
Ciphertext-Only Attacks against Compact-LWE
Submitted to NIST PQC Project

Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

1Key Laboratory of Mathematics Mechanization, NCMIS,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Beijing 100190, China
2 School of Mathematical Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China
3 Westone Cryptologic Research Center, Westone Information Industry INC. Beijing

Abstract. In 2017, Liu, Li, Kim and Nepal submitted a new public-key
encryption scheme Compact-LWE to NIST as a candidate of the stan-
dard of post-quantum cryptography. Compact-LWE features its struc-
ture similar to LWE, but with different distribution of errors. Liu, Li,
Kim and Nepal thought that the special error distribution they employed
would protect Compact-LWE from the known lattice-based attacks. Fur-
thermore, they recommended a set of small parameters to improve the
efficiency of Compact-LWE and claimed it can offer 192 bits of security.
However, in this paper, we show that Compact-LWE is not secure with
recommended parameters by presenting two efficient ciphertext-only at-
tacks against it.
– The first one is to recover the equivalent private keys just from the

public keys. By exploiting the special structure of Compact-LWE,
employing some known skills such as orthogonal-lattice technique,
and also developing some new techniques, we finally recovered the
equivalent private keys for more than 80% of the random generated
instances in our experiments.

– The second one is to recover the corresponding message given the
public keys and a ciphertext. Note that any short enough solutions of
corresponding inhomogeneous linear systems can be used to decrypt
a ciphertext equivalently. We recovered all the messages without
knowing the private keys in our experiments.

Keywords: Post-quantum encryption · LWE · ciphertext-only attack ·
lattice.

1 Introduction

Since Shor’s algorithms [15, 16] that solve integer factorization and discrete loga-
rithm problem in polynomial time with quantum computers, and Grover’s algo-
rithm [8] that improves the time complexity of search problems, quantum com-
puting has been getting more attractive and shows its advantages over classical
algorithms in solving some computational problems. Meanwhile, there has been

2 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

a substantial amount of researches on quantum computers or machines, which
are imperiling modern public key cryptosystems such as RSA, DSA, ECDSA
based on number-theoretical hard problems. Therefore there is an urgent need
for the quantum-resistant public-key cryptographic replacements to cope with
the challenge of quantum attacks.

In December 2016, the U.S. National Institute of Standards and Technology
(NIST) launched a post-quantum cryptography project to call for proposals of
efficient quantum-resistant public-key cryptographic algorithms in order to draft
new standards for next-generation cryptography. The deadline of submissions
is Nov. 3, 2017 and NIST plans to issue guidance on candidate post-quantum
schemes in five years. In December 2017, NIST published the Round 1 candidates
for the post-quantum cryptography.

All the candidates can be classified into several classes according to their
underlying hard problems, such as lattice-based schemes, code-based schemes,
hash-based schemes, and multivariate schemes. Most of the schemes submitted
to NIST PQC Project are based on lattice since lattice-based cryptography is
widely believed to be one of the most promising candidates as it enjoys worst-
case hardness security guarantees, versatile functionalities and relatively simple
basic operations.

In general, a lattice is a discrete additive subgroup in Rn, and the shortest
vector problem (SVP) is one of the most famous underlying problem for lattice-
based cryptosystems, which refers to the question of finding a shortest nonzero
lattice vector in a given lattice. It has been proved that SVP is NP-hard under
random reductions [1]. Approximating-SVP is a variant of SVP, whose goal is
to find a non-zero lattice vector not longer than the length of shortest nonze-
ro lattice vector multiplying some approximation factor. It is well-known that
approximating-SVP is hard for constant factor but easy for exponential factor
due to some lattice basis reduction algorithms like LLL algorithm [9]. As for the
polynomial factor, approximation-SVP is conjectured and believed hard.

However, it seems not easy to construct public-key cryptosystems with SVP
and its variants directly. The widely used intractable underlying problem for
lattice-based cryptosystems is the LWE (Learning With Errors) problem, that
is, solving a modulo linear system with errors drawn from certain distribution. In
2005, Regev [13] first defined LWE, and showed that it has average-case hardness
by presenting a quantum reduction from approximating-SVP to LWE. Besides,
Regev also constructed an LWE-based public-key encryption scheme. From then
on, LWE and its descendants have served as a simple and extraordinarily impor-
tant basic building block for the construction of some cryptographic primitives,
especially the public-key encryption schemes.

Recently, Liu, Li, Kim and Nepal [10] proposed to NIST a lattice-based en-
cryption scheme called Compact-LWE. Compact-LWE features its structure sim-
ilar to LWE [13], but requires smaller number of samples and somewhat bigger
errors. Liu, Li, Kim and Nepal presented some cryptanalysis on the security of
Compact-LWE, and thought that the special structure they employed can pro-
tect Compact-LWE from the known lattice-based attack, which is different from

Ciphertext-Only Attacks against Compact-LWE 3

the classical LWE. Finally they claimed that “even if the hard problems in lattice,
such as CVP and SIS, can be efficiently solved, the secret values or private key
in Compact-LWE still cannot be efficiently recovered. This allows Compact-LWE
to choose very small dimension parameters, such as n = 8 in our experiment”
[10]. Based on the optimistic assess, Liu, Li, Kim and Nepal recommended a set
of small parameters to improve the efficiency of Compact-LWE and claimed it
can offer 192 bits of security.

As a variant of LWE, the security of Compact-LWE should be studied care-
fully, since LWE lies at the heart of constructions of efficient lattice-based cryp-
tosystems. However, we have to say that the current version of Compact-LWE
is incompetent in NIST competition.

Our Contributions. In this paper, we present two ciphertext-only attacks
against Compact-LWE: the first one is to recover an equivalent private key only
using the public key, and the second one is to recover the corresponding message
given the public key and a ciphertext.

Key Recovery Attack. The private key recovery attack is the most technical
part in this paper. By exploiting the special structure of Compact-LWE, employ-
ing some known skills such as orthogonal-lattice technique, and also developing
some new techniques, we finally recover an equivalent private key for more than
80% of the randomly generated instances in our experiments.

Roughly speaking, the public key of Compact-LWE consists of several sample-
pairs:

(ai, 〈ai, s〉+ k−1 · (sk · ui +∆i) mod q)

(ai, 〈ai, s
′〉+ k′

−1 · (sk′ · ui +∆′i) mod q),

where ui’s are public, while s, s′, k, k′, sk, sk′, ∆i, ∆
′
i are private and ∆i, ∆

′
i

satisfy ck ·∆i + ck′ ·∆i ≡ 0 mod p for some private ck, ck′ and p.
Employing the orthogonal-lattice technique, we can first recover the private k

and k′, and some integer coefficient combinations of ∆i, ∆
′
i. In our experiments,

we can recover both k and k′ for more than 80% of the randomly generated
instances.

