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Abstract. In this paper, we consider a scenario where a sender trans-
mits ciphertexts to multiple receivers using a public-key encryption scheme,
and at a later point of time, wants to retrieve the plaintexts, without
having to request the receivers’ help in decrypting the ciphertexts, and
without having to locally store a separate recovery key for every receiver
the sender interacts with. This problem, known as public key encryption
with sender recovery has intuitive solutions based on hybrid encryption-
based key encapsulation mechanism and data encapsulation mechanism
(KEM/DEM) schemes. We propose a KEM/DEM-based solution that is
CCA2-secure, allows for multiple receivers, only requires the receivers to
be equipped with public/secret keypairs (the sender needs only a single
symmetric recovery key), and uses an analysis technique called plain-
text randomization that results in greatly simplified, clean, and intuitive
proofs compared to prior work in this area. We instantiate our protocol
for public key encryption with sender recovery with the Cramer-Shoup
hybrid encryption scheme.
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1 Introduction

Consider a situation where Alice and Bob exchange e-mails through an untrusted
e-mail service provider. Alice sends e-mails to Bob encrypted under his public
key, and does not necessarily save a plaintext copy of every e-mail she sends Bob
on her local device, or on the untrusted server. In this scenario, Alice cannot
retrieve a plaintext message at a later date without the co-operation of Bob,
who is presumably the only party who will have the corresponding secret key
used to decrypt the message. Ideally, we would like Alice to be able to retrieve
the plaintext messages without having to contact Bob (or other recipients), who
either may not be available, or may not have any incentive to co-operate with
Alice.
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A natural solution to this problem involves Alice and Bob setting up a shared
session key, and Alice using the session key to send encrypted messages to Bob,
and Alice storing copies of the session keys and ciphertexts. The copies could
be stored on Alice’s device or can be stored in encrypted form on the server.
This solution works, but Alice would need to setup a separate session key with
every receiver she communicates with, store ciphertexts encrypted under several
session keys, and have a separate recovery key associated with each receiver. It
would be ideal if we could minimize the storage and computation required on
Alice’s side.

The problem of a sender being able to decrypt a ciphertext encrypted under
the key of a receiver, without the co-operation of the receiver, known as pub-
lic key encryption with sender recovery, was first introduced by Wei et al. [12,
11, 13] as a complementary notion to forward secrecy, in which past encrypted
messages cannot be decrypted using expired keys. In this paper, we construct
new solutions for this problem using hybrid encryption-based techniques. Our
constructions are CCA2-secure, are based on minimal/relaxed assumptions as
compared to prior work in this area, and use a proof technique called plain-
text randomization [10], which results in simplified protocol constructions, and
intuitive and cleaner proofs compared to prior work.

1.1 Our Contributions

– We propose a new protocol for public-key encryption with sender recovery,
where the sender can independently retrieve a plaintext message that was
encrypted under the receiver’s public key, without receiving help from the
receiver. Potential applications of our protocol include untrusted third party
data storage (e.g., Dropbox), and encrypted e-mail recovery services.

– We instantiate our protocol using the classic Cramer-Shoup key/data encap-
sulation mechanism, KEM/DEM-based hybrid encryption scheme. We prove
that our protocols are CCA2 secure if the underlying DEM scheme is CCA2
secure, i.e., we do not require the underlying KEM scheme to be secure in
any sense (previous work in this area required the entire KEM/DEM scheme
to be CCA2 secure).

– We consider both, the single receiver and multiple receiver models, and make
minimal assumptions with respect to key requirements: in particular, we only
require the sender to be equipped with a single recovery key that can be used
across multiple receivers. We use KEM/DEM-based hybrid encryption com-
bined with a technique called plaintext randomization, and helps us obtain
proofs of CCA2 security that are clean, intuitive, and much simpler com-
pared to prior work in this area.

2 Related Work

Wei, Zheng, and Wang [13] first introduced the idea of public-key encryption
with sender recovery using KEM/DEM-based hybrid encryption protocols. The
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idea of a sender being able to recover a previously encrypted ciphertext with-
out the receiver’s help is somewhat complementary to the better-known notion
of forward security [4, 3] where the goal is to prevent decryption of ciphertexts
using old, expired keys. The scheme of [13] required both, sender and receiver
to be equipped with a public/secret keypair, and among other things, [13] pro-
vided the sender the ability to authenticate the ciphertext to check if it really
originated from her, and worked for multiple receivers. In further work, Wei and
Zheng [11, 12] presented an efficient public key encryption scheme with sender re-
covery, but which requires only the receiver to have a public/secret keypair. The
efficiency gains though, come at the cost of sacrificing ciphertext authenticity
checks, besides their scheme works only in the single receiver model.

The main differences between prior work and our paper are: 1)[13, 11, 12]
rely on the underlying KEM/DEM scheme to be CCA2 secure in order to prove
the security of their protocols. We considerably relax this requirement, and do
not require the KEM scheme to be CCA2 secure. 2) Furthermore, in our work,
we consider the multiple receiver model, where a sender can recover ciphertexts
encrypted under the keys of multiple receivers, using just one symmetric recovery
key (no requirement for the sender to have a separate recovery key for each
receiver). 3) The analysis and security proofs of prior protocols for public-key
encryption with sender recovery were tricky, with two CCA2 reductions, and
used the game-hopping technique, which involves reductions between a series of
several games. We abstract out the analysis of the KEM scheme using a technique
called plaintext randomization, which results in clean, intuitive proofs, which are
much shorter in length than the previous ones. Additionally, prior work also
involved the universal one-way functions with collision accessibility assumption
(deliberately inducing collisions in a family of one-way functions), which we
avoid. A comparison of our work with previous works is given in Table 1.

Table 1. Comparison of our work with previous works

Properties [13] [11, 12] Our Work

Number of receivers n 1 n

Asymmetric keys for sender
required?

