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Abstract

We consider reputation systems in the Universal Composability Framework where users can
anonymously rate each others products that they purchased previously. To obtain trustworthy,
reliable, and honest ratings, users are allowed to rate products only once. Everybody is
able to detect users that rate products multiple times. In this paper we present an ideal
functionality for such reputation systems and give an efficient realization that is usable in
practical applications.
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1 Introduction

Reputation systems provide valuable information about previous transactions and are popular
tools to measure trustworthiness of interacting parties. This measurement relies on the existence
of a large number of ratings for one specific subject. But in most practical applications the
process of rating reveals, besides the actual rating, many information about the rater. Providers
of reputation systems use this information in many different ways, e.g. for profiling users,
which are not necessarily desired by the users. Moreover, users can feel compelled to rate
“dishonestly/benevolent” when they fear negative consequences from negative ratings. Therefore,
it is important that the process of rating does not reveal more information than the actual
rating. Besides that, reputation systems need to be protected against various attacks to provide
trustworthy, reliable and honest ratings. These attacks include self-rating attacks (also known as
self-promoting attacks), Sybil attacks, whitewashing attacks, bad mouthing attacks, ballot stuffing
attacks, and value imbalance attacks. Both the privacy concerns and the prevention of attacks are
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discussed frequently in the literature, e.g. [ACBM08, BPS+17, CSK13, Del00, HBBS13, HZNR09,
Ker09, PLS14, Ste06, ZWC+16], albeit they are not considered simultaneously.
Further important security properties for reputation systems are anonymity, (public) linka-

bility, traceability, and non-frameability, as discussed in [ACBM08, BJK15, CSK13, ZWC+16].
Anonymity means that ratings of honest users are indistinguishable, whereas public linkability
requires that anyone can decide whether or not two ratings for the same product were created by
the same user. Also, ratings need to be traceable: the identity of any rater can be determined
by a designated System Manager. In the course of this non-frameability guarantees that honest
parties are not blamed having rated some product, when they did not. The combination of
traceability and non-frameability enables penalizing dishonest behavior.
All previously mentioned works consider reputation systems in isolation, although reputation

systems are always used in combination with other applications. In such situations stand-alone
security definitions, as in [BJK15], do not guarantee security. With the Universal Composability
Framework (UC) [Can01] there exists a methodology that guarantees security even in composed
applications. Informally, in UC the execution of a real-life protocol is compared to the execution
of an ideal protocol. If the real-life and ideal protocol executions are indistinguishable, then the
real-life protocol is UC-secure. Based on this security definition Canetti [Can01] formulates a
composition theorem which states that any UC-secure protocol is also secure when it is composed
with other protocols.

Our Contribution

We present an ideal functionality for reputation systems FRS in the Universal Composability
Framework [Can01]. Our ideal functionality prevents all previously mentioned attacks and
provides anonymity, public linkability, traceability, and non-frameability. In contrast to [BJK15],
users can rate each others products; there is no separation of customers and providers.
Besides defining an ideal functionality we present an efficient protocol for reputation systems

that realizes FRS. This protocol is influenced by different techniques known from Σ-protocols
[Dam02] and (dynamic) group signatures [ACHdM05, BMW03, BSZ05, BBS04], similarly to the
scheme in [BJK15]. But our protocol is more efficient and more flexible than the scheme in
[BJK15] and it is secure even under concurrent composition (UC-secure).

2 The Ideal Functionality for Reputation Systems

In the first part of this section, we give some intuition to our ideal functionality of a reputation
system FRS. The second part concerns the formal definition of FRS in the Universal Composability
Framework [Can01]. We discuss the functionality and its security properties in the third part of
the section.

2.1 Intuition to our Reputation System

A meaningful reputation system must provide trustworthy, reliable, and honest ratings. Further-
more, it should be flexible in the sense that it can be combined with many different applications.
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Therefore, we focus on the process of secure rating and provide a scheme that can be combined
with any high-level application. For this reason, the aggregation of ratings and the evaluation
of a specific reputation function is excluded from our model. Specifically, we handle the actual
rating-message as a placeholder for the higher level application.
We consider reputation systems where users within the system can rate each others products.

The term product refers to anything that can be used as a basis for ratings. Each user in our
system has to register once at a System Manager, before a product can be rated. This prevents
Sybil attacks, whitewashing attacks, bad mouthing attacks, and ballot stuffing attacks, and gives
the System Manager the ability to punish misbehaving users. For this to work the system must
prevent users to register with different identities. When users do not want to rate other products,
a registration is not necessary - publishing products and verifying ratings is independent of the
registration, which increases trust in the system. Analogously to registering, a product must be
purchased prior to rating. This requirement assures that ratings are only given by raters using
the product. Also, this is a protection mechanism against value imbalance attacks.
To further increase trust in the reputation system, raters must be able to rate purchased

products anonymously. Without anonymity raters may tend to rate dishonestly when they fear
negative consequences from the product owner. At the same time a product owner must be
protected against unjustified negative ratings. This is achieved by giving the System Manager
the ability to revoke the anonymity of a rater. Of course, the System Manager must not be able
to accuse an honest user having misbehaved.
The negative side-effects of anonymity are that self-ratings, i.e. ratings for a product from

the product owner, are hard to prevent and that a single rater who purchased a product could
rate this product multiple times. Therefore we require a reputation system to explicitly forbid
self-ratings and to provide linkable ratings: everybody - even outsiders of the system - must be
able to detect multiple ratings from the same user for the same product.