By building the linear relation between ∆i and ∆′i, we can then recover the
correct p, hence we will solve a pair of equivalent candidates ck, ck′.

By the orthogonal-lattice technique again, we can recover the value ck · sk+
ck′ · sk′ mod p, then by solving a CVP in a 2-dimensional lattice, we can always
recover sk and sk′ in our experiments.

With all known parameters, we can transform the public key pairs into the
following form:

(ai, 〈ai, ks〉+∆i mod q)

(ai, 〈ai, k
′s′〉+∆′i mod q).

4 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

Since ∆i and ∆′i are slightly big, and ai’s are very short, we can not recover
∆i and ∆′i by the existing lattice attacks. However, we develop a new technique
to reduce it to the following lattice decomposition problem: given t ∈ L1 + L2

where L1 and L2 are two lattices, find t1 ∈ L1 and SHORT t2 ∈ L2 such that
t = t1 + t2. We propose a lattice-based algorithm to solve this problem and
finally recover equivalent ∆i and ∆′i.

We believe that the new techniques may be employed somewhere else.

Message Recovery Attack. We can reduce the task to recover the message
to the problem of recovering

∑m
i=1 li · ui given

la =

m∑
i=1

li · ai,

lpk =

m∑
i=1

li · (〈ai, s〉+ k−1 · (sk · ui +∆i)) mod q,

lpk′ =

m∑
i=1

li · (〈ai, s
′〉+ k′

−1 · (sk′ · ui +∆′i)) mod q,

where li’s are some very small integers. The key observation is that if we can find
another short enough vector (l′1, l

′
2, . . . , l

′
m), not necessarily the exact (l1, l2, . . . , lm),

such that

la =

m∑
i=1

l′i · ai,

lpk =

m∑
i=1

l′i · (〈ai, s〉+ k−1 · (sk · ui +∆i)) mod q,

lpk′ =

m∑
i=1

l′i · (〈ai, s
′〉+ k′

−1 · (sk′ · ui +∆′i)) mod q,

then we must have
m∑
i=1

l′i · ui =

m∑
i=1

li · ui,

due to the fact that the decryption algorithm is deterministic.
It is obvious that the equivalent vector (l′1, l

′
2, . . . , l

′
m) can be found by finding

a short solution for a system of inhomogeneous linear equations. Therefore if we
can solve CVP (closest vector problem) in lattices to obtain short solutions, we
can break Compact-LWE, thus overturn the claim in [10].

Since the parameters in Compact-LWE are small, it is not hard to find a
short solution using lattice basis reduction algorithms such as LLL algorithm
[9], hence we can always recover all the messages without knowing the private
keys in our experiments.

Ciphertext-Only Attacks against Compact-LWE 5

It seems that Compact-LWE should enlarge its parameters to resist our at-
tacks, which will result in the sacrifice of efficiency to some extent, the security
of Compact-LWE should be reevaluated more carefully.

Related Work. We have to point out that a previous version of Compact-
LWE was presented in [11], in which Liu, Li, Kim and Nepal employed m pairs
(ai, pki) as the public key, which satisfy

pki = 〈ai, s〉+ ei · sk−1q · p mod q.

To encrypt a small message v ∈ Zt, one first chooses w indices i1, . . . , iw in
{1, . . . ,m} uniformly and independently at random, then computes

(a, b) =

w∑
k=1

(aik , pkik).

It is obvious that (a, b) can be also written as
∑m
i=1 li(ai, pki) where li is a small

integer. At last the ciphertext c is computed as

c = (a, d = v − b mod q).

To decrypt a ciphertext c = (a, d), one can compute v = sk−1p · (sk · (〈a, s) +
d mod q) to recover v.

Since the message v is small, (a, d) is very close to (a,−b) which is in the
known lattice spanned by (ai, pki)’s and qI. Hence, v may be recovered by
finding the lattice vector close to (a, d). By this key observation, together with
the restriction that

∑m
i=1 liai = a and the coefficients li’s are small, Bootle et

al. [4, 5] presented a lattice-based attack to recover the message v. Some detailed
analysis for various cases can also be found in [4, 5].

Moreover, Bootle et al. [5] also presented an attack to recover an equivalen-
t private key. The same orthogonal-lattice technique was employed to recover
sk−1q · p mod q, but then they tried to recover p by enumerating all possible
values. Finally they recovered equivalent parameters sk, s and e.

To resist Bootle et al.’s attacks, Liu, Li, Kim and Nepal made some changes
to the version of Compact-LWE submitted to NIST. They used the collection of
sample-pairs with some linear relation instead of the collection of single samples,
added more parameters to the error terms, such as sk · ui + ri, which makes
the scheme more complicated. Instead of encrypting a message by computing
v − d simply, they first encrypted some ephemeral key

∑m
i=1 li · ui, then used

it to encrypt the message. By doing so, we can not recover the message or the
ephemeral key by solving some approximating-CVP as in Bootle et al.’s message
recovery attack. Moreover, the new involved parameters makes Bootle et al.’s
private key recovery attack infeasible.

As stated before, our message recovery attack against Compact-LWE submit-
ted to NIST is based on the key observation that

∑m
i=1 l

′
i ·ui =

∑m
i=1 li ·ui, if l′i’s

satisfy the conditions above, whereas Bootle et al.’s attack against the previous

6 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

version is based on the observation that (a, d) is very close to (a,−b). Although
both of the two attacks need to find a short vector in some lattice, the motivation
to construct the lattice and the way to use the computed short lattice vector are
very different. We believe that our key observation is non-trivial since even the
designers, Liu, Li, Kim and Nepal, thought that the exact (l1, l2, . . . , lm) should
be recovered to complete the attack (see Section 3.3 in [10]).

For the key recovery attacks, both of our attack and Bootle et al.’s attack
employ the same technique to recover k(k′) in the first step. Then a enumer-
ation process was employed in Bootle et al.’s attack. However, since the new
Compact-LWE involves more parameters, it is infeasible to apply Bootle et al.’s
enumeration strategy directly. We have to say that recovering k(k′) is just the
beginning in our attack, far from the end of the whole attack. To recover the
equivalent key for the new Compact-LWE, we have to do more work and involve
some new techniques.

Roadmap. The remainder of the paper is organized as follows. In Section 2,
we give some preliminaries needed. In Section 3, we describe Compact-LWE
encryption scheme. In Section 4, we describe our private key recovery attack
and in Section 5, we give a message recovery attack. Finally, we give a short
conclusion in Section 6.

2 Notations and Preliminaries

Notations. Row vectors are denoted by bold lowercase letters. We use ‖ · ‖ to
denote the length of a vector and 〈·, ·〉 to denote the inner product of two vectors.
Matrices are written in bold capital letters, and row representation is used. For
a positive integer q, let Zq be the residue class ring module q. For a finite set S,

we use the notation a
$←− S to represent randomly sampling an element a from

S.