Yes Yes No

Number of symmetric keys
to be stored on sender’s side

n 1 1

Underlying KEM/DEM se-
curity requirements

CCA2-secure
KEM/DEM

CCA2-secure
KEM/DEM

CCA2-secure
DEM only

Authentication provided? Yes No No (can be
added if nec-
essary).

More generally, KEM/DEM schemes have been used in applications such
as identity-based password exchange [6], puncturable encryption [9], attribute-
based encryption [5], leakage resilient cryptosystems [8], and more. We do not
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review the vast KEM/DEM literature here, since we are not designing a new
KEM/DEM scheme, rather we are using KEM/DEM to build a public-key en-
cryption scheme that allows for sender recovery.

3 Plaintext Randomization

The notion of plaintext randomization [10] was introduced to address issues of
composability in high-level protocols, where we use one secure protocol as a
component of another protocol, while retaining security inside the higher-level
protocol. In particular, plaintext randomization deals with situations where a
public-key encryption (PKE) scheme is used as a component in a higher-level
protocol, and tries to simplify the analysis of the higher-level protocol, by ab-
stracting out the analysis of the PKE scheme. Consider the problem of k-of-n
secret sharing, where a secret is divided among n proxies or trusted third parties,
such that a combination of any k of them can decrypt the secret. The analy-
sis of this would require using a decryption oracle in the CCA2 game, where
the adversary is allowed to query the decryption oracle with any ciphertext of
its choice, except for the challenge ciphertext. In a standard CCA2 game, the
decryption oracle will not return copies of the decrypted challenge ciphertext.
Now, in a secret sharing scheme CCA2 game, the adversary will query the ora-
cle with m ≤ k copies of the challenge ciphertext, and will require the oracle to
return real, decrypted ciphertexts, for all of the m ≤ k share queries. Moreover
we must make multiple encryptions, and they must be consistent. These issues
could possibly be addressed by using Bellare’s left-right oracle [2], but the de-
cryption oracle must decrypt some of the shares consistently, and must disallow
decryption of a set that will allow reconstruction of the secret. Unfortunately,
a standard CCA2 decryption oracle will not allow consistent encryptions and
correct decryption of some shares of the challenge ciphertext. This composabil-
ity problem also arises in the context of a hybrid encryption system, where the
key encapsulation mechanism (KEM) encrypts either a session key, or a random
string, but a KEM is a single-use mechanism, and cannot be used in a consistent
way across encryptions. In hybrid encryption, we compose the PKE and shared
key encryption (SKE) schemes in the sense that we establish that if the PKE
scheme, and the SKE scheme are both secure in some sense (e.g., CCA2 secure),
then the resulting hybrid encryption scheme is also secure in the same sense.
Although the idea seems intuitive, the security of a hybrid encryption scheme
was not established until the work of Cramer and Shoup [7].

The goal of plaintext randomization is to “cut” off the underlying PKE
scheme from the rest of the protocol, with the motivation of simplifying proofs for
PKE-hybrid systems. In plaintext randomization, each time the encrypt function
is called on a plaintext p with some public key, PK, the CCA2 oracle replaces
the real plaintext with a random string, r, such that |r| = |p|, encrypts r, and
stores the tuple (c = EPK(r), PK, p). To provide consistent decryptions on a
decryption request, the oracle looks up the stored tuple and returns the plain-
text p, rather than the actual decryption of c, which would give r. Intuitively, if
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we think about using this scheme in a hybrid encryption system, we would first
generate a session key k, encrypt a random string r generated by sampling the
“plaintext” space (which is the key space), such that |r| = |k|. We would then
generate c = EPKRecv(r), where “Recv” is the recipient. Then, we would encrypt
the message to be sent: cDEM = EK(p). But, here, cKEM and cDEM are two
independent strings – cKEM is an encryption of a random string that bears no
relation to cDEM . Hence, in the analysis of the hybrid encryption scheme, we
will not have to deal with composability issues.

Real-or-random security: The notion of plaintext randomization might
seem similar to, but has some subtle differences with real-or-random security.
In real-or-random security, the ROR oracle encrypts either the real or random
plaintext, and the task of the adversary is to distinguish between the real and
random encrypted shares with non-negligible probability. In the context of a
k-of-n secret sharing scheme, the ROR oracle is disallowed from decryptions
of the “right” challenge ciphertext shares. But it is essential to provide the
adversary decrypted shares of the real ciphertexts, to prove that any subset of n
less than k will not decrypt the secret correctly. It is this fundamental problem
that plaintext randomization was designed to solve. In plaintext randomization,
we move the entire PKE scheme inside the oracle, such that the oracle can give
consistent decryptions of the challenge ciphertext, for some subset of n, which is
less than k: the minimum number of decryptions necessary to correctly decrypt
the challenge ciphertext.

4 Preliminaries

In this section we review some relevant definitions and concepts that will be
used in the construction of our protocols. We start with the basic public-key
encryption with sender recovery scheme by Wei and Zhang [11]. 3

Definition 1. (Basic PKE-SR scheme [11])

1. (PKr, SKr,Ks)← KeyGen(1λ): This is a randomized algorithm that outputs
a public/secret keypair for the receiver, (PKr, SKr) and a secret recovery
key, Ks for the sender. This is run by both parties individually to generate
their respective keys.

2. c← Encrypt(Ks, PKr,m). This is a randomized algorithm run by the sender
that takes as input the sender’s recovery key, the receiver’s public key, a
message m, and gives as output a ciphertext c. Internally, it consists of
two algorithms, KEMEncrypt and DEMEncrypt. The sender picks a τ ←
{0, 1}λ, and computes r = F (Ks, τ, PKr), where F is an injective func-
tion. The sender then generates and encrypts an ephemeral, shared, ses-
sion key, (cKEM , κ) ← KEMEncrypt(r, PKr) . The sender then encrypts

3 While it is possible to, and would be trivial to introduce a message authentication
code in the scheme for integrity checking, we omit that step here for clarity of
presentation.
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the message using the ephemeral key, (cDEM ) ← DEMEncrypt(κ,m). Set
c = (cKEM , cDEM ). Send c to receiver.

