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Abstract. Very recently, Liu, Li, Kim and Nepal submitted Compact-
LWE, a new public key encryption scheme, to NIST as a candidate of the
standard of post-quantum cryptography. About the security of Compact-
LWE, the authors claimed that ”even if the hard problems in lattice,
such as CVP and SIS, can be effciently solved, the secret values or pri-
vate key in Compact-LWE still cannot be effciently recovered. This allows
Compact-LWE to choose very small dimension parameters, such as n =
8 in our experiment”. However, in this paper, we show it is not true by
proposing a ciphertext-only attack against Compact-LWE. More precise-
ly, if we can solve CVP, we can decrypt any ciphertext without knowing
the private keys. Since the dimension of the underlying lattice is very s-
mall (128) for the authors’ parameter choice, (approximation-)CVP can
be efficiently solved with lattice basis reduction algorithm. Hence, we can
always break Compact-LWE with the authors’ parameter choice in our
experiments, which means that Compact-LWE with the recommended
parameters is not secure.
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1 Introduction

In December of 2017, NIST published the Round 1 submissions for the Post-
Quantum Cryptography. Among all the candidate schemes, a new public key
encryption scheme called Compact-LWE was proposed by Liu, Li, Kim and
Nepal [7].

Compact-LWE has a similar structure with LWE [8], but with small samples
and large errors. Based on the new features, Li, Kim and Nepal proposed the first
version of Compact-LWE (we call Compact-LWE-α in this paper to distinguish
it from the current version submitted to NIST) in an invited talk at ACISP
2017, see [5, 6]. However, Bootle and Tibouchi [1] showed that the particularly
aggressive choice of parameters in Compact-LWE-α fails to achieve the stated
security level.
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Roughly speaking, to encrypt a message in Compact-LWE-α, the sender first
computes a random subset sum of the Compact-LWE samples and then adds the
message to the ”error terms”. Due to the special structure, Bootle and Tibouchi
[1] proposed a very clever way to recover the message from the ciphertext by
finding some lattice point close to the ciphertext (see [1] for more details).

In the current version of Compact-LWE submitted to NIST, Liu, Li, Kim and
Nepal presented a much more complex method to generate the public key and pri-
vate key. There are pare-wise dependent public keys instead of the independent
public keys in Compact-LWE-α. The error terms are set to be k−1q (sk ·u+r+ep),
much more complex than k−1q ep in Compact-LWE-α. Especially, they do not
adds the message to the ”error terms” to encrypt the message, but use a value
related to u as an key to encrypt the message. Hence it seems we have to re-
cover the key first instead of recovering the message directly as in Bootle and
Tibouchi’s attack.

They also increased the parameters, presented some analysis on the security
of the improved Compact-LWE, and claimed that ”even if the hard problems
in lattice, such as CVP and SIS, can be effciently solved, the secret values or
private key in Compact-LWE still cannot be effciently recovered. This allows
Compact-LWE to choose very small dimension parameters, such as n = 8 in our
experiment” [7]. Hence, Liu, Li, Kim and Nepal recommended small parameters,
which make Compact-LWE efficient.

However, in this paper, we show that the claim is not true and it is insecure
to choose small parameters. More precisely, we propose a ciphertext-only attack
against Compact-LWE, which can decrypt any ciphertext without knowing the
private keys. However, in the attack we need to find a short solution for a system
of inhomogeneous linear equations, if we can solve CVP, we can find the short
solution, hence we can break Compact-LWE, which contradicts the claim in [7].

For the small parameters recommended by the authors, it is easy to find
the small solution by just lattice basis reduction. Hence, we can always break
Compact-LWE with these small parameter choice in our experiments.

Due to our attack, it seems that Compact-LWE should enlarge its parameters
to ensure the security, which will decrease the efficiency. Moreover, the security
of Compact-LWE should be reevaluated more carefully.

2 Preliminaries

Notations Vectors are denoted by bold lowercase letters. Matrices are written
in bold capital letters and row representation is used.