2.1 Lattices

Let B = {b1, b2, . . . , bn} ⊂ Rm be a set of n linearly independent vectors. The
lattice generated by B is defined as

L(B) =

{
n∑
i=1

xibi| xi ∈ Z

}
.

We call B the basis of L(B), n and m the rank and dimension of the lattice
respectively.

The fundamental parallelepiped spanned byB is defined as P(B) = {xB| x ∈
[0, 1)n}, and the centered parallelepiped spanned by B is defined as Pc(B) =
{xB| x ∈ [−1/2, 1/2)n}. Given a basis B, denote by det(L(B)) the deter-
minant of lattice L(B), which is defined as the volume of P(B). We have
det(L(B)) =

√
det(BBT). When n = m, det(L(B)) = |det(B)|.

Ciphertext-Only Attacks against Compact-LWE 7

For an ordered lattice basis b1, b2, . . . , bn, the Gram-Schmidt orthogonaliza-
tion b?1, . . . , b

?
n can be efficiently computed by the recursion{

b?1 = b1,

b?i = bi −
∑i−1
j=1 µi,jb

?
j for i=2,. . . ,n,

where µi,j = 〈bi, b?j 〉/〈b?j , b?j 〉. This procedure depends on the order of the basis.
Hereafter, the Gram-Schmidt vectors corresponding to B = {b1, . . . , bn} are
denoted by B? = {b?1, . . . , b?n}. When B is a basis for L(B), it is easy to obtain
that det(L(B)) =

∏n
i=1 ‖b?i ‖.

2.2 SVP and CVP: Problems and Algorithms

SVP. The shortest vector problem (SVP) is one of the most famous hard prob-
lems in lattice, which refers to the question of finding a nonzero shortest lattice
vector in a given lattice.

Denote by λ1(L) the length of a shortest nonzero lattice vector. For a ”ran-
dom” lattice L, Gauss Heauristic predicts that

λ1(L) ≈
(detL
Vn(1)

) 1
n

,

where Vn(1) is the volume of an n-dimension ball with radius 1.
The approximating-SVP with factor γ, denoted by SVPγ , asks for a short

nonzero lattice vector v such that ‖v‖ ≤ γ·λ1(L). The hardness of SVPγ depends
on the factor γ heavily. For constant γ, this problem is known to be NP-hard
under randomized reduction [1]. However, for exponential factor γ with respect
to the rank n, there do exist polynomial-time algorithms to find a short vector,
such as the famous LLL algorithm [9].

Though the length of the short vector found by LLL algorithm can only be
proved to be less than γ · λ1(L) with exponential γ, we would like to point out
that for low dimensional lattices, LLL algorithm usually find the shortest vector
in practice.

CVP. The closest vector problem (CVP) is another famous hard problem in
lattice, which refers to the problem of finding a lattice point that is closest to a
given target t. for Similarly, the CVPγ problem can be defined as finding a close
vector to t up to a factor γ ≥ 1.

The CVP is known to be NP-hard [3], even with an almost polynomial ap-
proximation factor [6]. However, there do exist polynomial-time algorithms to
approximate CVP within exponential factors, such as Babai’s rounding-off algo-
rithm, nearest plane algorithm [2] and the GPV algorithm [7], all of which start
with an LLL-reduced basis [9].

Given an LLL-reduced basisB and a target t, Babai’s rounding-off algorithm
outputs a lattice vector vroa = dtB−1cB. It can be easily seen that vroa − t ∈
Pc(B).

8 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

The nearest plane algorithm uses a more complicated method as described in
Algorithm 1. Denote by vnpa the lattice vector outputted by the nearest plane
algorithm. It can be easily concluded that vnpa − t ∈ Pc(B?).

Algorithm 1 Babai’s Nearest Plane Algorithm.

Input: A reduced lattice basis B and a target vector t;
Output: A lattice vector close to t;
1: b = t;
2: for j = n to 1 do

3: b = b− cj · bj where cj = d 〈b,b
?
j 〉

〈b?j ,b?j 〉
c;

4: return t− b;

The GPV algorithm is a randomized version of Babai’s nearest plane algo-
rithm. For Step 3 in Algorithm 1, GPV algorithm chooses a random cj from a
“discrete Gaussian distribution” and produces a random lattice vector which is
close to the target. The readers are referred to [7] for more details.

2.3 Kernel Lattice

Given a matrix B ∈ Zm×n with rank r, its kernel lattice or orthogonal lattice is
defined as

L(B)⊥ = {x ∈ Zm| xB = 0}.

The rank of L(B)⊥ is m− r.
Furthermore, Nguyen and Stern [12] presented a way to compute an LLL-

reduced basis for L(B)⊥ from the matrix B. The main idea is to construct a
new matrix

B′ =
(
cB, Im

)
with big enough c first, and then to apply LLL algorithm on B′. The outputted
matrix must have the following form:(

0(m−r)×n U
∗ ∗

)
Then U will be an LLL-reduced basis for L(B)⊥. More details can be found

in [12].
Another important kernel lattice is defined as

L(B)⊥p = {x ∈ Zm| xB ≡ 0 mod p}.

Let

Bp =

(
BT

pIn

)
.

Ciphertext-Only Attacks against Compact-LWE 9

Similarly, to compute an LLL-reduced basis for L(B)⊥p , we can construct a
matrix

B′p =

(
cB Im
cpIn 0

)
,

with big enough c first, then use LLL algorithm to B′p. The outputted matrix
must have the following form: (

0m×n U
∗ ∗

)
.

It can be concluded that U is an LLL-reduced basis for L(B)⊥p .

2.4 Inhomogeneous Short Integer Solution.

Now consider the ISIS (Inhomogeneous Short Integer Solution) problem [7]

x ·B ≡ t mod p,

with x ∈ Zm, B ∈ Zm×n, p an positive integer and nonzero t ∈ Zn. We want to
obtain a short x.

Although it seems hard to find a shortest integer solution, we can find an
approximately short solution by the following algorithm.

Note that any solution x can be written into

x = x0 + yK,

where x0 ∈ Zm is any fixed solution for x · B ≡ t mod p, K is a basis for
L(B)⊥p and y is some integer vector. Hence finding short solution x is reduced
to the problem of finding a lattice vector in L(K) close to the target vector −x0.
By employing some algorithms for approximating-CVP such as Babai’s nearest
plane algorithm, a small solution x is expected to be found.

Similar method can be used to obtain a short integer solution for x ·B = t.
We summarize these two solving algorithms as Algorithm 2.

Algorithm 2 Finding Short Integer Solution to x·B ≡ t mod p (x·B = t resp.)