3. m ← Decrypt(c, PKr, SKr). This is a deterministic algorithm run by the
receiver to extract m from the ciphertext c = (cKEM , cDEM ). The receiver
first retrieves the ephemeral key, κ ← KEMDecrypt(SKr, cKEM ). Then the
receiver then retrieves the message, m← DEMDecrypt(κ, cDEM ).

4. m ← Recover(Ks, PKr, c): This is a deterministic algorithm run by the
sender to recover the message m from the ciphertext c = (cKEM , cDEM ). The
sender first computes r ← F (Ks, τ, PKr), and retrieves κ: κ← KEMRecover(r, PKr, CKEM ).
Finally the sender recovers m← DEMDecrypt(Ks, cDEM )

ut

We next review a few definitions from [10, 1] regarding public-key encryption,
plaintext-samplable public-key encryption, public-key encryption with multiple
users, secret-key oblivious encryption, and plaintext randomization. We give the
security definition of public-key encryption with multiple receivers, and definition
of plaintext randomization here; the rest are given in Appendix A.

Definition 2. (Public key encryption with multiple users game [1]) The security
game for public key encryption in a multi-user setting is defined as follows:

– PK-MUS
n .Initialize(1

λ): For i = 1 to n, the oracle generates keypairs (pki, ski) =
S.KeyGen(1λ), picks a random bit b ∈ {0, 1}, and sets C as an initially
empty set of challenge ciphertexts. pk1, · · · , pkn are returned to the adver-
sary.

– PK-MUS
n .Decrypt(i, x): If (i, x) ∈ C, the oracle returns ⊥; otherwise, it returns

S.Decrypt(pki, ski, x).

– PK-MUS
n .PEncrypt(i, x0, x1): The oracle calculates c = S.Encrypt(pki, xb),

adds (i, c) to C, and returns c to the adversary.

– PK-MUS
n .IsWinner(a): Takes a bit a from the adversary, and returns true if

and only if a = b.

ut

Definition 3. (Plaintext randomization of a PKE) Given a plaintext-samplable
PKE scheme S, the plaintext randomization of S is a set of functions that
acts as a PKE scheme, denoted S-rand, defined as follows:

– S-rand.KeyGen(1λ) computes (pk, sk) = S.KeyGen(1λ) and returns (pk, sk).

– S-rand.Encrypt(pk, p) first computes r = S.PTSample(pk, p), and then c =
S.Encrypt(pk, r). If a tuple of the form (pk, c, ·) is already stored in S-rand’s
internal state, then ⊥ is returned (the operation fails); otherwise, S-rand

stores the tuple (pk, c, p), and returns c as the ciphertext.

– S-rand.Decrypt(pk, sk, c) looks for a tuple of the form (pk, c, x) for some x.
If such a tuple exists, then x is returned as decrypted plaintext; otherwise,
p = S.Decrypt(pk, sk, c) is called and p is returned.

ut
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5 Our Protocols

We now give a technique for constructing a public-key encryption with sender re-
covery (PKE-SR) scheme using plaintext randomization. Intuitively, our scheme
works by encrypting a session key using the sender’s recovery key and storing the
encrypted key along with the ciphertext, such that the sender can independently
retrieve the ciphertext when required, without having to contact the receiver,
and while maintaining O(n+k) storage cost, where n is the size of the ciphertext,
and k the session key length.

The main novel contribution of our paper is taking this intuitive idea and
applying the plaintext randomization proof technique to the PKE scheme used,
which enables us to obtain a simple, natural construction of a PKE-SR scheme,
without having to make additional cryptographic assumptions as was done in
prior work in this area, such as assuming the existence of hash function families
with collision accessibility (inducing hash functions to produce collisions), and
without requiring the KEM/DEM scheme to be CCA2 secure. Consequently, our
protocols have simple, clean proofs, which are easy to reason about, and which
do not require a complicated series of reductions between games. We define
our PKE-SR scheme with plaintext randomization for multiple receivers below,
the single-receiver model is a simpler variant. Note that the sender needs to be
equipped with just one recovery key, even in the presence of multiple receivers.
The basic construction of our PKE-SR scheme without plaintext randomization
is given in Appendix B.

Definition 4. PKE-SR using plaintext randomization with multiple receivers

1. ((PK1, SK1), · · · , (PKn, SKn),Ks) ← KeyGen(1λ): This is a randomized
algorithm that generates public/secret keys for the receivers and a symmet-
ric recovery key for the sender. Parties run this algorithm individually to
generate their respective keys.

2. c← Encrypt(PKi,Ks,m): This is a randomized algorithm run by the sender
that takes as input a receiver’s public key, the sender’s recovery key, and a
message m. The algorithm proceeds as follows:

(a) Compute session key, κ: κ← KeyGen(PKi,Ks, {0, 1}λ).
(b) Sample the session keyspace and produce a random string: ρ← PTSample(κ, PKi),

such that |ρ| = |κ|.
(c) Compute cKEM ← KEMEncrypt(PKi,Ks, ρ). If a tuple of the form (PKi, cKEM , ·)

already exists in the PKE’s internal state, return ⊥. Else store the tuple
(PKi, cKEM , κ)

(d) Encrypt the message m: cDEM ← DEMEncrypt(κ,m), and set c = (cKEM , cDEM ).
(e) For enabling recovery at a later stage, compute c′ = DEMEncrypt(Ks, κ),

and set c′′ = c||c′.
(f) Store c′′, and return c.

3. m ← Decrypt(PKi, SKi, c): This is a deterministic algorithm run by the
receiver that takes as input a ciphertext c, the receiver’s public and secret
keys, and outputs the message m. The algorithm follows the steps below:
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(a) Retrieve the session key κ: κ ← KEMDecrypt(PKi, SKi, c). The PKE
scheme internally looks for a tuple of the form (PKi, cKEM , κ). If such
a tuple exists, κ is returned as the decrypted session key, else κ ←
KEMDecrypt(SKi, cKEM ) is returned.