2.1 Lattices

Let B = {b1, b2, . . . , bn} ⊂ Rm be a set of n linearly independent vectors. The
lattice generated by the basis B is defined as

L(B) =

{
n∑

i=1

xibi : xi ∈ Z

}
.
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n and m are called the rank and dimension of the lattice respectively. The
determinant of lattice L is defined as the volume of its parallelepiped, denoted
by det(L). If B is a basis of L, then det(L) =

√
det(BBT ). When n = m,

det(L) =| det(B) |.
The parallelepiped spanned by B is defined as P(B) = {xB : x ∈ [0, 1)n}.

Nevertheless, we sometimes translate the domain to make it symmetric about
the origin. The resulting domain is called the centered parallelepiped, denoted
by Pc. Mathematically, Pc(B) = {xB : x ∈ [−1/2, 1/2)n}.

For an ordered lattice basis b1, b2, . . . , bn, the Gram-Schmidt orthogonaliza-
tion b?1, . . . , b

?
n can be efficiently computed by the recursion

b?1 = b1,

b?i = bi −
i−1∑
j=1

µi,jb
?
j for i = 2, . . . , n,

where µi,j = 〈bi, b?j 〉/〈b?j , b?j 〉. This procedure is dependent on the order of the
basis. Hereafter, the Gram-Schmidt vectors corresponding to B = {b1, . . . , bn}
are denoted by B? = {b?1, . . . , b?n}. The determinant of L can be computed by
the norm of the Gram-Schmidt vectors, namely, det(L) =

∏n
i=1 ‖ b?i ‖.

2.2 SVP and CVP: Problems and Algorithms

SVP, the shortest vector problem, is one of the most famous hard problems in
lattice. Given a lattice L, the problem asks for a nonzero lattice point that is
shortest.

SVP is known to be NP-hard under randomized reduction. However, there do
exist polynomial-time algorithms to approximate SVP within exponential factor.
The most famous algorithm is the LLL algorithm [4].

CVP, the closest vector problem, is one of the most famous hard problems
in lattice. Given a lattice L and a target vector t, the problem asks for a lattice
point that is closest to t.

The CVP is known to be NP-hard [10]. Even approximating CVP with-
in almost polynomial factors is also proved to be NP-hard [2]. Therefore no
polynomial-time algorithm is expected to be found. However, there do exist
polynomial-time algorithms to approximate CVP within exponential factor. The
most famous ones are Babai’s rounding-off and nearest plane algorithms and the
GPV algorithm [3], all of which start with an LLL-reduced [4] basis B.

The rounding-off algorithm first computes the coefficients of t when repre-
sented by the basis B, and then, as the name indicates, rounds the coefficients
off to get a lattice point vroa as output, that is, vroa = dtB−1cB. It can be easily
seen that vroa − t ∈ Pc(B).

The nearest plane algorithm uses a more complicated method and can be
described as Algorithm 1.
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Algorithm 1 Babai’s Nearest Plane Algorithm.

Input: A good lattice basis B and a target vector t;
Output: A lattice vector close to t;
1: b = t;
2: for j = n to 1 do

3: b = b− cjbj where cj = d<b,b?j>

b?j ,b
?
j
c;

4: return t− b;

If we write t =
∑n

i=1 αib
?
i , it can be easily concluded that the algorithm

outputs a lattice vector vnpa =
∑n

i=1 βibi =
∑n

i=1 β
′
ib

?
i such that | β′i−αi |≤ 1/2,

where βi ∈ Z. Hence, vnpa − t ∈ Pc(B
?).

The GPV algorithm is a randomized version of Babai’s nearest plane algo-
rithm. For Step 3 in Algorithm 1, GPV algorithm chooses a random cj from a
“discrete Gaussian distribution” and produces a random lattice vector which is
close to the target. The readers are referred to [3] for more details.

2.3 Solving Short Solution by Lattice Basis Reduction

Given a matrix A ∈ Zm×n
q and b ∈ Zn

q , we show how to use algorithm for
(approximation-)CVP to find a short solution x ∈ Zm such that xA = b mod q.

