piO,S,A(λ) := Pr

[
Exppio-ind

piO,SA(λ) = 1
]
− 1

2

is negligible in λ, where Exppio-ind
piO,SA(λ) is defined as in Fig. 3.

Experiment Exppio-c
C,z,D(λ)

C0 := C

C1 := piO(1λ, C)
b← {0, 1}

b′ ← ACb(·)(1λ, C, z)
if b′ = b then return 1
return 0

Experiment Exppio-ind
piO,S,A(λ)

(C0, C1, z)← Sλ

b← {0, 1}

Λ← piO(1λ, Cb)

b′ ← A(1λ, C0, C1, Λ, z)
if b′ = b then return 1
return 0

Experiment Expsel-ind
S,A (λ)

(x, st)← A1(1λ)
(C0, C1, z)← Sλ, b← {0, 1}
y ← Cb(x; r)// for fresh randomness r

b′ ← A2(1λ, C0, C1, z, y, st)
if b′ = b then return 1
return 0

Fig. 3. The descriptions of the games Exppio-c
C,z,D(λ) (left), Exppio-ind

piO,S,A(λ) (middle), and
Expsel-ind

S,A (λ) (right). In Exppio-c
C,z,D(λ), D has oracle access to either a probabilistic circuit

C0 using fresh randomness for every oracle query or to a deterministic circuit C1. D
can make an unbounded number of oracle queries with the restriction that no input is
queried twice.

We remark that the construction proposed in [17] also satisfies our definition of
correctness.

Let X : N → N be a function. For our purposes we use a class of circuit
samplers, such that the sampled circuits are functionally equivalent for all inputs
outside of a set X , and the outputs of the circuits are indistinguishable for inputs
inside of this set X . The set X is a subset of the circuits’ domain of cardinality at
most X(λ). Two circuits C0 and C1 are functionally equivalent if for any input x
of matching length and any randomness r, C0(x; r) = C1(x; r).

Definition 7 (X-Ind sampler, [3, 17]). Let X : N → N be a function with
X(λ) ≤ 2λ, for all λ ∈ N. The class SX-ind of X-Ind samplers for a circuit
family C contains all circuit samplers S for C satisfying, that for any λ ∈ N,
there exists a set X = Xλ ⊆ {0, 1}∗ with |X | ≤ X(λ), such that the following two
properties hold:
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X-differing inputs For any (possibly unbounded) deterministic adversary A,
the advantage

Adveq$
S,A(λ) := Pr

[
C0(x; r) 6= C1(x; r) ∧ x 6∈ X

∣∣∣∣ (C0, C1, z)← Sλ,
(x, r)← A(C0, C1, z)

]
is negligible in λ.

X-indistinguishability For any non-uniform PPT distinguisher A = (A1, A2),
the advantage

X(λ) ·Advsel-ind
S,A (λ) := X(λ) ·

(
Pr
[
Expsel-ind

S,A (λ) = 1
]
− 1

2

)
is negligible in λ, where Expsel-ind

S,A (λ) is defined as in Fig. 3.

For our construction we use an obfuscator for the class SX-ind.
According to Theorem 2 in the proceedings of [17], a pIO which is secure with

respect to SX-ind for a circuit family C that only contains circuits of size at most
λ can be obtained from sub-exponentially secure indistinguishability obfuscation
(IO) for deterministic circuits in conjunction with sub-exponentially secure punc-
turable PRF. The construction given in [17] satisfies this security requirement
even if the circuit family C = {Cλ}λ∈N contains circuits with polynomial size in
λ as long as the input length of those circuits is at most λ.

2.8 Fully homomorphic encryption scheme

Let C = (Cλ)λ∈N be a family of sets of polynomial sized circuits of arity a(λ),
i.e. the set Cλ contains circuits of polynomial size in λ. We assume that for any
λ ∈ N the circuits in Cλ share the common input domain ({0, 1}poly(λ))a(λ) for a
fixed polynomial poly(λ). A homomorphic encryption scheme enables evaluation
of circuits on encrypted data. The first fully homomorphic encryption scheme
was proposed in [29]. In this paper, we abide by the notation used in [3].

Definition 8 (Homomorphic public-key encryption (HPKE) scheme
(syntax and security)). A homomorphic public-key encryption scheme with
message space M ⊆ {0, 1}∗ for a deterministic circuit family C = (Cλ)λ∈N of
arity a(λ) and input domain ({0, 1}poly(λ))a(λ) is a tuple of PPT algorithms
Hpke = (Gen, Enc, Dec, Eval).
Gen(1λ)→ (pk, sk) On input the unary encoded security parameter 1λ, Gen

outputs a public key pk and a secret key sk.
Enc(pk,m)→ c On input the public key pk and a message m ∈M, Enc outputs

a ciphertext c ∈ {0, 1}poly(λ) for message m.
Dec(sk, c)→ m On input the secret key sk and a ciphertext c ∈ {0, 1}poly(λ),

Dec outputs the corresponding message m ∈ M (or ⊥, if the ciphertext is
not valid).

Eval(pk,C, c1, . . . , ca(λ))→ c On input the public key pk, a deterministic circuit
C ∈ Cλ, and ciphertexts (c1, . . . , ca(λ)) ∈ ({0, 1}poly(λ))a(λ), Eval outputs a
ciphertext c ∈ {0, 1}poly(λ).
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We require Hpke to meet the following requirements:

Perfect correctness The triple (Gen, Enc, Dec) is perfectly correct as a
PKE scheme, i.e. for any λ ∈ N, any (pk, sk) ← Gen(1λ), any m ∈ M,
and any c ← Enc(pk, m), Dec(sk, c) = m. Furthermore, the evaluation
algorithm Eval is perfectly correct in the sense that for any λ ∈ N, any
(pk, sk)← Gen(1λ), any m1, . . . , ma(λ) ∈M, any ci ← Enc(pk, mi), any
C ∈ Cλ, and any c← Eval(pk, C, c1, . . . , ca(λ)), Dec(sk, c) = C(m1, . . . ,
ma(λ)).

Compactness The size of the output of Eval is polynomial in λ and independent
of the size of the circuit C.

Security For any legitimate PPT adversary A, the advantage

Advind-cpa
Hpke,A(λ) := Expind-cpa

Hpke,A(λ)− 1
2

is negligible in λ, where Expind-cpa
Hpke,A is defined as in Fig. 4. An adversary A

is legitimate if it outputs two messages m0, m1 of identical length.

Experiment Expind-cpa
Hpke,A(λ)

(pk, sk)← Gen(1λ), (m0,m1, st)← A(1λ, pk, find)
b← {0, 1}, c← Enc(pk,mb)

b′ ← A(1λ, c, st, attack)
if b′ = b then return 1
return 0

Fig. 4. The description of the IND-CPA game Expind-cpa
Hpke,A(λ).

Without loss of generality, we assume that the secret key is the randomness that
was used during the key generation. This enables to test whether key pairs are
valid.

3 Construction

3.1 Group scheme

A group scheme is an abstraction from the properties of groups formalized via a
tuple of PPT algorithms. For our purposes, we further abstract this notion to
suit groups where group elements do not necessarily have unique encodings. We
adapt the notion described in [3] which in turn generalizes the notion introduced
in [11]. As demonstrated in [3], such group schemes benefit from the fact that
group elements can be represented with many different encodings. This allows
to add auxiliary information inside encodings of group elements in order to add
more structure to the group. In our case, however, we exploit that group schemes
with non-unique encodings can be used to conceal the structure of the group.
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Definition 9 (Group scheme with non-unique encodings).
A group scheme with non-unique encodings Γ is a tuple of PPT algorithms
Γ = (Setup, Val, Sam, Add, Equal).
Setup(1λ)→ pp On input the unary encoded security parameter 1λ, Setup

outputs public parameters pp. In particular, pp contains the group order q.
We assume that pp is given implicitly to the following algorithms.

We assume that any encoding is represented as a bit string. In order to decide,
whether a given bit string is a valid encoding of a group element, Γ provides
a validation algorithm Val. We refer to bit strings causing Val to output 1 as
(valid) encodings of group elements.
Val(h)→ {0, 1} On input a bit string h ∈ {0, 1}∗, Val outputs 1 if h is a valid

encoding with respect to pp, otherwise Val outputs 0.
In general, it is not sufficient to compare encodings as bit strings in order to decide
whether they represent the same group element. Hence, a group scheme needs
to define an algorithm that provides this functionality. This algorithm is called
Equal. We require Equal to realize an equivalence relation on the set of valid
encodings. For any valid encoding h ∈ {0, 1}∗, let G(h) denote the equivalence
class of this encoding. In other words, G(h) contains all encodings that correspond
to the same group element as the encoding h. For any valid encoding h, we require
that |{a ∈ {0, 1}∗ |Val(a) = 1}/G(h)| = q is the order of the group. We refer to
the equivalence classes in {a ∈ {0, 1}∗ |Val(a) = 1}/G(h) as group elements.
Equal(a, b)→ {0, 1,⊥} On input two valid encodings a and b, Equal outputs

1 if a and b represent the same group element, otherwise Equal outputs 0.
If either a or b is invalid, Equal outputs ⊥.

In order to perform the group operation on two given encodings, we define an
addition algorithm Add.
Add(a, b) On input two valid encodings a and b, Add outputs an encoding

corresponding to the group element that results from the addition of the group
elements represented by a and b. If either a or b is invalid, Add outputs ⊥.

The sampling algorithm Sam enables to produce an encoding of a group element
and only uses information that is part of the public parameters pp. Let h be a
bit string produced via Sam(1). For any z ∈ N, let [z] denote the group element
corresponding to the equivalence class G(hz), where the group operation is per-
formed using Add. We require the distribution of Sam(z) to be computationally
indistinguishable from uniform distribution over [z].
Sam(z)→ a On input an exponent z ∈ N, Sam outputs an encoding a from the

equivalence class G(hz).

Given the order q of the group, it is sufficient to provide an addition algorithm
to enable inversion of group elements. To invert a given group element, we use
the square-and-multiply approach to add the given encoding q − 1 times to
itself. Further, it suffices to define an algorithm Zero that tests whether a given
encoding corresponds to the identity element of the group instead of an algorithm
Equal as above. To implement the algorithm Equal on input two encodings a
and b, we invert b, add the result to a and test whether the result corresponds to
the identity element using Zero.
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According to [3], a group scheme with non-unique encodings, in addition to
the algorithms defined above, provides an extraction algorithm. The extraction
algorithm, given a valid encoding, produces a bit string such that all encodings
that represent the same group element lead to the same bit string. However, we
omit this algorithm, as our construction does not provide one. It remains an open
problem to extend our construction with an extraction algorithm such that the
validity of the (m,n)-Interactive Uber assumption (see Definition 10) can still be
proven.

3.2 Interactive Uber assumption

The Uber assumption is a very strong cryptographic assumption in bilinear
groups first proposed in [9] and refined in [12]. It provides a natural framework
that enables to assess the plausibility of cryptographic assumptions in bilinear
groups.

In contrast to the original definition, we consider adaptive attacks (in which
an adversary may ask adaptively for more information about the game secrets
and choose his challenge).

Definition 10 ((m,n)-Interactive Uber assumption for group schemes).
Let m = m(λ) and n = n(λ) such that d :=

(
n+m
m

)
is a polynomial5 in λ, and

let Γ be a group scheme. The (m,n)-Interactive Uber assumption holds for Γ if
for any legitimate PPT adversary A, the advantage Advuber

Γ,A (λ) is negligible in λ,
where

Advuber
Γ,A (λ) := Pr

[
Expuber

Γ,A (λ) = 1
]
− 1

2 .

The game Expuber
Γ,A (λ) is described in Fig. 5. An adversary A is legitimate, if

and only if it always guarantees P ∗(X) 6∈ 〈1, P1(X), . . . , Pl(X)〉 and for any
P (X) ∈ {P ∗(X), P1(X), . . . , Pl(X)}, deg(P (X)) ≤ n in Expuber

Γ,A (λ), where
{P1(X), . . . , Pl(X)} are the polynomials that A requests from its oracle O.

