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Abstract. A digital signature scheme (DSS), which consists of a key-
generation, a signing, and a verification algorithm, is an invaluable tool
in cryptography. The first and still most widely used security definition
for a DSS, existential unforgeability under chosen-message attack, was
introduced by Goldwasser, Micali, and Rivest in 1988.
As DSSs serve as a building block in numerous complex cryptographic
protocols, a security definition that specifies the guarantees of a DSS un-
der composition is needed. Canetti (FOCS 2001, CSFW 2004) as well as
Backes, Pfitzmann, and Waidner (CCS 2003) have described ideal func-
tionalities for signatures in their respective composable-security frame-
works. While several variants of these functionalities exist, they all share
that the verification key and signature values appear explicitly.
In this paper, we describe digital signature schemes from a different,
more abstract perspective. Instead of modeling all aspects of a DSS in
a monolithic ideal functionality, our approach characterizes a DSS as
a construction of a repository for authentically reading values written
by a certain party from certain assumed repositories, e.g., for transmit-
ting verification key and signature values. This approach resolves several
technical complications of previous simulation-based approaches, cap-
tures the security of signature schemes in an abstract way, and allows
for modular proofs.
We show that our definition is equivalent to existential unforgeability.
We then model two example applications: (1) the certification of values
via a signature from a specific entity, which with public keys as values
is the core functionality of public-key infrastructures, and (2) the au-
thentication of a session between a client and a server with the help
of a digitally signed assertion from an identity provider. Single-sign-on
mechanisms such as SAML rely on the soundness of the latter approach.

1 Introduction

A digital signature scheme (DSS) allows a signer to authenticate a message such
that everyone can verify the authenticity. The signer initially generates an asym-
metric key pair consisting of a signing key and a verification key. The signing
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Fig. 1. Left: Execution of protocol π in the real-world model. Right: Ideal-world
model described by S with simulator σ. In both figures, the dotted lines are “free”
interfaces explained below.

key, which is kept secret by the signer, allows to generate signatures for mes-
sages. The verification key is made public and allows to verify that a message
was indeed signed using the corresponding signing key. DSSs are a crucial com-
ponent in many of today’s widely-used cryptographic protocols. They underlie
the public-key infrastructure (PKI) that is used to provide authentication in
most Internet protocols, and they are used to authenticate e-mails as well as
to provide non-repudiation for electronic documents. They are also used as a
building block in numerous cryptographic protocols.

1.1 Formalizing Message Authentication

The core idea of our approach is that digitally signing a message can be under-
stood as the signer’s declaration that the message belongs to a certain context,
which is described by the verification key. This context may be the signer’s com-
mitment to be legally liable for the content of the message (e.g., a contract), or
simply that the message is meant to originate from the signer. Abstractly, this
can be understood as writing the message to a certain type of repository that
allows other parties to verify for given messages whether they have been written
to the repository, i.e., assigned to the context.

The real-world/ideal-world paradigm. Many security definitions, and in
particular most composable security frameworks [5,24,21], are based on the
real-world/ideal-world paradigm. The real world models the use of a protocol,
whereas the ideal world formalizes the security guarantees that the protocol is
supposed to achieve. The structure of the real-world model is depicted for a sim-
ple setting in Fig. 1 on the left, where R describes the assumed resources [21,19]
or hybrid functionalities [5] used by the protocol π. The “open lines” on the left
and right indicate the interfaces that the honest parties use to access the pro-
tocol π, whereas the line on the bottom indicates a potential attacker’s access
to R.

In the ideal world, as depicted in Fig. 1 on the right, the box S formalizes
the intended security guarantees and is referred to as constructed resource [21]
or ideal functionality [5]. The access of the honest parties to S is via direct
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interfaces, whereas a potential attacker accesses S via the so-called simulator
σ. The intuition behind the simulator is that, if the two settings are indistin-
guishable, then any attack on π (and working with assumed resource R) can be
translated via σ into an attack on S, but S is secure by definition. Therefore,
using the protocol π with the assumed resource R provides at least the same
security guarantees as using the constructed resource S.

Signature schemes as constructions. We formalize the security of a DSS in
the real-world/ideal-world paradigm and based on different types of repositories
to which messages can be written and from which messages can be read, by dif-
ferent parties with potentially different access permissions. As described above,
the goal of using the signature scheme in the described way can be seen as con-
structing an authenticated repository, where only the signer can write messages
and all verifiers can check the validity. This repository takes the role of S in
Fig. 1.

Using a signature scheme requires an authenticated repository that can hold
one message. This repository is used to transmit the signature verification key.
We also assume one repository that can hold multiple messages, but this reposi-
tory can be insecure, meaning that write access to the repository is not exclusive
to the signer. This repository is used to transmit the signature strings. We also
make the storage of the signing key explicit as a secure repository where both
write and read access is exclusive to the signer. These three assumed repositories
correspond to R in Fig. 1.

A signature scheme then uses the described repositories in the obvious way:
the signer begins by generating a key pair, writes the signing key to the secure
repository and the verification key to the authenticated one. Upon a request to
sign a message m, the signer retrieves the signing key from the secure repository,
computes the signature, and stores it in the insecure repository. For checking the
validity of a message m, a verifier reads the verification key from the authenti-
cated repository and the signature from the insecure one, and runs the signa-
ture verification algorithm. Our security statement is, then, that this use of the
signature scheme constructs the desired authenticated repository for multiple
messages from the three described assumed repositories.

The advantage of such a composable security statement is that applications
and higher-level protocols can be designed and analyzed using the abstraction
of such a repository; in particular, no reduction proof is required since the com-
position theorem immediately guarantees the soundness of this approach. More
technically, if a protocol π constructs S from R and protocol π′ constructs T
from S, then composing the two protocols leads to a construction of T from R.

Abstract communication semantics. The purpose of a repository is to model
the fact that a certain message written by one party can be made accessible to a
different party in an abstract manner. Indeed, a DSS is a generic security mech-
anism and can be used by various applications; the definition of a DSS should
abstract from the particular way in which the verification key and the signature
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are delivered to the verifier. For instance, a communication network used for
transmission may guarantee messages to be delivered within a certain time, or
an attacker may be able to eavesdrop on messages. Using a DSS—intuitively—
preserves such properties of the communication network. The repositories used
in this work are general enough to model various different such concrete types
of transferring the values.

This generality is, more technically, achieved through a free interface that
appears in both the real-world and the ideal-world model and that is indicated
by the dotted lines in Figure 1. In the random experiment, this interface is
accessed directly by the distinguisher. The free interface is reminiscent of the
environment access to the global setup functionality in the GUC model [9], but
in our model each resource/functionality can have such a free interface.3

A free interface allows the distinguisher to interact with both resources R
and S directly. This results in a stronger and more general condition compared
to considering the capabilities at that interface as part of the attacker’s interface
and, therefore, in the ideal-world model providing them to the simulator. More
intuitively, the free interface can be seen as a way for the distinguisher to enforce
that certain aspects in the real and the ideal world are the same. We will use
the free interface to let the distinguisher control the transmission semantics; this
leaves our statements general and independent of any concrete such semantics.

In more detail, the write and read interfaces of the repository are defined
to write to or read from buffers associated to the interface. The repository also
has free interfaces that control the transfer of messages from write buffers to
read buffers. In other words, capabilities such as writing messages to a buffer
in the repository or reading messages from one are separated from the mecha-
nisms for making messages written to the repository visible at a specific reader
interface. Control over the operations governing the visibility is granted to the
environment—this makes the security statements independent of specific net-
work models. In particular, the statements imply those in which these capabili-
ties are granted to an attacker controlling the network.

Interfaces and partitioning of capabilities. The interfaces of a resource
group capabilities. Often, each interface can be seen as corresponding to one
particular party in a given application scenario, which can then attach a protocol
machine to this interface, as in Fig. 1. Yet, for a general security definition such
as that of a DSS we do not want to fix the number of possible verifiers in advance,
or even prohibit that the signing key may be transmitted securely between and
used by different parties. As one can always merge several interfaces and provide
them to the same party, it is beneficial to target a fine-grained partitioning
of capabilities into interfaces, and therefore a fine-grained partitioning of the
protocol into individual protocol machines.

3 The direct communication between the environment and the functionality requires
a modification of the control function in UC, but does not affect the composition
theorem. In most formal frameworks [24,16,21], no modification is necessary.
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For our repositories, this means that if each interface gives access to one
basic operation (such as writing or reading one value), one can always subsume
a certain subset of these capabilities into one interface and assign it to a single
party. We achieve the most fine-grained partitioning by modeling each invocation
of an algorithm of the signature scheme as a single protocol machine, and capture
passing values between the machines explicitly via repositories.

Specifications. For generality or conciseness of description, it is often desirable
to not fully specify a resource or functionality. For instance, a complete descrip-
tion of the construction would entail the behavior of the signature scheme in the
case where a signature shall be verified before the verification key is delivered to
the verifier. The approach generally used in the literature on UC in such cases is
to delegate such details to the adversary, to model the worst possible behavior.
In this work, we follow a more direct approach, and explicitly leave the behavior
undefined in such cases.

Our formalization follows the concept of specifications by Maurer and Ren-
ner [22], which are sets of resources that, for example, fulfill a certain property.
As such they are suitable to express an incomplete description of a resource,
namely by considering the set of all resources that adhere to such a (partially
defined) description. Maurer and Renner describe concrete types of specifica-
tions such as all resources that can be distinguished from a specific one by at
most a certain advantage, or all resources that are obtained from a specific one
by applying certain transformations.

We use specifications in this work to describe the behavior of a resource in
environments that use the resource in a restricted way, in the sense that the in-
puts given to the resource satisfy certain conditions, such as that the verification
key must have been delivered before messages can be verified. This alleviates the
requirement of specifying the behavior of the resource for input patterns that
do not occur in applications, and simplifies the description. Needless to say, this
also means that for each application one has to show that the use of the resource
indeed adheres to the specified conditions.

The repositories in this work. In summary, we consider specifications of
repositories as described above. Repositories provide multiple interfaces, each of
which allows exactly one write or read operation. A repository that allows for k
write operations has k writer interfaces, and for n read operations it has n reader
interfaces, and each operation can be understood as writing to or reading from
one specific buffer. A write interface may allow the writer to input an arbitrary
value from the message space, or, in a weaker form, it may allow the writer
to only copy values from buffers at some read interfaces. A read interface may
either allow to retrieve the contents of the corresponding buffer, or to input a
value and check for equality with the one in the buffer.

The resource additionally provides free interfaces for transferring the contents
of write buffers to read buffers. As discussed above, the access to these interfaces
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for managing the visibility of messages is given to the distinguisher, not the
attacker, to abstract from specific communication semantics.

All repositories in this work can be viewed as specific instances of the one
described above, where different types of capabilities are provided at different
parties’ interfaces. For instance, a repository in which an attacker has only read-
interfaces, but cannot write chosen messages, can be considered as authenticated,
since all messages must originate from the intended writers. A repository where
the attacker can also write can be considered as insecure, since messages obtained
by honest readers could originate either from honest writers or the attacker.

1.2 Background and Previous Work

The concept of a DSS was first envisioned by Diffie and Hellman and referred to
as one-way authentication [13]. Early instantiations of this concept were given by
Rivest, Shamir, and Adleman [25] and by Lamport [17]. The provable-security
treatment of DSS was initiated by Goldwasser, Micali, and Rivest [14], who also
introduced the first and still widely-used security definition called existential
unforgeability under chosen-message attack. In this definition, a hypothetical
attacker that has access to honestly computed signatures on messages of his own
choice aims at creating a signature for some new message. A scheme is deemed
secure if no efficient attacker can provide such a forgery with non-negligible
probability.

Canetti [6] and independently Pfitzmann and Waidner [24] developed secu-
rity frameworks that allow for security-preserving composition of cryptographic
schemes. In these frameworks, the security of a cryptographic scheme, such as
a DSS, is modeled by idealizing the algorithms and their security properties,
and a concrete scheme is then proved to satisfy the idealization under certain
computational assumptions. Higher-level schemes and protocols that make use
of a DSS can be analyzed using the idealized version of the scheme. One main
advantage of composable frameworks is that they guarantee the soundness of
this approach; a higher-level protocol proven secure with respect to an idealized
signature scheme will retain its security even if the idealized scheme is replaced
by any concrete scheme that is proven secure. In contrast to standard reduc-
tionist proofs, this method does not require to prove an explicit reduction from
breaking the signature scheme to breaking the higher-level protocol; this follows
generically from the composition theorem. Still, even in protocol analyses within
composable frameworks, existential unforgeability remains widely used, despite
the existence of composable models within these formal frameworks.