As pointed out above, the security requirements a reputation system has to fulfill include - but
are not limited to - anonymity for raters, unforgeability and public linkability of ratings, and the
ability to determine the raters’ identity. These properties have already been studied in the simpler
context of group signatures [BMW03, BSZ05, BBS04, ACHdM05, FS07]. However, reputation
systems have more security requirements than group signatures, as they do not consist of a single
group of users. Instead, reputation systems can be seen as a collection of multiple group signature
schemes - one for each product. Moreover, a single user may offer several products. Hence, in
the definition of security properties the different group signature schemes must be considered in
conjunction. Therefore, we adapt and extend these notions and give our formal definition of a
secure reputation system in the Universal Composability Framework [Can01]. This framework
guarantees security even for concurrently composed protocols. Stand-alone security definitions do
not provide this strong guarantees, which are very important for our reputation system, as we
intend it to be combined with other applications.
Additionally to the experiment-based security definitions for reputation systems [BJK15]

and group signatures [BMW03, BSZ05], our ideal functionality FRS is influenced by the ideal
functionalities for digital signatures FSIG [Can04], public-key encryption FPKE [Can01] and group
signatures [ACHdM05].
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2.1.1 The Universal Composability Framework

In contrast to stand-alone security definitions (both experiment-based and simulation-based),
the Universal Composability Framework, introduced by Canetti [Can01], provides security under
concurrent composition of different applications. To achieve this strong security notion, the
execution of a real-life protocol is compared to the execution of an ideal protocol. Both protocol
executions are controlled by an environment Z that tries to distinguish whether it interacts with
the real-life protocol or the ideal protocol.

The ideal protocol is described by an ideal functionality F that handles every (cryptographic)
task as a trusted party and interacts with an ideal adversary S (also called a simulator) and all
parties involved in the protocol. Every party hands its inputs from the environment securely
to F . Then F computes the parties’ output and sends it back to the party. Whenever a party
receives a message from F , the party outputs this message directly to the environment. The
ideal adversary S may corrupt some parties and can block the delivery of messages from F to a
party. The inputs a party hands to F cannot be seen by S. In the real-life execution all parties
compute their outputs by running the defined protocol. Analogously to S, a real-life adversary A
may corrupt parties within the real-life protocol execution.
We say that the real-life protocol UC-realizes the ideal protocol, if no environment can

distinguish an interaction with the real-life protocol and A from an interaction with the ideal
protocol and S. Based on this security definition Canetti [Can01] formulates a composition
theorem which states that any UC-secure protocol is also secure when it is executed concurrently
with other protocols.

For our proof of security we will consider black-box simulators S, denoted by SA, that have
block-box access to real-life adversaries A. Also we consider a model with ideally authenticated
channels, meaning that an adversary is able to read the messages sent, but is unable to modify
them. We refer to this communication model as the authenticated channels assumption.

2.2 The Formal Definition of FRS

Our ideal functionality interacts with the parties PIDM, P1, P2, . . . , Pn and an ideal adversary S,
which is also called a simulator. The party PIDM acts as the System Manager, whereas the parties
Pi correspond to the users within the reputation system. Furthermore, FRS manages the lists
Params,Reg,Prods,Purch,Ratings, and Open to store important information. Before giving
the formal definition of FRS, we explain how these lists are used. We also introduce the notation
needed in the definition of FRS.

Params: This list stores all pairs of the form (PIDM, pp) containing public parameters the
simulator S gives to FRS during KeyGen-requests. The first component of a pair is fixed to
PIDM, whereas the second component represents the actual parameters given by S.

Reg: The list Reg stores pairs of the form (pp, Pi) containing registration information. The first
component stores the public parameters the registrated party used in the Register-protocol,
whereas the second component is the registrated party.
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Prods: All products that are used within the reputation system are stored as 4-tuples (Pi, prod ,
ppk , b) in the list Prods. The first component of a tuple declares the product owner, the
second is a product identifier (a bitstring chosen by the environment), the third specifies
the corresponding product-public key and the fourth component is a validity bit. There can
exist different products with the same product identifier, but for different product owners.
The validity bit indicates whether the product-public key matches the given product owner
and the product identifier.

Purch: When some party successfully purchased a product, this information is stored as 4-tuple
(Pi, Pj , prod , ppk) in the list Purch. For every tuple in the list the first component represents
the purchaser, whereas the other components determine the product that was purchased
(the product owner, the product identifier and the product-public key).

Ratings: The list Ratings stores the most complex information as 10-tuples of the form (pp,
Pi, Pj , prod , ppk , m, σ, b, lid , oid). The components of each tuple represent the following
information:

1. pp - the public parameters a rating is generated for,

2. Pi - the identity of the rater ((pp, Pi) should match an entry in Reg),

3. Pj - the product owner of the product the rating is generated for,

4. prod - the product identifier of the product the rating is generated for,

5. ppk - the product-public key of the product the rating is generated for (the tuple (Pi,
Pj , prod , ppk) should match an entry in Purch),

6. m - rating message (a placeholder for high-level applications),

7. σ - the rating,

8. b - the validity bit (indicating whether the rating is valid),

9. lid - the linking-class identifier, which is managed by the algorithm RebLDB, and

10. oid - the opening-proof identifier.

The linking-class identifier is needed to model the linkability property: two ratings with
the same linking-class identifier have the same author. The opening-class identifier binds
a list of opening-proofs to a specific rating. Whenever a new rating is added to the list
Ratings, FRS uses the current value of a global counter lidc as the linking-class identifier
and increments the counter. The subsequent execution of RebLDB ensures that the rating
is put into the correct linking-class, according to the linkability-relation. A more detailed
explanation of this behavior and the oid -mechanism is given in the discussion of the security
properties of FRS.

Open: This list stores all opening-proofs as 4-tuples of the form (oid , τ, b, P ). The first component
is an opening-proof identifier that binds a tuple to a specific rating with the same identifier.
The second component is the actual opening-proof. The third component is a validity bit
indicating whether the proof is valid and the fourth component is the claimed party that
shall be the author of the associated rating. The value oid = ⊥ within a rating expresses
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that the rating was not opened yet and hence no opening-proof exists. To uniquely bind
opening-proofs to ratings a global counter oidc is used and incremented whenever a new
opening-proof is bound to an unopened rating.

To manipulate the described lists, we introduce two operations:

• adding a tuple v to a list L is expressed by L.Add(v), and

• substituting a tuple vold with a tuple vnew is expressed by L.Sub(vold, vnew).

Substituting a tuple vold means that this tuple is removed from the list, while the tuple vnew is
added to the list.