For technical reasons, we need the maximum total degree n of the polynomials
appearing in Expuber

Γ,A (λ) and the number of unknowns m to be bounded a priori.

3.3 Our construction

Inspired by the construction in [3], an encoding of a group element includes
two ciphertexts each encrypting a vector determining an m-variate polynomial
over Zq of maximum total degree n with respect to some randomly sampled
basis {a1, . . . , ad}. That basis is hidden inside the public parameters of the
group scheme via a perfectly binding commitment. An encoding corresponds to
the group element whose discrete logarithm equals the evaluation of the thus
5 If the parameters m and n both grow at most logarithmically in λ or one of them
grows polynomially in λ while the other one is a constant, the binomial coefficient
d =

(
n+m
m

)
grows polynomially in λ.
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Experiment Expuber
Γ,A (λ)

pp ← Setup(1λ), s← (Zq)m

(P ∗(X), st)← AO(·)(1λ, pp, find)
b← {0, 1}, r ← Zq
z0 ← Sam(P ∗(s)), z1 ← Sam(r)

b′ ← AO(·)(1λ, zb, st, attack)
if b = b′ then return 1
return 0

Oracle O(P (X))

return Sam(P (s))

Fig. 5. The description of the (m,n)-Interactive Uber game Expuber
Γ,A (λ). The oracle

O on input a polynomial P (X), returns an encoding of the group element [P (s)]. We
refer to P ∗(X) as “challenge polynomial” and to zb as “challenge encoding”. Further,
we call the polynomials that A requests from the oracle O “query polynomials”.

determined polynomial at a random point ω ∈ Zmq . That random point ω is fixed
in the public parameters via a point obfuscation po.

For our construction we employ the following building blocks: (i) a dual
mode NIWI proof system Π, (ii) a homomorphic encryption scheme Hpke with
message space M = Zdq for a family of circuits of arity a(λ) = 2 adding two
tuples in Zdq component-by-component modulo q, (iii) a point obfuscation PObf
for message space Mk = Zq, (iv) a family T D = (T Dλ)λ∈N of families T Dλ
of languages TD in a universe X = Xλ with unique witnesses for y ∈ TD such
that the subset membership problem TD ⊆ X is hard, (v) a perfectly binding
non-interactive commitment scheme Com for message space Zd×dq , and (vi) a
general purpose X-Ind pIO piO (i.e. a pIO that is secure with respect to SX-ind

for a circuit family that only contains circuits with input length at most l, where
l is the security parameter used for piO). Let n = n(λ) and let m = m(λ) such
that

(
n+m
m

)
is a polynomial in λ. The group scheme we construct depends on n

and m. We emphasize this fact by calling it Γm,n := (Setup, Val, Sam, Add,
Equal). As mentioned above, we provide an algorithm that tests if a given
encoding is an encoding of the identity group element, instead of implementing
Equal.

In Fig. 6 we describe the algorithm Setup of our construction. The number
q is a prime number that is greater than 2p(λ) and will serve as the order of
our group scheme. We require p to be a polynomial such that p(λ) ≥ poly(λ),
where poly is used to scale the security parameter of piO. We emphasize that
our construction allows to arbitrarily choose the group order q as long as q is
greater than 2p(λ) and prime. Therefore, q can be understood as an input of
the algorithm Setup. For the sake of simplicity, we do not write q as input and
assume that Setup generates a suitable group order.

We remark that the circuits CAdd and C
(0)
Zero that appear in the algorithm

Setup implement the addition of two group elements and a test for the identity
element respectively. For a description of these circuits we refer the reader to
Fig. 7. The polynomial poly(λ) ≥ λ that is used to scale the security parameter
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Algorithm Setup(1λ)

(gpk, gsk)← SetupΠ(1λ)

(pk, sk)← Gen(1λ), (pk′, sk′)← Gen(1λ)

ω ← (Zq)m , poi ← PObf(1λ, ωi) for 1 ≤ i ≤ m, po := (po1, . . . , pom)
TD← T Dλ, y ← X \ TD
A← {B ∈ GLd(Zq) |B · e1 = e1}

ck ← ComSetup(1λ), (com, op)← Commitck(A)
(crs, tdext)← K(gpk, gsk)

Λadd ← piO(1poly(λ), CAdd), Λzero ← piO(1poly(λ), C
(0)
Zero)

return pp := (q, gpk, crs, y, TD, pk, pk′, Λadd, Λzero, po, ck, com)

Fig. 6. The implementation of the Setup algorithm producing public parameters pp.

for the obfuscator piO upper bounds the input length of these circuits CAdd
and C(0)

Zero. All versions of addition circuits and all versions zero testing circuits
that appear during the proofs are padded to the same length respectively. We
emphasize that it is necessary to scale the used security parameter as the pIO
piO we rely on is secure with respect to SX-ind for a circuit family that only
contains circuits with input length at most λ′, where λ′ denotes the security
parameter that is used to invoke piO.

Encodings of group elements Encodings of group elements are of the form
h = (C, C ′, π). The first two entries C and C ′ are ciphertexts encrypting vectors
#»

f ∈ Zdq and
#»

f ′ ∈ Zdq respectively under the public keys pk and pk ′ respectively,
where d is the dimension of the Zq vector space of m-variate polynomials over Zq
with total degree at most n, i.e. d =

(
n+m
m

)
. We require the dimension d of the

vector space to grow at most polynomially in λ. The last entry π is the so-called
consistency proof. We refer to the vectors #»

f and
#»

f ′ as representation vectors
of the group element and to the tuple ( #»

f ,
#»

f ′) as representation of the group
element. Let α = (α1, . . . , αm) ∈ Nm denote tuples with

∑m
i=1 αi ≤ n and let

ϕpol : Zdq → Zq[X], (. . . , vα, . . . )T 7→
∑
α

vα ·Xα1
1 · · ·Xαm

m

be the vector space homomorphism mapping the standard basis of Zdq to a natural
basis of the vector space of m-variate polynomials of degree at most n. For well-
definedness we use the lexicographical order on the tuples (α1, . . . , αm) ∈ Nm,
particularly, the first vector of the standard basis of Zdq is mapped to the constant
polynomial 1. The image of ϕpol is Im(ϕpol) = {p ∈ Zq[X] |deg(p) ≤ n} and
the kernel is ker(ϕpol) = {0}. Hence, ϕpol is an isomorphism between the vector
spaces Zdq and Im(ϕpol).

We recall that Setup(1λ) samples the matrix A uniformly at random from
GLd(Zq) such that the first column equals e1. Hence, the matrix A−1 exists and
has the form A−1 = (a1 | a2 | . . . | ad) such that a1 = e1. The columns a1, . . . ,
ad ∈ Zdq form a basis of the vector space Zdq .
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The coefficients of the representation vectors #»

f = (f1, . . . , fd)T and
#»

f ′ = (f ′1,
. . . , f ′d)T of a group element define the polynomials f(X), f ′(X) ∈ Im(ϕpol) via

f(X) :=
d∑
i=1

fi · ϕpol(ai) f ′(X) :=
d∑
i=1

f ′i · ϕpol(ai)

=ϕpol

(
A−1 · #»

f
)

=ϕpol

(
A−1 ·

#»

f ′
)

In other words, the representation vectors #»

f and
#»

f ′ are the representations of
the abstract polynomials f(X) and f ′(X) respective to the basis {ϕpol(a1) =
ϕpol(e1), ϕpol(a2), . . . , ϕpol(ad)}. Intuitively, a valid encoding that contains the
representation vector #»

f ∈ Zdq corresponds to the group element [f(ω)], where
ω is the value that is fixed in the public parameters of the group scheme via
po. The same holds for the representation vector

#»

f ′ resulting in a redundant
encoding. This approach is similar to the Naor-Yung paradigm [36].

We call the representation ( #»

f ,
#»

f ′) consistent if both representation vectors
correspond to the same group element, i.e. the evaluation of the correspond-
ing polynomials f(X) and f ′(X) at ω are equal. Otherwise, we call such a
representation inconsistent. If the representation ( #»

f ,
#»

f ′) is consistent, we call
this representation constant if the corresponding polynomials f(X) and f ′(X)
are constant (i.e. are of total degree at most 0). If a consistent representation
is not constant we call this representation non-constant. The purpose of the
so-called consistency proof is to ensure consistency of encodings, i.e. to ensure
that the corresponding representation is consistent. Further, we use the terms
constant, non-constant, consistent, and inconsistent to characterize encodings if
the associated representation has the respective properties.

Consistency proof and validation algorithm The above mentioned con-
sistency proof ensures that the representations, that are encrypted inside of
encodings, are consistent. In other words, the consistency proof ensures that
both representation vectors #»

f and
#»

f ′ used for an encoding lead to the same
group element. We realize this by using the dual mode NIWI proof system Π to
produce the consistency proof π for a relation R. The relation R is a disjunction
of three main statements R = R1 ∨R2 ∨R3:

The relationR1 is satisfied for representations that are constant and consistent.
We formalize this via relation R1.a:

R1.a :=
[

#»

f =
#»

f ′ ∧ deg
(
ϕpol(

#»

f )
)
≤ 0
]

We recall the convention that the degree of the zero polynomial is defined to be
−∞. For technical reasons, we need to make sure that the knowledge of the secret
decryption keys (sk, sk ′) and the knowledge of the used encryption randomness
are both sufficient as witnesses. Thus, additionally to R1.a we define the two
relations Rb and Rc. The relations Rb and Rc connect the ciphertexts C, C ′ of
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the encoding with the corresponding representation vectors #»

f ,
#»

f ′ appearing in
relation R1.a.

Rb :=
[

C = Enc(pk, #»

f ;R) ∧ C ′ = Enc(pk ′,
#»

f ′;R′)
]

Rc :=
[

(pk, sk) = Gen(sk) ∧ #»

f = Dec(sk, C) ∧
(pk ′, sk ′) = Gen(sk ′) ∧

#»

f ′ = Dec(sk ′, C ′)

]

At this point we make use of the assumption that a secret decryption key equals
the randomness that was used to produce the corresponding public encryption
key. The relation R1 is defined as follows:

R1 := R1.a ∧ (Rb ∨Rc) . (7)

Given a consistent and constant representation ( #»

f ,
#»

f ′) and resulting ciphertexts
C and C ′, there are two possible witnesses to produce the consistency proof for
the relation R1: using the secret decryption keys (sk, sk ′, #»

f ,
#»

f ′) and using the
encryption randomness (( #»

f , R), (
#»

f ′, R′)).
The relation R2 is satisfied for representations that are consistent. Again, we

formalize this via a relation R2.a:

R2.a :=

 ϕpol

(
A−1 · #»

f
)

(ω) = ϕpol

(
A−1 ·

#»

f ′
)

(ω) ∧
∀i ∈ {1, . . . ,m} : poi(ωi) = 1 ∧
Openck(com, op) = A ∧ A 6= ⊥


The relation R2 is defined as follows:

R2 := R2.a ∧ (Rb ∨Rc) . (8)

Given a consistent representation ( #»

f ,
#»

f ′) and resulting ciphertexts C and C ′, there
are two possible witnesses to produce the consistency proof for the relation R2:
using the secret decryption keys (sk, sk ′, #»

f ,
#»

f ′, ω, op) and using the encryption
randomness (( #»

f , R), (
#»

f ′, R′), ω, op). To be precise, the matrix A also is part of
these witnesses. However, as we can assume that A is a part of op, we omit this
fact in our notation.

The relation R3 introduces a trapdoor enabling production of consistency
proofs for inconsistent encodings.