(b) Decrypt the message m: m← DEMDecrypt(κ, cDEM ).

4. m ← Recover(c,Ks, PKi): This is a deterministic algorithm run by the
sender that takes in the ciphertext, the sender’s secret recovery key, the re-
ceiver’s public key, and returns the message m. The algorithm proceeds as
follows:

(a) Retrieve the stored c′′ = c||c′, and computes κ← DEMDecrypt(Ks, c
′).

(b) Compute m← DEMDecrypt(κ, c).
ut

We could, in principle, plaintext-randomize the symmetric encryption part as
well, by sampling message m’s plaintext-space, and replacing m with a random
string of the same length, but that would then be equivalent to the well-known
model of real-or-random (ROR) security. The point of plaintext randomization is
to replace a public key scheme (PKE) that is internal to some larger operation
- essentially the PKE ciphertexts give us something that is incidental to the
answer that is wanted, but are not what we are ultimately interested in.

6 Analysis and Proofs

In this section, we introduce the plaintext randomization lemma of Tate et
al. [10], and propose extensions to it. The original plaintext randomization lemma
was for a single sender and receiver PKE game. Since we are working with single
sender and multiple receivers PKE games, we require that the plaintext random-
ization lemma be extended to the multiple receivers model.

Lemma 1. (Plaintext randomization lemma for a single receiver [10]) Let G be a
game that makes sk-oblivious use of a plaintext-samplable public key encryption
scheme S, and let S-rand be the plaintext randomization of S. Then, for any
probabilistic adversary A that plays GS so that the total game-playing time of
A is bounded by t, the number of calls to S.KeyGen is bounded by n, and the
number of encryption and decryption requests for any individual key is bounded
by qe and qd, respectively,∣∣AdvA,GS −AdvA,GS-rand

∣∣ ≤ 2AdvPK-MUS
n

(t′, qe, qd),

where t′ = t+O(log(qen)).

Lemma 2. (Plaintext randomization lemma for multiple receivers)
Let G be a game that makes sk-oblivious use of n plaintext-samplable public

key encryption schemes, S1, · · · ,Sn, and let S-rand1, · · · ,S-randn be the plain-
text randomization of S. Then, for any probabilistic adversary A that plays the
GS1 , · · · ,GSn , so that the total game-playing time of A is bounded by t, the
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number of calls to S1.KeyGen, · · · ,Sn.KeyGen is bounded by m, and the total
number of encryption and decryption requests for any individual key is bounded
by qe and qd respectively, the advantage of A is defined by:

|AdvA,GS1,··· ,Sn −AdvA,GS-rand1,··· ,S-randn | ≤ 2Adv
PK-MU

S1,··· ,Sn
m

(t′, qe, qd),

where t′ = t+O(log(qen)).

The proof, which involves reducing a adversary for any plaintext-randomized
PKE game with multiple receivers into an adversary for a public-key encryption
scheme with multiple receivers is given in Appendix D. We now present a theo-
rem that our sender recovery scheme (PKE-SR) with plaintext randomization is
CCA2-secure, if the underlying PKE and SKE schemes used are CCA2-secure.
The proof is given in Appendix E.

Theorem 1. Let A be an adversary that attacks the CCA2 security of our
PKE-SR scheme, which uses public-key encryption scheme P as the KEM, and
symmetric-key encryption scheme S as the DEM. If A runs in time t in a game
that uses at most n keypairs, and performs at most qe encryptions and qd de-
cryptions, then

AdvA,PK-MUPKE-SR
n

≤ 2AdvPK-MUP
n

(t′, qe, qd) +AdvSK-MUS
qen

(t′, 1, qd)

where t′ = t+O(log(qen)).

7 Practical Instantiations

In this section, we describe an instantiation of our PKE-SR scheme using the
classic Cramer-Shoup KEM/DEM scheme [7], which was the first work to rigor-
ously establish the security of hybrid encryption. The idea of hybrid encryption
has been around since the 1980s, primarily due to the inefficiency of public key
encryption, and intuition tells us that if the symmetric key scheme and the public
key scheme used in hybrid encryption are both secure in some sense (e.g., CCA2
secure), then a hybrid encryption scheme that composes them should be secure
as well. In spite of this, the security of hybrid encryption was tricky to formally
establish until the work of Cramer and Shoup, who introduced the primitives of
key encapsulation mechanism (KEM) for generating and encrypting the session
key, and data encapsulation mechanism (DEM) for encrypting data with the
session key. Their work was instrumental in establishing a rigorous foundation
for the analysis of hybrid encryption schemes. We first review some preliminary
definitions from [7]. The original Cramer-Shoup scheme is given in Appendix C
for reference.

Computational group scheme: A computational group scheme G specifies
a sequence Sλ, where λ ∈ Z+. For every value of λ, Sλ is a probability distribution
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of group description, where a group description Γ specifies a finite abelian group
Ĝ, along wth a prime-order subgroup G, a generator g of G, and the order q of
G. Let Γ [Ĝ,G, g, q] indicate that Γ specifies Ĝ,G, g and q. The group scheme
also provides several algorithms to test membership and group properties, such
as closure, existence of identity element, inverse element, associativity.

Target collision hash function: Let k ∈ Z+, such that k is constant,
and let G be a computational group scheme, specifying a sequence Sλ of group
distributions, where λ ∈ Z+ is a security parameter. Then HF is a k-ary group
hashing scheme that specifies two algorithms:

– A family of key spaces indexed by λ ∈ Z+ and Γ ∈ |Sλ|. Each such key space
is a probability space on bit strings denoted by HF.KeySPaceλ,Γ . There must
exist a probabilistic, polynomial-time algorithm whose output distribution
on input 1λ and Γ is equal to HF.KeySpaceλ,Γ .