The first composable notion for digital signatures has been proposed by
Canetti [5,7] via an ideal signing functionality Fsig. The functionality idealizes
the process of binding a message m to a public key vk via an ideal signature
string s. In a nutshell, when the honest sender signs a message, he receives an
idealized signature string. This signature string allows any party to verify that
the message has indeed been signed by the signer. Fsig enforces consistency and
unforgeability in an ideal manner: if the honest signer has never signed a mes-
sage m, no signature string leads to successful verification. Likewise, verification
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with a legitimately generated signature string for a message m always succeeds.
Special care has to be taken in case the signer is dishonest, in which case the
above guarantees for unforgeability are generally lost. The formalization given
by Backes, Pfitzmann, and Waidner [2] in their framework follows a by and large
similar approach.

Several versions of the signature functionality have been suggested in previ-
ous work [5,10,1,7,8,11]. All these versions, however, require interaction with the
ideal-model adversary for operations that correspond to local computations in
any real-world scheme, such as the initial creation of the key pair or the genera-
tion of a signature. Camenisch et al. [4] point out that this unnatural weakness,
allowing the adversary to delay operations in the idealized security guarantee,
has often gone unnoticed and even lead to flaws in proofs of higher-level schemes
based on signatures. As a further example, consider a signer S that has never
signed a message m. If an honest party P verifies m with respect to some signa-
ture string s, the verification should fail. Yet, the adversary gets activated during
any local verification request and can corrupt the signer just before providing
the response. The adversary thus has complete freedom on whether to let P
accept or reject the signature string s on message m. This behavior is arguably
counter-intuitive and it is a property that signature schemes do not possess. The
solution of Camenisch et al. [4] requires to modify the universal composability
framework by introducing the concept of responsive environments and adver-
saries that are mandated to answer specific requests immediately to model local
tasks. While Camenisch et al. do re-prove the composition theorem for their
modified framework, such a modification of the framework has the downside
of further increasing its complexity and, at least in principle, making security
analyses in the original and modified frameworks incompatible.

Besides the technical difficulties in defining the signature functionality Fsig
consistently, it is less abstract than what one would expect, since the signa-
ture string and the verification key are an explicit part of the interface. Indeed,
Canetti [7, page 5] writes:

The present formalization of Fsig and Fcert is attractive in that it allows a
very modular approach where each instance of the ideal functionality handles
only a single instance of a signature scheme (i.e., a single pair of signature
and verification keys). This has several advantages as described in this work.
However, the interface of the signature scheme is somewhat less abstract than
we may have wanted. Specifically, the interface contains an idealized “signature
string” that is passed around among parties [. . . ].

Indeed, Canetti [7, page 7] starts by describing a “first attempt” functionality F1
that is a “depository of signed messages,” where the signer can input a message
and the verifiers can check. This functionality can be seen as a simplified version
of the authenticated repository we described above. He then argues, however,
that including the technical details in the functionality’s interface is inevitable,
see [7, page 7]:

The lack of explicit signature strings also causes some other modeling prob-
lems. For instance, modeling natural operations such as sending an “encrypted
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signature” that is usable only by the holders of the decryption key cannot be
done in a modular way [. . . ] We conclude that in order to capture our intuitive
notion of signature schemes, an ideal signature functionality should make the
“signature string” part of its interface. [. . . ]

We want to argue here that, despite the similarity, the arguments given in [7] do
not apply to our definition. The first argument is that the formulation binds the
messages to the signer’s identity instead of the verification key, which requires
prior communication to transmit the verification key. While this argument is
correct, and our definition makes the repository for transmitting the verification
key explicit, we stress that the repositories abstract from concrete types of com-
munication and merely specify that the correct verification key generated by the
signer is accessible, in some way, to the verifier. The means of how it became
accessible do not have to be specified.

The second argument is that (beyond requiring the communication of the
signature string, which is analogous to the verification key), protocols that com-
municate a signature over a different connection than specified, such as an en-
crypted one, is a modeling challenge. One such protocol is SAML [15], where
a signed assertion on the identity of a party is sent through a TLS connection.
Despite the fact that this assertion is indeed encrypted, and SAML would there-
fore appear to be in the class of protocols referred to by Canetti, we show that
our model, which does not explicitly expose the signature string, indeed allows
to analyze the security of protocols like SAML. The reason is again that our
model abstracts from the concrete communication semantics and in particular
also allows to model the case where a signature is transferred securely.

There are protocols that make explicit use of the verification key or signature
as a bit string and for which our model in its current form does not support a
modular analysis. One example is the transformation from CPA-secure public-
key encryption (PKE) to non-malleable PKE by Choi et al. [12], where each
ciphertext is protected via an instance of a one-time signature scheme, and the
bits of the verification key are used to select a certain subset of instances of the
CPA-secure PKE. For the security reduction to succeed, however, it is necessary
that the verification key be not only a bit string, but that it also be different
for each instance, with high probability. While this property is clearly satisfied
by every secure DSS, and therefore also each DSS that realizes Fsig, it is not
captured in the functionality alone, where the adversary can freely choose the
verification key. Hence, a composable analysis of the Choi et al. scheme in the
Fsig-hybrid model is inherently impossible. In summary, this shows that the
property of outputting some string as the verification key is not sufficient at
least for the application of [12]. Another example are protocols that require
parties to provide proofs (e.g., of knowledge) over inputs and outputs of the
DSS algorithms. Yet, also here, the same issues appear with the formalization
Fsig that is independent of any concrete scheme. In summary, it remains open
whether there is a natural scheme that can be modularly proved based on Fsig,
but not using the more abstract definition we put forth in this paper.
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Fig. 2. Illustration of the main construction that characterizes a digital signature
scheme. The assumed resources with the protocol (left) and the constructed resource
(right). The adversarial interfaces are denoted by E.w (write) and E.r (read) and the
free interface is denoted by W. The protocol is applied at the honest users’ interfaces
of the assumed resources.

Finally, our work can be seen as orthogonal to the work of Canetti et al. [11],
which extends the model of Canetti [5,7] to the case where verification keys are
available globally. While our model does not restrict the use of the constructed
resource, the central aspect of our work is the different paradigm underlying the
specification of the functionalities.

1.3 Contributions

The first main contribution of our work is the formal model sketched in Sect. 1.1
above, which we formally specify in Sect. 3. We additionally prove several state-
ments about DSSs using this model; in particular, we exemplify the use of the
construction by two applications.

Capturing the security of a DSS. We define, in Sect. 4.1, the security of a
DSS as constructing an authenticated repository, shown on the right-hand side
of Fig. 2, from an insecure repository, called “insecure Rep” on the left-hand side
of Fig. 2, an “authenticated Rep” to which one message can be written, and a
“secure Rep” that allows to write a single message, but to which the adversary
has neither read- nor write-interfaces. As shown in Fig. 2, using the signature
scheme, which consists of the systems labeled setup, write, and check, requires
the two single-message repositories for distributing the signing and verification
keys. In more detail, in write each message is signed and the signature input into
the insecure repository. Checking whether a given message m has been written
to the repository is done by verifying the received signature for m within check.

We then prove that this construction statement is equivalent to the existential
unforgeability of secure digital signature schemes in the sense of [14]:
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Theorem (informal). A DSS constructs an authenticated multi-message repos-
itory from an insecure multi-message repository, an authenticated single-message
repository and a secure single-message repository if and only if it is existentially
unforgeable.

Following the discussion in [7], we have to argue that our abstract formal-
ization of a signature scheme indeed models the intuitively expected properties
of such a scheme. In particular, in Sect. 5, we show that the formalization di-
rectly models the transferability property of signature schemes in the sense that
a receiver of a signature can forward it to another party, who can also verify it.

Message registration resource. We show that the security of a DSS in our
model immediately implies that it can be used to construct a (authenticated)
message registration resource. This resource allows multiple parties to input
messages, which are then authenticated by one party referred to as the issuer.
Letting the messages be public keys corresponds to the use of signatures in a
public-key infrastructure.

Assertions and SAML. Finally, we show how our constructive definition can
be used to prove the soundness of an important step in single-sign-on (SSO)
mechanisms, which is to authenticate a session between a client and a server
(often denoted service provider in this context) with the help of a digitally signed
assertion from an identity provider.

2 Preliminaries

2.1 Discrete Systems and Notation

We model all components as discrete reactive systems and describe them in
pseudo-code using the following conventions: We write x ← y for assigning the
value y to the variable x. For a distribution X over some set, x � X denotes
sampling x according to X . For a finite set X, x � X denotes assigning to x a
uniformly random value in X. For a table T of key-value pairs, with values in
a set V and keys in a set S, we denote by the assignment T [s]← v the binding
of a key s ∈ S to a value v ∈ V. This assignment overwrites any prior binding
of s to some value. Analogously, v ← T [s] denotes the look-up of the value that
is currently bound to key s. If no value is bound to s, this look-up is defined to
return ⊥. The empty table is defined as the table where any look-up returns ⊥.

More formally, discrete reactive systems are modeled by random systems [18].
An important similarity measure on those is given by the distinguishing advan-
tage. More formally, the advantage of a distinguisher D in distinguishing two
discrete systems, say R and S, is defined as

∆D(R,S) = Pr [DR = 1]− Pr [DS = 1] ,



On Composable Security for Digital Signatures 11

where Pr [DR = 1] denotes the probability that D outputs 1 when connected to
the system R. More concretely, DR is a random experiment, where the distin-
guisher repeatedly provides an input to one of the interfaces and observes the
output generated in reaction to that input before it decides on its output bit.

A further important concept for discrete systems is a monotone binary output
(MBO) [20] or bad event [3]. This concept is used to define a similarity between
two systems, the game equivalence [18] or equivalence until bad [3], which means
that two systems behave equivalently until the MBO is set (i.e., as long as the
bad event does not occur), but may deviate arbitrarily thereafter. A widely-used
result is the so-called Fundamental Lemma of Game Playing [18,3], which states
that the distinguishing advantage between two such systems is bounded by the
probability of provoking the MBO (i.e., bad event).

We stress that while especially the notion of bad event carries the connota-
tion that such an event is supposed to occur only with small probability, this
need not be the case. In particular, we will define specifications by means of
the equivalence of two systems until an MBO is set, irrespective of how likely
or unlikely this event is for a particular adversary. Such a specification is still
interesting if, for each particular setting of interest, this probability turns out to
be small.

2.2 Definition of Security

We use a term algebra to concisely write security statements. The resources,
such as repositories, are written in bold-face font and provide interfaces, which
are labeled by identifiers from a set I, which can be accessed by parties. Proto-
col machines used by parties are also referred to as converters and are attached
to some interface of a resource. This composition, which for a converter π, in-
terface I, and resource R is denoted by πIR, again yields a resource. For a
vector of converters π = (πI1 , . . . , πIn) with Ii ∈ I, and a subset of interfaces
P ⊆ {I1, . . . , In}, πPR denotes the resource where πI is connected to interface
I of R for every I ∈ P. For I-resources R1, . . .Rm the parallel composition
[R1, . . . ,Rm] is again an I-resource that provides at each interface access to the
corresponding interfaces of all subsystems.

In this paper, we make statements about resources with interface sets of the
form I = P ∪ {E,W} where P is the set of (honest) interfaces. A protocol is a
vector π = (πI1 , . . . , πI|P|) that specifies one converter for each interface I ∈ P.
Intuitively, P can be thought of as the interfaces that honestly apply the spec-
ified protocol π. On the other hand, interface E corresponds to the interface
with potentially dishonest behavior and no protocol is applied at this interface.
Intuitively, this interface models the attacker’s capabilities to interfere with the
honest protocol execution. Interface W is the free interface that models the influ-
ence of the environment on the resource. A constructive security definition then
specifies the goal of a protocol in terms of assumed and constructed resources.
We state the definition of a construction of [21].
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Definition 1. Let R and S be resources with interface set I. Let ε be a func-
tion that maps distinguishers to a value in [−1, 1] and let the interface label set
be I = P ∪ {E,W} with P ∩ {E,W} = ∅. A protocol, i.e., a vector of convert-
ers π = (πI1 , . . . , πI|P|), constructs S from R within ε and with respect to the
simulator sim, if

∀D : ∆D(πPR, simE S) ≤ ε(D). (1)

This condition ensures that whatever an attacker can do with the assumed
resource, she could do as well with the constructed resource by using the simula-
tor sim. Turned around, if the constructed resource is secure by definition, there
is no successful attack on the protocol.