R3 :=
[
y ∈ TD

]
. (9)

This relation only depends on the instance (TD, y) of the subset membership
problem TD ⊆ X defined in the public parameters. We recall that if y ∈ TD,
there exists a unique witness wy satisfying the witness relation for the SMP.
Hence, the witness for the relation R3 is (wy). Given public parameters pp that
are generated via Setup(1λ), y is not in TD. Therefore, there exists no trapdoor
if pp is generated honestly.
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Let rp denote the parts of the public parameters that are necessary to produce
consistency proofs, i.e. rp := (q, pk, pk ′, po, ck, com, TD, y). To be precise, the
corresponding language L has the following form:

L :={x = (q, pk, pk ′, po, ck, com,TD, y︸ ︷︷ ︸
=rp

, C, C ′) | ∃w : (x,w) ∈ R}

=L1 ∪ L2 ∪ L3,

where Li := {x = (rp, C,C ′) | ∃w : (x,w) ∈ Ri}. For the sake of clarity, we
henceforth omit the parameters rp and treat the tuple (C, C ′) as the statement.

The validation algorithm Val, on input a bit string h ∈ {0, 1}∗, parses h
into (C, C ′, π) and executes Verify(gpk, crs, x, π) of the underlying NIWI proof
system Π for the relation R.

Addition and Zero Algorithm The implementations of the algorithms Add
and Zero need to know secret information that is associated with the public
parameters, for instance the secret decryption keys. Therefore, we implement
these algorithms as probabilistic circuits and “hard-code” the necessary secret
parameters inside. The security requirement of the employed obfuscator piO
enables to conceal the implementation of these circuits and, hence, conceals the
secret parameters that are hard-coded. The PPT algorithms Add and Zero
simply execute the respective obfuscated circuit Λadd and Λzero.

In Fig. 7 we present the implementation of the circuit CAdd and the imple-
mentation of the circuit C(0)

Zero. We remark that CZero only uses the representation
vector #»

f and ignores the representation vector
#»

f ′. This enables to exploit the
Naor-Yung like double encryption.

The addition circuit CAdd is similar to the one constructed in [3]. The difference
is limited to the fact that in our case CAdd differentiates between three instead of
two different possibilities to produce the new consistency proof. The encodings
of group elements in the construction of [3] are of the form (h, C, C ′, π), where
C and C ′ are some ciphertexts and π is a corresponding consistency proof. The
value h is the group element in an underlying group that is represented by the
encoding. As h uniquely identifies the represented group element, the equality
test simply compares these values of the given encodings. In our case, however,
the encodings do not contain a similar entry. Therefore, the implementation of
the equality test, or rather the zero test, needs to decrypt the ciphertext C in
order to be able to make a statement about the represented group element.

Sampling Algorithm The sampling algorithm Sam, on input an exponent
z ∈ N, uses the representation ( #»

f ,
#»

f ′) := ((z, 0, . . . , 0)T , (z, 0, . . . , 0)T ) to
produce an encoding of the requested group element. The consistency proof is
produced for relation R1 using the witness (( #»

f , R), (
#»

f ′, R′)), where R and R′

are the randomnesses that are used to encrypt #»

f and
#»

f ′ respectively. If the
sampling algorithm does not receive any input, it samples the exponent z from
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Circuit CAdd[gpk, rp, sk, sk′,ω, op, tdext](a, b)

if ¬Val(a) ∨ ¬Val(b) then return ⊥

parse a =: (C(a), C′(a), π(a))

parse b =: (C(b), C′(b), π(b))

C(c) := Eval(pk,⊕, C(a), C(b))

C′(c) := Eval(pk′,⊕, C′(a), C′(b))
#»

f (a) := Dec(sk, C(a)),
#»

f ′(a) := Dec(sk′, C′(a))
#»

f (b) := Dec(sk, C(b)),
#»

f ′(b) := Dec(sk′, C′(b))
#»

f (c) := ⊕( #»

f (a),
#»

f (b)),
#»

f ′(c) := ⊕(
#»

f ′(a),
#»

f ′(b))

if (C(a), C′(a)), (C(b), C′(b)) ∈ L1 then

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (sk, sk′, #»

f (c),
#»

f ′(c)))

elseif (C(a), C′(a)), (C(b), C′(b)) ∈ L2 then

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (sk, sk′, #»

f (c),
#»

f ′(c),ω, op))
else

let α ∈ {a, b} : (C(α), C′(α)) 6∈ L1 ∪ L2

wy ← Extract(tdext, (C(α), C′(α)), π(α))

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (wy))

return c := (C(c), C′(c), π(c))

Circuit C
(0)
Zero[q, sk,ω, A](a)

if ¬Val(a) then
return ⊥

parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )
if f(ω) = 0 then

return 1
return 0

Fig. 7. Circuit CAdd (left) for addition of two group elements, and circuit C(0)
Zero (right)

for testing whether a given encoding is an encoding of the identity element. Additionally
to the publicly available parameters gpk and rp, CAdd has the secret decryption keys sk,
sk′, the values ω, the opening op, and the extraction trapdoor tdext hard-coded. The
circuit C(0)

Zero knows the publicly available parameter q and additionally has the secret
parameters sk, ω, and A hard-coded. The circuit ⊕ realizes addition in Zdq .

{0, . . . , q− 1} uniformly at random and proceeds as above. Due to the IND-CPA
security of Hpke, the distribution of the output of Sam(z) is computationally
indistinguishable from uniform distribution over the equivalence class G(Sam(z))
(see Lemma 2).

We remark that our group scheme allows for re-randomization of encodings.
To re-randomize a given encoding, we sample an encoding of the identity element
and use the addition algorithm to add it to the encoding to be randomized. We
require the employed homomorphic encryption scheme to satisfy an additional
natural property. Namely, we require that ciphertexts can be re-randomized by
homomorphically adding a fresh ciphertext of 0. This property is also known as
circuit privacy.

3.4 Main theorem

Theorem 1. Let Γm,n be the group scheme constructed in Section 3.3. Further,
let piO be a probabilistic indistinguishability obfuscator with respect to SX-ind

for a circuit family containing circuits with input length at most poly(λ), let
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T D = (T Dλ)λ∈N be a family of families T Dλ = {TD} of languages TD ⊆ Xλ
such that the subset membership problem is hard, let Π be a dual mode NIWI
proof system, let Hpke be an IND-CPA secure HPKE scheme, let Com be a
perfectly binding non-interactive commitment scheme, and let PObf be a point
obfuscation. Then, the (m,n)-Interactive Uber assumption (cf. Definition 10)
holds for Γm,n.

In Table 1 we give an overview on the proof of Theorem 1. The distribution
p̃p denotes the distribution of public parameters that are sampled according to
Setup with the difference that y is sampled from within the trapdoor language
TD. The distribution p̂p denotes the same distribution as p̃p with the difference
that the CRS is sampled in hiding mode and Λadd is computed for an addition
circuit that simulates consistency proofs and, hence, does not need to know the
matrix A or the value ω. The distribution pp(i) (for i ∈ {0, . . . , m}) denotes
the same distribution as p̂p with the difference that Λzero is an obfuscation of
a zero testing circuit that tests whether the polynomial f(X1, . . . , Xi, ωi+1,
. . . , ωm) equals the zero polynomial. Furthermore, the point obfuscations in p̂p
obfuscate ⊥ whereas the point obfuscations in pp(i) obfuscate the values ωi+1,
. . . , ωm. The distribution pp is the same as pp(m) with the difference that Λzero
is produced for a zero testing circuit that simply tests whether the representation
vector #»

f equals zero in Zdq and, hence, does not need to know the matrix A and
ω anymore. For the formal definitions of pp, p̃p, p̂p, pp(i) (for i ∈ {0, . . . ,m}),
and pp we refer the reader to Supplementary Sections A and B.
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Table 1. An overview on the steps of the proof of Theorem 1. The boxes emphasize
changes compared to the previous game. LetWi denote the witness that is used to prove
relation Ri for i ∈ {1, 2, 3}. The witnesses W1 and W2 contain the used encryption
randomness. Further, for a polynomial P (X), let RP := A · ϕ−1

pol(P (c ◦X)), and for a
vector v∗ ∈ Zdq , let Rv∗ := ϕpol

(
A−1 · v∗

)
(ω) · e1.

Publ.
param.

Secret
s

Representations for
queries P / challenge P ∗

Witness
for π Remark

Game0 pp s← Zmq P (s) · e1 P ∗(s) · e1 W1
the real
Uber game

Game1 pp s := c ◦ ω

c←
(
Z×q
)m P (s) · e1 P ∗(s) · e1 W1

negl. statistical
distance

Game2 pp s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W1, W2

Switching lemma
(Lemma 2)

Game3 p̃p s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W1, W2 SMP TD ⊆ X

Game4 p̂p s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W1, W2

Swap lemma
(Lemma 1)

Game5 p̂p s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W3 perfect WI of Π

Game6 pp(0) s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W3

hiding property
of Com

Game7 pp(m) s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W3 Lemma 5

Game8 pp s := c ◦ ω

c←
(
Z×q
)m RP RP∗ W3 security of piO

Game9 pp s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W3

Rand. lemma
(Lemma 3)

Game10 pp(m) s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W3 security of piO

Game11 pp(0) s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W3 Lemma 5

Game12 p̂p s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W3

hiding property
of Com

Game13 p̂p s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W1, W2 perfect WI of Π

Game14 p̃p s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W1, W2

Swap lemma
(Lemma 1)

Game15 pp s := c ◦ ω

c←
(
Z×q
)m RP v∗ ← Zdq W1, W2 SMP TD ⊆ X

Game16 pp s := c ◦ ω

c←
(
Z×q
)m P (s) · e1

Rv∗ ,
v∗ ← Zdq

W1
Switching lemma
(Lemma 2)

Game17 pp s← Zmq P (s) · e1
Rv∗ ,
v∗ ← Zdq

W1
negl. statistical
distance

Game18 pp s← Zmq P (s) · e1
r · e1,
r ← Zq

W1
identically
distributed
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Supplementary Material

A Preparations for the main theorem

In this chapter we prove that if the building blocks we use to construct the group
scheme Γm,n satisfy their respective security requirements, the (m,n)-Interactive
Uber assumption holds for the group scheme Γm,n constructed in Section 3.3.
Preliminary, we prove three lemmas that facilitate and modularize the proof of
this statement.

A.1 Interchangeable ways to sample the public parameters

During the proofs in this chapter we manipulate the way public parameters
for the group scheme are sampled. For greater clarity, we refer to the following
distributions of public parameters as follows:

p̃p : sampled as pp but with y ∈ TD (10)
p̂p : sampled as p̃p but with Λadd ← piO(1poly(λ), C ′′Add), (11)

and crs in hiding mode

See Fig. 8 for the implementation of the circuit C ′′Add.

Circuit C′′Add[gpk, (TD, y), wy](a, b)

if ¬Val(a) ∨ ¬Val(b) then return ⊥

parse a =: (C(a), C′(a), π(a)), parse b =: (C(b), C′(b), π(b))

C(c) := Eval(pk,⊕, C(a), C(b)), C′(c) := Eval(pk′,⊕, C′(a), C′(b))

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (wy))

return c := (C(c), C′(c), π(c))

Fig. 8. The circuit C′′Add for addition of two group elements that always produces the
consistency proof π(c) for the relation R3 and does not require any secret information
except for the witness wy. The circuit ⊕ realizes addition in Zdq .

These two distributions are computationally indistinguishable even if an
adversary knows the corresponding secret decryption keys sk and sk ′, the point
ω, and the opening op. A very similar statement was stated in Lemma 1 in the
proceedings version of [3]. In contrast to that statement we need this indistin-
guishability to hold even if the adversary knows the values ω that are hidden
inside the point obfuscations po = (po1, . . . , pom) and the opening op for the
commitment com.



Lemma 1 (Swap lemma, [3]). Let piO be a probabilistic indistinguishability
obfuscator with respect to SX-ind for a circuit family that only contains circuits
with input length upper bounded by poly(λ), and let Π be a dual mode NIWI
proof system. Then, for any PPT distinguisher A, the advantage

Advswap
A (λ) := Pr

[
A(1λ, pp, sk, sk ′,ω, op) = 1

∣∣ pp ← p̃p
]

− Pr
[
A(1λ, pp, sk, sk ′,ω, op) = 1

∣∣ pp ← p̂p
]

(12)

is negligible in λ.