– A family of hash functions indexed by λ ∈ Z+, Γ [Ĝ,G, g, q] ∈ [Sλ], and

hk ∈ [HF.KeySpaceλ,Γ ], and ρ ∈ Gk, outputs HFλ,Γhk (ρ).

The target collision resistance assumption for HF is then this: for every prob-
abilistic polynomial-time algorithm A, the function AdvTCRHF,A(λ) is negligible
in λ.

AdvTCRHF,A(λ|Γ ) = Pr[ρinGk ∧ ρ 6= ρ∗ ∧ HFλ,Γhk (ρ∗) = HFλ,Γhk (ρ) :

ρ∗ ← G; hk← HF.KeySpaceλ,Γ ; ρ← A(1λ, Γ, ρ∗, hk)]

Key Derivation Functions: Let G be a computational group scheme, spec-
ifying a sequence (Sλ) of group distributions. A key derivation function (KDF),
associated with G, specifies two items:

– A family of key spaces indexed by λ ∈ Z+, and Γ ∈ [Sλ]. Each such key
space is a probability space, denoted KDF.KeySpaceλ,Γ , on bit strings, called
derivation keys. There must exist a probabilistic, polynomial time algorithm,
whose output distribution on input 1λ and Γ is equal to KDF.KeySpaceλ,Γ .

– A family of key derivation functions indexed by λ ∈ Z+, Γ [Ĝ,G, g, q] ∈ [Sλ],

and dk ∈ [KDF.KeySpaceλ,Γ ], where each such function KDFλ,Γdk maps a pair
(a, b) ∈ G2 of group elements to a key K. A key k is a bit string of length
KDF.OutLen(λ). The parameter KDF.OutLen(λ) should be computable in
deterministic polynomial time, given 1λ. There must exist a determinis-
tic polynomial-time algorithm that on input 1λ, Γ [Ĝ,G, g, q] ∈ [Sλ], dk ∈
[KDF.KeySpaceλ,Γ ], and (a, b) ∈ G2, outputs KDFλ,Γdk (a, b).

The key derivation function security assumption is then this: for all proba-
bilistic, polynomial-time algorithmsA, and for all λ ∈ Z+, the functionAdvDistKDF,A

is negligible in λ:
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AdvDistKDF,A(λ) = |Pr[τ = 1 : Γ ← Sλ; dk← KDF.KeySpaceλ,Γ ; a, b← G;

τ ← A(1λ, Γ, dk, a,KDFλ,Γdk (a, b))]−
Pr[τ = 1 : Γ ← Sλ; dk← KDF.KeySpaceλ,Γ ; a← G;K ← {0, 1}KDF.OutLen(λ);

τ ← A(1λ, Γ, dk, a,K)]|

Definition 5. (PKE-SR using plaintext randomized Cramer-Shoup (CS)
scheme)

– (PK,SK,Ks)← CS.KeyGen(1λ): This is a randomized algorithm run by the
sender and receiver individually to generate their respective keys. The key
generation process proceeds as follows:

• Γ [Ĝ,G, g, q]← Ŝ(1λ)
• hk← HF.KeySpaceλ,Γ
• dk← KDF.KeySpaceλ,Γ
• Ks ← KDF.KeySpaceλ,Γ
• z1, z2 ← Zq;h← gz1 ĝz2

• Set PK = (Γ, hk, dk, h), SK = (Γ, hk, dk, z1, z2). Set Ks as the sender’s
recovery key.

– (c = (cKEM , cDEM ))← CS.Encrypt(PK,Ks,m): This is a randomized algo-
rithm run by the sender that takes as input the receiver’s public key, sender’s
recovery key, a message m, and outputs a ciphertext. The algorithm proceeds
as follows:

• Compute u← Zq, a← gu, b← hu, κ← KDFλ,Γdk (a, b).
• Sample the keyspace of κ, and produce a random string: κ̂← CS.PTSample(PK, κ),

such that |κ̂| = |κ|.
• Compute cKEM = CS.KEMEncrypt(PK,Ks, κ̂). Store (PK, cKEM , κ) in

internal state, if it does not already exist.
• Compute cDEM ← CS.DEMEncrypt(κ,m). Compute c′ = CS.DEMEncrypt(κ,Ks),

set c′′ = c||c′.
• Send c to the receiver, and store c′′.

– {m,⊥} ← CS.Decrypt(SK, c = (cKEM , cDEM )): This is a deterministic al-
gorithm run by the receiver that takes in the receiver’s secret key and the
ciphertext, and outputs the message m. The algorithm proceeds as follows:

• Check if the internal state of the KEM scheme contains a tuple (PK, cKEM , κ).
If such a tuple is found, then κ is returned as the session key. Else,
κ← CS.DEMDecrypt(SK, cKEM ) is returned.

• Compute b = az1 âz2 . Compute κ← KDFλ,Γdk (a, b).
• Decrypt the message m: m← CS.DEMDecrypt(κ, cDEM ).

– m ← CS.Recover(c′′): This is a deterministic algorithm run by the sender
when the sender wants to recover message m. The sender retrieves c′′ =
c||c′, and computes κ = CS.DEMDecrypt(Ks, c

′). Sender then does m ←
CS.DEMDecrypt(Ks, cDEM ).

11



ut

Theorem 2. Let A be a probabilistic, polynomial-time adversary that attacks
the CCA2 security of the Cramer-Shoup hybrid encryption scheme, CS(P, S),
where P is the public-key encryption scheme, and S is the shared-key encryption
scheme used by the CS scheme. If A runs in time t in a game that used at most
n keypairs, and performs at most qe encryptions and qd decryptions, then,

AdvA,PK-MUCS ≤ 2AdvPK-MUPn (t′, qe, qd) +AdvSK-MUS
qen

(t′, 1, qd)

where t′ = t+O(log(qen)).

The proof, which involves bounding the advantage of a PKE-SR adversary
by a DEM adversary if given in Appendix F. The corollary follows.