The notion of construction is composable, which intuitively means that the
constructed resource can be replaced in any context by the assumed resource with
the protocol attached without affecting the security. This is proven in [21,22].

Specifications and relaxed specifications. As discussed in the introduction,
we consider specifications [22] of reactive discrete systems, meaning systems that
are not fully specified. The specifications can be understood in the sense of
game equivalence: we define an event on the inputs (and outputs) of the discrete
system, and the specification states that a system must show a certain specified
behavior until the condition is fulfilled, but may deviate arbitrarily afterward.

The security statements according to Definition 1 can then be understood as
follows. A protocol constructs from a specification S another specification T if
for each system S that satisfies S there exists a system T that satisfies T such
that the protocol constructs T from S [22].

While game equivalence in general is defined based on an arbitrary MBO of
the system, the MBOs considered in this paper will be of a specific and simple
form: they only depend on the order in which specific inputs are given to the
systems. This formalizes the guarantee that the resource behaves according to
the specification if the inputs have been given in that order. A stronger condi-
tion therefore corresponds to a weaker specification, and it is easy to see that if
a protocol constructs T from S, and the same additional condition is specified
to obtain weakened specifications S− from S and T − from T , then the same
protocol also constructs T − from S−. (This assumes that S− and T − are weak-
ened in the same way. The statement can equivalently be seen as requiring the
distinguishing advantage to be small only for a subset of distinguishers.)

As the specifications in this work, as described above, can be seen as partially
defined discrete systems, we use the same notation, i.e., boldface fonts. In par-
ticular, we can understand equation (1) as extending to such partially defined
discrete systems, by changing the system to respond with a constant output to
the distinguisher once the MBO has been provoked. Due to the specific property
of the MBO, a distinguisher cannot gain advantage by provoking the MBO.

2.3 Digital Signature Schemes

We recall the standard definition of a DSS from the literature.
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Definition 2. A digital signature scheme Σ = (K,S, V ) for a message spaceM
and signature space Ω consists of a (probabilistic) key generation algorithm K
that returns a key pair (sk , vk), a (possibly probabilistic) signing algorithm S, that
given a message m ∈M and the signing key sk returns a signature s← Ssk (m),
and a (possibly probabilistic, but usually deterministic) verification algorithm V ,
that given a message m ∈M, a candidate signature s′ ∈ Ω, and the verification
key vk returns a bit Vvk (m, s′). The bit 1 is interpreted as a successful verification
and 0 as a failed verification. It is required that Vvk (m,Ssk (m)) = 1 for all m
and all (vk , sk) in the support of K. We generally assumeM = Ω = {0, 1}∗.

The standard security definition for DSS is existential unforgeability under
chosen message attack [14], as described in the introduction. Since we target
concrete security, we directly define the advantage of an adversary.

Definition 3 (EU–CMA). For a digital signature scheme Σ = (K,S, V ),
the EU–CMA advantage of an adversary A is defined using the security game
GEU–CMA
Σ in Fig. 3, in more detail,

ΓA(GEU–CMA
Σ ) := PrAGEU–CMA

Σ [won = 1].

function Init
(vk , sk) � K
L ← ∅
won← 0

function Sign(m)
L ← L ∪ {m}
return (m,Ssk (m))

function Forge(m, s) . m ∈ M; s ∈ Ω
if m 6∈ L and Vvk (m, s) = 1 then

won← 1
return won

GEU–CMA
Σ

Fig. 3. The security game EU-CMA.

Signature schemes may or may not allow to recover the message from the
signature. Each signature scheme can easily be turned into one with message
recovery by viewing (m, s) as the signature instead of s.

Definition 4. A digital signature scheme with message recovery Σrec = (K,S,R)
is a digital signature scheme where the verification algorithm V is replaced by
a recovery algorithm R, that takes a candidate signature s′ and outputs a value
Rvk (s′) ∈M∪ {⊥}, where ⊥ is used to indicate that the signature s′ is invalid.
The correctness condition demands that Rvk (Ssk (m)) = m for all m and all
(vk , sk) in the support of K. The security notion is as in Definition 3, except for
the winning condition: a successful adversary provides a signature s′ such that
m′ := Rvk (s′) 6= ⊥ and m′ was not a query to the signing oracle.
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3 Message Repositories

We formalize the message repositories described in the introduction, and show
how they can be instantiated to model specific communication networks.

3.1 Description of Message Repositories

We consider general message repositories that export a certain capability, such
as reading or writing a single message, at each of its interfaces. There are four
types of ways in which one can access the repository to read or write its content:
each interface A ∈ W allows to insert one message into the repository. Interface
B ∈ R allows to read a message that has been written to the repository and made
visible for B. Each interface C ∈ C allows to write values into the repository by
specifying from which (reader) interfaces the values should be copied; no new
values can be inserted at interface C. For each copy-interface, there is a set of
associated read-interfaces from which they can copy. Each interface V ∈ V allows
to verify whether a certain value m is visible at the interface; this can be seen as
a restricted type of read access. Finally, the free interface W allows to manage
the visibility of messages. On a call transfer(A,B), the message written at A
becomes visible at reader interface B. We often call the receiving interfaces the
receivers. A precise specification of the repository appears in Fig. 4. As indicated
by the keyword Assume, the behavior of the repository may be undefined if this
assumption is not fulfilled, this is according to the discussion of specifications
in Sect. 1 and 2. In contrast, “. m ∈M” is to be understood as a reminder or
comment for the reader; the input m given to the system is necessarily in the
alphabetM by definition of the system. (More technically, while the condition
in Assume may be violated by an input, which may provoke an MBO, m ∈M
will always be satisfied.)

Note that one can easily generalize this basic specification to other types
of read- or write-interfaces, for example to model output of partial information
about a message, such as the length, but which we do not consider here and con-
sider it as part of future work. Following the motivation of Sect. 1, for generality,
we consider each described operation as associated with a separate interface.4

Definition 5. For finite and pairwise disjoint sets W,R, C,V, and a family
{RC}C∈C of sets RC ⊂ R for all C ∈ C, we define the repository RepC,WR,V,{RC}C∈C

as in Fig. 4. For later reference, we define for n,m, `, k ∈ N, the standard sets
W = {Ai}i∈[n], R = {Bi}i∈[`], C = {Ci}i∈[m] and V = {Vi}i∈[k]. If nothing else
is specified, these standard interface names are used. We define the shorthand
notation Repm,n`,k := RepC,WR,V,{RC}C∈C

for these standard sets and RC = R for
all C ∈ C. For C = ∅ we use the simplified notation RepWR,V .

4 Recall that it is always possible to merge several existing interfaces into one interface
to model that a party or the attacker, in a certain application scenario, has the
capability to write and read many messages.
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Initialization
function init

S, φ← empty tables

Interfaces A ∈ W

Assume: Only called once for A ∈ W.
function write(m) . m ∈ M

S[A]← m

Interfaces B ∈ R
Assume: transfer(X,B) has been called

for X ∈ W ∪ C.
function read

return S[φ[B]]

Interfaces C ∈ C
Assume: For all B ∈ B, transfer(X,B)

must have been called for X ∈ W ∪ C,
and B ∈ RC.
function copy(B)

S[C]←
⋃

B∈B S[φ[B]]

Interfaces V ∈ V

Assume: transfer(X,V) has been called
for X ∈ W ∪ C.
function verify(m) . m ∈ M

if m ∈ S[φ[B]] then
return true

else
return false

Interface W

Assume: write(m) has been called at
X ∈ W for m ∈ M, or copy(X) at some
C ∈ C for X ∈ RC, and transfer(X′,Y)
has not been called for any X′ ∈ W.
function transfer(X,Y)

. (X,Y) ∈ W × (R∪ V)
φ[Y]← X . Interface Y can now see

the value written at X

Resource RepC,W
R,V,{RC}C∈C

Fig. 4. Specification of a repository resource. For ease of notation, we treat values
m ∈ M and singular sets {m} for m ∈ M interchangeably.

Different security guarantees can be expressed using this repository by con-
sidering different allocations of read-, write-, or transfer-interfaces to different
parties as discussed in the introduction. For instance, an attacker could have
access to both read- and write-interfaces, to model traditional insecure commu-
nication. If the attacker only has access to read-interfaces (but not to write-
interfaces beyond potentially copy-interfaces to forward received messages), the
repository corresponds to authenticated message transmission from a honest
write-interface.

3.2 Modeling Security Guarantees by Access to the Repository

For security statements we need to associate each (non-free) interface to ei-
ther an honest party or a possible attacker. As additional notation, we de-
fine the adversarial interfaces sets Er := {E1.r, . . . ,Ek.r} (for some k > 0),
Ew := {E1.w, . . .Ek.w}, and Ec := {E1.c, . . . ,Ek.c} where the size k of this set is
typically defined by the context. We can then specify repositories with different
security guarantees.

– Insecure repositories allow adversarial write and read access. They can be
described by Rep∅,W∪EwR∪Er,∅ , which means that all interfaces are either read- or
write-interfaces.

– An authenticated repository disallows adversarial write-operations of arbi-
trary messages. Only (the honest) interface W can input content into the
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repository. This situation is described by the resource RepEc,WR∪Er,∅,{Er}C∈Ec
,

which indicates that the attacker may still be able to copy values from in-
terfaces Er at each interface Ec.

– A repository without adversarial read-access, but with write access, models
perfect confidentiality, and is described by Rep∅,W∪EwR,∅ .

While the (natural) variants described above will be the only ones used in
this work, the formalism allows to flexibly define various further combinations
of honest-user and adversarial capabilities.

3.3 Example: Modeling Networks through Repositories

For considering concrete applications, such as a specific type of network trans-
fer, the repository can be instantiated appropriately. In this section, we briefly
describe in which sense statements about repositories imply statements about a
network in which senders can send a message to a set of desired recipients, but
which is under complete control of an attacker. We describe such a network in
more detail in Fig. 16 in Appendix A.

In a nutshell, such a network can be described as a repository where for each
write-interface of the honest senders, the attacker interface has a read-interface,
and for each read-interface of the honest receivers, the attacker interface has a
write-interface. Additionally, the attacker interface has the capabilities of the
free interface that allow to transfer the values between the write- and the read-
interfaces. This enables the attacker to eavesdrop on all values from the writer
and to determine all values sent to the receiver; the traditional worst-case as-
sumption.

4 A Constructive Perspective on Digital Signatures

4.1 The Basic Definitions

Our security definition for DSSs is based on the repositories introduced in Sect. 3.
Intuitively, the honest parties execute a protocol to construct from an insecure
repository, in which the attacker has full write access, one repository that allows
the writer to authenticate a single message (this will be used for the verification
key), and one repository that allows to store a single message securely (this
will be used for the signing key), an authenticated repository that can be used
for multiple messages. We generally use the notation introduced in Sect. 3. We
first introduce the specifications that capture authenticated repositories since
they are of primary interest in this section. The first type considers repositories
where the role of the receiver interfaces is to verify values in the repository:

Definition 6. Let W,R, Ew, Er denote the standard interface names. A spec-
ification aRepEw,WEr,R , in the sense of a partially defined discrete system, is an
authenticated repository for verification if the following conditions are fulfilled.
(1) It has at least the interfaces I = W ∪ R ∪ Ew ∪ Er, where all inputs at
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Er

aRep
{S}
W aRep

{S}
R∪Er

Repn,`

write check

setup

Ai

Ai

Bj

Bj

S S

Ai Bj

S

Ew, Er

W W

W

Fig. 5. The real-world setting of the signature construction.

I /∈ I are ignored (i.e., the resource has the default behavior of directly returning
back to the caller). (2) For all inputs at some interface I ∈ I, the behavior is
identical to the one specified in RepEw,WEr,R,{Er}C∈Ew

for I, wherever the behavior

of aRepEw,WEr,R is defined. More formally, this means that for a given sequence of
inputs, the conditional distribution of aRepEw,WEr,R , where the outputs for inputs at
interfaces not in I are marginalized, is the same as the conditional distribution
of RepEw,WEr,R,{Er}C∈Ew

without those inputs.