The classical notation to address components of tuples is using indices, i.e. v = (v1, v2, . . . , vn),
where vi is the i’th component of tuple v. We deviate from this notation to prevent confusion
with different variables and address the i’th component of a tuple v by v[i].

Whenever FRS misses some information, the symbol ⊥ is used to highlight this fact. Also the
simulator S can output this symbol at some points to indicate that it is not able to respond to a
request. Depending on the situation, this is not necessarily a failure.
With these prerequisites we now give the formal definition of FRS.

FRS

FRS interacts with parties PIDM, P1, . . . , Pn, and the ideal adversary (simulator) S. Further it
manages the lists Params,Reg,Prods,Purch,Ratings, and Open which are initially empty, and
the counters lidc, oidc, which are initialized with 0. All outputs from FRS to some party P are
public delayed outputs.

Registry Key Generation: On input (KeyGen, sid) from PIDM

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: Send (KeyGen, sid) to S and receive (KeyGen, sid , pp) from S.
3: Set Params.Add(PIDM, pp) and send (KeyGen, sid , pp) to PIDM.

User Registration: On input (Register, sid , pp′) from Pi

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: Send (Register, sid , pp′, Pi) to S and receive (Register, sid , pp ′, Pi, b) from S.
3: If PIDM and Pi are honest ∧ (PIDM, pp

′) ∈ Params ∧ (Pi, pp
′) /∈ Reg then f := 1.

4: Else If PIDM is honest ∧ (PIDM, pp
′) /∈ Params then f := 0.

5: Else f := b.
6: If f = 1 then Reg.Add(pp′, Pi).
7: Send (Register, sid , pp′, Pi, f) to Pi and PIDM.

Product Addition: On input (NewProduct, sid , prod) from Pi

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: Send (NewProduct, sid , Pi, prod) to S and receive (NewProduct, sid , Pi, prod , ppk) from S.
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3: If (P ′, prod ′, ppk , 1) ∈ Prods, where (P ′, prod ′) 6= (Pi, prod) then output error and halt.
4: Else Prods.Add(Pi, prod , ppk , 1) and send (NewProduct, sid , prod , ppk) to Pi.

Purchase: On input (Purchase, sid , Pj , prod , ppk) from Pi

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: If Pi = Pj ∨ VfyProd(sid , Pj , prod , ppk) = 0 then ignore the request.
3: Send (Purchase, sid , Pi, Pj , prod , ppk) to S and receive (Purchase, sid , Pi, Pj , prod , ppk , b)

from S.
4: If Pi and Pj are honest then f := 1.
5: Else f := b.
6: If f = 1 then Purch.Add(Pi, Pj , prod , ppk).
7: Send (Purchase, sid , Pi, Pj , prod , ppk , f) to Pi and Pj .

VfyProd: On internal input (sid , Pj , prod , ppk)

1: Send (VfyProd, sid , Pj , prod , ppk) to S and receive (VfyProd, sid , Pj , prod , ppk , b) from S.
2: If (Pj , prod , ppk , f

′) ∈ Prods then f := f ′.
3: Else If b = 1 ∧ Pj is honest then output error and halt.
4: Else If (P ′, prod ′, ppk , 1) ∈ Prods, where (P ′, prod ′) 6= (Pi, prod) then
5: Prods.Add(Pi, prod , ppk , 0) and f := 0.
6: Else Set Prods.Add(Pi, prod , ppk , b) and f := b.
7: Return f .

Rate a Product: On input (Rate, sid , pp, Pj , prod , ppk ,m) from Pi

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: If (pp, Pi) /∈ Reg ∨ (Pi, Pj , prod , ppk) /∈ Purch ∨ (pp, Pi, Pj , prod , ppk ,m
′, σ′, 1, lid , oid) ∈

Ratings for some m′, σ′, lid then ignore the request.
3: If PIDM is honest then
4: Send (Rate, sid , pp, Pj , prod , ppk ,m) to S and receive (Rate, sid , pp, Pj , prod , ppk ,m, σ)

from S.
5: Else Send (Rate, sid , pp, Pi, Pj , prod , ppk ,m) to S and receive (Rate, sid , pp, Pi, Pj , prod , ppk ,

m,σ) from S.
6: If (pp, P ′, Pj , prod , ppk ,m, σ, 0, lid , oid) ∈ Ratings for some P ′, lid , oid then
7: Output error and halt.
8: Set r := (pp, Pi, Pj , prod , ppk ,m, σ, 1, lidc,⊥) and lidc := lidc + 1.
9: Set Ratings.Add(r) and run RebLDB(sid , r,⊥).
10: Send (Rate, sid , pp, Pj , prod , ppk ,m, σ) to Pi.

Verifying a Rating: On input (Verify, sid , pp, Pj , prod , ppk ,m, σ) from Pi

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: Set (X, f, oid) := VfyRtg(sid , pp, Pj , prod , ppk ,m, σ).
3: Send (Verify, sid , pp, Pj , prod , ppk ,m, σ, f) to Pi.
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VfyRtg: On internal input (sid , pp, Pj , prod , ppk ,m, σ)

1: If VfyProd(sid , Pj , prod , ppk) = 0 then ignore the request.
2: Send (Verify, sid , pp, Pj , prod , ppk ,m, σ) to S and receive (Verify, sid , pp, Pj , prod , ppk ,m, σ,
b, P ) from S.

3: If (pp, X ′, Pj , prod , ppk ,m, σ, f
′, lid ′, oid ′) ∈ Ratings for some X ′, f ′, lid ′ and oid ′ then

4: X := X ′, f := f ′, oid := oid ′.
5: Else If b = 0 ∨ P = Pj then
6: Set Ratings.Add(pp,⊥, Pj , prod , ppk ,m, σ, 0,⊥,⊥), X := ⊥, f := 0, and oid := ⊥.
7: Else If Pj is honest, P 6= ⊥ and (P, Pj , prod , ppk) /∈ Purch then Output error and halt.
8: Else If P 6= ⊥ and P is honest then output error and halt.
9: Else If P = ⊥ and PIDM is honest then output error and halt.
10: Else Set r := (pp, P, Pj , prod , ppk ,m, σ, 1, lidc,⊥), X := P , f := 1, and oid := ⊥.
11: Set lidc := lidc + 1, Ratings.Add(r), and run RebLDB(sid , r,⊥).
12: Return (X, f, oid).