Table 2. An overview on the proof steps of Lemma 1, [3]. The boxes emphasize
changes compared to the previous game.

CAdd knows CRS Remark

Game0 sk, sk′, ω, op, tdext binding

Game1 sk, sk′, ω, op, wy binding security of piO

Game2 sk, sk′, ω, op, wy hiding CRS indistinguishability of Π

Game3 wy hiding security of piO

Proof. To prove this statement, we proceed over a series of games using similar
arguments as in the proof of Lemma 1 in the proceedings version of [3]. Let outi
denote the output of Gamei. For an overview on the proof steps we refer the
reader to Table 2.
Game0. This game samples public parameters pp as p̃p (see Eq. (10)), calls the
adversary A on input (1λ, pp, sk, sk ′, ω, op), and outputs A’s output.
Game1. Is the same as Game0 with the difference that Game1 produces the
obfuscation Λadd via piO(1poly(λ), C ′Add) for the circuit C ′Add (see Fig. 9 for
the implementation of C ′Add). Due to the perfect extractability of Π and the
fact that wy is the unique witness for the statement y ∈ TD, the two circuits
CAdd and C ′Add are functionally equivalent. Furthermore, poly(λ) is an upper
bound for the input length of the two circuits. Hence, this game hop is justified
by the security property of piO. In particular, there exists a circuit sampler
S1 ∈ SX-ind and a PPT adversary B1, such that |Pr[out1 = 1]− Pr[out0 = 1]| ≤
2 ·
∣∣∣Advpio-ind

piO,S1,B1
(poly(λ))

∣∣∣. As the extraction trapdoor tdext is no longer necessary
in Game1, we are able to switch over to use a hiding CRS without any further
changes to the game.
Game2. Is the same as Game1 except for the fact that Game2 produces the CRS
crs in hiding mode via (crs, ·)← S(gpk, gsk). This game hop is justified by the
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Circuit C′Add[gpk, rp, sk, sk′,ω, op, wy](a, b)

if ¬Val(a) ∨ ¬Val(b) then return ⊥

parse a =: (C(a), C′(a), π(a))

parse b =: (C(b), C′(b), π(b))

C(c) := Eval(pk,⊕, C(a), C(b))

C′(c) := Eval(pk′,⊕, C′(a), C′(b))
#»

f (a) := Dec(sk, C(a)),
#»

f ′(a) := Dec(sk′, C′(a))
#»

f (b) := Dec(sk, C(b)),
#»

f ′(b) := Dec(sk′, C′(b))
#»

f (c) := ⊕( #»

f (a),
#»

f (b)),
#»

f ′(c) := ⊕(
#»

f ′(a),
#»

f ′(b))

if (C(a), C′(a)), (C(b), C′(b)) ∈ L1 then

π(c) ← Prove(gpk, crs, (C(c), C′(c)),

(sk, sk′, #»

f (c),
#»

f ′(c)))

elseif (C(a), C′(a)), (C(b), C′(b)) ∈ L2 then

π(c) ← Prove(gpk, crs, (C(c), C′(c)),

(sk, sk′, #»

f (c),
#»

f ′(c), w, op))
else

wy ← Extract(tdext, (C(α), C′(α)), π(α))

π(c) ← Prove(gpk, crs, (C(c), C′(c)), (wy))

return c := (C(c), C′(c), π(c))

Circuit C′′Add[gpk, (TD, y), wy](a, b)

if ¬Val(a) ∨ ¬Val(b) then return ⊥

parse a =: (C(a), C′(a), π(a))

parse b =: (C(b), C′(b), π(b))

C(c) := Eval(pk,⊕, C(a), C(b))

C′(c) := Eval(pk′,⊕, C′(a), C′(b))

π(c) ← Prove(gpk, crs, (C(c), C′(c)),
(wy))

return c := (C(c), C′(c), π(c))

Fig. 9. The circuit C′Add (left) for addition of two group elements that does not use the
extraction trapdoor tdext. The circuit C′′Add (right) for addition of two group elements
that always produces the consistency proof π(c) for the relation R3 and, hence, does not
need any secret information except for wy. In contrast to CAdd, the code line in C′Add
that is highlighted is not necessary anymore as C′Add has the witness wy hard-coded.
The differing sections of the implementations of C′Add and C′′Add are highlighted . The
circuit ⊕ realizes addition in Zdq .

CRS indistinguishability of Π. In other words, there exists a PPT adversary B2,
such that |Pr[out2 = 1]− Pr[out1 = 1]| ≤ 2 ·

∣∣Advcrs
Π,B2

(λ)
∣∣.

Game3. Is identical to Game2 except for the fact that Game3 produces the
obfuscation Λadd via piO(1poly(λ), C ′′Add) for the circuit C ′′Add (see Fig. 9 for
the implementation of C ′′Add). However, the two circuits C ′Add and C ′′Add are not
functionally equivalent.

Claim. For any PPT distinguisher A, there exists a circuit sampler S3 ∈
SX-ind and a PPT adversary B3, such that |Pr[out3 = 1]− Pr[out2 = 1]| ≤
2 ·
∣∣∣Advpio-ind

piO,S3,B3
(poly(λ))

∣∣∣.
Proof (sketch). The difference between the circuits C ′Add and C ′′Add is limited to
the fact that C ′′Add always produces the consistency proof π(c) for the relation
R3 using wy as a witness, even if the representations of its inputs a and b are
consistent. However, due to the perfect witness-indistinguishability of Π under a
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hiding CRS, the consistency proofs π(c) produced by C ′Add and C ′′Add are identically
distributed. We remark that an adversary B3 in this reduction is invoked using
poly(λ) as security parameter. Hence, poly(λ) is an upper bound for the input
length of the circuits C ′Add and C ′′Add. Furthermore, the cardinality of the domain
of the circuits C ′Add and C ′′Add is less or equal to 2poly(λ). Let X : N → N be a
function such that X(l) = 2l for any l ∈ N. Therefore, X(poly(λ)) is greater or
equal to the cardinality of the domain of the circuits C ′Add and C ′′Add.

We construct a circuit sampler S3 that samples public parameters as in Game2
omitting the obfuscated circuit Λadd and outputs the implementations of the
two circuits C ′Add and C ′′Add. To prove that S3 ∈ SX-ind, we define the set X to
span the entire domain of the circuits C ′Add and C ′′Add. Thus, for any possibly
unbounded adversary D, the advantage Adveq$

S3,D(λ) = 0. Furthermore, for any
non-uniform PPT distinguisher D′, the advantage Advsel-ind

S3,D′ (λ) = 0 as for any
input, the resulting output of the two circuits is identically distributed. Therefore,
S3 is an X-Ind sampler.

To complete the proof, we construct B3 such that it simulates Game2 if
Exppio-ind

B3,piO provides an obfuscation of C ′Add, and Game3 otherwise. ut

Hence, for any PPT distinguisher A, there exists an X-Ind sampler S and
PPT adversaries D1 and D2 such that

|Advswap
A (λ)| ≤ 4 ·

∣∣∣Advpio-ind
piO,S,D1

(poly(λ))
∣∣∣+ 2 ·

∣∣Advcrs
Π,D2

(λ)
∣∣. (13)

ut

Later in the proof we will consider a zero testing circuit that uses sk ′ to decrypt
the second part C ′ of encodings instead of the first part C using sk. We refer to
this circuit as CZero and refer the reader to Fig. 11 for more details. An adaption
of Lemma 1 such that both p̃p and p̂p contain an obfuscation of the circuit CZero
instead of an obfuscation of the circuit C(0)

Zero will turn out to be useful. We refer
to these distributions as p̃p′ and p̂p′ respectively. Using a similar argument as
before, we can see that Swap lemma also holds for these two distributions. We
refer to the corresponding advantage of a PPT distinguisher A as Advswap′

A (λ).

A.2 Switching of encodings

In this section, we observe that encodings of the same group element are compu-
tationally indistinguishable. The notion of indistinguishability is formalized via
the Switch game defined in Fig. 10.

An adversary A for the Switch game Expswitch
A is legitimate, if and only

if it always guarantees that the representations ( #»

f (0),
#»

f ′(0)) and ( #»

f (1),
#»

f ′(1))
in Expswitch

A are consistent and represent the same group element. In other
words, any legitimate adversary for the Switch game always chooses ( #»

f (0),
#»

f ′(0))
and ( #»

f (1),
#»

f ′(1)) such that f (0)(ω) = f ′(0)(ω) = f (1)(ω) = f ′(1)(ω), where
f (b) := ϕpol(A−1 · #»

f (b)) and f ′(b) := ϕpol(A−1 ·
#»

f ′(b)) for b ∈ {0, 1}.
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Experiment Expswitch
A (λ)

pp ← Setup(1λ)

(( #»

f (0),
#»

f ′(0)), ( #»

f (1),
#»

f ′(1)), st)← A(1λ, pp,ω, op, find)

b← {0, 1}, C ← Enc(pk, #»

f (b);R), C′ ← Enc(pk′,
#»

f ′(b);R′)
if (C,C′) ∈ L1 then

π ← Prove(gpk, crs, (C,C′), (( #»

f (b), R), (
#»

f ′(b), R′)))
else

π ← Prove(gpk, crs, (C,C′), (( #»

f (b), R), (
#»

f ′(b), R′),ω, op))

b′ ← A(1λ, (C,C′, π), st, attack)
if b = b′ then return 1
return 0

Fig. 10. The description of the Switch game Expswitch
A (λ).

A similar statement of indistinguishability was stated in Theorem 1 in the
proceedings version of [3]. In contrast to the game formalized in [3], the Switch
game needs to explicitly decide whether to produce the consistency proof π of
the challenge encoding (C, C ′, π) for the relation R1 or for the relation R2.

We remark that in the Switch game, the consistency proof is produced using
the encryption randomness as part of the witness, whereas in the addition circuit
the secret decryption keys sk and sk ′ are used as part of the witness.

Lemma 2 (Switching lemma, [3]). Let Γm,n be the group scheme constructed
in Section 3.3. Further, let piO be a probabilistic indistinguishability obfuscator
with respect to SX-ind for a circuit family that only contains circuits with input
length upper bounded by poly(λ), let T D = (T Dλ)λ∈N be a family of families
T Dλ = {TD} of languages TD ⊆ Xλ such that the subset membership problem is
hard, let Π be a dual mode NIWI proof system, and let Hpke be an IND-CPA
secure HPKE scheme. Then, for any legitimate PPT adversary A, the advantage

Advswitch
A (λ) := Pr

[
Expswitch

A (λ) = 1
]
− 1

2 (14)

is negligible in λ.

An important observation to adapt the proof strategy of [3] is that consistency
proofs that are produced for either R1 or R2 depending on whether the chosen
representation is constant or not, and consistency proofs that are produced for
R3, are identically distributed under a hiding CRS. Therefore, the proof strategy
is similar as in the proof of Theorem 1 in the proceedings version of [3].

Proof. To prove this statement, we proceed over a series of games. We start with
the original Switch game and stop in a game that is independent of the bit b. Let
outi denote the output of Gamei. Further, let A be a legitimate PPT adversary
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Table 3. An overview on the steps of the proof of Lemma 2, [3]. The boxes emphasize
changes compared to the previous game. Let pp′ denote public parameters that are
sampled like in Setup(1λ) but contain an obfuscation of the circuit CZero instead of an
obfuscation of the circuit CZero. Further, let W1 denote the witness that is used to prove
relation R1, i.e. W1 := (( #»

f , R), (
#»

f ′, R′)), let W2 denote the witness that is used to
prove relation R2, i.e. W2 := (( #»

f , R), (
#»

f ′, R′), ω, op), and let W3 denote the witness
(wy).