The second definition is analogous and considers repositories where the role
of the receiver interfaces is to authentically receive values:

Definition 7. Let W,R, Ew, Er denote the standard interface names. The spec-
ification aRepEw,WEr∪R, in the sense of a partially defined discrete system, is an
authenticated repository for receiving if it has at least the interfaces I = W ∪
R∪Ew ∪Er, all inputs at I /∈ I are ignored, and for all inputs at some interface
I ∈ I the behavior is identical to the one specified in RepEw,WEr∪R,∅,{Er}C∈Ew

for I,

wherever the behavior of aRepEw,WEr∪R is defined. We omit Ew in the notation if it
is equal to ∅.

In the following, whenever referring to the setsW,R, Ew, and Er, we implicitly
refer to the standard names introduced in the previous section.

Assumed resources. As outlined in Sect. 1, to construct an authenticated
repository, we require (beyond an insecure repository to transmit the signa-
tures) an additional resource that allows to distribute one value authentically
to all verifiers and one value securely to all signers. This assumed communica-
tion is described by the specification aRepS

W , which specifies resources with one



18 C. Badertscher, U. Maurer, and B. Tackmann

aRepEw,W
Er,R

sim

Ai Bj

Ew, Er

S

W

W

Fig. 6. The ideal-world setting of the signature construction. Inputs at the interfaces
whose corresponding lines stop before the box (interfaces W and S in this example)
have no effect on the behavior, therefore they are ignored in the specification.

writer interface S and no active adversarial interface. Information can only be
transferred from S to the interfaces of W. To model the authenticated (but not
confidential) transmission of a value, we assume another resource as specified by
aRepEc,SEr∪R where information can only be transferred from S to the interfaces in
R, but is not limited to those as also adversarial interfaces may read this value
or copy it via the interfaces in Ec. We define the assumed system as consisting of
the two above-described resources and an insecure repository Rep∅,W∪EwR∪Er,∅ , i.e.,
as

Rn,` :=
[
aRepS

W ,aRepEc,SEr∪R,Rep∅,W∪EwR∪Er,∅

]
. (2)

For clarity, whenever we explicitly refer to the assumed mechanism to dis-
tribute the keys, we use the shorthand notation

Dist :=
[
aRepS

W ,aRepEc,SEr∪R

]
.

Protocol converters. We assign one converter to each of the three roles: a con-
verter write for the (honest) writer interfaces, a converter check for the (honest)
reader interfaces and a setup-converter setup at interface C. We define the vec-
tor of converters DSS := (setup,write, . . . ,write, check, . . . , check) with n copies
of write, ` copies of converter check and one converter setup. The set of honest
interfaces in this section is defined as P := {S} ∪W ∪R.

Goal of construction: an authenticated repository. Intuitively, the use of
a DSS should allow us to construct from a repository RepW∪EwR∪Er that allows both
the honest users and the attacker to write multiple messages, and a repository
that exclusively allows one honest user to write the verification key authentically,
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a repository in which the attacker has no write access. The reason is that writing
a message that will be accepted by honest readers requires to present a valid
signature relative to the verification key, thus the attacker would be required to
forge signatures. This intuition does, however, not quite hold.

Indeed, when using the insecure repository, the attacker can still copy valid
signatures generated by the honest writer to which he has read access via any
of his write interfaces. Since honest readers may later gain read access to those
copied signatures, the attacker can indeed control which of the messages origi-
nating from the honest writer will be visible at those interfaces. The repository
that is actually constructed is a specification aRepEw,WEr,R as in Definition 6. The
goal of a digital signature scheme can thus be understood as amplifying the ca-
pabilities of authenticated repositories as defined using the specifications above.

To give a more concrete intuition, a particular constructed resource still has
an interface S and accepts queries transfer(S,Ai) and transfer(S,Bj), in
addition to those provided by aRepEw,WEr,R . Providing input at these interfaces,
as indicated by the dead ends drawn in Fig. 6, has no effect, but may influence
whether further outputs of the system are still defined (because, e.g., inputs to
the system may have been provided in an order such that the behavior of the
DSS is not defined).

In the remainder of the section, we prove an equivalence between the validity
of the described construction and the definition of existential unforgeability. As
the protocol converters described above do not exactly match the algorithms in
the traditional definition of a DSS, we also explain how to convert between the
two representations of a signature scheme.

4.2 Unforgeability of Signatures implies Validity of Construction

The constructed specification aRepEw,WEr,R has further (inactive) interfaces beyond
those in I = W ∪ R ∪ Ew ∪ Er, and behaves equivalently to RepEw,WEr,R,{Er}C∈Ew

,
as long as the assumed order of inputs is respected. The following theorem
states that any existentially unforgeable digital signature scheme can be used
to construct such an authentic repository from the assumed resources (see also
Fig. 2 for a depiction of this statement).

Constructing a specification aRepEw,WEr,R according to Definition 6 can be a
vacuous statement: the specification can be undefined for all possible orders
of inputs. The statement we prove in this section, therefore, explicitly speci-
fies for which orders aRepEw,WEr,R is defined. In particular, the specification is
defined for all orders of inputs for which the underlying specifications aRepS

W
and aRepEc,SEr∪R are defined, plus the following natural conditions of a DSS: the
keys are generated first and are distributed before anything is signed or veri-
fied at a writer or reader interface. As long as these conditions are satisfied, the
specification defines the output of the resource.

We now state the formal theorem.
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Initialization
procedure init

L,R← empty tables
(sk , vk) � K

Interface Et.w

function write(s) . s ∈ Ω
if R[t] = ⊥ then

R[t]← s
B ← ∅
for i = 1 to n do

call m← read at interface
Ei.r of Repn,`

if Vvk (m, s) = 1 then
B ← B ∪ {i}

call copy(B) at
interface Et.w of aRepn,`

Interface Et.r

function read . for aRep
{S}
W

return vk

function read . for Repn,`
if L[t] 6= ⊥ then

return L[t]
call m← read at interface Et.r

of aRepn,`
if m 6= ⊥ then

s← Ssk (m)
L[t]← s

return L[t]

Converter sim

Fig. 7. Simulator for the proof of Theorem 1.

Theorem 1. Let n, ` ∈ N. For any given digital signature scheme Σ = (K,S, V ),
let the converters write, check, and setup be defined as in Fig. 8. Then, for the
simulator sim defined in Fig. 7, there is an (efficient) reduction C described
in the proof, that transforms any distinguisher D for systems DSSPRn,` and
simEaRepn,`, with aRepn,` = aRepEw,WEr,R as described above, into an adversary
A := DC against the game GEU–CMA

Σ such that

∆D(DSSPRn,`, simE aRepn,`) ≤ ΓA(GEU–CMA
Σ ),

and where aRepn,` is defined as long as the assumed specification is defined and
the following conditions hold:

– Command setup is issued at the S-interface before any other command;
– Command transfer(S,Ai) is issued at the W-interface corresponding to the

first setup repository before write is issued at the Ai-interface;
– Command transfer(S,Bi) is issued at the W-interface corresponding to the

second setup repository before read is issued at the Bi-interface.
– There are no transfer(X,Y) queries with X ∈ Ew and Y ∈ Er, that is,

we exclude communication from the adversarial writer to adversarial reader-
interfaces.

In other words, the signature scheme constructs the specification aRepEw,WEr,R
from the assumed specification Rn,`.

Proof. The proof is given in Sect. B.1.
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function setup
(vk , sk) � K

call write(sk) at Rep
{S}
W,∅

call write(vk) at Rep
{S}
R∪Er,∅

Converter setup

function write(m) . m ∈ M
call sk ← read at Rep

{S}
W,∅

if sk 6= ⊥ then
s← Ssk (m)
call write(s) at Rep

Converter write

function verify(m) . m ∈ M
call vk ← read at Rep

{S}
R∪Er,∅

call s′ ← read at Rep
if vk 6= ⊥ and s′ 6= ⊥ then

if Vvk (m, s
′) = 1 then

return Success
return Fail

Converter check

Fig. 8. The three protocol converters derived from a signature scheme Σ = (K,S, V ).

4.3 Chaining Multiple Construction Steps

The construction proved in Theorem 1 assumes (amongst others) an authenti-
cated repository aRepEc,SEr∪R and constructs an authenticated repository aRepEw,WEr,R .
A natural question is in which sense multiple such construction steps can be
chained, corresponding to signing the verification key of one instance with a dif-
ferent instance of the scheme. For this to work out, we have to “upgrade” the
resource aRepEw,WEr,R to a resource aRepEw,WEr∪R as needed by Theorem 1, where we
can then use any interface X ∈ W as the interface S to transmit the secret key.
Of course, we additionally require resources aRep

{X}
W′ for distributing the secret

keys and Rep
∅,W′∪E′w
R∪Er,∅ for transmitting the signatures.

The chaining is then achieved by the protocol that consists of converters
send and receive, sends the messages over an (additional) insecure repository
Rep∅,W∪EwR∪Er,∅ and authenticates them via aRepEw,WEr,R . Protocol converter send
simply inputs the same message to both resources, whereas receive verifies the
messages obtained through the insecure repository at the authenticated reposi-
tory. This protocol perfectly constructs an authenticated repository with delivery
from the two assumed resources.

Theorem 2. Let n, ` ∈ N, and consider a protocol SND with converters send
for all interfaces in W and converters receive for all interfaces in R, defined as
described above. Then, for the simulator sim described below,

SNDP
[
Rep∅,W∪EwR∪Er,∅ ,aRepEw,WEr,R

]
≡ simEaRepEw,WEr∪R ,

wherever both resources are defined. The constructed resource aRepEw,WEr∪R accepts
transfer commands at sub-interfaces corresponding to both assumed resources,
and requires, for a given message to be transferred, both those commands to be
issued.
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The simulator sim responds to read queries at the Er-interfaces correspond-
ing to Rep∅,W∪EwR∪Er,∅ or aRepEw,WEr,R by obtaining the transmitted messages from
aRepEw,WEr∪R. Once copy has been called at an Ew-interface at aRepEw,WEr,R and the
corresponding message has been input at the same Ew-interface of Rep∅,W∪EwR∪Er,∅ ,
sim issues the same copy command at aRepEw,WEr∪R.

Together with Theorem 1, this means that sending a message along with a
signature constructs an authenticated repository from which the authenticated
messages can be read. Several such constructions can then be chained in the
expected way.

4.4 Validity of Construction implies Unforgeability of Signatures

In this section, we show that any converters achieving the construction of aRep
from Rep and Dist contain a digital signature scheme that is existentially un-
forgeable under chosen-message attacks. More precisely:

Theorem 3. Let n, ` ∈ N. Consider arbitrary converters setup, write, and check
and define the protocol as DSS := (setup,write, . . . ,write, check, . . . , check) (for
the honest interfaces) with n copies of write, ` copies of converter check and
one converter setup. We derive a digital signature scheme Σ = (K,S, V ) below
in Fig. 9 with the following property: given any adversary against the signature
scheme that asks at most n queries to Sign and ` queries to Forge, we construct
(efficient) distinguishers Di, i = 1 . . . 5, such that for the systems DSSPRn,` and
simEaRepn,`, with aRepn,` = aRepEw,WEr,R , for all simulators sim,

ΓA(GEU–CMA
Σ ) ≤

5∑
i=1

∆Di(DSSPRn,`, simE aRepn,`),

and where aRepn,` is defined as long as the assumed specification is defined and
under the same additional conditions as in Theorem 1.

Proof. The proof is given in Sect. B.2. ut

As a corollary, one can specifically deduce that if there exists a simulator
sim such that systems DSSPRn,` and simEaRepn,` are indistinguishable, then
the constructed signature scheme Σ is existentially unforgeable under chosen
message attacks.

Obtaining the signature scheme from the converters. The key genera-
tion, signing, and verification functions are derived from the converters setup,
write, and check that construct aRep from [Dist,Rep] as follows: The key gen-
erationK consists of evaluating the function setup.setup, the two values written
to the resource Dist are considered as the corresponding key pair. The secret
key is the value that is written to the first sub-system of Dist. The signing algo-
rithm Ssk (m) consists of evaluating the function write.write(m). The signature
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Key Generation

function K
sk← ⊥; vk← ⊥
evaluate setup.setup:

- Reaction on call write(vals) to Dist (first subsystem):
if sk = ⊥ then

sk← vals
- Reaction on call write(valr) to Dist (second subsystem):

if vk = ⊥ then
vk← valr

if sk 6= ⊥ and vk 6= ⊥ then
return (sk, vk)

else
return (⊥,⊥)

Signature Generation

function Ssk (m)
if sk = ⊥ then

return m
s← ⊥
evaluate write.write(m):

- Reaction on call read to Dist:
Return sk to write.write

- Reaction on call write(m̃) to Rep:
if s = ⊥ then

s← m̃
if s 6= ⊥ then

return s
else

return m

Signature Verification

function Vvk (m, s)
if vk = ⊥ then

return s ?
= m

evaluate res← check.verify(m):
- Reaction on call read to Dist:

Return vk to check.verify
- Reaction on call read to Rep:

Return s to check.verify
if res = Success then

return 1
else

return 0

Fig. 9. Signature scheme (K,S, V ) extracted from converters setup,write, and check.

for message m is defined as the value that is written to the repository. Any re-
quest to obtain a value from resource Dist is answered by providing the signing
key sk . The verification algorithm Vvk (m, s) consists of evaluating the function
check.verify(m) and the candidate signature s is provided as the actual value
in the repository and the verification key vk is given as the value in Dist. The
formal description of the algorithms appear in Fig. 9.