Linking Ratings: On input (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1) from Pi

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: Set b := LinkRtgs(sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1).
3: Send (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1, b) to Pi.

LinkRtgs: On internal input (sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1)

1: Set (Xk, fk, oidk) := VfyRtg(sid , pp, Pj , prod , ppk ,mk, σk) for k ∈ {0, 1}.
2: Send (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1) to S, receive (Link, sid , pp, Pj , prod , ppk ,m0,
σ0,m1, σ1, b) from S, and set f := 0.

3: If f0 = f1 = 1 then
4: Let rk ∈ Ratings be the unique tuples rk := (pp, Xk, Pj , prod , ppk ,mk, σk, 1, lidk, oidk),

for k ∈ {0, 1}.
5: If lid0 = lid1 then f := 1.
6: Else If X0 = X1 ∧X0 = ⊥ ∧X1 = ⊥ then f := b.
7: Else If X0 6= X1 ∧X0 6= ⊥ ∧X1 6= ⊥ then f := 0.
8: Else If (Xk = ⊥ ∧X1−k 6= ⊥ ∧X1−k is honest) for k = 0 ∨ k = 1 then f := 0.
9: Else If (Xk = ⊥ ∧X1−k 6= ⊥ ∧X1−k is corrupted) for k = 0 ∨ k = 1 then f := b.
10: If f = 1 then run RebLDB(sid , r0, r1).
11: Return f .

RebLDB: On internal input (sid , r, s)

1: Parse r as (pp, X0, Pj , prod , ppk ,m0, σ0, 1, lid0, oid0).
2: If s = ⊥ ∧X1 6= ⊥ then
3: Set L := {`|` ∈ Ratings ∧ `[1] = pp ∧ `[2] = X0 ∧ `[3] = Pj ∧ `[4] = prod ∧ `[5] =

ppk ∧ `[8] = 1} and lid := min{`[9]|` ∈ L}.
4: For each ` ∈ L do Set `′ := `, `′[9] := lid , and Ratings.Sub(`, `′).
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5: If s 6= ⊥ then
6: Parse s as (pp, X1, Pj , prod , ppk ,m1, σ1, 1, lid1, oid1)

7: If X0 = ⊥ ∧X1 6= ⊥ then Set X := X1.
8: Else Set X := X0.
9: Set L := {`|` ∈ Ratings ∧ `[1] = pp ∧ `[3] = Pj ∧ `[4] = prod ∧ `[5] = ppk ∧ `[8] =

1 ∧ (`[9] = lid0 ∨ `[9] = lid1)} and lid := min{lid0, lid1}.
10: For each ` ∈ L do Set `′ := `, `′[2] := X, `′[9] := lid , and Ratings.Sub(`, `′).
11: Set P := {p|p ∈ Purch ∧ p[2] = Pj ∧ p[3] = prod ∧ p[4] = ppk}.
12: Set L := {`|` ∈ Ratings ∧ `[1] = pp ∧ `[3] = Pj ∧ `[4] = prod ∧ `[5] = ppk ∧ `[8] = 1}.
13: If PIDM is corrupted, Pj is honest and |P| < |{`[9]|` ∈ L}| then
14: For each (`, `′) ∈ L2 do
15: Run LinkRtgs(sid , `[1], `[3], `[4], `[5], `[6], `[7], `′[6], `′[7]) ignoring the output of

LinkRtgs.
16: Set P := {p|p ∈ Purch ∧ p[2] = Pj ∧ p[3] = prod ∧ p[4] = ppk}.
17: Set L := {`|` ∈ Ratings ∧ `[1] = pp ∧ `[3] = Pj ∧ `[4] = prod ∧ `[5] = ppk ∧ `[8] = 1}.
18: If Pj is honest and |P| < |{`[9]|` ∈ L}| then Output error and halt.

Determine Raters Identity: On input (Open, sid , pp, Pj , prod , ppk ,m, σ) from PIDM

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: If (PIDM, pp) /∈ Params then ignore the request.
3: Set (X, f, oid) := VfyRtg(sid , pp, Pj , prod , ppk ,m, σ).
4: If f = 1 then
5: Let r ∈ Ratings be the unique tuple r := (pp, X, Pj , prod , ppk ,m, σ, 1, lid

′, oid) for some
lid ′.

6: If oid = ⊥ then Set r′ := r, r′[10] := oidc, Ratings.Sub(r, r′) and oidc := oidc + 1.
7: Send (Open, sid , pp, Pj , prod , ppk ,m, σ,X) to PIDM.
8: Else Send (Open, sid , pp, Pj , prod , ppk ,m, σ,⊥) to PIDM.

Generate Opening Proofs: On input (OProof, sid , pp, Pj , prod , ppk ,m, σ, P ) from PIDM

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.

2: If (PIDM, pp) /∈ Params then ignore the request.
3: Set (X, f, oid) := VfyRtg(sid , pp, Pj , prod , ppk ,m, σ).
4: Send (OProof, sid , pp, Pj , prod , ppk ,m, σ, P ) to S and receive (OProof, sid , pp, Pj , prod , ppk ,
m,σ, P, τ) from S.

5: If f 6= 1 ∨X 6= P ∨ oid = ⊥ then Send (OProof, sid , pp, Pj , prod , ppk ,m, σ, P,⊥) to PIDM.
6: Else
7: If τ = ⊥ ∨ (oid , τ, 0, P ) ∈ Open then output error and halt.
8: Open.Add(oid , τ, 1, P ) and send (OProof, sid , pp, Pj , prod , ppk ,m, σ, P, τ) to PIDM.