Public
parameters

pp

C
encrypts

C′

encrypts

Witness for
consistency

proof
Remark

Game0 pp #»

f (b) #»

f ′(b) W1 resp. W2 Switch game

Game1 p̃p #»

f (b) #»

f ′(b) W1 resp. W2 SMP TD ⊆ X

Game2 p̂p #»

f (b) #»

f ′(b) W1 resp. W2 Swap lemma (Lemma 1)

Game3 p̂p #»

f (b) #»

f ′(b) W3 perfect WI of Π

Game4 p̂p #»

f (b) #»

f ′(1) W3 IND-CPA security of Hpke

Game5 p̂p #»

f (b) #»

f ′(1) W1 resp. W2 perfect WI of Π

Game6 p̃p #»

f (b) #»

f ′(1) W1 resp. W2 Swap lemma (Lemma 1)

Game7 pp #»

f (b) #»

f ′(1) W1 resp. W2 SMP TD ⊆ X

Game8 pp′ #»

f (b) #»

f ′(1) W1 resp. W2 security of piO

Game9 p̃p′ #»

f (b) #»

f ′(1) W1 resp. W2 SMP TD ⊆ X

Game10 p̂p′ #»

f (b) #»

f ′(1) W1 resp. W2 Swap lemma for p̃p′, p̂p′

Game11 p̂p′ #»

f (b) #»

f ′(1) W3 perfect WI of Π

Game12 p̂p′ #»

f (1) #»

f ′(1) W3
IND-CPA security of Hpke
independent of b

for the Switch game. For an overview on the proof steps we refer the reader to
Table 3.

Game0. Is the original Switch game Expswitch
A (λ).

Game1. Is the same as Game0 with the difference that the public parameters are
sampled with a YES-instance y ← TD of the subset membership problem TD ⊆ X .
In other words, in Game1 pp is distributed as p̃p. This game hop is justified by the
hardness of the subset membership problem TD ⊆ X . Particularly, there exists
a PPT adversary B1, such that |Pr[out1 = 1]− Pr[out0 = 1]| ≤

∣∣∣Advsmp
T D,B1

(λ)
∣∣∣.

This enables to produce valid but inconsistent encodings of group elements.

Game2. Is the same as Game1 except for the fact that the public parameters
pp are sampled like p̂p instead of being sampled like p̃p. This hop is justified
by the Swap lemma (Lemma 1). In other words, |Pr[out2 = 1]− Pr[out1 = 1]| ≤
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∣∣Advswap
B2

(λ)
∣∣ for a suitable PPT distinguisher B2. We emphasize that the secret

decryption key sk ′ is never used in this game.
Game3. Is identical to Game2 except for the generation of the consistency proof.
In this game the consistency proof π for the challenge encoding is produced for
relation R3 instead of being produced for either relation R1 or relation R2. The
corresponding witness is wy. As the CRS crs is in hiding mode and Π is perfectly
witness-indistinguishable under a hiding CRS, Pr[out3 = 1]− Pr[out2 = 1] = 0.
Game4. Is the same as Game3 with the difference that the ciphertext C ′ for
the challenge encoding is produced as C ′ ← Enc(pk ′,

#»

f ′(1); R′). In other words,
the ciphertext C ′ in this game always encrypts

#»

f ′(1) instead of
#»

f ′(b). This hop is
justified by the IND-CPA security of Hpke.

Claim. For any legitimate PPT adversary A, there exists a legitimate PPT
adversary B4 for the IND-CPA security of the HPKE scheme Hpke, such that
|Pr[out4 = 1]− Pr[out3 = 1]| ≤ 2 ·

∣∣∣Advind-cpa
Hpke,B4

(λ)
∣∣∣.

Proof (sketch). We construct a legitimate PPT adversary B4 for the IND-CPA
game with Hpke that samples public parameters as in Game3 embedding its
input pk ′ and simulates Game3 for A. Given the output of A’s find-phase, B4
outputs the tuple (m0, m1) := (

#»

f ′(b),
#»

f ′(1)) to the IND-CPA game and uses the
resulting ciphertext as C ′ to produce the encoding (C, C ′, π). As the consistency
proof π is produced for relation R3, B4 does not need to know the encrypted
vector or the used encryption randomness R′ to produce π. ut

Game5. Is the same as Game4, but in this game the consistency proof π of the
challenge is again produced for relation R1 or relation R2 depending on whether
the representation ( #»

f (b),
#»

f ′(1)) is constant or non-constant. As A is legitimate,
both representations ( #»

f (0),
#»

f ′(1)) and ( #»

f (1),
#»

f ′(1)) are consistent and represent
the same group element, i.e. ϕpol(A−1 · #»

f (b))(ω) = ϕpol(A−1 ·
#»

f ′(1))(ω). As the
CRS crs is in hiding mode and Π is perfectly witness-indistinguishable under a
hiding CRS, Pr[out5 = 1]− Pr[out4 = 1] = 0.
Game6. Is the same as Game5 except for the fact that the public parameters are
again sampled as p̃p, i.e. containing a CRS in binding mode and an obfuscation of
the circuit CAdd. This game hop is justified by Lemma 1. The analysis is similar
to the analysis of the game hop from Game1 to Game2. Particularly, there exists
a PPT distinguisher B6, such that |Pr[out6 = 1]− Pr[out5 = 1]| ≤

∣∣Advswap
B6

(λ)
∣∣.

We emphasize that wy is not used in this game.
Game7. Is identical to Game6 with the difference that the public parameters
are sampled with a NO-instance y ← X \ TD of the subset membership problem
TD ⊆ X . Hence, the public parameters in this game are again distributed as
the output of Setup(1λ). This hop is justified by the hardness of the subset
membership problem TD ⊆ X . In other words, there exists a PPT adversary B7,
such that |Pr[out7 = 1]− Pr[out6 = 1]| ≤

∣∣∣Advsmp
T D,B7

(λ)
∣∣∣.

Game8. Is the same as Game7 except for the fact that the public parameters
contain an obfuscation of the circuit CZero (see Fig. 11 for the implementation of
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the circuit CZero) instead of an obfuscation of the circuit C(0)
Zero. In other words,

Λzero is produced via piO(1poly(λ), CZero). This hop is justified by the security of
piO.

Claim. For any legitimate PPT adversary A, there exists an X-Ind sampler
S8 and a PPT adversary B8, such that |Pr[out8 = 1]− Pr[out7 = 1]| ≤ 2 ·∣∣∣Advpio-ind

piO,S8,B8
(poly(λ))

∣∣∣.
Proof (sketch). The two circuits C(0)

Zero and CZero differ only in the fact that
C

(0)
Zero tests whether the equality f(ω) = ϕpol(A−1 · #»

f )(ω) = 0 holds and CZero

tests whether the equality f ′(ω) = ϕpol(A−1 ·
#»

f ′)(ω) = 0 holds. We observe
that the public parameters in Game7 and Game8 contain a NO-instance of the
SMP TD ⊆ X and the CRS crs is in binding mode. As Π is perfectly binding
under crs and y 6∈ TD, the representation of any valid encoding necessarily is
consistent. Therefore, the circuits C(0)

Zero and CZero are functionally equivalent and
a circuit sampler S8 that samples public parameters as Setup(1λ) and outputs
the implementations of the circuits C(0)

Zero and CZero is in the sampler class SX-ind.
Besides, poly(λ) upper bounds the input length of the circuits C(0)

Zero and CZero.
ut

Circuit CZero[q, sk′,ω, A](a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ′ ← Dec(sk′, C′), f ′(X) := ϕpol(A−1 ·
#»

f ′)
if f ′(ω) = 0 then return 1
return 0

Fig. 11. Circuit for testing whether a given encoding corresponds to the identity
element. In contrast to C(0)

Zero, this circuit uses the decryption key sk′ to obtain the
coefficients

#»

f ′.

Game9. Is identical to Game8 with the difference that the public parameters
are sampled with a YES-instance y ← TD of the subset membership problem
TD ⊆ X , i.e. the public parameters are distributed as p̃p′ defined in Sup-
plementary Section A.1. This hop is justified by the hardness of the subset
membership problem TD ⊆ X . The reduction is similar to the reduction for
hop from Game0 to Game1. Hence, there exists a PPT adversary B9, such that
|Pr[out9 = 1]− Pr[out8 = 1]| ≤

∣∣∣Advsmp
T D,B9

(λ)
∣∣∣.

Game10. Is the same as Game9 except for the fact that the public parameters
pp are sampled like p̂p′. This game hop is justified by the Swap lemma for
the distributions p̃p′ and p̂p′. The analysis is analogous to the analysis of the
game hop from Game1 to Game2. There exists a PPT distinguisher B10 such
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that |Pr[out10 = 1]− Pr[out9 = 1]| ≤
∣∣∣Advswap′

B10
(λ)
∣∣∣. We remark that the secret

decryption key sk is never used in this game.
Game11. Is the same as Game10 with the difference that the consistency proof π
for the challenge is produced for relation R3 using wy as a witness. As the CRS
crs is in hiding mode and Π is perfectly witness-indistinguishable under a hiding
CRS, Pr[out11 = 1]− Pr[out10 = 1] = 0.
Game12. Is identical to Game11 with the difference that C always encrypts
#»

f (1) instead of #»

f (b), i.e. C is produced via C ← Enc(pk, #»

f (1);R). This game
hop is justified by the IND-CPA security of Hpke. The analysis is analogous
to the analysis of the game hop from Game3 to Game4. Hence, there exists a
legitimate PPT adversary B12 for the IND-CPA security of Hpke, such that
|Pr[out12 = 1]− Pr[out11 = 1]| ≤ 2·

∣∣∣Advind-cpa
Hpke,B12

(λ)
∣∣∣. Due to the fact that Game12

does not depend on b, Pr[out12 = 1] = 1
2 .

Therefore, for any legitimate PPT adversary A, there exists an X-Ind sampler
S and (legitimate) PPT adversaries D1, D2, D3, and D4 such that∣∣Advswitch

A (λ)
∣∣ ≤ 3 ·

∣∣Advsmp
D1

(λ)
∣∣+ 14 ·

∣∣∣Advpio-ind
piO,S,D2

(poly(λ))
∣∣∣

+ 6 ·
∣∣Advcrs

Π,D3
(λ)
∣∣+ 4 ·

∣∣∣Advind-cpa
Hpke,D4

(λ)
∣∣∣. (15)

ut

A.3 Randomization

To prove security of our construction, we need a technical lemma that enables
to randomize the challenge in the proof of our main theorem (in Supplementary
Section B).

Experiment Exprand
(q,d),A(λ)

A← {B ∈ GLd(Zq) |B · e1 = e1}

(t∗, st)← AO
rand(·)(find)

b← {0, 1}, v∗0 := A · t∗, v∗1 ← Zdq

b′ ← AO
rand(·)(v∗b , st, attack)

if b = b′ then return 1
return 0

Oracle Orand(t)

return A · t

Fig. 12. The description of the Randomization game Exprand
(q,d),A(λ).

Lemma 3 (Randomization lemma). Let d ∈ N be a natural number, and
let q be a prime number. An adversary A is legitimate if and only if it always
guarantees that t∗ 6∈ 〈e1, t1, . . . , tl〉 in Exprand

(q,d),A(λ), where t1, . . . , tl ∈ Zdq are
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A’s oracle queries. Then, for any possibly unbounded legitimate adversary A, the
advantage

Advrand
(q,d),A(λ) := Pr

[
Exprand

(q,d),A(λ) = 1
]
− 1

2 (16)

is at most d
q .

The proof of Lemma 3 is mainly technical.

Proof. To prove this technical lemma, we first observe that any matrix A, that is
chosen uniformly at random from Zd×dq , such that A · tj = vj for any j ∈ {1, . . . ,
i}, is uniformly distributed over the set of all matrices satisfying these equations.
In other words, a matrix A that is sampled uniformly at random from Zd×dq until
the condition described above holds is uniformly distributed over the set of all
matrices that satisfy this condition.