4.5 Digital Signatures with Message Recovery

So far we have focused on repositories that offer the capability to check whether
a given value has been written to the buffer and denoted them by aRep. Now,
we consider repositories that offer the capability to retrieve the value that has
been transferred to an interface. In other words, the goal of this section is to
show how to construct the specification aRepEw,WEr∪R.

While the construction of aRep from Rep and Dist is achieved by tra-
ditional signature schemes, the construction of āRep from the same assumed
resources is achieved by signature schemes with message recovery. Intuitively,
converter check is replaced by a converter read whose task is to recover and out-
put the message (and not simply check the authenticity of a given message). It
is easy to see that any signature scheme Σrec = (K,Σ,R) can be used to derive
converters that achieve the construction (similar to the previous section). For
the other direction, we have:
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Theorem 4. Let n, ` ∈ N. Consider arbitrary converters setup, write, and read
and define the protocol as DSS := (setup,write, . . . ,write, read, . . . , read) (for the
honest interfaces) with n copies of write, ` copies of converter read and one
converter setup. One can derive a digital signature scheme Σrec = (K,S,R)
with message recovery with the following property: given any adversary against
the signature scheme that asks at most n queries to Sign and ` queries to forge,
we derive (efficient) distinguishers Di, i = 1 . . . 5, such that for the systems
DSSPRn,` and simEāRepn,`, with āRepn,` = aRepEw,WEr∪R, for all simulators sim,

ΓA(GEU–CMA
Σrec

) ≤
5∑
i=1

∆Di(DSSPRn,`, simE āRepn,`),

and where āRepn,` is defined as long as the assumed specification is defined and
under the same additional conditions as in Theorem 1.

Proof. We omit the proof and simply mention that it follows the same line of
argumentation as the proof of Theorem 3. Algorithms K and S are derived in
the same way as in Sect. 4.4 and the recovery algorithm Rvk (s) is derived from
converter read by evaluating the function read (and appropriately providing s
and vk) and to return whatever this function returns. ut

5 On the Transferability of Verification Rights

Universal verification is arguably an important property of signatures. Anybody
possessing the public key and a valid signature string s for some message m
can verify the signature. This implies furthermore that signatures are naturally
transferable, which is essential for their key role in public-key infrastructures or
signing electronic documents. In this section, we demonstrate that our definition
directly implies transferability by constructing a message repository in which
information can be forwarded among readers. The high-level idea is to apply a
converter to the free interface that instead copies the desired message from the
sender buffer, where it was input originally, to the targeted reader buffer.

The role of the free interface. Recall that the role of the free interface in
the repository resources is to transfer the contents from certain write-buffers to
certain read-buffers. The transferability of signatures then simply means that
values can also be transferred from read-buffers to other read-buffers; this can
easily be achieved by translating the transfer-requests appropriately.

The core idea, then, is to observe that the new repository and the old
repository only differ by attaching a converter at interface W. We assign a
new name to this resource and define aTRep = relayWaRep (and analogously
āTRep := relayWāRep) with a converter relay that always remembers the ex-
isting assignments of reader to writer interfaces and on a transfer-query for two
reader interfaces, it simply connects the corresponding writer-interface. The re-
source aTRep is additionally formally described in Fig. 10.
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Interface W

Assume: write(m) has been called at
X ∈ W for m ∈ M, or copy(X) at some
W ∈ C for X ∈ C, and transfer(X′,Y)
has not been called for any X′ ∈ W.
function transfer(X,Y)

. (X,Y) ∈ W × (R∪ V)
φ[Y]← X . Interface Y can now see

the value written at X

Assume: The calls to the resource imply
that φ(X) 6= ⊥ and transfer(X′,Y) has
not been called for any X′ ∈ W ∪R∪V
with φ(X′) 6= ⊥..
function transfer(X,Y)

. (X,Y) ∈ (R∪ V)2
φ[Y]← X . Interface Y can now see

the value seen at X

Resource aTRep

Fig. 10. Specification of a repository resource with transferable rights. Only the mod-
ifications with respect to Fig. 4 are shown; the other functions are as described there.

The converter. Converter relay distinguishes two types of inputs: transfer com-
mands from a writer to a reader transfer(X,Y) are forwarded to the con-
nected repository. Transfer commands between two readers, transfer(R1,R2)
are translated to transfer commands transfer(X,R2), where X denotes the
writer interface where the value readable at R1 was first input.

A simple black-box construction. Any protocol that constructs aRep from
Rep (and Dist) also constructs relayWaRep from relayWRep (and Dist), where
the assumed resource relayWRep is an insecure repository that also allows infor-
mation transfer between two receivers, i.e., sending a signature from one receiver
to another. This is easy to see: assume there was a distinguisher D for systems
simErelayWaRep and [relayWRep,Dist], and we are going to construct a distin-
guisher D′ for the underlying two resources without the converter relay attached.
(Note that sim is the same simulator as in Theorem 1.) Distinguisher D′ simply
behaves as D but additionally emulates relay for queries at the free interface.

6 Application 1: Implementing a Registration Service

The goal of this section is to construct a resource that allows several parties
to send messages authentically to a population of receivers, via one issuer that
authenticates the messages. This happens in public-key infrastructures, where
the issuer, which is also denoted by certification authority in that context and can
authenticate messages, acts as a relay. This is the setup of a (simple) public-key
infrastructure and its use in Internet protocols, where the senders correspond to
the submitters of public keys to the CA (registration), and the receivers are the
consumers those public keys to authenticate messages. For the remainder of the
section, we will therefore refer to the senders as submitters and the receivers as
consumers (although the resource can of course also be used in other protocols).

The registration resource Reg. We denote the set of interfaces for the sub-
mitters by S := {S1, . . . ,S`}, the consumers by C := {C1, . . . ,C`}, and the
interfaces for the issuer by I. The adversarial interface is denoted by E. The reg-
istration resource Reg offers the capability to input a value x at any submitter
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interface. Once this value has been transferred to the issuer, he can acknowl-
edge the value by calling issue at its interface. Once this happened, the value
x, together with the information which submitter has input the value, can be
made available at any consumer interface and, in addition, it can be transferred
between any two consumer interfaces (or submitter interfaces). The formal de-
scription of the behavior of Reg appears in Fig. 11.

Assumed resources and the protocol. We assume a network resource Net
which allows any party interface to send (by calling send) and receive messages
(by calling receive), and allows the attacker to read all messages and send any
message (note that the honest parties in a network have no means to verify who
sent the message). In addition, we assume authentic communication as a setup.
More formally, let ChI← be a system that has interface set {I}∪S∪{E1, . . . ,E`}.
Each interface except the issuer offers the capability to send one message, i.e.,
to call send(m), which can be fetched at the issuer interface (they are authentic
in the sense that the message cannot be modified and the resource indicates to
the receiver who is the sender of the message). The issuer interface I can be
thought of as being divided into 2` sub-interfaces, and each sub-interface offers
the capability to obtain the message from the corresponding sender (and hence
identifies the sender reliably). Also, let the system ChI→ be defined similarly,
but which allows the issuer to send two messages in an authenticated manner to
each submitter and one to each consumer.5

We can now describe the protocol that implements a registration service
based on the above setup. The issuer’s converter, upon issue, takes all values
x received on the incoming authenticated channel and acknowledges them by
signing value (x, λ), where λ is a unique identifier that the issuer assigns to
its sub-interface from which x was received.6 The issuer sends the signed value
back via the outgoing authentic channel. The protocol for the submitters, upon
register(x) simply send x to the issuer over the authentic channel. Finally, the
consumer converter reads inputs from the insecure network. When reading a new
input, they verify the received value-signature pair and output the associated
value only if the signature can be verified.

Theorem 5. Let S, C be the above sets and I an interface name (different from
all remaining interfaces). The protocol of Fig. 12 constructs resource Reg from
the described set of authenticated channels. More specifically, for converters issue
and reg, the simulator ˜sim defined in Fig. 18 in Appendix C, it holds that for all
distinguishers D there is an attacker against the signature scheme (with essen-

5 This setup reflects that we need to distribute the issuer’s verification key to each
participant and in addition one signature to each submitter.

6 In an application, this identifier could be the name of a server or a company. For
concreteness we assume the identifier of the ith sub-interface to simply be the num-
ber i.
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Initialization
function init

S,L,← empty tables

Interface I

function issue
for all Si with Sdlv[Si] 6= ⊥ do

LdlvSi]← (Sdlv[Si], i)

for all Ei with S[Ei] 6= ⊥ do
LdlvEi]← (SdlvEi], `+ i)

Interface X ∈ S

function register(x) . x ∈ M
if Sdlv[X] = ⊥ then

Sdlv[X]← x

function read
return Ldlv[X]

function relayTo(Y) . Y ∈ C
R[Y]← Ldlv[X]

Interface C ∈ C
function read

return Rdlv[C]

function relayTo(Y) . Y ∈ C
R[Y]← Ldlv[C]

Interface E

function register(i, x) . i ∈ `, x ∈ M
if SdlvEi] = ⊥ then

SdlvEi]← x

function deliverToClient(X, j) . j ∈ [`]
if Rdlv[Cj ] = ⊥ then

Rdlv[Cj ]← Ldlv[X]

function readIssuerInput
I ← [ ]
for all Si do

I ← I||(Sdlv[Si], i)

return I
function getOutput

return (Ldlv, R)

Resource RegI
S,C

Fig. 11. The registration service resource.

tially the same efficiency), i.e.,

∆D(issueI regS1 . . . regS`relC1 . . . relC` [ChI→,ChI←,Net] , ˜sim
E
RegI

S,C)

≤ ΓA(GEU–CMA
Σ ).

Proof. Due to the abstract nature of repositories, we can easily represent the real
world by a wrapped repository, and the ideal world as a wrapped authenticated
repository and conclude the statement by invoking the results from the previous
section. The proof is given in Appendix C. ut

7 Application 2: Authenticating Sessions using Assertions

Unilaterally secure channels. Establishing secure sessions in the internet is a
crucial task. The most widely known solution to establish secure session is TLS,
that, in a first handshake phase, establishes a shared key between client and
server. Subsequently, this key is used to authenticate and encrypt the commu-
nication. In TLS, the server is usually authenticated, whereas the client is not.
This results in an only unilateral authenticity guarantee [23]: while the client
is guaranteed that its messages are received by the intended server, the server
does not know whether he is communicating with a legitimate client or with an
attacker. This security guarantees for unilaterally secure channels is captured by
the resource NETn

uni and the guarantee provided by the mutually authenticated
secure channel is captured by the resource NETn,IdP

mut . The description appears
in Fig. 13.



28 C. Badertscher, U. Maurer, and B. Tackmann

function issue
if this is the first invocation then

(vk , sk) � K
for i = 1 to 3` do

call send((key, vk)) at
sub-interface i of ChI→

for i = 1 to 2` do
call xi ← read at ith

subsystem of ChI←
if xi 6= ⊥ then

call send(xi, i, Ssk ((x, i)))
at sub-interface i of ChI→

Converter issue

function read
if vk 6= ⊥ then

call (key, vk ′)← read
at ChI→

Set vk ← vk ′

call v ← receive at Net
if vk 6= ⊥ and v 6= ⊥ then

Parse v as (x, i, s)
if Vvk ((x, i), s) = 1 then

Store v as (xi, i, s)
return (x, i)

function relayTo(Y) . Y ∈ C
call send((xi, i, s),Y) at Net

Converter rel

function register(x) . x ∈ M
call send(x) at ChI←

function read
if vk 6= ⊥ then

call (key, vk)← read
at ChI→

Set vk ← vk ′

call v ← read at ChI→
if vk 6= ⊥ and v 6= ⊥ then

Parse v as (x, i, s)
if Vvk ((x, i), s) = 1 then

Store v as (xi, i, s)
return (x, i)

function relayTo(Y) . Y ∈ C
call send((xi, i, s),Y) at Net

Converter reg

Fig. 12. The protocol converter for the issuer (upper left), the protocol converter for
the submitter (upper right) to register a public value x (right), and the converter for
the consumers (lower left) that can read and relay values.