Verifying Opening-Proofs: On input (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ) from Pi

1: Check that sid = (PIDM, sid
′) for some sid ′. If not, ignore the request.
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2: Set (X, f, oid) := VfyRtg(sid , pp, Pj , prod , ppk ,m, σ).
3: Send (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ) to S, receive (Judge, sid , pp, Pj , prod , ppk ,m, σ,
P, τ, b) from S, and set v := b.

4: If f = 0 ∨ P = ⊥ ∨ τ = ⊥ then Send (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ, 0) to Pi.
5: Else If X 6= ⊥ then
6: Let r ∈ Ratings be the unique tuple r := (pp, X, Pj , prod , ppk ,m, σ, 1, lid

′, oid) for
some lid ′, and set r′ := r.

7: If X = P ∧ (oid , τ, 1, P ) ∈ Open then v := 1.
8: Else If X 6= P ∨ (oid , τ, 0, P ) ∈ Open then v := 0.
9: Else If PIDM and P are honest and b = 1 then output error and halt.
10: Else
11: Let r ∈ Ratings be the unique tuple r := (pp,⊥, Pj , prod , ppk ,m, σ, 1, lid ′, oid) for

some lid ′, and set r′ := r.
12: If (oid , τ, 0, P ) ∈ Open then v := 0.
13: Else If b = 1 ∧ P is honest then output error and halt.
14: Else If b = 1 then set v := 1, r′[2] := P , Ratings.Sub(r, r′), r := r′

15: Run RebLDB(sid , r′,⊥).
16: If oid = ⊥ then r′[10] := oidc, Ratings.Sub(r, r′), Open.Add(oidc, τ, v, P ), oidc := oidc + 1.
17: Else Open.Add(oid , τ, v, P ).
18: Send (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ, v) to Pi.

Functionality 1: Reputation System

2.2.1 Security Properties of FRS

As many other ideal functionalities in the UC framework, we define FRS to work as a “registy
service” to store parameters, ratings, and opening-proofs. Using the right parameters, every party
is able to check whether ratings and opening-proofs are stored by FRS. In all activations, FRS

lets the simulator S choose the values needed to respond to the activation. The requirements
on these values are defined as restrictions for each activation. In the following, we discuss these
restrictions and the implied security properties.

Registry Key Generation: Similar to the Signature Functionality FSIG [Can04] and the
Public-Key Encryption Functionality FPKE [Can01], we do not make any security relevant
requirements on the public parameters pp.

User Registration: Being registered is a prerequisite to rate a product and covers the first
step to prevent Sybil attacks, whitewashing attacks, bad mouthing attacks, and ballot
stuffing attacks. The user registration models an interactive protocol between PIDM and
some party Pi. In general, FRS lets the simulator S decide whether party Pi successfully
registered, with the following two restrictions: non-registered honest parties communicating
with an honest PIDM using the right public parameters will always be registered after the
protocol execution (b = 1) and an honest PIDM will reject a party from registering, when
wrong parameters are used (b = 0).
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Product Addition and VfyProd: The NewProduct-activation is used by party Pi to publish
a new product-public key ppk for a given product prod ∈ {0, 1}∗. The value ppk is bound
to the bitstring prod and to the party requesting it, such that every party can validate
the ownership of a product. Formally this means, that a product-public key is only valid
for one specific pair (P, prod). This is a very important requirement, because it models
unforgeability of product-public keys. Without this property any corrupted party Pj could
“copy” some ppk (that was generated by an honest party Pi) and declare foreign ratings
as own ratings: all valid ratings for (Pi, prod , ppk) would also be valid for (Pj , prod

′, ppk ′).
Since we want to have a reliable, trustworthy and fair system such attacks must be prevented.
We emphasize that VfyProd is modeled as an internal subroutine within FRS and is implicitly
used in other activations.

Purchase: Another prerequisite to rate a product is to purchase it. This is necessary to prevent
value imbalance attacks. The purchasing protocol is an interactive protocol between two
parties: the seller Pj and the purchaser Pi. Naturally, before purchasing a product its
corresponding product-public key is verified. Only if this is valid, the protocol will be
executed. For two honest parties the purchasing process will successfully finish, whereas
the simulator S determines the outcome of the protocol execution in any other case.

Rating a Product: When party Pi wants to rate the product prod with public key ppk owned
by party Pj , Pi must be registered, must have purchased the specified product, and must not
have rated the product before. Being registered is necessary to open ratings, whereas having
purchased the product enables rating verifiers to detect self-ratings, bad mouthing attacks
and ballot stuffing attacks. In the case that PIDM is honest, FRS guarantees anonymity of
raters : the simulator S is asked to output a rating σ, that is valid for the specified product,
without knowing the rating party. Hence, the output rating cannot depend on the raters’
identity. In the case that PIDM is corrupted, the simulator S obtains the identity of the
rater, because in this case anonymity cannot be achieved.

Rating Verification and Determining the Raters’ Identity: Given the right parameters,
every rating can be verified. Note that ratings are only verified, if the specified product is
valid. A valid rating guarantees the following properties, even for maliciously generated
ratings:

• Non-Self-Rating: the rater is not the owner of the product.

• Linkability: the rater purchased the product (will be discussed later in detail).

• Traceability: the rater is registered and can be identified.

Every single property is crucial for trustworthy reputation. If self-ratings would not be
prevented, ballot stuffing attacks were possible. The same holds for linkability, but this will
be discussed later in detail. Being able to open ratings is also very important in practical
applications, because otherwise misbehaving parties can not be identified and punished.
Hence, it must be guaranteed that honest parties are not blamed having rated some product,
when they did not. This property is called non-frameability and is discussed later in detail.
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FRS not only asks the simulator S to validate a rating, but also to determine the raters’
identity. This models the ability of PIDM to open every rating, not only those for which an
Open-request occurs. Furthermore, it simplifies the definition of FRS without weakening
the security properties, because VfyRtg encapsulates all important characteristics of a valid
rating in a single and reusable procedure.