Input: A matrix B ∈ Zm×n and t ∈ Zn;
Output: A short solution x ∈ Zm satisfying x ·B ≡ t mod p (x ·B = t resp.);
1: Find a solution x0 ∈ Zm such that x0 ·B ≡ t mod p (x0 ·B = t resp.);
2: Compute a basis K for the kernel lattice L(B)⊥p (L(B)⊥ resp.);
3: Use some lattice basis reduction algorithms like LLL algorithm to reduce K to

obtain a better basis K′;
4: Use Babai’s Rounding algorithm or Nearest Plane Algorithm with lattice basis K′

and the target vector −x0 to find a close lattice vector v;
5: return x = x0 + v.

10 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

3 The Compact-LWE Public-key Encryption Scheme

We describe Compact-LWE as follows. For more details, please see [10].

3.1 The Description of Basic Compact-LWE

Public Parameters: The following parameters are all positive integers.

1. Moduli: q, t, b′;
2. Dimension: n;
3. Bounds: w, w′, b;
4. Number of samples: m.

Private Parameters: The parameters p size, s max, e min, e max are all
positive parameters and used to bound other parameters.

For the sake of correctness of the basic decryption algorithm and the security
of the cryptosystem, [10] requires that

1. m > n+ 2;
2. w > w′, (w − w′) · b′ > t;
3. t is a power of 2;
4. sk max · b′ + p+ e max · p < q/(w + w′).

Key Generation
The private key is generated in the following steps.

1. Generate two vectors s, s′
$←− Znq ;

2. Generate two integers k, k′
$←− Zq with k, k′ coprime with q respectively;

3. Choose an integer p
$←− {(w + w′) · b′, . . . , (w + w′) · b′ + p size} such that p

is coprime with q;

4. Randomly generate ck, ck′
$←− Zp with ck′ coprime with p;

5. Randomly generate sk, sk′
$←− Zsk max such that sk · ck+ sk′ · ck′ is coprime

with p.

The private key is

SK = (s, s′, k, k′, p, ck, ck′, sk, sk′).

For i ∈ {1, 2, . . . ,m}, the generation of the public key is to collect m random
Compact-LWE samples.

1. Generate ai
$←− Znb ;

2. Randomly generate ei, e
′
i

$←− [e min, e max];

3. Randomly sample ui
$←− Zb′ ;

4. Choose a random r′i
$←− Zp and compute ri such that ck·ri+ck′ ·r′i = 0 mod p;

5. Compute k−1q , k′
−1
q ∈ Zp such that k−1q ·k = 1 mod q and k′

−1
q ·k′ = 1 mod q;

Ciphertext-Only Attacks against Compact-LWE 11

6. Compute

pki = 〈ai, s〉+ k−1q · (sk · ui + ri + ei · p) mod q (1)

pk′i = 〈ai, s
′〉+ k′

−1
q · (sk′ · ui + r′i + e′i · p) mod q (2)

Let u = (u1, u2, . . . , um), pk = (pk1, pk2, . . . , pkm), pk′ = (pk′1, pk
′
2, . . . , pk

′
m).

The public key is

PK = (a1,a2, · · · ,am,u,pk,pk
′).

Encryption

To encrypt a message v ∈ Zt, we compute the ciphertext c as follows:

1. Generate them-dimensional random vector l such that the sum of all positive
entries of l lies between w and w + w′, the sum of all negative entries of l
between −w′ and 0.

2. Compute lu =
∑m
i=1 li · ui , if lu ≤ 0, then regenerate l, otherwise calculate

ut = lu mod t, take u′t the smallest integer equal to or greater than lu/t
coprime with t, encrypt v by computing

d = flu(v)

where f is an efficiently computable function including two basic operations:
XOR operation and bit shift operation. For more details about f see [10].

3. Compute la =
∑m
i=1 li · ai, lpk =

∑m
i=1 li · pki and lpk′ =

∑m
i=1 li · pk′i, the

ciphertext is

c = (la, d, lpk, lpk′).

Decryption

Given the ciphertext c = (la, d, lpk, lpk′), the decryption algorithm recovers
the message v in the following steps.

1. Compute d1 = k · (lpk − 〈la, s〉) mod q, d′1 = k′ · (lpk′ − 〈la, s′〉) mod q;

2. Compute d2 = ck · d1 + ck′ · d′1 mod p and sckInv satisfying sckInv · (sk ·
ck + sk′ · ck′) = 1 mod p;

3. Compute d3 = sckInv · d2 mod p;

4. Compute v = f−1d3 (d).

Remark 1. Liu, Li, Kim and Nepal [10] also proposed a general encryption al-
gorithm, which appends some padding and encodes the message first before
encryption. After encoding the original message, the general encryption algo-
rithm divides a long message into blocks and encrypts each block with the basic
encryption algorithm.

12 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

3.2 Parameter Choice and Security Declaration

By considering some possible attacks to analyze the security of Compact-LWE,
Liu, Li, Kim and Nepal [10] thought that the special construction of Compact-
LWE makes it immune to all lattice-based attacks. They believed that even
for small parameters, Compact-LWE can also achieve a high security. To make
Compact-LWE more efficient, they recommended a set of small parameters as
in Table 1 and Table 2, and claimed that Compact-LWE with such parameters
could offer 192 bits of security.

Table 1. Public Parameters

q t n m w w′ b b′

264 232 8 128 224 32 16 236

Table 2. Private Parameters

sk max p size e min e max

229119 224 457 3200

4 Equivalent Private Key Recovery Attack

For simplicity, we can write every public pair (pki, pk
′
i) as

pki = 〈ai, s〉+ k−1 · (sk · ui +∆i) mod q, (3)

pk′i = 〈ai, s
′〉+ k′

−1 · (sk′ · ui +∆′i) mod q, (4)

where ∆i = ri + ei · p and ∆′i = r′i + e′i · p.
Roughly speaking, the key idea of our key recovery attack is that, if we could

find s, s′, k, k′, p, sk, sk′, ∆ = (∆1, · · · , ∆m), ∆′ = (∆′1, · · · , ∆′m), ck, ck′ such
that

– every public key pair (pki, pk
′
i) can be written as (3) and (4);

– sk and sk′ are small enough;
– p is large enough;
– ∆i and ∆′i are relatively smaller than q and satisfy ck·∆i+ck

′ ·∆′i ≡ 0 mod p;
– sk · ck + sk′ · ck′ is coprime to p;

then the set of s, s′, k, k′, p, sk, sk′, ck, ck′ can be used to decrypt the ciphertext,
that is, it is an equivalent private key.

Since the private key consists of many parameters, we recover the equivalent
key step by step:

Ciphertext-Only Attacks against Compact-LWE 13

– first, we recover k and k′ by orthogonal-lattice technique in Section 4.1;
Usually we can recover the real values.

– second, we recover p, ck and ck′ in Section 4.2; We can always recover the
real p, but recover equivalent ck and ck′.

– third, we recover sk and sk′ by lattice algorithm again in Section 4.3; We
can always recover the real sk and sk′.

– at last, we recover equivalent s and s′ by introducing a new technique in
Section 4.4.