Modeling session authentication of SSO schemes. In a typical single-sign-
on use case, the clients have a unilaterally authenticated session with the service
provider. Aside of that they have establish a mutually authenticated and secure
session with the identity provider. In practice, such a session is authenticated
using a secure channel protocol involving an authentication based on passwords,
hardware tokens, or one-time codes. In short, there is a secure channel between
the identity provider and the client denoted by SECIdP,C1

.
Aside of this assumed channel, we again need a mechanism to distribute the

verification key of the identity provider using an authenticated channel between
the identity provider and the service provider. which we denote by ChIdP→SP.

The client realizes a mutually authenticated secure channel NETn,IdP
mut by

relaying a signed message (and its signature string), i.e., the assertion, from the
identity provider to the service provider (this is usually denoted as IdP-initiated
scenario in SSO terms) and have the signature verified by the service provider.
In more detail, the protocol converter assert for the identity provider distributes
its verification key and signs a specific token and sends it to the client via the
assumed secure channel. The client converter fwd forwards this token to the
service provider. Finally, the converter of the service provider, denoted filter,
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Initialization
procedure init

S,R← empty tables
mode← ⊥

Interface Ct, 1 ≤ t ≤ n

function send(m,B)
. m ∈ M, B ∈ 2R

if S[Ct] = ⊥ then
S[Ct]← (m,B)

Interface SPt, 1 ≤ t ≤ n

function receive
return R[SPt]

Interface E

function read(Ct) . Ct ∈ W
Let (m,B)← S[Ct]
return (|m|, B)

function inject(m, SPj)
. (m, SPj) ∈ M×R

if mode = adv then
if R[SPj ] = ⊥ then

R[SPj ]← m

function deliver(Cj , SPj)
. (Ci, SPj) ∈ W ×R

if mode = hon then
if R[SPj ] = ⊥ then

(m,B)← S[Cj ]
R[SPj ]← m

function setMode(x) . x ∈ {hon, adv}
if mode 6= ⊥ then

mode← x

Resource NETn
uni

Fig. 13. The unilaterally secure network resource, where an adversarial interface E can
choose whether the network runs in secure mode (mode = hon) or adversarial mode
(mode = adv).

only starts outputting messages once the token is received and verified as the
first message from NETn

uni. Note that we treat all interfaces SPi as sub-interfaces
of one service provider interface SP. We establish the following theorem:

Theorem 6. The protocol in Fig. 15 consisting of the service provider protocol
filter, the identity provider protocol assert, and the client protocol fwd, constructs
the mutually secure network NETn,IdP

mut , from the assumed, unilaterally secure,
setting [ChIdP→SP,SECIdP,C1

,NETn
uni]. More specifically, for any distinguisher

D, there is an attacker A against the underlying signature scheme (with essen-
tially the same efficiency), such that

∆D(fwdC1assertIdPfilterSP [ChIdP→SP,SECIdP,C1
,NETn

uni] , ˜simNETn,IdP
mut )

≤ ΓA(GEU–CMA
Σ ).

Proof. The proof idea is the same as in Theorem 5. As in the previous section,
the abstract nature of repositories, allows us to represent the real world by a
wrapped repository, and the ideal world as a wrapped authenticated repository
and conclude the statement by invoking the results from the previous section.
The proof is given in Appendix D. ut

The approach of sending assertions to upgrade a unilaterally authenticated
channel to full authentication is used, for instance, in the widely used SAML
protocol [15], our treatment in this section can be seen as a proof of an abstract
version of SAML.
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Initialization
procedure init

S,R← empty tables
init← ⊥

Interface Ct, 1 ≤ t ≤ n

function initiate . (t = 1 case)
if S[C1] = ⊥ then

S[C1]← init

function send(m,B) . (t > 1 case)
. m ∈ M, B ∈ 2R

if S[Ct] = ⊥ then
S[Ct]← (m,B)

Interface SPt, 1 ≤ t ≤ n

function receive
if R[SP1] then

return R[SPt]

Interface E

function read(X)
. X ∈ {IdP} ∪ {Ct | 1 ≤ t ≤ n}

if X = IdP then
return init

else
Let (m,B)← S[Ct]
return (|m|, B)

function deliver(Cj , SPj)
. (Ci, SPj) ∈ W ×R

if R[SPj ] = ⊥ then
(m, ·)← S[Cj ]
R[SPj ]← m

Interface IdP

function initiate
init← true

Resource NETn,IdP
mut

Fig. 14. The idealization of a mutually secure network between a client and a service
provider established in the IdP-initiated scenario. Note that the adversarial interface
E can only deliver messages between the client and the service provider.
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Appendix

A Details of Section 3

A.1 Modeling Networks through Repositories

Recall that the generality of the construction statements involving repositories
stems from the capability to transfer information is assigned to the free interface
(cf. Sect. 1 and Sect. 2). However, in concrete networks these capabilities are
assigned to specific parties, and in many cryptographic statements make the
worst-case assumption of assigning this control over the entire network to the
attacker. Such a network resource offers the honest interfaces to send a messagem
to a set B of recipients. Any message that is sent over the network is first received
at an adversarial interface who can also decide whether to relay the message
or to inject a new message to a receiver. This network resource is depicted in
Fig. 16. It is straightforward to show that such a resource can be obtained by
wrapping an insecure repository Rep. Intuitively, the wrapper system W assigns
certain capabilities available at the free interface W to the attacker’s interface
(the delivery of messages to the receivers) and assigns certain capabilities to the
honest interfaces (to initiate sending a message). Formally, we have the following
statement:

Lemma 1. For the wrapper system W defined in the proof below, the buffer
resource defined in Fig. 4, and the network resource defined in Fig. 16 and all
distinguishers D

W(Repn,`) = Netn,`

Proof (Sketch). We first describe the wrapper system.

Upon send(m,B) at interface Ai: The system W calls write(m) at inter-
face Ai of Repn,` and subsequently calls transfer(Ai,Ei.r) at interface W
of Repn,`. It further stores the destination set B internally.

Upon Receive at interface Bi: If a message was injected to interface Bi,
then the system W calls read at interface Bi of Repn,` and outputs what-
ever the repository outputs. Otherwise, it outputs ⊥

Upon Read(At) at interface E: If there was a message input at At, then the
system W calls read at interface Et.r of Repn,` to receive m, and returns
(m,B), where B is the stored destination set of message m input at interface
At before. Otherwise, output ⊥.

Upon inject(m,Bt) at interface E: The system W calls write(m) at inter-
face Et.w of Repn,` and subsequently calls transfer(Et.w,Bt) at interface
W of Repn,`.

The equivalence of W(Repn,`) and Netn,` follows by inspection. In particular,
the wrapper obeys all conditions required by the repository specification. ut
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A.2 Authenticating a Network

We can derive a simple corollary and a straightforward modular proof that shows
how to authenticate an insecure network. We therefore define three basic network
converters, analogous to the three signature converters setup,write, and read.
While the first converter stays identical, the second converter, which we call snd,
accepts calls send(m,B) at its outer interface, evaluates write(m) identical
to what converter write does, receives the recoverable signature s, and issues
send, s, B) to the network. Finally, we define converter rcv which is identical to
read, but where the command to read a message renamed to receive (instead
of read in case of read).

Corollary 1. Let n, ` ∈ N. Let DSS and sim be as defined in Theorem 4 and let
DSN be defined as DSS, but where the converters write and read are replaced by
snd and rcv respectively, as defined above. For the simulator sim′ defined in the
proof, it holds that for any distinguisher D, we derive a new distinguisher D′

(with essentially the same efficiency) such that

∆D(DSNP [Dist,Netn,`] , sim′EAUTHn,`)

=∆D′(DSSPRn,`, simEāRepn,`).

Proof (Sketch). The proof follows from a couple of simple observations. First,
from the previous lemma, we can construct a wrapper system W such that

W(
[
Dist,Repn,`

]
) = [Dist,Netn,`] .

In fact, the wrapper system is identical to the one above, but additionally re-
lays back and forth inputs and outputs to the first subsystem Dist without
modifications. Second, we can design the simulator sim′ in a way such that

W(simEāRepn,`) = sim′EAUTHn,`

holds. This is easy to achieve: sim′ essentially behaves like the combination of the
wrapper and the simulator sim on inputs at interface E and calls deliver(Ai,Bj)
of AUTH whenever sim would copy a value from interface Ei.r to interface Ej .w.
Since the real and ideal systems only differ in the behavior at interface E, we
can establish the sequence of hybrid steps as follows:

DSNP [Dist,Netn,`] = DSNPW(
[
Dist,Repn,`

]
)

= W(DSSP
[
Dist,Repn,`

]
) ≈W(simEāRepn,`) = simEAUTHn,`,

where the second equality holds, by definition of DSN. This proves the claim. ut
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Initialization
procedure init

S,R← empty tables

Interface At, 1 ≤ t ≤ n

function send(m,B)
. m ∈ M, B ∈ 2R

if S[At] = ⊥ then
S[At]← (m,B)

Interface Bt, 1 ≤ t ≤ `

function receive
return R[Bt]

Interface E

function read(At) . At ∈ W
return S[At]

function inject(m,Bj)
. (m,Bj) ∈ M×R

if R[Bj ] = ⊥ then
R[Bj ]← m

Resource Netn,`

Fig. 16. The insecure network resource, where an adversarial interface E controls mes-
sage delivery and where each interface can specify a destination set for its message.

Initialization
procedure init

S,R← empty tables

Interface At, 1 ≤ t ≤ n

function send(m,B)
. m ∈ M, B ∈ 2R

if S[At] = ⊥ then
S[At]← (m,B)

Interface Bt, 1 ≤ t ≤ `

function receive
return R[Bt]

Interface E

function read(At) . At ∈ W
return S[At]

function deliver(Ai,Bj)
. (Ai,Bj) ∈ W ×R

if R[Bj ] = ⊥ then
(m,B)← S[At]
R[Bj ]← m

Resource AUTHn,`

Fig. 17. The authenticated network resource, where an adversarial interface E controls
message delivery but cannot inject arbitrary messages.
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B Details of Section 4

B.1 Proof of Theorem 1

Proof. Consider the simulator given in Fig. 7. We introduce the shorthand no-
tation Sn,` := simE aRepn,`. The simulator sim accesses all the capabilities pro-
vided at the adversarial interfaces (by merging them into the single interface E)
and provides at its outer interface the simulated capabilities (accessible at the
appropriate interfaces) of the real system. We now argue that all queries of a
distinguisher D are answered consistently by the systems Sn,` and DSSPRn,`,
we observe that in random experiments D(DSSPRn,`) and D(Sn,`), the behavior
is identical, unless a query write(s′) is made at interface E for some signature
s′ that satisfies Vvk (m′, s′) = 1 for some message m′ that is subsequently part
of a call verify(m′) at the interface where s′ was transferred to. Let us denote
this event in the real-world random experiment by E .

If we prove that the systems behave equivalently until event B occurs, then
we can bound the distinguishing advantage of DSSPRn,` and Sn,` by bounding
the probability of event E . As discussed above, this probability can be bounded
by the success probability of an (efficient) adversary A in breaking the security
of the DSS.

We first elaborate on the other queries being handled consistently by the two
systems; for the structure, recall the depictions in Fig. 5 and Fig. 6. We now
argue for each query individually.

S.setup: This query has no effect in the ideal system, but in the real sys-
tem it makes the key sk available in aRep

{S}
W and the key vk available in

aRep
Ec,{S}
Er∪R . No output to D.

W.transfer(S,A) for A ∈ W: Requires that S.setup has been called. No ef-
fect in the ideal system, but in the real system it makes the key sk accessible
to writer A. No output to D.

W.transfer(S,X) for X ∈ Er at aRep
Ec,{S}
Er∪R : Requires that S.setup has been

called. No effect in the ideal system, but in the real system it makes the key
vk accessible to adversarial reader X. No immediate output to D.