Linking Ratings and RebLDB: For every party using a reputation system it is important to
know whether two valid ratings for the same product are generated by the same party. If this
is true, the rater behaved dishonestly. We call this property linkability, which prevents bad
mouthing attacks and ballot stuffing attacks. Linkability represents an equivalence relation:
Link(x, x) = 1, Link(x, y) = Link(y, x) and Link(x, y) = 1 ∧ Link(y, z) = 1⇒ Link(x, z) = 1.
The value lid stored by FRS for every rating represents the equivalence class the rating
belongs to. Initially, lid is set to the current value of a global counter lidc. The linking-class
identifiers are updated by the RebLDB algorithm whenever a new rating is added to the list
Ratings (via Rate and Verify) or new linking information is obtained (via Link and Judge).
This algorithm is only for internal use and not callable by any party. The RebLDB-algorithm
merges two equivalence classes in the following cases:

• Step 2 covers calls to the algorithm from Rate, Verify, and Judge (s = ⊥), where PIDM

is not corrupted and/or X1 is an uncorrupted rater (X1 6= ⊥). In these cases RebLDB
selects all valid ratings for the specified product from the same rater X1 (the set L)
and sets the value lid (`[9] for ` ∈ L) for all ratings in L to the minimal value within
the selected ratings.

• Step 5 handles requests from Link where either the identity of the rater is not known
but the simulator S tells FRS that these ratings are linkable (Step 6 of Link), or the
identity of some corrupted party can be updated for some rating, because it is linkable
to another rating FRS already knows the identity of (Step 9 in Link). According to the
transitivity of the linkability relation, RebLDB merges the two equivalence classes into
one class by selecting all ratings within the two classes (Step 9) and setting lid to be
the smaller of both values. Additionally, if a party identity is given in X1 or X2 this
value will be set for all ratings within the equivalence class (Step 10).

• In Steps RebLDB–18 RebLDB verifies that there do not exist more equivalence classes
for an honestly generated product than the party owning the product sold. This
ensures that it is only possible to rate a product once (without being linkable) after
purchasing.

When PIDM is corrupted, it is possible that no linking information is available to FRS.
In this case FRS asks the simulator S to link all ratings for the product in question.
Without this step a simple attack is possible:

– Z lets the real-world adversary A corrupt PIDM and some party Pi, lets Pi purchase
some product from an honest party Pj , generates multiple valid ratings for this
product and verifies them.

– In this scenario FRS adds the ratings to Ratings during the Verify-protocol, which
in turn calls RebLDB. Since no linking information is available to FRS, without
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Step 13 FRS outputs error, even when all ratings are linkable. Hence, no protocol
can realize FRS.

If after Step 13 there are still more equivalence classes than purchases, this violates
the security requirements of FRS.

Summarizing, the handling of equivalence classes is modeled by the RebLDB-algorithm
which uses linking information obtained from the algorithms Rate, Verify, Link, and Judge.

Generating and Verifying Opening-Proofs: Opening-proofs are values that enable every
party to verify that a blamed party is really the author of a given rating. This covers the
property of non-frameability : no honest party can be accused being the author of a given
rating, when it is not. FRS asks the simulator S to output valid opening-proofs and ignores
the output of S, if the given rating is invalid, a wrong identity is given or the rating has
not been opened yet. Since there can be more than one valid opening-proof, the value oid
is used to connect a rating with its list of opening-proofs. This mechanism ensures that an
opening-proof cannot be used to determine a raters identity for other ratings.

3 Realizing FRS

Before introducing the protocol that realizes FRS, we give the required preliminaries and building
blocks in this section.

3.1 Preliminaries

Our realization relies on bilinear groups, the Symmetric External Diffie-Hellman-Assumption,
and the Pointcheval-Sanders-Assumption. For completeness, we give the respective definitions in
this section.

Definition 3.1 (Bilinear Groups). A bilinear group GD is a set of three cyclic groups G1,G2

and GT , each group of prime order p, along with a bilinear map e : G1 × G2 → GT with the
following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp : e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: for u 6= 1G1 and v 6= 1G2 : e(u, v) 6= 1GT .

3. The map e is efficiently computable.

We will use pairings of Type-3 for our construction, because they allow efficient implementations
and the Pointcheval-Sanders-Assumption does not hold in Type-1 and Type-2 pairing groups.
Furthermore, for Type-3 pairing groups it is believed that the Decisional-Diffie-Hellman-Problem
is hard in both G1 and G2. This assumption is often referred to as the Symmetric External
Diffie-Hellman-Assumption (SXDH) [GSW10].

Definition 3.2 (Bilinear Group Generator). A bilinear group generator, denoted by BiGrGen, is
a probabilistic polynomial time algorithm that, on input 1λ, outputs a description of a bilinear
group GD. We denote the output of BiGrGen by GD = (p,G1,G2,GT , e, g1, g2).
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Definition 3.3 (Pointcheval-Sanders-Problem – PS1). Let GD = (p,G1,G2,GT , e, g1, g2) be a
bilinear group setting of Type-3, with generators g1 ∈ G1 and g2 ∈ G2. Further, let g←u G1,
g̃←u G2, X := gx, Y := gy ∈ G1 and X̃ := g̃x, Ỹ := g̃y ∈ G2, for x, y←u Zp. We define
the oracle O(m) as follows: on input m ∈ Zp, choose h←u G1 and output (h, hx+m·y). Given
(g, Y, g̃, X̃, Ỹ ) and unlimited access to oracle O, the Pointcheval-Sanders-Problem is to output a
tuple (m∗, s, sx+m∗·y), where s 6= 1G1 and m∗ was not asked to O.
We say the Pointcheval-Sanders-Assumption holds for bilinear group generator BiGrGen if for

all probabilistic polynomial time adversaries A there exists a negligible function negl such that

Pr
[
AO(·)

(
GD, g, Y, g̃, X̃, Ỹ

)
=
(
m∗, s, sx+m∗·y

)]
≤ negl(λ),

where the probability is taken over the random bits used by BiGrGen,A, and the random choices
of x, y←u Zp.

3.2 Building Blocks and Intuition for our Realization

In this section we briefly introduce the building blocks of our realization and explain how they
are combined to realize FRS.