Without loss of generality, we consider an adversary A that queries d − 1
vectors that are linearly independent of the set of all previous queries, only uses
the oracle Orand in its find-phase, and always queries the vector e1 at first. This
is justified by the fact that given an arbitrary legitimate adversary Ã, we are
able to construct such an adversary A that has the same probability of success
in the Randomization game as Ã. Particularly, A initially queries the vector e1,
invokes the find-phase of Ã simulating the oracle Orand for Ã, and only uses its
own oracle to answer queries that can not be computed as a linear combination
of the previous oracle queries. Given Ã’s challenge t∗, A extends the set of its
previous oracle queries together with the vector t∗ to a basis of Zdq and queries
the resulting vectors from its oracle. Thus, A is able to simulate the oracle Orand

for the attack-phase of Ã without using its own oracle.
To prove this statement, we proceed over a series of games. Let outi denote

the output of Gamei.
Game0. Is the Randomization game as described in Fig. 12.
Game1. Is the same as Game0 except for the fact that the matrix A is chosen
uniformly at random from all d× d-matrices over Zq and not only from GLd(Zq).
As the fraction of non-invertible matrices in the set of all matrices in Zd×dq is at
most d

q , |Pr[out1 = 1]− Pr[out0 = 1]| ≤ d
q .

Game2. Is the same as Game1 with the difference that the internal state of the
game, i.e. the matrix A, is freshly sampled after the find-phase of A conditioned
by the output the game already made. We refer to the matrix that is freshly
sampled as Ã. The adversary A does not make oracle queries after its find-phase
has terminated. We remark that Game2 is not necessarily efficient anymore. Using
a similar argument as [38], this hop is conceptional and leads to a statistical
distance of 0, hence, Pr[out2 = 1]− Pr[out1 = 1] = 0.

Consider the point in time after A has output the challenge t∗. The view
of A only depends on the answers v0, . . . , vd−2 to its oracle queries t0 = e1,
. . . , td−2. We observe that t1, . . . , td−2 and v0, . . . , vd−2 are random variables
depending on the random variable A. However, these vectors do not depend on
the freshly sampled matrix Ã. The matrix Ã is uniformly distributed over the set
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M := {A ∈ Zd×dq |A · ti = vi for any i ∈ {0, . . . , d− 2}}. As {t0, . . . , td−2, t∗} is
a basis of Zdq , Ã is of the form

Ã = B ·D with B =
(
v0 v1 . . . vd−2 v∗

)
and D =

(
t0 t1 . . . td−2 t∗

)−1 .

The matrix D is independent of Ã and multiplication with D is a bijection. Hence,
the column v∗ is uniformly distributed over Zdq , and Pr[out2 = 1] = 1

2 .
ut

B The Interactive Uber assumption

The proof starts with the game Expuber
Γm,n,A described in Fig. 5. In this game, the

adversary requests the evaluation of selected polynomials at a secret point s as
encodings in the group scheme Γm,n. Originally, the encodings of those group
elements simply encrypt those evaluated values directly. For that reason, the
game needs to know the secret point s. As a first step to bypass that, we represent
the secret s as c ◦ω := (ci · ωi)mi=1 for a random point c and exploit the fact that
the discrete logarithm that corresponds to an encoding equals the evaluation of
the thereby determined m-variate polynomial at ω. Consequently, we are able to
employ the Switching lemma (Lemma 2) to use non-constant polynomials in ω
to produce encodings. As a next step, we need to remove any information about
the matrix A from the public parameters. To achieve that, we gradually alter
the group structure such that encodings are treated as equal if and only if they
determine the same abstract polynomial. This paves the way for employing the
Randomization lemma (Lemma 3) to randomize the challenge.

Theorem 1. Let Γm,n be the group scheme constructed in Section 3.3. Further,
let piO be a probabilistic indistinguishability obfuscator with respect to SX-ind

for a circuit family containing circuits with input length at most poly(λ), let
T D = (T Dλ)λ∈N be a family of families T Dλ = {TD} of languages TD ⊆ Xλ
such that the subset membership problem is hard, let Π be a dual mode NIWI
proof system, let Hpke be an IND-CPA secure HPKE scheme, let Com be a
perfectly binding non-interactive commitment scheme, and let PObf be a point
obfuscation. Then, the (m,n)-Interactive Uber assumption (cf. Definition 10)
holds for Γm,n.

Before we prove this theorem, we state a technical lemma that helps to argue
that the Randomization lemma can be applied.

Lemma 4. Let l, n,m ∈ N be natural numbers, let K be a field, and let {Q1(X),
. . . , Ql(X)} be a set of m-variate polynomials over K of total degree at most n.
Then the set {Q1(X), . . . , Ql(X)} is linearly independent over K if and only if
for any c ∈ (K×)m, the set {Q1(c ◦X), . . . , Ql(c ◦X)} is linearly independent
over K, where c ◦X = (ci ·Xi)mi=1 is the Hadamard product.

Proof (of Theorem 1). Let A be a legitimate adversary for the (m,n)-Interactive
Uber game. To prove this theorem, we proceed over a series of games. We
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start with the real (m,n)-Interactive Uber game and stop with the ideal (m,n)-
Interactive Uber game. Let outi denote the output of Gamei. For an overview on
the proof steps we refer the reader to Table 1.
Game0. Is the real interactive Uber game Expuber

Γm,n,A(λ), i.e. the bit b is set to
0. We emphasize that Game0 produces encodings of group elements in a uniform
manner as the sampling algorithm Sam defined in Section 3.3.
Game1. Is identical to Game0 with the difference that the secret value s is
sampled as s := c ◦ω, where c is sampled uniformly at random from

(
Z×q
)m. We

recall that the algorithm Setup samples the value ω from (Zq)m and includes
point obfuscations for these values in pp. In Game0 s and ω are distributed
uniformly and independently over (Zq)m. In Game1 s and ω are distributed
exactly as in Game0 given that ω does not contain any zero entries. As the
probability that at least one entry of ω equals zero is at most m

q , we have that
|Pr[out1 = 1]− Pr[out0 = 1]| ≤ m

q .
Game2. Is the same as Game1 with the difference that Game2 uses non-constant
representations to produce group element encodings. In particular, Game2 uses
the representation vectors #»

f :=
#»

f ′ := A · ϕ−1
pol(P (c ◦X)) to produce an encoding

of the group element [P (s)]. We recall that these representation vectors describe
the polynomial P (c ◦ X) with respect to the basis {ϕpol(a1), . . . , ϕpol(ad)}.
The corresponding consistency proofs are produced for either relation R1 or for
relation R2 depending on whether the representation ( #»

f ,
#»

f ′) is constant or not.
This game hop is justified by the Switching lemma (Lemma 2). Particularly,
there exists a legitimate PPT adversary B2 for the Switch game, such that
|Pr[out2 = 1]− Pr[out1 = 1]| ≤ 2 · (l + 1) ·

∣∣Advswitch
B2

(λ)
∣∣, where l denotes the

number of A’s oracle queries.
To realize this, we use a standard hybrid argument. The hybrid game Game1.i

for i ∈ {0, . . . , l} is identical to Game1 with the difference that the first i oracle
queries are answered as in Game2. The hybrid game Game1.(l+1) is identical to
Game2. The adversary B2 receives the secret information ω and op as input and,
hence, is able to simulate each hybrid. B2 guesses an index j ∈ {1, . . . , l + 1}.
If j ∈ {1, . . . , l}, let P (X) denote the j-th query polynomial, and if j = l + 1,
let P (X) denote the challenge polynomial. The adversary B2 outputs the two
representations #»

f (0) :=
#»

f ′(0) := (P (c ◦ ω), 0, . . . , 0)T and #»

f (1) :=
#»

f ′(1) :=
A ·ϕ−1

pol(P (c ◦X)) to the Switch game and uses the resulting answer as answer to
the j-th oracle query if j ∈ {1, . . . , l} or as challenge encoding otherwise. We recall
that the first column of the matrix A is e1 which is why A−1 · #»

f (0) = P (c◦ω) · e1.
As ϕpol

(
A−1 · #»

f (0)
)

(ω) = P (c ◦ ω) = ϕpol

(
A−1 · #»

f (1)
)

(ω), B2 is a legitimate
adversary for the Switch game.
Game3. Is identical to Game2 with the difference that pp is distributed as
p̃p (see Eq. (10)). This hop is justified by the hardness of the SMP TD ⊆ X ,
i.e. there exists a PPT adversary B3, such that |Pr[out3 = 1]− Pr[out2 = 1]| ≤∣∣∣Advsmp

T D,B3
(λ)
∣∣∣.

Game4. Is the same as Game3 with the difference that the public parameters pp
are distributed as p̂p (see Eq. (11)). This hop is justified by Lemma 1. In particular,
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there exists a PPT distinguisher B4, such that |Pr[out4 = 1]− Pr[out3 = 1]| ≤∣∣Advswap
B4

(λ)
∣∣. To realize this, it is important to observe that B4 is able to simulate

Game3 and Game4 as the necessary secret information ω and op are part of its
input.
Game5. Is identical to Game4 except for the fact that this game produces any
consistency proof for relation R3. As crs is in hiding mode and Π satisfies perfect
witness-indistinguishability under a hiding CRS, Pr[out5 = 1]−Pr[out4 = 1] = 0.
This step allows to produce consistency proofs even if the commitment com
contains ⊥ and the point obfuscations po1, . . . , pom are produced for ⊥. We
emphasize that in this game the opening op is not used anymore.
Game6. Is the same as Game5 except for the fact that the commitment com
is produced via Commitck(⊥). In other words, in Game5 com is a commitment
for the matrix A, and in Game6 com is a commitment for ⊥. This game hop is
justified by the computational hiding property of Com, i.e. there exists a PPT
adversary B6, such that |Pr[out6 = 1]− Pr[out5 = 1]| ≤ 2 ·

∣∣∣Advhiding
Com,B6

(λ)
∣∣∣.

For notational convenience, let po(i) := (po1, . . . , pom) denote the following
distribution

po(i) :=
(
po1 ← PObf(⊥), . . . , poi ← PObf(⊥),
poi+1 ← PObf(ωi+1), . . . , pom ← PObf(ωm)

)
. (17)

Hence, the tuple of point obfuscations po as defined in Game6 is distributed as
po(0). Further, for any multivariate polynomial f(X) and any i ∈ {0, . . . , m} let

F
(f)
i (X1, . . . , Xi) := f(X1, . . . , Xi, ωi+1, . . . , ωm). (18)

Let pp(i) denote the distribution of public parameters as in Game6 containing a
tuple of point obfuscations distributed as po(i) and an obfuscation Λzero for the
circuit C(i)

Zero.
Game7. Is the same as Game6 with the difference that the m-tuple po of point
obfuscations is distributed as po(m) (see Eq. (17)) and the obfuscation of the
zero testing circuit Λzero is produced via piO(1poly(λ), C(m)

Zero) (see Fig. 13 for the
implementation of the circuit C(i)

Zero for i ∈ {0, . . . , m}). In other words, in Game6
pp is distributed as pp(0) and in Game7 pp is distributed as pp(m).

Lemma 5. For any PPT adversary A, there exists an X-Ind sampler S, and
PPT adversaries D1 and D2, such that

|Pr[out7 = 1]− Pr[out6 = 1]| ≤ 8m ·
∣∣∣Advpio-ind

piO,S,D1
(poly(λ))

∣∣∣
+m ·

∣∣∣Advpo
PObf,D2

(λ)
∣∣∣.