Y.copy(X) for X ∈ Er and Y ∈ Ec at aRep
Ec,{S}
Er∪R : Requires that before query

W.transfer(S,X) has been made. No effect in the ideal system, but in the
real system it copies the key vk to interface Y. No immediate output to D.

W.transfer(X,B) for B ∈ R at aRep
Ec,{S}
Er∪R : Requires that either S.setup

resp. X.copy has been called. No effect in the ideal system, but in the real
system it makes the key vk accessible to reader B. No output to D.

A.write(m) for A ∈ W: Requires that W.transfer(S,A) has been called. En-
ters m into the resource in the ideal system, obtains vk , computes the signa-
ture, and enters it into RepW∪EwR∪Er in the real system. No immediate output
to D.

X.read for X ∈ Er at aRep
Ec,{S}
Er∪R : Requires that W.transfer(S,X) has been

called. In the real system, returns the verification key vk . In the ideal system,
sim returns the simulated verification key. This has the same distribution.
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W.transfer(A,X) for X ∈ R ∪ Er: Requires that A.write(m) has been called.
In the real system, makes the generated signature available to X. In the ideal
system, makes m available to X. No immediate output to D.

X.read for X ∈ Er at RepW∪EwR∪Er : Requires that W.transfer(A,X) has been
queried for A ∈ W. (Adversarial writers in Ew are explicitly excluded.) In
the real system, outputs the signature that has been made available in the
repository. In the ideal system, the simulator sim checks whether the query
has been made before, answers consistently in that case, and otherwise gen-
erates a new signature using the internal key. This computation is done
exactly in the same way, and therefore the returned signature also has the
same distribution.

X.write(s) for X ∈ Ew: In the real system, this enters the value s into the
repository RepW∪EwR∪Er and has no immediate output. In the ideal system, the
simulator sim processes the message, and checks for which messages that
it has already received, the signature verifies. In case no message can be
verified, the simulator inserts ⊥ at its copier interface. In the other case,
for each message, received at reader-subinterface i that verifies successfully
with the given signature string, the simulator calls copy(i) at X to insert
this message into the copier buffer (since all these messages can be verified
w.r.t. the signature string s.)

W.transfer(X,B): This is only valid if X.write(s) was called before, has the
same effect in both cases.

We introduce the reduction system C that emulates the real world view
towards any distinguisher D by accessing the oracles of GEU–CMA

Σ such that for
any distinguisher D, ∆D(CGEU–CMA

Σ ,DSSPRn,`) = 0. During that emulation,
C tries to extract a forgery from the interaction with the distinguisher. The
main challenge for the reduction is to make sure that it does only query the
signing oracle on messages that definitely cannot be forgery candidates. Formally,
the reduction system C emulates one setup interface, n writer-interfaces At, `
receiver-interfaces Bt, and n + ` adversarial read and write interfaces Et.r/w
and one free interface W to D. C first initializes two empty tables R and L.
Then, C receives the verification key vk from GEU–CMA

Σ and stores it internally.
Furthermore, it answers all queries by D accordingly to the description of the
real system, with the only difference that signatures are computed through the
game. When C detects a signature forgery, it outputs this forgery to the game.

For any distinguisher D, we define the the adversary A := DC against the
game GEU–CMA

Σ and conclude that

∆D(DSSPRn,`,Sn,`) ≤ PrD(DSSPRn,`)[E ] = PrDCGEU–CMA
Σ [E ]

= PrDCGEU–CMA
Σ [won = 1] = PrAGEU–CMA

Σ [won = 1].

ut
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B.2 Proof of Theorem 3

The theorem directly follows from the following two lemmas: Lemma 2 states
that if the output of the key generation algorithm K as defined in Sect. 4.4 is not
(⊥,⊥), then any adversary against the derived signature scheme can be trans-
formed into a distinguisher for the real and ideal systems (for any simulator).

Lemma 2. Let n, ` ∈ N, let DSS be as defined in Theorem 3 for arbitrary
converters setup, write, and check, and let the digital signature scheme Σ =
(K,S, V ) be defined as in Sect. 4.4. We present an (efficient) reduction that
transforms any adversary for GEU–CMA

Σ , that asks at most n queries to Sign and
` queries to Forge, into a distinguisher D(A), such that for all simulators sim,

ΓA(GEU–CMA
Σ ) ≤ Pr[(⊥,⊥)← K] +∆D(A)(DSSPRn,`, simE aRepn,`).

Proof. We define the shorthand notation Sn,` := simE aRepn,`. We define a re-
duction system C that is given access to the interfaces of either system DSSPRn,`

or Sn,`, and provides one additional outside interface. At that outside inter-
face, C simulates the oracles Sign and Forge of game GEU–CMA

Σ . First, the
system C initializes an internal variable won to 0. Then, it activates all inter-
faces of its connected system and queries setup at interface C. Subsequently, C
calls transfer(C,E1.r), transfer(C,Bi), and transfer(C,Aj) for i = 1 . . . `,
j = 1 . . . n. Then, C queries read to (the possibly simulated) resource Dist at
interface E1.r and outputs at the outside interface whatever is output by E1.r.

It further answers the following queries by an adversary A:

On the ith query Sign(m): Upon this query, C queries write(m) at inter-
face Ai and subsequently transfer(Ai,Ei.r). Then, retrieve the value s
by querying read at interface Ei.r. Finally, C outputs the pair (m, s) at
its outer interface. If no value is output at interface Ei.r, then C outputs
(m,m).

On the ith query Forge(m, s): On input a possible forgery C queries write(s)
at interface Ei.w of its connected system. Then, C queries transfer(Ei.w,Bi)
to give Bi access to the signature string s. Next, C queries verify(m) at
interface Bi to receive either the the indication Success or Fail. If the mes-
sage m is successfully verified and has not been queried to Sign before, then
won is set to 1. In any case won is output at the outside interface.

We first note that in the key generation process of GEU–CMA
Σ for Σ defined

above, the function setup.setup defines the signing and verification key. It is
this function that defines the values that converter setup writes to the distribu-
tion resource in the real world upon setup at interfaces C. So the probability
distribution of the pair (vk , sk) output by K is identical to the distribution of
the values written to Dist in system C(DSSPRn,`).

In the random experiment of any adversary that asks at most n queries to its
signature oracle and ` queries to its forgery oracle, the input-output behavior of
C(DSSPRn,`) and GEU–CMA

Σ are identical given that vk 6= ⊥ and sk 6= ⊥ during
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the key generation process. This follows from the definition of the algorithms of
Σ: The signing algorithm S and the verification algorithm V execute the same
converter functions as are executed in the system C(DSSPRn,`) on an input by
the adversary. And in both cases, if no signature is generated for some message
m it is set to the default value m. This is sufficient to build a distinguisher based
on an adversary A.
Claim: Let n, ` ∈ N. From any game winner A for GEU–CMA

Σ , that asks at most
n queries to Sign and ` queries to Forge, we construct a distinguisher D(A)
such that for any simulator sim,

ΓA(GEU–CMA
Σ ) ≤ ∆D(A)(DSSPRn,`, simE aRep) + Pr[(⊥,⊥)← K].

Proof: Consider the random experiment in which an adversary A interacts with
system C(T), where T ∈ {DSSPRn,`,Sn,`}. For this random experiment, let
W be the random variable that takes on the value of won at the end of the
experiment. Let further be F the binary random variable that takes on the
value 1 if, after the invocation of setup, at least one of the values stored in Dist
is undefined (and F = 0 otherwise).

The actual distinguisher D(A) connected to a system T ∈ {DSSPRn,`,Sn,`}
works as follows: it lets A interact with system C(T) and, after A has finished,
outputs the value of won as its decision bit7

We can therefore conclude that

Pr[D(A)(DSSPRn,`) = 1] = PrAC(DSSPRn,`)[W = 1]

= PrAC(DSSPRn,`)[F = 0] · PrAC(DSSPRn,`)[W = 1|F = 0]

+ PrAC(DSSPRn,`)[F = 1] · PrAC(DSSPRn,`)[W = 1|F = 1]

≤ PrAGEU–CMA
Σ [F = 0] · PrAGEU–CMA

Σ [W = 1|F = 0]

+ PrÂGEU–CMA
Σ [F = 1] · PrÂGEU–CMA

Σ [W = 1|F = 1]︸ ︷︷ ︸
=1

≤ PrAGEU–CMA
Σ [won = 1] + Pr[(⊥,⊥)← K], (3)

where Â is the adversary that wins the game with probability 1 by a single query
(m,m) to oracle Forge in case F = 1. Note that by definition, the scheme does
not provide any security whenever this condition occurs.

On the other hand, Pr[D(A)(simEaRepn,`) = 1] = 0, since no new message
can be written at any interface Ei.w of aRepn,`. This yields the claim and
concludes the lemma. � ut

The second lemma states that for the key generation algorithm K defined
in Sect. 4.4, the probability that (⊥,⊥) is returned is a lower bound for the
advantage in distinguishing the real and ideal systems.
7 This means that the output bit 1 indicates that the connected system is the real
system.
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Lemma 3. Let n, ` ∈ N, let Rn,` be as defined above for converters setup, write,
and check and let the digital signature scheme Σ = (K,S, V ) be defined as in
Sect. 4.4. We construct (efficient) distinguishers Di, i = 1 . . . 5, such that for all
simulators sim,

Pr[(⊥,⊥)← K] ≤
4∑
i=1

∆Di(DSSPRn,`, simEaRepn,`)

In particular, if there exists a simulator sim such that DSSPRn,` and simEaRepn,`
are indistinguishable, then the output of the key generation algorithm of Fig. 9
is defined with overwhelming probability.

Proof. Let us consider an execution of algorithm K and let us define the events
E1 := sk = ⊥ and E2 := vk = ⊥ and let E := E1 ∪ E2. By definition of algorithm
K, we immediately observe that Pr[Ei] is equal to the probability that, in the
real system DSSPRn,` upon calling setup at C, converter setup does not define
the respective values by an appropriate write-query to Dist. We now show that
the occurrence of either event leads to lower bounds on the security condition.

To achieve this, let us consider the following real-world random experiment
(with system DSSPRn,`). For further reference, we denote the experiment by
Exp. First, we call setup at interface C. Subsequently, we call transfer(C,E1.r),
transfer(C,Bi), and transfer(C,Aj) for i = 1 . . . `, j = 1 . . . n to distribute
the setup values (,i.e., keys). Then, we choose a uniformly random message
m and input it at interface A1. Let us denote by S the random variable that
takes on the value of the output of write on this write-query. Afterward, we call
transfer(A1,B1).8 Finally, we call verify(m) at interface B1. Let R be the
random variable that takes on the value output by check. We decompose the
probability of event E in Exp as follows:

PrExp [E ] = PrExp [E ] · PrExp [S = ⊥ | E ]︸ ︷︷ ︸
α

(4)

+ PrExp [E ] · PrExp [S 6= ⊥ | E ] · PrExp [R = Fail | E , S 6= ⊥]︸ ︷︷ ︸
β

(5)

+

2∑
i=1

PrExp [Ei] · PrExp [S 6= ⊥ | Ei] · PrExp [R = Success | Ei, S 6= ⊥]︸ ︷︷ ︸
γi

.

(6)

Let D1 be the distinguisher that implements the strategy of Exp with the
following exception: instead of calling verify(m) in the last step, D1 flips a
uniform bit b and only if b = 0 it calls verify(m); if b = 1 D1 calls verify(m′)
for with m′ chosen uniformly at random from M \ {m}. D1 outputs 1 as its

8 Note that this input bypasses any adversarial influence, as the output by the honest
writer is directly given to the honest reader.
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decision bit if either R = Success and b = 1 or if R = Fail and b = 0. In any
other case, D1 outputs 0.

We see that the random variable S in the experiment between D1 and
DSSPRn,` is identically distributed as in experiment Exp. Hence, in the real
world, with probability α, converter check attached at interface B1 does not
learn any information about m, because m was chosen after the setup query
and no information is transmitted within the repository since S = ⊥. In this
case, the probability that D1 outputs 1 is 1

2 . We observe that in the ideal world,
i.e., in D1(simEaRepn,`), the output R = Success is observed whenever b = 0
and the output R = Fail is observed whenever b = 1. Hence,

∆D1(DSSPRn,`, simE aRepn,`) ≥
α

2
.

Let D2 be the distinguisher that implements the strategy in experiment Exp
and which outputs 1 if and only if R = Fail. We directly see that in the experi-
ment between D2 and DSSPRn,`, converter check outputs Fail with probability
β, whereas in the random experiment D1(simEaRepn,`) with any simulator, the
probability of an output Fail at interface B1 is 0 by definition:

∆D1(DSSPRn,`, simE aRepn,`) ≥ β.