We use Pointcheval-Sanders Signatures (PS = (KeyGen, Sign,Verify)) [PS16] as certificates for
registration and for purchased products. We call the certificate for registration a registration token,
the certificate for purchased products a rating token. To obtain such tokens every user has to prove
knowledge of a self-chosen user-secret-key usk . We use the concurrent zero-knowledge variant of
Σ-protocols, which uses Trapdoor Pedersen Commitments (PD = (KeyGen,Commit,Reveal,Equiv))
for this purpose.

Definition 3.4 (Pointcheval-Sanders Signatures (PS)). Let GD = (p,G1,G2,GT , e, g1, g2) be a
bilinear group setting of Type-3, with generators g1 ∈ G1 and g2 ∈ G2. The Pointcheval-Sanders
Signature Scheme for messages m ∈ Zp is defined as follows:

KeyGen(GD)

1: Choose ξ1, ξ2←u Zp, and g̃←u G2.
2: Set (X̃, Ỹ ) := (g̃ξ1 , g̃ξ2), sk := (ξ1, ξ2) and pk := (g̃, X̃, Ỹ ) and output (pk , sk).

Sign(sk ,m)

Choose s←u G1, set σ := (σ1, σ2) := (s, sξ1+ξ2·m) and output σ as signature on m.

Verify(pk ,m, σ)

Output 1, iff σ1 6= 1G1 and e(σ1, X̃ · Ỹ m) = e(σ2, g̃).

To sign committed messages M = gm1 a modified signing algorithm can be used:

Sign(sk ,M)

Choose α←u Zp, set σ = (σ1, σ2) := (gα1 , (g
ξ1
1 ·M ξ2)α), and output σ as signature on m.

Definition 3.5 (Trapdoor Pedersen Commitments (PD)). Let GD = (p,G1,G2,GT , e, g1, g2) be
a bilinear group setting of Type-3, with generators g1 ∈ G1 and g2 ∈ G2. The Trapdoor Pedersen
Commitment Scheme for messages m ∈ Zp is defined as follows:
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KeyGen(GD)

Choose td←u Zp, u←u G1, set v := utd , and output pk := (u, v).

Commit(pk ,m)

Choose r←u Zp and output the commitment com := um · vr and the decommitment r.

Reveal(pk , com,m, r)

Output the decommitment r such that Commit(pk ,m; r) = com.

Equiv(pk , td , com,m, r,m′)

Output r′ := (m−m′ + td · r) · td−1.

To rate a product a user has to non-interactively prove knowledge of the registration token, the
rating token, and its personal user-secret, for which the tokens were generated. As non-interactive
proof system we use Signatures of Knowledge [CL06]. Also, opening-proofs, generated by PIDM,
are non-interactive proofs of knowledge of opening tokens. These tokens are given by a user Pi to
the System Manager PIDM during the registration protocol. In our construction it is important
not to publish these tokens, because they allow to open any rating. Hence, we encrypt opening
tokens with the CCA2-secure Cramer-Shoup encryption (CS = (KeyGen,Enc,Dec)) [CS98].

Definition 3.6 (Cramer-Shoup Encryption (CS)). LetGD = (p,G1,G2,GT , e, g1, g2) be a bilinear
group setting of Type-3, with generators g1 ∈ G1 and g2 ∈ G2, and let H : {0, 1}∗ → Zp be a
collision resistant hash function. The Cramer-Shoup Encryption Scheme for messages m ∈ G2 is
defined as follows:

KeyGen(GD)

1: Choose h̃←u G2 and ζ1, ζ2, ζ3, ζ4, ζ5←u Zp.
2: Set b̃ := gζ12 · h̃ζ2 , d̃ := gζ32 · h̃ζ4 , f̃ := gζ52 , sk := (ζ1, ζ2, ζ3, ζ4, ζ5), and pk := (g2, h̃, b̃, d̃, f̃ ,H).
3: Output the key pair (sk , pk).

Enc(pk ,m)

1: Choose β←u Zp
2: Set ct1 := gβ2 , ct2 := h̃β , ct3 := m · f̃β , ω := H(ct1, ct2, ct3), ct4 := (b̃ · d̃ω)β .
3: Output the cipher text ct := (ct1, ct2, ct3, ct4).

Dec(sk , ct)

Output m := ct3 · ct−ζ51 , iff ctζ11 · ct
ζ2
2 · (ct

ζ3
1 · ct

ζ4
2 )ω = ct4, where ω := H(ct1, ct2, ct3).

The Signatures of Knowledge we use need a Random Oracle, which can be modeled as the
ideal functionality FRO [HMQ04] in the UC framework. We further need the ideal functionalities
for Common Reference Strings FCRS [CF01] and Certification FCA [Can04]. FCRS is needed for
secure commitment schemes like the above mentioned Trapdoor Pedersen Commitments and FCA

ensures that users cannot register with different identities.
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FRO

FRO operates on security parameter k and manages the list LRO of pairs of bitstrings, which is
initially empty.

Retrieving values: On input (sid ,m) from P or S
1: If (m, v) ∈ LRO for some v ∈ {0, 1}k then set h := v

2: Else choose h←u {0, 1}k and store (m,h) in LRO
3: Send (sid ,m, h) to the activating party (P or S).

Functionality 2: Random Oracle

FCRS

FCRS operates on distribution D and controls the value CRS , which is initialized to ⊥.

Retrieving the CRS: On input (sid) from P or S
1: If CRS = ⊥ then set CRS ← D.
2: Send (sid ,CRS ) to the activating party (P or S).

Functionality 3: Common Reference String

FCA

Registering Values: On input (Register, sid , v) from Pi
1: Send (Register, sid) to S and receive (Register, sid , ok) from S.
2: If sid = Pi and this is the first request then record (Pi, v).

Retrieving registered values: On input (Retrieve, sid) from Pj
1: Send (Retrieve, sid , Pj) to S and receive (Retrieve, sid , Pj , ok) from S.
2: If there is a tuple (sid , v) recorded then send (Retrieve, sid , v) to Pj .
3: Else send (Retrieve, sid ,⊥) to Pj .