Note that all the integer solutions for xA = 0 mod q form a lattice Λ. Given
any solution x0 such that x0A = b mod q, the set of all the integer solutions
for xA = b mod q is obviously x0 − Λ. So we can find some lattice vector v in
Λ, such that v is close to x0. Then x0 − v is a short solution.

Algorithm 2 Finding Small Solution with Algorithm for (Approximation-)CVP.

Input: A matrix A ∈ Zm×n
q and b ∈ Zn

q ;
Output: A short solution x such that xA = b mod q;
1: Find any solution x0 such that x0A = b mod q;
2: Find a lattice vector v in Λ = {x ∈ Zm|xA = 0 mod q} close to x0 by the

Algorithm for (approximation-)CVP.
3: return x0 − v;

3 The Compact-LWE public key encryption scheme

3.1 The description of basic Compact-LWE

Public Parameters: The paramters are all positive integers:

– Moduli : q, t.
– Dimension: n
– Bounds: w, w′, b, b′.
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– Number of samples: m.

Private Parameters: The parameters p size, s max, e min, e max are all
positive parameters and used to bound other parameters.

For the sake of correctness of the basic decryption algorithm and the security
of the cryptosystem, [7] requires that

– m > n+ 2
– w > w′, (w − w′) · b′ > t
– q is the largest parameter
– t is a power of 2
– sk max · b′ + p+ e max · p < q/(w + w′)

Key Generation: We use the notation a
$←− A to represent the random sampling

of an element a from the set A.
The private key is generated in the following steps.

– s, s′
$←− Zn

q

– k, k′
$←− Zq with k, k′ coprime with q.

– p
$←− {(w + w′)b′, . . . , (w + w′)b′ + p size} such that p is coprime with q.

– ck, ck′
$←− Zp with ck′ is coprime with p.

– sk, sk′
$←− Zsk max such that sk · ck + sk′ · ck′ is coprime with p.

The private key is

SK = (s, s′, k, k′, p, ck, ck′, sk, sk′).

For i ∈ {1, 2, . . . ,m}, the generation of the public key is to collect m random
compact-LWE samples.

– ai
$←− Zn

b

– Random integers ei, e
′
i

$←− [e min, e max]

– Random integer ui
$←− Zb′

– ri, r
′
i

$←− Zp satisfying ck · ri + ck′ · r′i = 0 mod p

– Compute k−1q , k′
−1
q ∈ Zp such that k−1q · k = 1 mod q and k′

−1
q · k′ = 1

mod q
– Compute

pki =< ai, s > +k−1q · (sk · ui + ri + ei · p) mod q

pk′i =< ai, s
′ > +k′

−1
q · (sk′ · ui + r′i + e′i · p) mod q

Let u = (ui)
m
i=1,pk = (pki)

m
i=1,pk

′ = (pk′i)
m
i=1 The public key is

PK = (a1,a2, · · · ,am,u,pk,pk
′).

Encryprion
To encrypt a message v ∈ Zt, we compute the ciphertext c as follows:
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– Generate the m-dimensional random vector l such that the sum of all positive
entries of l lies between w and w + w′, the sum of all negative entries of l
between −w′ and 0.

– Compute lu =
∑m

i=1 li · ui , if lu ≤ 0, then regenerate the l, otherwise
calculate ut = lu mod t, take u′t the smallest integer equal or greater than
lu/t coprime with t, encrypt v by computing

d = f(v,

m∑
i=1

li · ui)

where f is an efficiently computable function including two basic operations:
XOR operation and bit shift operation. For more details about f see [7].

– Compute la =
∑m

i=1 li · ai, lpk =
∑m

i=1 li · pki and lpk′ =
∑m

i=1 li · pk′i, the
ciphertext is c = (la, d, lpk, lpk′).

Decrption
Given the ciphertext c = (la, d, lpk, lpk′), the decryption algorithm recovers

the message v in the following steps.