We now show that the third term constitutes a security issue in both cases:

Event E1 : We define a third distinguisher D3 as follows: it first chooses a uni-
formly random message m, activates all interfaces, and then calls write(m) at
interface A1, subsequently retrieves the value of S by calling transfer(A1,E1.r)
and after that calls read at interface E1.r. Only then, D3 calls setup and dis-
tributes the setup values as in Exp. Then, D3 calls write(S) at interface E1.w
and calls transfer(E1.w,B1) to give the receiver interface access to the value
S.

Finally, D3 queries verify(m) at interface B1.r. D2 outputs 1 if the output
is Success and outputs 0 otherwise. We have in particular

PrD3(DSSPRn,`)[E1 | S 6= ⊥] = PrExp [E1]

PrD3(DSSPRn,`)[S 6= ⊥] = PrExp [S 6= ⊥ | E1],

since in both experiments, converter write is invoked when the value vals stored
in Dist for converter write is ⊥. Note that this in particular means, this be-
havior has to be in the specification, since the behavior of Exp obeys all the
conditions. We conclude that the probability of an output other than Fail at
interface B1 in the real world is exactly γ1. On the other hand, in the ideal world,
i.e., in D2(simEaRepn,`), there cannot be any output other than Fail for this
distinguishing strategy. We get

∆D3(DSSPRn,`, simE aRepn,`) ≥ γ1.

Event E2 : We define a fourth distinguisher D4 as follows: instead of querying
setup, D4 internally runs setup.setup to simulate the public and the private
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values. Let the private value be denoted as sk . Then, D4 chooses a message m
uniformly at random and simulates the output S of converter write by evaluating
write.write(m) using sk as the emulated value stored in Dist. D4 then activates
all interfaces of its connected system and queries write(S) at interface E1.w and
transfer(E1.w,B1). Finally, D4 queries verify(m) at interface B1 and outputs
1 as its decision bit if and only if the output R is Success. We observe that in
particular,

PrD4(DSSPRn,`)[E2] = PrExp [E2]

PrD4(DSSPRn,`)[R = Success | E2, S 6= ⊥] = PrExp [R = Success | E2, S 6= ⊥].

The first equation follows from the fact that D4 internally imitates the setup-
process and hence the probability that the (public) value is equal to ⊥ is the
same as in Exp. The second equality follows since the value that converter check
retrieves from Dist is ⊥ in both systems and hence the views are identical (and
again this shows that the behavior for this resource has to be in the specification).
We conclude that the probability of an output Success at interface B1.r in
the real world is exactly γ2. On the other hand, in the ideal world, i.e., in
D4(simEaRep), there cannot be any output other than Fail, since the message
m has never been written to the repository. We get

∆D4(DSSPRn,`, simE aRepn,`) ≥ γ2.

This concludes the proof. ut

C Details of Section 6

C.1 Proof of Theorem 5

Proof. Let us introduce some shorthand notation. Let

R := issueI regS1 . . . regS`relC1 . . . relC` [ChI→ChI←,Net]

and let

S := ˜sim
E
RegS,C .

Let us further define the party set

P := {I0, I1, . . . , In,S1, . . . ,S`,C1, . . . ,C`}

Let further DSS := (setup,write, . . . ,write, read, . . . , read) with one converter
setup, n copies of write (for the issuer), and 2` copies of converter read (for
the submitters and consumers). We design a wrapper system W such that

R = W(DSSP
[
Dist, relayWRep

∅,{I1,...,In}∪Ew
S∪C∪Er,∅,∅

]
)
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and

S = W(simErelayWāRep
Ew,{I1,...,In}
S∪C∪Er,∅,S∪C),

where sim is the simulator from Theorem 1, and relay is the converter from
Sect. 5 that implements information transfer between receiver-interfaces of the
repository. These two equations are sufficient to conclude the statement, since a
distinguisher for R and S can be translated into a distinguisher for the wrapped
systems (by emulating the wrapper).

Let us construct such a wrapper W. The wrapper has to answer to the
following queries by a distinguisher D:

On issue at interface I: The wrapper system first calls setup at interface I0
of the sub-system and completes the setup by calling transfer(I0,Y) for
reader and writer interfaces of the repository.
Next, the wrapper calls write(xi, i) at each interface Ii, where xi is the
value that the issuer received from party with interface number i. Again,
wrapper W distributes all values by calling transfer(Ii,X) at interface W
for all reader interfaces X of the repository.

On register(x) at interface S: The wrapper internally stores the pair (x, i)
for later reference where i is the interface number of interface S. The wrapper
accepts only one such query per interface.

On read at interface X ∈ S ∪ C: If a value has been transferred to interface X
already, then this input is translated into a call read to the reader interface
X of the repository (which returns a registered pair). Otherwise, the return
value is defined to be ⊥.

On relayTo(Y) at interface X ∈ S ∪ C ∪ {E1, . . . ,El}: As long as the setup
has not been called at the subsystem, the wrapper does not relay any input.
If setup has been called already, then the query is translated to a call
transfer(X,Y) at interface W of the repository (recall that we can transfer
values between any two entities of the repository).

On send(m) at interface Ei (for system ChI←): The wrapper internally stores
the pair (x, k) for later reference where k is the interface number of interface
Ei. The wrapper accepts only one such query per interface

On read at interface Ei (for system ChI→): This input is translated into a
call read to the reader interface Ei.r of the repository if a value has been
transferred to interface Ei.r (and returns a signature; recall that no converter
is attached at the dishonest interfaces Ei).

On send(m) at interface E (for system Net): This input directly corresponds
to an adversarial write-operation to the repository. Hence, the wrapper calls
write(m) at some interface Ei.w to write the value m into the repository.

It is straightforward to verify that the wrapper can mimic the real world by
translating the queries into queries to the repository and thereby obeys the
conditions required by the specifications (we assume that no further conditions
occur, i.e., that the specification does not demand any further requirements from
the order of inputs): in fact, the repository captures an abstract application of the



44 C. Badertscher, U. Maurer, and B. Tackmann

Initialization
procedure init

(sk , vk) � K
si ← ⊥ for all i

Interface Ei

function send(m,Cj) . destined for Net
Parse m as ((x, k), s)
if Vvk ((x, k), s) = 1 then

call (Ldlv, R)← getOutput at interface E of Reg
if (x, k) ∈ Ldlv then

Let X be the interface with number k
call deliverToClient(X, j) at interface E of Reg

function getMsgs . destined for Net
call (Ldlv, R)← getOutput at interface E of Reg
L← [ ]
for each pair (x, k) ∈ R do

if sk = ⊥ then
sk ← Ssk ((x, k))

L← L||((x, k), sk)
return L

function send(x) . destined for ChI←
call register(i, x) at interface E of Reg

function read . destined for ChI→
call (Ldlv, R)← getOutput at interface E of Reg
if (x, `+ i) ∈ Ldlv then

if s`+i = ⊥ then
s`+i ← Ssk ((x, `+ i))

return ((x, `+ i), s`+i)

Converter ˜sim

Fig. 18. Simulator for the construction of a registration service in Theorem 5.

signature scheme to sign messages and distribute the signature strings. Since this
is all what happens in this application of signatures to establish a registration
service, it is not surprising that we can represent the real world as an application
of this repository.

On the other hand, replacing the subsystem by the authenticated repository
(and the simulator) rules out that the adversary can write arbitrary values into
the repository. This, translated to our setting, simply means that the adver-
sary can not send any message m to any of the consumers (or servers), which
was not sent to the issuer first. This is exactly what simulator ˜sim verifies:
it verifies whether the signature matches and only then relays an input. The
relay-command stands in a one-to-one correspondence to the copy-commands of
simulator sim from Theorem 1: it verifies the signature and only then writes it
into the repository by using the copy-command (hence relaying a signature).

Thus, the only way to distinguish R and S is to distinguish the sub-systems
of the wrapper W, which is upper bounded by Theorem 1 and the result from
Sect. 5. The theorem follows. ut
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Initialization
procedure init

(sk , vk) � K
firstMsg← false

Interface E

function read(Ct)
Let (m,B)← S[Ct]

call (`, B)← read(Ct) at interface E of NETn,IdP
mut

return (`, B)

function inject(m, SPj)
take no action

function deliver(Cj , SPj)
if mode = hon then

if firstMsg then
call deliver(Cj , SPj) at interface E of NETn,IdP

mut
else

call v ← read(C1) at interface E of NETn,IdP
mut

if v 6= ⊥ then
firstMsg← true
for i = 1 to n do

call deliver(Ci, SPi) at interface E of NETn,IdP
mut

function setMode(x) . x ∈ {hon, adv}
if mode 6= ⊥ then

mode← x

function read . to system ChIdP→SP

call v ← read(IdP) at interface E of NETn,IdP
mut

if v = true then
return vk

Converter ¯sim

Fig. 19. Simulator for the session-authentication construction in Theorem 6.

D Details of Section 7

D.1 Proof of Theorem 6

Proof (Sketch). We show that attaching the protocol fwd, assert and filter to
interfaces C1, IdP, and SP (where SP has n sub-interface SPi) of the assumed
setting can be represented as a wrapped repository as in the proof of Theorem 5.
More specifically, we obtain for a wrapper W defined below,

fwdC1assertIdPfilterSP [ChIdP→SP,SECIdP,C1 ,NETn
uni]

= W(setupIdPwriteIdPreadSP1

[
Dist,Rep

∅,{IdP,E}
{SP1},∅,∅,NETn−1

uni

]
),

and

¯sim
E
NETn,IdP

mut

= W(
[
simEāRep

{E},{IdP}
{SP1},∅,∅,NETn−1

uni

]
),
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where the signature converters and simulator sim are again as in Sect. 4.1. We
now sketch the behavior of the wrapper system W on any possible input by a
distinguisher that fulfills the above two equations.

On initiate at interface IdP: The wrapper calls the function setup at inter-
face IdP of the sub-system and subsequently calls transfer(IdP,SP1) and
transfer(IdP,E) at interface W of Dist to complete the setup as it would
happen in the real world via ChIdP→SP1

.
Then, the wrapper calls the function write(m) at interface IdP of resource
Rep

∅,{IdP,E}
{SP1},∅,∅, where m = “Client 1 Authenticated” as in the protocol assert.

On read at interface E (for system ChIdP→SP): The wrapper calls read at
the same interface of sub-system Dist only if a value has been transferred
before to that interface, and otherwise outputs ⊥.

On read at interface SP1: The wrapper checks whether the service provider
has received the assertion. Only then, the wrapper will produce output for
the service provider at the sub-interfaces SPi for i > 1.

On inject(m,SP1) at interface E (for system NETn
uni): If the distinguisher

set the mode of NETn
uni such that mode = adv, then the wrapper calls the

function write(m) at interface E of resource Rep
∅,{IdP,E}
{SP1},∅,∅ and subsequently

calls transfer(E,SP1) at interface W of Rep
∅,{IdP,E}
{SP1},∅,∅ to mimic the transfer

of the first message to SP1 (which is injected at E in this case).
On initiate at interface C1: The wrapper calls transfer(IdP,SP1) at inter-

face W of Rep
∅,{IdP,E}
{SP1},∅,∅ to mimic the transfer of the first message to SP1

(which is the value that C1 received from IdP).
On any other input at Ci or SPi, i > 1, or E (for NETn

uni): Any such in-
put is directly given as input to the respective interface of the subsytem
NETn−1

uni and perfectly mimics the transmissions and injections of any other
message in the session between the client interfaces Ci and the service provider
interfaces SPi. Furthermore, the wrapper only produces outputs at SPi if the
service provider received an assertion.

First, system W obeys the condition on the sequence of inputs as required by
the specification in Sect. 4.1 and we can therefore conclude that replacing the
subsystem is sound (note that we assume that there are no further conditions
beyond this). For the remaining argument, observe that the main difference of
the real and the ideal worlds are that the mode cannot mode = adv is ineffective
in the ideal world: Resource NETn,IdP

mut only has one mode of operation where
the adversary cannot inject messages. Now, when the wrapper W is connected
to an authenticated repository (with the special simulator sim attached), then
no write-instruction can be issued at interface E (the adversary can at most copy
what the issuer’s input). This is the same behavior as simulator ¯sim implements.
The remaining cases are straightforward to verify. ut
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