4.1 Recovering k and k′

Denote by A the matrix a1

· · ·
am

 ,

and by [A u] the matrix a1 u1
· · · · · ·
am um

 .

Considering x ∈ L([A u])⊥, we will obtain

k 〈x,pk〉 = 〈x,∆〉 mod q.

where ∆ = (r1 + e1 · p, . . . , rm + em · p).
Note that if x is short enough, together with the fact that ∆i(≈ 256) is

a relatively smaller than q = 264, then 〈x,∆〉 will be relatively smaller than
q. Moreover, if we could collect some independent short vectors x1, . . . ,xM ∈
L([A u])⊥, then v = (〈x1,∆〉 , . . . , 〈xM ,∆〉) is expected to be a short vector in
the lattice L spanned by (

〈x1,pk〉 , · · · , 〈xM ,pk〉
qIM

)
,

due to the relation

k(〈x1,pk〉 , . . . , 〈xM ,pk〉) = (〈x1,∆〉 , . . . , 〈xM ,∆〉) mod q.

By applying lattice reduce algorithm to L, it is expected to find the short
vector v = (〈x1,∆〉 , · · · , 〈xM ,∆〉) and with v we can therefore recover the
secret k.

Similarly, with the same x1, . . . ,xM , we can expect to recover (〈x1,∆
′〉 , · · · ,

〈xM ,∆′〉) and k′.
It remains to show how to collect short vectors x1, . . . ,xM in L([A u])⊥. As

stated in Section 2, by the algorithm in [12], we can compute an LLL-reduced
basis for L([A u])⊥ and collect some basis vectors x1, . . . ,xM from the LLL-
reduced basis satisfying ‖xj‖1 ≤ B (j ∈ {1, . . . ,M}) for some bound B to make
the value 〈xj , ∆〉 for 1 ≤ j ≤M relatively small to q.

We describe the procedure to recover k in algorithm 3.

14 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

Algorithm 3 Recover a candidate for k

Input: The public parameters a1,a2, · · · ,am,u,pk,pk
′.

Output: a candidate k̃ for k
1: Compute an LLL-reduced basis of L([A u])⊥, and collect vectors x1, . . . ,xM sat-

isfying ‖xj‖1 ≤ B with respect to an appropriate bound B;
2: Apply LLL algorithm on (

〈x1,pk〉 , · · · , 〈xM ,pk〉
qIM

)
;

3: Choose the first nonzero vector v from reduced basis, and compute k̃ ∈ Zq such
that k̃ · (〈x1,pk〉 , · · · , 〈xM ,pk〉) = v mod q;

4: return k̃.

Experimental Results of Recovering k, k′. All the experiments in this
paper were run in C++ and Sage [14] on a computer with 8G RAM and Intel(R)
Core(TM) i5-7200U CPU @2.50GHz.

As for the parameters ri ∈ [0, p−1], ei ∈ [457, 3200] and p ≤ 3200 ·(244 +224)
specified by the designers, it follows

0 ≤ ∆i ≤ 256.

By choosing the bound B = 26 in our recovery experiments,

| 〈xj , ∆〉 | ≤ ‖xj‖1 · ‖∆‖∞ ≤ 26 · 256 = 262 =
q

4
.

For system parameters m = 128 and n = 8, we randomly generated 1000
instances to verify our recovering steps. In all these experiments, we collected
M = 119 short lattice vectors in L([A u])⊥.

For 817 instances, we recovered v = (〈x1,∆〉 , · · · , 〈xM ,∆〉) (or −v) and
v′ = (〈x1,∆

′〉 , · · · , 〈xM ,∆′〉) (or −v′) at the same time.
Note that if we find the real v, then we can recover the real k, but for −v,

we just recover q − k. We can not tell whether the k̃ we recovered is the real
k or just q − k by now. The same situation happens for k′. However, there are
four possible values for the pair (k, k′). We can try all the four possible values
to carry out our attack to check which pair is the correct one1.

Hence, without loss of generality, we can assume we recovered the correct k
and k′, together with

v = (〈x1,∆〉 , · · · , 〈xM ,∆〉),

and

v′ = (〈x1,∆
′〉 , · · · , 〈xM ,∆′〉).

1 In fact, the following analysis of our attack can help us recover the correct k and k′.
For simplicity, we assume we know the correct k and k′.

Ciphertext-Only Attacks against Compact-LWE 15

4.2 Recover p, ck and ck′

By the relation ck · ri + ck′ · r′i ≡ 0 mod p for Compact-LWE, it follows that

ck · 〈xi,∆〉+ ck′ · 〈xi,∆′〉 ≡ 0 mod p,

which implies that the system of linear equations(
〈xs,∆〉 〈xs,∆′〉
〈xt,∆〉 〈xt,∆′〉

)
·
(
x1
x2

)
≡ 0 mod p

has a non-trivial solution (ck, ck′)T for any s, t ∈ {1, . . . ,M}. We immediately
have

det

(
〈xs,∆〉 〈xs,∆′〉
〈xt,∆〉 〈xt,∆′〉

)
= 0 mod p.

Denote by ∆st the determinant of(
〈xs,∆〉 〈xs,∆′〉
〈xt,∆〉 〈xt,∆′〉

)
.

Then p|∆st for any s, t ∈ {1, . . . ,M}, which implies that p can be recovered by
computing the greatest common divisor of ∆12, ∆13, . . . ,∆M−1,M .

When p is recovered, we can choose an s such that 〈xs,∆′〉 is coprime to
p. With high probability, such s exists. Then we can solve the following linear
equation

〈xs,∆〉 · x1 + 〈xs,∆′〉 · x2 ≡ 0 mod p

for equivalent ck and ck′.
For simplicity, we can even let ck1 = −〈xs,∆′〉−1 〈xs,∆〉 mod p and ck′1 =

1 as the equivalent ck and ck′.
We state this step in algorithm 4.

Algorithm 4 Recover p

Input: k, k′, v,v′ obtained in algorithm 3
Output: p, ck1, ck′1
1: Compute

∆st = det

(
〈xs,∆〉 〈xs,∆

′〉
〈xt,∆〉 〈xt,∆

′〉

)
for s, t ∈ {1, 2, . . . ,M};

2: Compute the greatest common divisor p of ∆st for s, t ∈ {1, 2, . . . ,M};
3: Choose an s such that 〈xs,∆

′〉 is coprime to p and solve the following linear
equation

〈xs,∆〉 · x1 +
〈
xs,∆

′〉 · x2 ≡ 0 mod p

for ck1, ck′1.
4: return p, ck1, ck′1.

16 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

Experimental Results of Recovering p. In our experiments, we can always
recover the correct p and the desired ck1, ck′1.