Proof (of Lemma 5). We define a series of hybrid games. The hybrid game
Game6.i for i ∈ {0, . . . , m} is identical to Game6 with the difference, that
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Circuit C
(i)
Zero(a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )

if F (f)
i (X1, . . . , Xi) ≡ 0 then

return 1
return 0

Circuit C
′(i)
Zero(a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )

r(1), . . . , r(ν) ← (Zq)i

if ∀j ∈ {1, . . . , ν} :(
F

(f)
i+1(r(j)

1 , . . . , r
(j)
i , Xi+1) ≡ 0 ∨

F
(f)
i+1(r(j)

1 , . . . , r
(j)
i , ωi+1) = 0

)
then

return 1
return 0

Circuit C
′′(i)
Zero (a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )

r(1), . . . , r(ν) ← (Zq)i

Vj := zero set of F (f)
i+1(r(j)

1 , . . . , r
(j)
i , Xi+1)

if ∀j ∈ {1, . . . , ν} :(
F

(f)
i+1(r(j)

1 , . . . , r
(j)
i , Xi+1) ≡ 0 ∨

∃v ∈ Vj : poi+1(v) = 1
)

then

return 1
return 0

Circuit C
′′′(i)
Zero (a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

f(X) := ϕpol(A−1 · #»

f )

r(1), . . . , r(ν) ← (Zq)i+1

if ∀j ∈ {1, . . . , ν} :(
F

(f)
i+1(r(j)

1 , . . . , r
(j)
i , r

(j)
i+1) = 0

)
then

return 1
return 0

Fig. 13. Zero testing circuits that appear in the proof. C(i)
Zero, C

′(i)
Zero know q, sk, (ωi+1,

. . . , ωm), and A. C′′(i)Zero , however, only needs to know poi+1 instead of ωi+1. C′′′(i)Zero does
not need to know ωi+1 at all. Changes to the previous circuit are highlighted . We
remark that testing whether an m-variate polynomial of total degree at most n is the
zero polynomial can be done in polynomial time as d =

(
n+m
m

)
is polynomial in λ.

the public parameters pp contain po(i) and an obfuscation Λzero of the circuit
C

(i)
Zero. That is, the public parameters produced in Game6.i are distributed as

pp(i). Game6.0 is identical to Game6 and Game6.m is identical to Game7. For an
overview on the proof steps we refer the reader to Table 4.
Game6.i.0. Is the same as Game6.i. That is, pp is distributed as pp(i).
Game6.i.1. Is identical to Game6.i.0 with the difference that the obfuscation
Λzero is produced for the circuit C ′(i)Zero (see Fig. 13 for an implementation of the
circuit C ′(i)Zero). This game hop is justified by the security property of piO and the
Schwartz-Zippel lemma.

Claim. For any legitimate PPT adversary A, there exists a circuit sampler S1 ∈
SX-ind and a PPT adversary B1, such that |Pr[out6.i.1 = 1]− Pr[out6.i.0 = 1]| ≤
2 ·
∣∣∣Advpio-ind

piO,S1,B1
(poly(λ))

∣∣∣.
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Table 4. An overview on the steps of the proof of Lemma 5. The boxes emphasize
changes compared to the previous game. We recall that F (f)

i (X1, . . . , Xi) := f(X1, . . . ,
Xi, ωi+1, . . . , ωm) and Vj is the zero set of the polynomial F (f)

i+1(r(j), Xi+1), where
r(j) ← Ziq.

Point
obfuscations

Zero
circuit Performed test Remark

Game6.i.0 po(i) C
(i)
Zero F

(f)
i (X1, . . . , Xi) ≡ 0

Game6.i.1 po(i) C
′(i)
Zero

∀j :
(
F

(f)
i+1(r(j), Xi+1) ≡ 0 ∨

F
(f)
i+1(r(j), ωi+1) = 0

) security
of piO

Game6.i.2 po(i) C
′′(i)
Zero

∀j :
(
F

(f)
i+1(r(j), Xi+1) ≡ 0 ∨
∃v ∈ Vj : poi+1(v) = 1

) security
of piO

Game6.i.3 po(i+1) C
′′(i)
Zero

∀j :
(
F

(f)
i+1(r(j), Xi+1) ≡ 0 ∨
∃v ∈ Vj : poi+1(v) = 1

) security
of PObf

Game6.i.4 po(i+1) C
′′′(i)
Zero ∀j :

(
F

(f)
i+1(r(j)

1 , . . . , r
(j)
i , r

(j)
i+1) = 0

) security
of piO

Game6.i+1.0 po(i+1) C
(i+1)
Zero F

(f)
i+1(X1, . . . , Xi+1) ≡ 0 security

of piO

Proof (sketch). The condition of acceptance of C ′(i)Zero is a logical or statement
such that the left-hand side of the or-statement implies the right-hand side. Thus,
the left-hand side of that or-statement is only conceptional. Hence, the difference
between the circuits’ behavior on input a valid encoding is limited to the fact that
C

(i)
Zero only outputs 1 if F (f)

i (X1, . . . , Xi) ≡ 0 as abstract polynomials, whereas
C
′(i)
Zero outputs 1 if

∀j ∈ {1, . . . , ν} : F (f)
i+1(r(j)

1 , . . . , r
(j)
i , ωi+1) = F

(f)
i (r(j)) = 0

for randomly sampled values r(1), . . . , r(ν) ← (Zq)i. The only event causing the
two circuits to produce different outputs is that F (f)

i is a non-zero polynomial
and F (f)

i (r(j)) = 0 for every j ∈ {1, . . . , ν}. Applying the Schwartz-Zippel lemma
upper bounds the probability for that event by nν

qν .
We construct a circuit sampler S1 that on input of the security parameter

1poly(λ) produces public parameters as in Game6.i.0 omitting the obfuscated circuit
Λzero and outputs the implementations of the circuits C(i)

Zero and C ′(i)Zero. As poly(λ)
upper bounds the input length of the two circuits, we may choose the differing
domain X to span the entire domain of the two circuits using the map X : N→ N,
l 7→ 2l. Therefore, for any possibly unbounded adversary D, the advantage
Adveq$

S1,D(poly(λ)) = 0. Furthermore, we need to verify that for any non-uniform
PPT adversary D′, X(poly(λ)) · Advsel-ind

S1,D′ (poly(λ)) is negligible in λ. As the
statistical distance between the outputs of C(i)

Zero and C ′(i)Zero is upper bounded by
nν

qν and q ≥ 2p(λ), we can easily choose ν such that X(poly(λ)) ·Advsel-ind
S1,D′ (poly(λ))
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is negligible in λ. Hence, S1 is an X-Ind Sampler. Then, we are able to construct
the adversary B1 such that it simulates Game6.i.0 if it receives an obfuscation of
C

(i)
Zero from Exppio-ind

piO,S1,B1
and Game6.i.1 otherwise. ut

Game6.i.2. Is the same as Game6.i.1 with the difference that the obfuscation
Λzero is produced for the circuit C ′′(i)Zero (see Fig. 13 for an implementation of the
circuit C ′′(i)Zero). Again, this game hop is justified by the security of piO. As poi+1
contains the value ωi+1, the following equivalence holds

∃v ∈ Vj : poi+1(v)⇐⇒ F
(f)
i+1(r(j)

1 , . . . , r
(j)
i , ωi+1) = 0,

where Vj is the zero set of the polynomial F (f)
i+1(r(j)

1 , . . . , r(j)
i , Xi+1). The zero

set of a univariate polynomial can be computed using the Cantor-Zassenhaus
(CS) algorithm [18]. The algorithm CS is a randomized Las Vegas algorithm
with expected computational complexity in O(n3 · log(q)) [19]. As the running
time has no upper bound, we define an algorithm CS ′ that simulates CS for 2 ·T
steps, where T is the expected running time of CS . If CS outputs the zero set
during that time, CS ′ succeeds, otherwise CS ′ outputs ⊥. Exploiting Markov’s
inequality, the probability that CS ′ succeeds if at least 1

2 . We define the algorithm
CS ′′ that calls CS ′ p′(λ) times. If at least one execution of CS ′ succeeds, CS ′′
outputs the (unique) zero set, otherwise CS ′′ outputs ∅. Hence, the probability
that CS ′′ succeeds is at least 1− 1

2p′(λ) . The circuit C ′′(i)Zero uses the algorithm CS ′′
to compute Vj . Hence, the two circuits behave differently only if the algorithm
CS ′′ fails to compute Vj for some j ∈ {1, . . . , ν}. Employing a union bound, the
statistical difference between the outputs of C ′(i)Zero and C ′′(i)Zero is upper bounded by
ν · 1

2p′(λ) .
We construct a circuit sampler S2 that produces public parameters as in

Game6.i.1 omitting the obfuscated circuit Λzero and outputs the implementations
of the circuits C ′(i)Zero and C ′′(i)Zero. By the same argument as above, we only need to
verify thatX(poly(λ))·Advsel-ind

S2,D′ (poly(λ)) is negligible in λ for any PPT adversary
D′. As X(poly(λ)) ≤ 2poly(λ) and Advsel-ind

S2,D′ (poly(λ)) ≤ ν · 1
2p′(λ) , we can easily

choose p′(λ) such that 2poly(λ) · ν · 1
2p′(λ) is negligible and, hence, S2 ∈ SX-ind. We

remark that at this point we make use of the fact that piO is secure even if for
circuit families that contain circuits that are bigger than the security parameter
used to instantiate piO.

A crucial observation is that the value ωi+1 is never used explicitly in Game6.i.2.
This enables to utilize the security property of the point obfuscation PObf.
Game6.i.3. Is the same as Game6.i.2 with the difference that the m-tuple po
of point obfuscations is distributed as po(i+1). That is, in Game6.i.2 poi+1 con-
tains the uniformly distributed value ωi+1 and in Game6.i.3 poi+1 is produced
via PObf(⊥). This hop is justified by the security property of the point ob-
fuscation PObf. In other words, there exists a PPT adversary B3, such that
|Pr[out6.i.3 = 1]− Pr[out6.i.2 = 1]| ≤

∣∣∣Advpo
PObf,B3

∣∣∣(λ).
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We observe that the condition ∃v ∈ Vj : poi+1(v) that is used in C ′′(i)Zero can
not hold anymore. Thus, C ′′(i)Zero on input a valid encoding outputs 1 if and only if
for every j ∈ {1, . . . , m}, F (f)

i+1(r(j)
1 , . . . , r(j)

i , Xi+1) ≡ 0 as abstract polynomials.
Game6.i.4. Is identical to Game6.i.3 with the difference, that Λzero is produced
for the circuit C ′′′(i)Zero (see Fig. 13 for the implementation of the circuit C ′′′(i)Zero ).
The difference between the circuits C ′′(i)Zero and C ′′′(i)Zero is limited to the fact that
C
′′(i)
Zero only outputs 1 if

∀j ∈ {1, . . . , ν} : F (f)
i+1(r(j)

1 , . . . , r
(j)
i , Xi+1) ≡ 0,

whereas C ′′′(i)Zero uses a weaker condition and outputs 1 if

∀j ∈ {1, . . . , ν} : F (f)
i+1(r(j)

1 , . . . , r
(j)
i+1) = 0,

where r(1), . . . , r(ν) are randomly sampled points from (Zq)i+1. Again, the
Schwartz-Zippel lemma upper bounds the probability that the circuits C ′′(i)Zero
and C

′′′(i)
Zero behave differently by nν

qν . Thus, using a similar argument as for
the game hop between Game6.i.0 and Game6.i.1, there exists an X-Ind sampler
S4 and a PPT adversary B4, such that |Pr[out6.i.4 = 1]− Pr[out6.i.3 = 1]| ≤
2 ·
∣∣∣Advpio-ind

piO,S4,B4
(poly(λ))

∣∣∣.
Game6.i.5. Is identical to Game6.i.4 with the difference, that Λzero is produced
for the circuit C(i+1)

Zero . The circuit C ′′(i)Zero outputs 1 if

∀j ∈ {1, . . . , ν} : F (f)
i+1(r(j)

1 , . . . , r
(j)
i+1) = 0

for r(1), . . . , r(ν) ← (Zq)i+1. The circuit C(i+1)
Zero only outputs 1 if F (f)

i+1(X1, . . . ,
Xi+1) ≡ 0 as abstract polynomials. The only event causing the two circuits to
produce different outputs occurs if the polynomial F (f)

i+1 is a non-zero polynomial
and for all j ∈ {1, . . . , ν}, F (f)

i+1(r(j)) evaluates to 0. Again, the Schwartz-Zippel
lemma upper bounds the probability for that to happen by nν

qν . Hence, this game
hop is justified by the security property of the employed obfuscator using a
similar argument as above. Furthermore, Pr[out6.i.5 = 1] = Pr[out6.i+1 = 1].