– Compute d1 = k ·(lpk− < a, s >) mod q, d′1 = k′ ·(lpk′− < a, s′ >) mod q
( 0 < d1, d

′
1 < q).

– Compute d2 = ck · d1 + ck′ · d′1 mod p and sckInv satisfying sckInv · (sk ·
ck + sk′ · ck′) = 1 mod p.

– Compute d3 = sckInv · d2 mod p.
– Compute v = f−1(d, d3).

Remark 1. Liu, Li, Kim and Nepal [7] also proposed a general encryption al-
gorithm, which encodes first and then encrypts messages. More precisely, after
encoding the original message, the general encryption algorithm divides a long
message into blocks and encrypts each block with the basic encryption algorithm
above.

3.2 The choice of the parameters

In [7], Liu, Li, Kim and Nepal recommend the selections of parameters as follows
for efficiency and evaluation.

Table 1. Public Parameters

q t n m w w′ b b′ l

264 232 8 128 224 32 16 236 8

4 Our Attack against Compact-LWE

It is enough to break the basic encryption algorithm in Compact-LWE.
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Table 2. Private Parameters

sk max p size e min e max

229119 224 457 3200

4.1 The key observation

We have the following key observations.

Lemma 1 (Informal). Given a Compact-LWE ciphertext c = (la, d, lpk, lpk′)
where

la =

m∑
i=0

li · ai

lpk =

m∑
i=0

li · pki mod q

lpk′ =

m∑
i=0

li · pk′i mod q,

if we could find a short enough vector l′ = (l′1, l
′
2, · · · , l′m), such that

m∑
i=0

l′i · ai = la

m∑
i=0

l′i · pki = lpk mod q

m∑
i=0

l′i · pk′i = lpk′ mod q,

then
m∑
i=0

l′i · ui =
m∑
i=0

li · ui,

Proof (Sketch). By the process of decryption, with la, lpk, lpk′, we can determine
a unique d3 =

∑m
i=1 li · ui, which is used to recover the message from d.

If l′ is short enough such that 0 <
∑m

i=1 l
′
i(sk · ui + ri + ei · p) < q and 0 <∑m

i=1 l
′
i(sk

′ ·ui + r′i +e′i ·p) < q, then by the same process of decryption with the
same input la, lpk, lpk′, we will obtain the exactly same value d3 =

∑m
i=1 l

′
i · ui.

Then the lemma follows.

Remark 2. In [7], the authors also considered the attack to ciphertexts. However,
they thought that one need to guess the exact l to recover the message. Due to
our attack, we do not need to guess the correct l, another short l′ can also help
recover the message very well.
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4.2 Our Ciphertext-Only Attack

Based on the lemma above, we present our attack.

Step 1 Given a Compact-LWE ciphertext c = (la, d, lpk, lpk′), find a short
enough vector l′ = (l′1, l

′
2, · · · , l′m) by lattice basis reduction algorithm, such

that

m∑
i=0

l′i · ai = la

m∑
i=0

l′i · pki = lpk mod q

m∑
i=0

l′i · pk′i = lpk′ mod q.

Step 2 Compute
∑m

i=0 l
′
i · ui, and use it to recover the message by computing

f−1(d,
∑m

i=0 l
′
i · ui).

4.3 Experimental Result

The most time-consuming computation in our attack is to find a short enough
vector l′ = (l′1, l

′
2, · · · , l′m). However, since in the recommended parameters [7],

m = 128, it is easy to find a short solution with Algorithm 2.
We randomly generated some Compact-LWE instances, and employed the

LatticeSolve function in NTL [9] to compute l′. In our experiments, all the l′

returned by the LatticeSolve function satisfied

m∑
i=0

l′i · ui =

m∑
i=0

li · ui.

5 Conclusion

In this paper, we show that Compact-LWE with the recommended parameters
is not secure.

Acknowledgement. We would like to thank Prof. Tancrède Lepoint for telling
us the results about the former attack [1] against the former CompactLWE [5,
6].
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