Corollary 1. If P is a CCA-2 secure PKE scheme, and S is a CCA2-secure
SKE scheme, then CS-rand, which is the plaintext randomized version of the
Cramer-Shoup hybrid encryption scheme, CS, is a CCA2-secure hybrid encryp-
tion scheme.
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A Preliminary Definitions

Definition 6. (Public-Key Encryption (PKE)) A (PKE) scheme is defined by
four sets and three probabilistic polynomial time operations. The sets are PK,
the set of public keys; SK, the set of secret keys; PT , the set of plaintexts; and
CT , the set of ciphertexts. The algorithms are the following:

– KeyGen : 1∗ → PK × SK — when called as KeyGen(1λ), where λ is a
security parameter, produces a random public/secret pair (pk, sk) where pk ∈
PK and sk ∈ SK.

– Encrypt : PK×PT → CT — when called as Encrypt(pk, p), where pk ∈ PK
and p ∈ PT , produces ciphertext c ∈ CT . It is not required that all plaintexts
be valid for every public key, so we use PT (pk) to denote the set of valid
plaintexts for a particular public key pk. If Encrypt is called with an invalid
plaintext (i.e., p 6∈ PT (pk)), then the operation fails and special value ⊥ is
returned.

– Decrypt : PK×SK×CT → PT — when called as Decrypt(pk, sk, c), where
pk ∈ PK, sk ∈ SK and c ∈ CT , produces plaintext p ∈ PT . We can similarly
restrict the ciphertext set to ciphertexts that are valid for a specific secret key
sk, which we denote by CT (sk).

We require that for any (pk, sk) produced by KeyGen, and for any plaintext
p ∈ PT (pk), with overwhelming probability Decrypt(pk, sk,Encrypt(pk, p)) = p.

ut

Definition 7. (Plaintext-samplable PKE) A plaintext-samplable PKE is a
PKE scheme that, in addition to all operations of a standard PKE scheme,
supports the following operation:
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– PTSample : PK × PT → PT — when called as PTSample(pk, p), where
pk ∈ PK and p ∈ PT , produces a random plaintext of the same length
as a supplied plaintext p ∈ PT . Specifically, x is uniformly chosen from
{x |x ∈ PT (pk) and |x| = |p|}.

ut

Definition 8. (SK-oblivious game) A game G that uses a PKE scheme S is
sk-oblivious if, for any keypair (pk, sk) produced by S.KeyGen, the only way
that G uses sk is to pass sk back unmodified in calls to S.Decrypt. In such a
situation, we can say that “G makes sk-oblivious use of S”. ut

B PKE-SR schemes

Definition 9. (New PKE-SR scheme)

1. (PKr, SKr,Ks) ← KeyGen(1λ): This is a randomized algorithm, run indi-
vidually by bth parties, that outputs a public/secret keypair, (PKr, SKr) for
the receiver and a secret recovery key, Ks for the sender.

2. c← Encrypt(Ks, PKr,m): This is a randomized algorithm run by the sender,
that takes as input a message m to be encrypted, the receiver’s public key
PKr, the sender’s recovery key outputs a ciphertext c. The sender computes
(κ, cKEM )← KEMEncrypt(Ks, PKr, τ = {0, 1}λ), and encrypts the message
m: cDEM ← DEMEncrypt(κ,m). The sender then sets c = (cKEM , cDEM )4.
For enabling recovery at a later stage, the sender computes c′ = DEMEncrypt(Ks, κ),
sets c′′ = c||c′, and stores c′′.

3. m← Decrypt(c, SKr): This is a deterministic algorithm run by the receiver
that takes as input a ciphertext c, the receiver’s secret key, and outputs the
message m. The receiver retrieves the session key, κ← KEMDecrypt(cKEM , SKr),
and obtains the message m, m← DEMDecrypt(κ, cDEM ).

4. m← SR.Recover(c′′,Ks, PKr): This is a deterministic algorithm run by the
sender that takes as input a ciphertext, the sender’s secret recovery key, the
receiver’s public key, and returns the message m. The sender retrieves the
stored c||c′ = c′′, computes κ ← DEMDecrypt(Ks, c

′), and finally computes
m← DEMDecrypt(κ, c).

Definition 10. (PKE-SR using plaintext randomization with single receiver)

1. (PKr, SKr,Ks) ← KeyGen({0, 1}λ): This is a randomized algorithm that
outputs a public/secret keypair for the receiver and a secret recovery key
for the sender. Both parties run the algorithm individually to generate their
respective keys.

2. c← Encrypt(Ks, PKr,m): This is a randomized algorithm run by the sender
that takes as input a message m to be encrypted, the receiver’s public key
PKr, the sender’s recovery key, Ks, and outputs a ciphertext c. The algo-
rithm proceeds as follows:

4 For clarity of presentation, we omit the details of the internal randomness generated
by the encryption algorithm.

14



(a) Generate a session key κ: κ← KeyGen(PKr,Ks, {0, 1}λ).

(b) Sample the session keyspace and produce a random string, ρ← PTSample(κ, PKr)
, such that |ρ| = |κ|.

(c) Compute cKEM ← KEMEncrypt(PKr,Ks, ρ). If a tuple of the form
(PKr, cKEM , ·) already exists in the PKE’s internal state, return ⊥. Else
store the tuple (PKr, cKEM , κ)

(d) Encrypt message m: cDEM ← DEMEncrypt(Ks, κ,m), and set c = (cKEM , cDEM ).

(e) For enabling recovery by the sender at a later stage, compute c′ = DEMEncrypt(κ),
and set c′′ = c||c′.

(f) Store c′′, and return c.

3. m ← Decrypt(PKr, SKr, c): This is a deterministic algorithm run by the
receiver that takes as input the receiver’s public and secret keys, ciphertext
c, and outputs the message m. The algorithm proceeds as follows:

(a) Retrieve the session key: κKEMDecrypt(PKr, SKr, c). The PKE scheme
internally looks for a tuple of the form (PKr, cKEM , κ). If such a tuple
exists, κ is returned as the decrypted session key, else κ← KEMDecrypt(SKr, cKEM )
is returned.