Remark 2. When we obtain q − k in Section 4.1, we can recover the correct p
using Algorithm 4 since

(q − k) · pk · (xT1 , . . . ,xTM) mod q = −(〈x1,∆〉 , . . . , 〈xM ,∆〉),

while

k · pk · (xT1 , . . . ,xTM) mod q = (〈x1,∆〉 , . . . , 〈xM ,∆〉),

hence the output will be the same. Similar results can be obtained for the case
q−k′. When we obtain a wrong k or k′, we expect Algorithm 4 cannot output a
value passing the test for p. Furthermore, when k, k′ or q−k, q−k′ are recovered,
the ratio ck/ck′ mod p or ck′/ck mod p is recovered and for q− k, k′ or k, q− k′,
we will recover −ck/ck′ mod p or −ck′/ck mod p.

4.3 Recover sk and sk′

Once recovering k, k′, p and ck1, ck
′
1, we continue to compute an LLL-reduced

basis for the kernel lattice L(A)⊥, and find short vectors from the reduced basis
as stated in Section 4.1. We denote by z1, . . . ,zL the short basis vectors in the
kernel lattice L(A)⊥.

It is easy to conclude that

k · 〈zi,pk〉 ≡ sk 〈zi,u〉+ 〈zi,∆〉 mod q,

k′ · 〈zi,pk′〉 ≡ sk′ 〈zi,u〉+ 〈zi,∆′〉 mod q.

Since sk, sk′ are very small relatively to q, the values sk 〈zi,u〉 + 〈zi,∆〉
and sk′ 〈zi,u〉+ 〈zi,∆′〉 are within (−q/2, q/2). Hence these values can be com-
puted by Zi = k · 〈zi,pk〉 mod q and Z ′i = k′ · 〈zi,pk′〉 mod q into (−q/2, q/2)
respectively.

Then we compute ck1 ·Zi+ck′1 ·Z ′i mod p, which equals to (ck1 ·sk+ck′1 ·sk′) ·
〈zi,u〉 mod p. Therefore, once obtaining 〈zi,u〉 coprime to p, we will obtain the
value

(ck1 · sk + ck′1 · sk′) mod p = (ck1 · Zi + ck′1 · Z ′i) · (〈zi,u〉)−1 mod p.

That is

(sk, sk′) ·
(
ck1
ck′1

)
≡ (ck1 · Zi + ck′1 · Z ′i) · (〈zi,u〉)−1 mod p.

Again note that sk, sk′ are very small relatively to q, so we can use Babai’s
algorithm to find a small solution (sk1, sk

′
1) as stated in Section 2.2.

So this procedure consists of the following steps.

Ciphertext-Only Attacks against Compact-LWE 17

Algorithm 5 Recover sk,sk′

Input: ck1,ck′1 and public key
Output: sk, sk′

1: Compute an LLL-reduced basis for the kernel lattice L(A)⊥, from which we collect
short vectors z1, . . . , zL;

2: Find a zi such that gcd (〈zi,u〉 , p) = 1, then compute Zi = k · 〈zi,pk〉 mod q
and Z′i = k′ · 〈zi,pk′〉 mod q in (−q/2, q/2) respectively, and finally we compute
ck1 · sk + ck′1 · sk′ ≡ (ck1 · Zi + ck′1 · Z′i) · (〈zi,u〉)−1 mod p;

3: Using Babai’s algorithm to recover (sk, sk′);
4: return (sk, sk′).

Experimental Results of Recovering sk and sk′ Similar to Section 4.1,
we set the bound to be 26 to obtain short zi.

Since the parameters sk, sk′ ≤ sk max = 229119, | 〈zi,u〉 | ≤ ‖zi‖1 · ‖u‖∞ ≤
242. Hence |sk · 〈zi,u〉 | < q/4. Together with | 〈zi,∆〉 | ≤ q/4, we have

|sk · 〈zi,u〉+ 〈zi,∆〉 | <
q

2
.

In all instances, correct sk1, sk
′
1 was recovered.

Remark 3. We would like to point out that in this step, we can tell whether k̃
we recovered in Section 4.1 is k or q− k by the sign of the recovered sk and sk′.
For example, when q − k, k′ are recovered in Section 4.1,

Zi = (q − k) 〈zi,pk〉 mod q = −(sk 〈zi,u〉+ 〈zi,∆〉),
Z ′i = k′ 〈zi,pk′〉 mod q = sk′ 〈zi,u〉+ 〈zi,∆′〉 .

Hence solving (x, x′) such that

ck1 · x+ ck′1 · x′ mod p = (ck1 · Zi + ck′1 · Z ′i) · (〈zi,u〉)−1 mod p

is expected to recover (−sk, sk′). Similar results can be obtained for the case
k, q − k′ and q − k, q − k′.

4.4 Recover s and s′

Now suppose we obtain the correct k, k′, sk, sk′, and denote

t = k · pk − sk · u ≡ A · ks+∆ mod q,

t′ = k′ · pk′ − sk′ · u ≡ A · k′s′ +∆′ mod q.

That is

(t, t′) ≡ (ks, k′s′) ·
(
AT 0
0 AT

)
+ (∆,∆′) mod q.

18 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

Together with the fact that ck1 ·∆+ ck′1 ·∆′ ≡ 0 mod p, which implies

(∆,∆′) ·
(
ck1Im
ck′1Im

)
≡ 0 mod p,

we have

(t, t′) = (α,β,γ) ·

 M
N
qI2m

 ,

where N is an LLL-reduced basis for L
(
ck1Im
ck′1Im

)⊥
p

, α = (ks, k′s′), M =(
AT 0
0 AT

)
and some integer vectors β and γ.

Therefore, (α,β,γ) = (α0,β0,γ0) + θK with (α0,β0,γ0) an arbitrary so-

lution satisfying (t, t′) = (α0,β0,γ0) ·

 M
N
qI2m

, K an LLL-reduced basis for

L

 M
N
qI2m

⊥ and some integer vector θ.

Divide K into 3 blocks (K1,K2,K3) corresponding to the length of α,β,γ.
We obtain that

α = α0 + θK1,

β = β0 + θK2,

γ = γ0 + θK3.

Therefore,

(t, t′) = (α,β,γ) ·

 M
N
qI2m

= (α0 + θK1)M + (β0 + θK2)N + q(γ0 + θK3)

In Compact-LWE, (β0 + θK2)N = (∆,∆′) for some θ. Note that a short
(β0 + θ′K2)N can be used to achieve equivalent decryption. It suffices to find
a θ′ such that (β0 + θ′K2)N short enough.

By using lattice reduction algorithm toK2N and using Babai’s nearest plane
algorithm [2] with target vector −β0N , we will find a short vector (β0+θ′K2)N ,
hence a corresponding θ′.

Finally, we compute α′ = (α0 + θ′K1)M and solve (s1, s
′
1) such that

(ks1, k
′s′1) ·

(
AT 0
0 AT

)
= α′ = (α0 + θ′K1) ·M .