Hence, we obtain

|Pr[out7 = 1]− Pr[out6 = 1]| ≤

∣∣∣∣∣
m−1∑
i=0

Pr[out6.i+1 = 1]− Pr[out6.i = 1]

∣∣∣∣∣
≤ 8m ·

∣∣∣Advpio-ind
piO,S,D1

(poly(λ))
∣∣∣

+m ·
∣∣∣Advpo

PObf,D2
(λ)
∣∣∣

for a suitable circuit sampler S ∈ SX-ind and suitable PPT adversaries D1 and
D2 concluding the proof of Lemma 5. ut
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In C
(m)
Zero the matrix A is not necessary to perform the test whether F (f)

m (X)
equals the zero polynomial. This enables to employ the security of the obfuscator
to unnoticeably switch to a zero testing circuit that does not know the matrix A.
Game8. Is identical to Game7 except for the fact that the public parameters are
sampled containing an obfuscation of the circuit CZero (cf. Fig. 14). We refer to
this distribution of public parameters as pp. This game hop is justified by the
security of piO as the circuits C(m)

Zero and CZero are functionally equivalent.

Circuit CZero[q, sk](a)

if ¬Val(a) then return ⊥
parse a =: (C,C′, π)
#»

f ← Dec(sk, C)

if #»

f = (0, . . . , 0)T then
return 1

return 0

Fig. 14. Zero testing circuit that does not know the matrix A.

In Game8, the matrix A is not necessary to produce the implementation of
CZero as F (f)

m (X) ≡ 0⇔ #»

f = (0, . . . , 0)T exploiting the fact that multiplication
with A is an isomorphism of vector spaces. Thus, the public parameters pp in
Game8 do not contain any information about the matrix A, i.e. the only source
of information about A is the oracle O and the challenge. This enables to apply
the Randomization lemma (Lemma 3).
Game9. Is identical to Game8 except for the fact that the representation vectors
#»

f :=
#»

f ′ for the challenge encoding are sampled uniformly at random from (Zq)d.
This game hop is justified by the Randomization lemma (Lemma 3).

Claim. For any legitimate PPT adversary A, there exists a legitimate (possibly
unbounded) adversary B9 for the Randomization game Exprand

(q,d),B9
(λ), such that

|Pr[out9 = 1]− Pr[out8 = 1]| ≤ 2 · dq .

Proof (sketch). We construct an adversary B9 for Exprand
(q,d),B9

(λ) that simulates
either Game8 or Game9 depending on whether B9 receives the real challenge from
Exprand

(q,d),B9
(λ) or not. The public parameters pp that are sampled in Game8 and

Game9 are identically distributed, and B9 is able to sample pp exactly like in
these games, as pp does not depend on the matrix A. In order to answer A’s
oracle queries, B9 uses its oracle Orand. Particularly, B9 obtains the representation
vectors that are necessary to answer an oracle query for the polynomial P (X)
by requesting the vector t := ϕ−1

pol(P (c ◦ X)) from its own oracle Orand. To
obtain the representation vectors for the challenge encoding, B9 outputs the
vector t∗ := ϕ−1

pol(P ∗(c ◦X)) to the Randomization game. Hence, B9 simulates
Game8 if the Randomization game provides the real challenge. Otherwise, B9
simulates Game9. By premise, the adversary A is legitimate with respect to the
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(m, n)-Interactive Uber assumption, i.e. P ∗(X) 6∈ 〈1, P1(X), . . . , Pl(X)〉 and
for any P (X) ∈ {P ∗(X), P1(X), . . . , Pl(X)}, deg(P (X)) ≤ n. Hence, due to
Lemma 4 and exploiting the fact that ϕpol is an isomorphism of vector spaces,
ϕ−1

pol(P ∗(c ◦X)) 6∈ 〈e1, ϕ−1
pol(P1(c ◦X)), . . . , ϕ−1

pol(Pl(c ◦X))〉, where P1(X), . . . ,
Pl(X) are the polynomials A queries from its oracle. Therefore, B9 is legitimate.

ut

Game10. Is identical to Game9 with the difference that the public parameters
pp are sampled with an obfuscation of C(m)

Zero instead of an obfuscation of CZero.
The analysis of this game hop is analogous to the analysis of the game hop from
Game7 to Game8. Hence, in Game10 the public parameters are distributed as
pp(m).
Game11. Is the same as Game10 except for the fact that the public parameters
are again distributed as pp(0) instead of being distributed as pp(m). This game
hop is justified by the security property of piO and the point obfuscation PObf.
The analysis is analogous to the proof of Lemma 5.
Game12. Is the same as Game11 except for the fact that com is produced via
Commitck(A). The analysis is analogous to the analysis of the game hop from
Game5 to Game6.
Game13. Is the same as Game12 with the difference that Game13 produces
consistency proofs for relation R1 or relation R2 depending on whether the
corresponding representation is constant or not. The representation vectors
#»

f :=
#»

f ′ for the challenge encoding are sampled uniformly at random from
(Zq)d. Nevertheless, the resulting representation is consistent. As Π is perfectly
witness-indistinguishable under a hiding CRS, Pr[out13 = 1]− Pr[out12 = 1] = 0.
Game14. Is the same as Game13 with the difference that in Game13 pp is
distributed as p̂p, whereas in Game14 pp is distributed as p̃p. Hence, this game
hop is justified by the Swap lemma (Lemma 1). We remark that the witness wy
for the statement y ∈ TD is never used in Game14.
Game15. Is identical to Game14 except for the fact that the public parameters
pp are sampled according to Setup(1λ). The analysis is similar to the analysis
of the game hop form Game2 to Game3.
Game16. Is the same as Game15 with the difference that group element encodings
are sampled in a uniform manner as in the sampling algorithm Sam, i.e. using
constant representations. In particular, the representation vectors for the challenge
encoding are computed via

#»

f :=
#»

f ′ :=
(
ϕpol

(
A−1 · v∗

)
(ω), 0, . . . , 0

)T , for v∗ ← (Zq)d .

The analysis of this game hop is similar to the analysis of the game hop form
Game1 to Game2 using a hybrid argument and Lemma 2. We observe that Game16
does not use the value c explicitly.
Game17. Is identical to Game16 with the difference that s is directly sampled uni-
formly at random from (Zq)m. In both games Game16 and Game17, s is uniformly
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and independently distributed over (Zq)m, if ω does not contain a zero entry. As ω
is chosen uniformly at random from (Zq)m, |Pr[out17 = 1]− Pr[out16 = 1]| ≤ m

q .
Game18. Is identical to Game17 except for the fact that the challenge encoding
is sampled using the representation #»

f :=
#»

f ′ := (r, 0, . . . , 0)T , where r is sampled
uniformly at random from Zq. In Game17, the vector v∗ is sampled uniformly
at random from (Zq)d, and multiplication with the matrix A defines a bijection
on (Zq)d that does not depend on v∗. Thus, the vector A−1 · v∗ is uniformly
distributed over (Zq)d. Therefore, Game17 and Game18 are identically distributed,
which is why Pr[out18 = 1]− Pr[out17 = 1] = 0.

Therefore, for any legitimate PPT adversary A, there exist legitimate PPT
adversaries D1, D2, D3, D4, D5, and D6 and a polynomial l = l(λ) such that∣∣∣Advuber

Γm,n,A(λ)
∣∣∣ ≤ d+m

q
+ (6l + 7) ·

∣∣∣Advsmp
T D,D1

(λ)
∣∣∣+m ·

∣∣∣Advpo
PObf,D5

(λ)
∣∣∣

+ (12l + 14) ·
∣∣Advcrs

Π,D3
(λ)
∣∣+ (8l + 8) ·

∣∣∣Advind-cpa
Hpke,D4

(λ)
∣∣∣

+ (28l + 8m+ 34) ·
∣∣∣Advpio-ind

piO,D2
(poly(λ))

∣∣∣
+ 2 ·

∣∣∣Advhiding
Com,D6

(λ)
∣∣∣. (19)

As m and l grow at most polynomially in λ, the advantage Advuber
Γm,n,A(λ) is

negligible in λ concluding the proof. ut

C Point obfuscation from DDH

Let G = {Gλ} be a family of finite cyclic groups of prime order p such that the
DDH assumption holds. On input the value x ∈ Zp, PObf(x) samples a random
generator g ← GensG and two values r, r′ ← Z×p , and outputs the tuple (gr, gr·x,
gr
′ , gr′·x). On input ⊥, PObf(⊥) samples a random generator g ← GensG and

four values x, x′, r, r′ ← Z×p such that x 6= x′, and outputs the tuple (gr, gr·x,
gr
′ , gr′·x′). Given the description po =: (A, B, A′, B′) of a point function, po(y)

evaluates to 1 if and only if Ay = B and A′y = B′ for some point y ∈ Zp.
A point obfuscation with message spaceMλ = Zq for a prime q that is much

larger than p can be constructed using the above point obfuscation with message
space Zp. Let l ∈ N be the smallest natural number such that pl ≥ q. Essentially,
the idea is to produce a point obfuscation for the first component of the p-adic
representation of elements in Zq. Particularly, on input y ∈ Zq, PObf′ produces
po0 for y (mod p) and appends the remaining p-adic representation in the clear.
On input ⊥, PObf′ produces po0 for ⊥ and generates a random value y ← Zq
and appends the p-adic representation of q omitting the first component. The
proof of security relies on the security of the underlying point obfuscation PObf
and the fact that uniform distribution over Zp and uniform distribution over Zq
modulo p are statistically close if the quotient p

q is negligible in λ.
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Lemma 6. Let PObf be a point obfuscation with message space Zp for a prime
p and let q ≥ pl be a prime such that p

q is negligible in λ. Then, PObf′ as
described in Fig. 15 is a point obfuscation for message space Zq.

Algorithm PObf′(y)

if y = ⊥ then x← Zq
else x := y

let (x0, . . . , xl−1) s. t.

x =
∑l−1

i=0 xi · p
i and

0 ≤ xi < p for any 0 ≤ i < l

if y = ⊥ then po0 ← PObf(⊥)
else po0 ← PObf(x0)
return po := (po0, x1, . . . , xl−1)

po(x)

let (x0, . . . , xl−1) s. t.

x =
∑l−1

i=0 xi · p
i and

0 ≤ xi < p for any 0 ≤ i < l

return (po0(x0) = 1)∧
(poi = xi for 1 ≤ i < l)

Fig. 15. The description of PObf′ (left) and the map defined by po (right).

Proof (sketch). Let A be a PPT adversary. To prove this statement, we proceed
over a series of games. Let outi denote the output of Gamei.
Game0. This game produces po ← PObf′(x) for x ← Zq, calls the adversary
A on input (1λ, po), and outputs A’s output. We have that Pr[out0 = 1] =
Pr[A(po) = 1 | po← PObf(x), x← Zq].
Game1. This game samples a value x̃0 ← Zp and produces po0 ← PObf(x̃0).
The value x is sampled from Zq conditioned on x = x̃0 (mod p). Further, x0, . . . ,
xl−1 are produced as in Game0. This game invokes A with po := (x̃0, x1, . . . ,
xl−1). The statistical distance between uniform distribution over Zp and uniform
distribution over Zq reduced modulo p is upper bounded by p

2q , which is why
|Pr[out1 = 1]− Pr[out0 = 1]| ≤ p

2q .
As the message used to produce the point obfuscation po0 is uniformly

distributed over the message space Zp, we are able to exploit the security property
of PObf.
Game2. Is identical to Game1 with the difference that po0 is produced for ⊥.
Hence, |Pr[out2 = 1]− Pr[out1 = 1]| ≤ Advpo

PObf,B2
(λ).

Game3. Is the same as Game2 except for the fact that x is sampled uniformly
at random from Zq, i.e. x0 = x (mod p) is not distributed uniformly anymore.
Applying a similar argument as above, we obtain |Pr[out3 = 1]− Pr[out2 = 1]| ≤
p
2q . Furthermore, we have that Pr[out3 = 1] = Pr

[
A(po) = 1

∣∣ po← PObf′(⊥)
]
.
ut
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