(b) Decrypt the message m: m← DEMDecrypt(κ, cDEM ).

4. m ← Recover(Ks, PKr, c): This is a deterministic algorithm run by the
sender that takes in the sender’s secret recovery key, the receiver’s public
key, the ciphertext c, and returns the message m. It proceeds as follows:

(a) Retrieve the stored c′′ = c||c′, and compute κ = DEMDecrypt(Ks, c
′).

(b) Compute m← DEMDecrypt(κ, c).

C Cramer-Shoup KEM Scheme

Definition 11. Cramer-Shoup KEM Scheme

– (PK,SK) ← KeyGen(1λ): This is a randomized algorithm that generates a
public/secret keypair on input 1λ. On input 1λ, it computes Γ [Ĝ,G, g, q] ←
Ŝλ, hk← HF.KeySpaceλ,Γ , dk← KDF.KeySpaceλ,Γ , w ← Z∗q , x1, x2, y1, y2, z1, z2 ←
Zq, ĝ ← gw, e ← gx1 ĝx2 , f ← gy1 ĝy2 , h ← gz1 ĝz2 . Sets the public key as
PK = (Γ, hk, dk, ĝ, e, f, h), and secret key as SK = (Γ, hk, dk, x1, x2, y1, y2, z1, z2).

– (K,ψ) ← Encrypt(PK, 1λ): This is a randomized algotithm that genrates a
symmetric key, K, and the encryption of K, ψ. It computes u← Zq, a← gu,

â ← ĝu, b ← hu, K ← KDFλ,Γdk (a, b), v ← HFλ,Γhk (a, â), d ← eufuv. Output
K,ψ = (a, â, d).

– {K,⊥} ← Decrypt(SK,ψ). This is a deterministic algorithm that takes in
as input a ciphertext and a secret key, and produces the symmetric key, K.
If ψ 6= (a, â, d) ∈ Ĝ3, return ⊥. Else if {a, â} /∈ G, return ⊥. Else compute

v = HFλ,Γhk (a, â). If d 6= ax1+y1vâx2+y2v, return ⊥. Else compute b← az1 âz2 .

Compute K ← KDFλ,Γdk (a, b), and output K.
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D Proof of Lemma 2

Proof. Let A be an adversary for a game G. We need to construct an adver-
sary A′ for PK-MUS1

Sn
, so that A′ converts A into an adversary that attacks the

multi-user CCA2 security of the underlying PKE scheme S1, · · · ,Sn. First A′

calls PK-MUS1,Sn .Initialize(λ), and saves the list of public keys (pk1, · · · , pkn)
for later use, setting m = 0 to track the number of public keys that are in
use by G. A′ then simulates the original adversary A and the game oracle
G, replacing G’s use of PKEs S1, · · · ,Sn with a specially constructed state-
ful PKE scheme S̃1, · · · , S̃n, each keyed with (pk1, · · · , pkn), counter m, as well
as PK-MUS1,··· ,Sn . For any i ∈ S̃1, · · · , S̃n, S1, · · · ,Sn provide the three PKE
functions:

1. S̃i.KeyGen(1λ): If m = n, i.e., we have already used n keypairs, the operation
returns ⊥ and fails. Else, S̃i increments i and returns (pki, pki). The fact
that the “secret key” is really the public key does not matter as G’s use of
S1, · · · ,Sn is sk-oblivious.

2. S̃i.Encrypt(pki, p): For a valid public key pki, Si computes random plaintext
r = Si.PTSample(pki, p), c = PK-MUS1··· ,Sn .PEncrypt(i, p, r). The tuple
(pki, c, p) is saved in Si’s state and c is returned.

3. S̃i.Decrypt(pki, pki, c): The decrypt function checks to see if Si’s internal
state contains a tuple (pki, c, p) for some p and if such a tuple os found p is
returned. Else p = PK-MUS1,··· ,Sn .Decrypt(i, c) is returned.

All calls to PK-MUS1··· ,Sn .PEncrypt store a tuple that includes the returned
ciphertext and the S̃i.Decrypt function never calls the PK-MUS1,··· ,Sn .Decrypt
oracle with such a ciphertext, so all decrypt calls will succeed.

A′ will simulate GS̃1,··· ,S̃n (note that A′) will have to simulate all n of them).
Finally, A′ will output its final result, a for game G. At this point, A′ will call

G.IsWinner(a) to check if A’s output wins game GS̃i . Based on this, A′ outputs
its guess b′ for PK-MUS1,··· ,Sn ’s secret bit b. That is, A′ needs to output a guess
for each of the S̃1, · · · , S̃n:

– If A wins GS̃i , A′ outputs b′ = 0

– If A loses gS̃i , A′ outputs guess b′ = 1.

So, A′ wins if A wins GS̃i and b = 0, or if A loses and b = 1.

P (A′wins) =
1

2
P (AwinsGS̃1 |b = 0) +

1

2
P (A losesGS̃1 |b = 1)

+
1

2
P (AwinsGS̃2 |b = 0) +

1

2
P (A losesGS̃2 |b = 1)

+ · · ·

+
1

2
P (AwinsGS̃n |b = 0) +

1

2
P (A losesGS̃n |b = 1) (1)
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While A′ does not know the bit b, the construction of each S̃i is such that

when b = 0 the game played by A is exactly GS̃i , and when b = 1, the game
played by A is exactly GS-randi . Simplifying Equation 1, we get:

P (A′ wins) =
1

2
P (AwinsGSi) +

1

2
P (A losesGS-randi)

=
1

2
P (AwinsGSi) +

1

2
(1− P (AwinsGS-randi))