If the output (∆1,∆
′
1) = (β0 + θ′K2)N is short enough, we will complete

the equivalent decryption.
To sum up all these steps, we have the following Algorithm 6.

Ciphertext-Only Attacks against Compact-LWE 19

Algorithm 6 Construct s, s′ to Implement Equivalent Decryption.

Input: Public parameters A, u,
Recovered parameters k, k′, sk, sk′, ck1, ck

′
1, p;

Output: Equivalent private parameters s, s′;
1: Compute an LLL-reduced basis N as stated above;

2: Compute a solution (α0,β0,γ0) for (t, t′) = x ·

 M
N
qI2m

;

3: Compute an LLL-reduced basis K for L

 M
N
qI2m

⊥;

4: Find a θ′ such that (β0 + θ′K2)N is short;
5: Compute α′ = (α0 + θ′K1)M and solve (s1, s

′
1) satisfying the following fomula

(ks1, k
′s′1) ·

(
AT 0
0 AT

)
= α′ = (α0 + θ′K1) ·M ;

6: return (s1, s
′
1).

Experimental Results of Recovering s and s′ In our experiments, we
found a pair of (s1, s

′
1) such that the corresponding (∆1,∆

′
1) was slightly shorter

than the correct (∆,∆′) with infinity norm.

4.5 Equivalent Decryption

Suppose the outputted (∆1,∆
′
1) has infinity norm B1, then l∆1 =

∑m
i=1 li∆1i ∈

[−(w + 2w′) · B1, (w + 2w′) · B1]. Hence sk · lu + l∆1 ∈ [−(w + 2w′) · B1, (w +
2w′) ·B1 + sk max · (w + w′) · b′].

When decrypting the ciphertext in the equivalent decryption, we will com-
pute

d1 = (lpk − 〈la, s1〉) · k mod q

≡ sk · lu+ l∆1 mod q

d2 = (lpk′ − 〈la, s′1〉) · k′ mod q

≡ sk · lu+ l∆′1 mod q

Since sk · lu + l∆1, sk · lu + l∆′1 ∈ [B2, B3] with B2 = −(w + 2w′) · B1 and
B3 = (w + 2w′) ·B1 + sk max · (w + w′) · b′, we can traverse all possible values
of r1, r2 such that d′1 = d1 + r1 · q, d′2 = d2 + r2 · q ∈ [B2, B3], one of which must
be the correct value of sk · lu+ l∆1, sk · lu+ l∆′1.

Once obtaining the correct sk · lu + l∆1, sk · lu + l∆′1, we compute ck1 ·
d′1 + ck′1 · d′2 mod p = (ck1 · sk + ck′1 · sk′) · lu mod p, hence we compute lu =
(ck1 · d′1 + ck′1 · d′2) · (ck1 · sk + ck′1 · sk′)−1 mod p.

Since the message is always padded before being encrypted, we can decide
whether we recover the correct message or not. In fact, since we know the values
of (∆1,∆

′
1), there is usually some better strategy to determine the correct r1

and r2.

20 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

Experimental Results of Equivalent Decryption In our experiments, we
found (∆1,∆

′
1) with infinity norm between 255 ∼ 256. Therefore, the lower

bound for sk · lu+ l∆1, sk′ · lu+ l∆′1 is −263.17 ∼ −264.17, and the upper bound
is 263.60 ∼ 264.60. Hence we only considered the interval (−q, q), which would
produce 4 possibilities of combinations of sk · lu + l∆1 and sk′ · lu + l∆′1. We
implemented our equivalent decryption for these 4 possibilities, and the outputs
were compared with the randomly generated messages. We found that all the
values of sk · lu+ l∆1, sk′ · lu+ l∆′1 lie in (0, q) in our experiments.

Hence for all the random instances in our experiments, we computed d1 =
(lpk−〈la, s1〉) ·k mod q and d2 = (lpk′−〈la, s′1〉) ·k′ mod q in the interval (0, q),
and recovered all the correct messages successfully.

5 Message Recovery Attack against Compact-LWE

Note that in the encryption algorithm of Compact-LWE,
∑m
i=1 li ·ui plays a role

as the ephemeral key. If we can recover its value, we can of course recover the
corresponding message. Next we will show how to find the value by lattice-based
algorithm.

5.1 Key Idea of Our Attack

Note that what we need is just the value of
∑m
i=1 li ·ui instead of the coefficients

li’s. Moreover, there may be more than one set of li’s, which yield the same
value. Hence, it is enough to recover any one set of li’s.

The key observation is that if we could find a short enough vector l′ such
that it yields exactly the same ciphertext that is generated by l, then

∑m
i=1 l

′
i ·ui

must equal to
∑m
i=1 li · ui. More precisely, we have

Lemma 1. Given a Compact-LWE ciphertext c = (la, d, lpk, lpk′) where

la =

m∑
i=1

li · ai,

lpk =

m∑
i=1

li · pki mod q,

lpk′ =

m∑
i=1

li · pk′i mod q,

Ciphertext-Only Attacks against Compact-LWE 21

for any vector l′ satisfying

0 ≤
m∑
i=1

l′i(sk · ui + ri + ei · p) < q, (5)

0 ≤
m∑
i=1

l′i(sk
′ · ui + r′i + e′i · p) < q (6)

0 ≤
m∑
i=1

l′iui < p, (7)

and

m∑
i=1

l′i · ai = la, (8)

m∑
i=1

l′i · pki = lpk mod q, (9)

m∑
i=1

l′i · pk′i = lpk′ mod q, (10)

then
m∑
i=1

l′i · ui =

m∑
i=1

li · ui,

Proof. Following the steps of decryption, with l and l′, we can compute

d1 =

m∑
i=1

li · k(pki − 〈ai, s〉) mod q =

m∑
i=1

li(sk · ui + ri + ei · p) mod q,

d̃1 =

m∑
i=1

l′i · k(pki − 〈ai, s〉) mod q =

m∑
i=1

l′i(sk · ui + ri + ei · p) mod q.

Due to (8), (9), (10), we know that d1 = d̃1. Similarly d′1 = d̃′1. Therefore

d̃2 = ck · d̃1 + ck′ · d̃′1 mod p = ck · d1 + ck′ · d′1 mod p = d2.

Because of (5) and (6), it holds that

d̃1 =

m∑
i=1

l′i(sk · ui + ri + ei · p),

d̃′1 =

m∑
i=1

l′i(sk
′ · ui + r′i + e′i · p).

Then we have

d̃2 =

m∑
i=1

l′i · ui(ck · sk + ck′ · sk′) mod p,

22 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

and by the fact that d̃2 = d2, we know

d̃3 = sckInv · d̃2 mod p = sckInv · d2 mod p = d3.

For Compact-LWE, we know

d3 =

m∑
i=1

li · ui.

By (7), it holds that

d̃3 =

m∑
i=1

l′iui,

and then the lemma follows.

A problem remained is that we can not check if ANY given vector l′ satisfied
(5)-(7) or not, since we do not know the private keys such as sk, sk′. However, it
can be easily concluded that if l′ is SHORT enough, then it must satisfy (5)-(7).
For example, if vector l′ = (l′1, l

′
2, . . . , l

′
m) satisfies that the sum of all its positive

entries is between w and w+w′, the sum of all its negative entries of l′ is between
−w′ and 0, and

∑m
i=1 l

′
i · ui > 0, then l′ must satisfy (5)-(7).

Remark 4. In [10], the authors also considered such a ciphertext-only attack.
However, they thought that one needs to guess the exact l to recover the message,
which is incorrect due to our lemma.

5.2 Finding Short l′ by Lattice Algorithm

By the discussion before, we only need to find short l′ such that it satisfies (8),
(9), (10).

Consider the following equations:

(l′1, l
′
2, . . . , l

′
m, x1, x2) ·

a1 pk1 pk′1
· · · · · · · · ·
am pkm pk′m
0 q 0
0 0 q

 = (la, lpk, lpk′).

Denote the matrix above by A. Let b = (la, lpk, lpk′) and x = (l′, x1, x2). Note
that when l′ is short, x1 and x2 are small too. Hence we can find l′ by finding
a short solution x for x ·A = b using Algorithm 2. After recovering l′, we can
recover the ephemeral key

∑m
i=1 li ·ui and hence the message. The whole message

recovery attack is summarized as in Algorithm 7.

Ciphertext-Only Attacks against Compact-LWE 23

Algorithm 7 Ciphertext-only attack on Compact-LWE

Input: Public parameters m,n, q, t, b, b′, w, w′;
Function f used in basic encryption algorithm of Compact-LWE;
Public key PK = (a1,a2, · · · ,am,u,pk,pk

′);
A ciphertext c = (la, d, lpk, lpk′);

Output: Message v ∈ Zt with respect to c
1: Construct the matrix A and a vector b = (la, lpk, lpk′) as stated above;
2: Call algorithm 2 with A and b as input to obtain a short integer solution x0;
3: Retrieve the first m entries of x0 to generate l′ = (l′1, . . . , l

′
m);

4: Compute lu′ =
∑

i=1 l
′
iui and v′ = f−1

lu′ (c);
5: return v′;

Experimental Results. We tested our message recovery attack with Lattice-
Solve function implemented in NTL [17]. In our experiments, we randomly gen-
erated 100 Compact-LWE instances and recovered all correct messages by our
attack.

We have to point out that the plausibility of our message recovery attack
relies on the fact that the dimension parameters (m = 128, n = 8) selected
by Compact-LWE designers are fairly small. The existing lattice basis reduc-
tion algorithm and approximating-CVP algorithm work very well for such low-
dimensional lattices.

6 Conclusions

In this paper, we presented two efficient cipher-only attacks against Compact-
LWE and revealed the weakness of Compact-LWE. The small values of n and
m recommended in [10] enable us to apply existing lattice basis reduction al-
gorithms to obtain some short solutions, which suffice to recover the equivalent
private key or the message and thus violate the security of Compact-LWE. The
parameters of Compact-LWE should not be set small in this way to make the
scheme lightweight. The security requirement of encryption scheme is not satis-
fied as the Compact-LWE designers originally expected.

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing. pp. 10–19. STOC ’98, ACM, New York, NY, USA (1998),
http://doi.acm.org/10.1145/276698.276705

2. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. In:
Mehlhorn, K. (ed.) STACS 85: 2nd Annual Symposium on Theoretical Aspects
of Computer Science Saarbrücken, January 3-5, 1985. pp. 13–20. Springer Berlin
Heidelberg, Berlin, Heidelberg (1985), https://doi.org/10.1007/BFb0023990

3. Boas, P.V.E.: Another NP-complete problem and the complexity of computing
short vectors in lattices. Math. Dept. Report 81-04. Univ. of Amsterdam (1981)

24 Haoyu Li1,2, Renzhang Liu3, Yanbin Pan1, Tianyuan Xie1,2

4. Bootle, J., Tibouchi, M.: Cryptanalysis of compact-LWE. Cryptology ePrint
Archive, Report 2017/742 (2017), https://eprint.iacr.org/2017/742

5. Bootle, J., Tibouchi, M., Xagawa, K.: Cryptanalysis of compact-LWE. In: Smart,
N.P. (ed.) Topics in Cryptology – CT-RSA 2018. Lecture Notes in Computer Sci-
ence, vol. 10808, pp. 80–97. Springer International Publishing, Cham (2018)

6. Dinur, I., Kindler, G., Safra, S.: Approximating-CVP to within almost-polynomial
factors is NP-hard. In: Proceedings 39th Annual Symposium on Foundations of
Computer Science (Cat. No.98CB36280). pp. 99–109 (Nov 1998)

7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sym-
posium on Theory of Computing. pp. 197–206. STOC ’08, ACM, New York, NY,
USA (2008), http://doi.acm.org/10.1145/1374376.1374407

8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In:
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing. pp. 212–219. STOC ’96, ACM, New York, NY, USA (1996),
http://doi.acm.org/10.1145/237814.237866

9. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with ratio-
nal coefficients. Mathematische Annalen 261(4), 515–534 (Dec 1982), http-
s://doi.org/10.1007/BF01457454

10. Liu, D., Li, N., Kim, J., Nepal, S.: Compact-LWE: a pub-
lic key encryption scheme. NIST Post-Quantum Cryptography
(2017), https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/Compact LWE.zip

11. Liu, D., Li, N., Kim, J., Nepal, S.: Compact-LWE: Enabling practically lightweight
public key encryption for leveled IoT device authentication. Cryptology ePrint
Archive, Report 2017/685 (2017), https://eprint.iacr.org/2017/685

12. Nguyen, P., Stern, J.: Merkle-Hellman revisited: A cryptanalysis of the Qu-
Vanstone cryptosystem based on group factorizations, Lecture Notes in Computer
Science, vol. 1294, pp. 198–212. Springer Berlin Heidelberg, Berlin, Heidelberg
(1997), https://doi.org/10.1007/BFb0052236

13. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Proceedings of the Thirty-seventh Annual ACM Symposium on The-
ory of Computing. pp. 84–93. STOC ’05, ACM, New York, NY, USA (2005),
http://doi.acm.org/10.1145/1060590.1060603

14. Stein, W., et al.: Sage Mathematics Software Version 7.5.1. The Sage Development
Team (2017)

15. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science.
pp. 124–134. IEEE, Santa Fe, NM, USA (Nov 1994)

16. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (Oct 1997),
http://dx.doi.org/10.1137/S0097539795293172

17. Shoup, V.: NTL: A library for doing number theory. http://www.shoup.net/ntl
(2001)