=
1

2
+

1

2
P (AwinsGSi)− 1

2
P (AwinsGS-randi) (2)

P (A′ wins) =
1

2
+

1

2
P (AwinsGS1)− 1

2
P (AwinsGS-rand1)

+
1

2
+

1

2
P (AwinsGS2)− 1

2
P (AwinsGS-rand2)

+ · · ·

+
1

2
+

1

2
P (AwinsGSn)− 1

2
P (AwinsGS-randn) (3)

P (A′wins) =
1

2n
+

1

2
[P (AwinsGS1) + P (AwinsGS2) + · · ·+ P (AwinsGSn)]

− 1

2
[P (AwinsGS-rand1) + P (AwinsGS-rand2) + · · ·+ P (AwinsGS-randn)]

(4)

By definition, AdvA′,PK-MUS1··· ,Sn = |P (A′wins− 1
2 )|, and since A′ only does

some simple lookups in addition to its simulation of A and G, which induces
at most qe, qd encryption and decryption requests respectively, we can bound
AdvA′,PK-MUS1,··· ,Sn by AdvPK-MUS1,··· ,Sn (t′, qe, qd), where t′ = t + O(log(n ·
qe)). It follows that:

|1
2
P (AwinsGSi)− 1

2
P (AwinsGS-randi)| ≤ AdvPK-MUSi (t′, qe, qd)

so,

|P (AwinsGSi)− P (AwinsGS-randi)| ≤ 2AdvPK-MUSi (t′, qe, qd) (5)

The left side of Equation 5 can be re-written as:
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|P (AwinsGSi)− P (AwinsGS-randi) =
1

2n
+

1

2
[P (AwinsGS1)− P (AwinsGS-rand1)]

+
1

2
[P (AwinsGS2)− P (AwinsGS-rand2)]

+ · · ·

+
1

2
[P (AwinsGSn)− P (AwinsGS-randn)]

(6)

so,

P (A′ wins) =
1

2n
+

1

2
[P (Awins, GS1)− P (AwinsGS-rand1)

+ · · ·+ P (AwinsGSn)− P (AwinsGS-randn)] (7)

Comparing the advantage of A w.r.t. GS and GS-rand, we get:

|AdvA,GSi −AdvA,GS-randi | = |P (AwinsGSi)− 1

2
| − |P (AwinsGS-randi)− 1

2
|

so,

|AdvA,GSi −AdvA,GS-randi

∣∣ ≤ |P (AwinsGSi)− P (AwinsGS-randi)| (8)

Combining Equation 5 and Equation 8, we get:

|AdvA,GSi −AdvA,GS-randi | ≤ 2AdvPK-MUSi (t′, qe, qd)
ut

E Proof of Theorem 1

Proof. The main idea behind the proof is that in a plaintext-randomized hybrid
encryption scheme, we replace the public key encryption scheme with a plaintext-
randomized public-key encryption scheme, such that the encrypted session key
(encrypted by the KEM) has no relation to the real session key. Hence the KEM
and DEM parts of the hybrid encryption scheme are completely unrelated to each
other, and the advantage of an adversary in the hybrid encryption scheme can
be reduced to, and bounded by the advantage of the adversary in the symmetric
encryption scheme that uses the session key to encrypt a message. Beyond this,
the sender’s recovery scheme just uses the sender’s recovery key to recover the
session key, which in turn is used to recover the message; this process only uses
symmetric keys.

Let us consider the plaintext randomized version of our PKE-SR scheme,
PKE-SR-rand. In the plaintext randomized version, we will generate keypairs
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for the sender and receiver, and the sender will generate a session key, κ. The
sender will then generate a ciphertext cKEM which is the encryption of a random
string r, generated by sampling the plaintext-space of κ, and |r| = |κ|. The sender
will then encrypt a message m by doing cDEM = DEMEncrypt(κ,m), and send
c = (cKEM , cDEM ) to the receiver. Since cKEM is an encryption of a random
string, it has no relation to cDEM .

Let us consider an adversary A that plays PKE-SR-rand. A can easily be
turned into an adversary A′ that plays the SKE game against S, since A′ can
just simulate the A by adding encryption of random values for cKEM , and the
DEM part will be a symmetric-key encryption of the real message with κ. The
sender recovery part will just be a symmetric encryption of the real session key
with the sender’s recovery key. Hence the probability of A winning the PKE-SR
game is the same as the probability of A′ winning the SKE game, and we can
bound the advantage of A as:

AdvA,PK-MUPKE-SR-rand
n

≤ AdvA′,SK-MUS
qen

(t, 1, qd)

From the plaintext randomization lemma we get:

|AdvA,PK-MUPKE-SR
n

−AdvA,PK-MUPKE-SR-rand
n

| ≤ 2AdvPK-MUP
n

(t′, qe, qd)

and hence,

AdvA,PK-MUPKE-SR
n

≤ 2AdvPK-MUP
n

(t′, qe, qd) +AdvSK-MUS
qen

(t′, 1, qd)
ut

F Proof of Theorem 2

Proof. In our construction, the hybrid encryption scheme uses plaintext random-
ization to cut out any use of the encrypted key from the symmetric encryption
scheme. Hence, we can use a general purpose public-key encryption scheme,
along with a shared-key encryption scheme. Since the “encryptions” of the ci-
phertexts in the key encapsulation stage are just encryptions of random values,
the security of the hybrid encryption scheme can be reduced to an attack on S.
Since the sender recovery part also uses the same symmetric key, the probability
of the adversary, A, winning the CS game can be bounded by the probability of
the adversary winning the symmetric-key game of S:

AdvA,PK-MUCS−rand ≤ AdvSK-MUS
qen

(t, 1, qd)

And from plaintext randomization lemma 2, we know that:

|AdvA,PK-MUCS −AdvA,PK-MUCS−rand | ≤ 2AdvPK-MUP (t′, qe, qd),

and so,
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AdvA,PK-MUCS ≤ 2AdvPK-MUPn (t′, qe, qd) +AdvSK-MUS
qen

(t′, 1, qd)
ut

Put, in simple terms, the security of the CS hybrid encryption scheme that
uses plaintext randomization is adaptive CCA2-secure, of its constituent PKE
and SKE are adaptive CCA2-secure.
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