Functionality 4: Certification Authority

In our construction the output of FCRS is (GD,PD.pk ,H,H1,H2), where GD is the output of
the bilinear group generator BiGrGen(1λ), PD.pk = (u, v) ∈ G2

1 is the public key of the Trapdoor
Pedersen Commitment scheme, and H : {0, 1}∗ → Zp, H1 : {0, 1}∗ → G1, and H2 : {0, 1}∗ → G2

are collision-resistant hash functions. We assume that every party obtains the common-reference
string prior to its first activation.

We write y := FRO(x) to indicate a call to FRO on input (sid , x) and outputting y to the calling
party.
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3.3 A Protocol for Realizing FRS

We assume to communicate via authenticated channels between two parties. This implies that
the identities of communicating parties are known to each other and that the adversary cannot
modify the message’s payload.

ΠRS

All parties except PIDM: On the first activation of Pi
1: Choose a value usk i←u Zp and compute Mi := gusk i1 , where g1 ∈ G1 is given by FCRS.
2: Send (Register, Pi,Mi) to FCA, and store the user-secret-key usk i.

Registry Key Generation: When PIDM receives (KeyGen, sid) from Z
1: Run PS.KeyGen(GD) to obtain PS.pk := (g̃, X̃, Ỹ ) and PS.sk := (ξ1, ξ2).
2: Run CS.Setup(GD) to obtain CS.pk := (g2, h̃, b̃, d̃, f̃ ,H) and CS.sk := (ζ1, ζ2, ζ3, ζ4, ζ5).
3: Set pp := (PS.pk ,CS.pk) and idmsk := (PS.sk ,CS.sk).
4: Set Params.Add(pp) and Paramss.Add(pp, idmsk).
5: Output (KeyGen, sid , pp).

User Registration: When Pi receives (Register, sid , pp′) from Z
Pi: 1: Choose α, r←u Zp, compute T := gα1 , R := uH(T ) · vr and send (pp′, R) to PIDM.
PIDM: 2: Obtain Mi from FCA(Retrieve, Pi).

3: If FCA returned (Retrieve, Pi,⊥), pp′ /∈ Params or (Pi, pp
′,M ′, Y ′, σ′) ∈ Reg for some

M ′, Y ′, σ′ then send abort to Pi and output (Register, sid , pp′, Pi, 0).
4: Else Choose ch←u Zp and send ch to Pi.

Pi: 5: If PIDM sent abort then output (Register, sid , pp′, Pi, 0).
6: Else Compute sα := α + ch · usk i, ct ← CS.Enc(CS.pk , Ỹ usk i) and send (sα, T, r, ct)

to PIDM.
PIDM: 7: Compute Ỹi := CS.Dec(CS.sk , ct).

8: If decrypting ct failed, or M ch
i · T 6= gsα1 , or R 6= uH(T ) · vr, or e(Mi, Ỹ ) 6= e(g1, Ỹi)

then send abort to Pi and output (Register, sid , pp′, Pi, 0).
9: Else compute σi ← PS.Sign(PS.sk ,Mi), set Reg.Add(Pi, pp

′,Mi, Ỹi, σi), send σi to Pi,
and output (Register, sid , pp′, Pi, 1).

Pi: 10: If PIDM sent abort then output (Register, sid , pp′, Pi, 0).
11: Else If PS.Verify(pp′, usk i, σi) = 1 then
12: store (usk i, σi), and output (Register, sid , pp′, Pi, 1).
13: Else output (Register, sid , pp′, Pi, 0).

Product Addition: When Pi receives (NewProduct, sid , prod) from Z
1: Compute g̃i,prod := H2(i, prod) and run PS.KeyGen(GD) with g̃i,prod as generator of G2 to

obtain PS.pk i,prod := (g̃i,prod , X̃i,prod , Ỹi,prod ) and PS.sk i,prod := (ξ1i,prod , ξ2i,prod ).
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2: Compute Mi,prod := H1(i, prod)usk i .
3: Choose r←u Zp and compute R1 := H1(i, prod)r and R2 := gr1.
4: Set chi,prod := FRO(PS.pk i,prod ,Mi, Mi,prod , R1, R2) and si,prod := r + chi,prod · usk i.
5: Set ppk i,prod := (Mi,Mi,prod , chi,prod , si,prod ,PS.pk i,prod ) and Prodsi.Add(prod , ppk i,prod ).
6: Output (NewProduct, sid , prod , ppk i,prod ).

Purchase: When Pi receives (Purchase, sid , Pj , prod , ppk) from Z
Pi: 1: If VfyProd(Pj , prod , ppk) = 0 ∨ Pi = Pj then ignore the request.

2: Else choose α, r←u Zp, compute T := gα1 , R := uH(T ) · vr and send (prod , ppk , R) to Pj .
Pj : 3: Obtain Mi from FCA(Retrieve, Pi).

4: If FCA returned (Retrieve, Pi,⊥) or (prod , ppk) /∈ Prodsj then
5: send abort to Pi and output (Purchase, sid , Pi, Pj , prod , ppk , 0).
6: Else choose ch←u Zp and send ch to Pi.

Pi: 7: If Pj sent abort then output (Purchase, sid , Pi, Pj , prod , ppk , 0).
8: Else compute sα := α+ ch · usk i and send (sα, T, r) to Pj .

Pj : 9: If M ch
i · T 6= gsα1 or R 6= uH(T ) · vr then

10: send abort to Pi and output (Purchase, sid , Pi, Pj , prod , ppk , 0).
11: Else compute σi,j,prod ← PS.Sign(PS.sk i,prod ,Mi) and set Purchj .Add(Pi, prod , σi,j,prod ).
12: Send σi,j,prod to Pi.

Pi: 13: If Pj sent abort then output (Purchase, sid , Pi, Pj , prod , ppk , 0).
14: Else If PS.Verify(PS.pki,prod , usk i, σi,j,prod ) = 1 then
15: store σi,j,prod , and output (Purchase, sid , Pi, Pj , prod , ppk , 1).
16: Else output (Purchase, sid , Pi, Pj , prod , ppk , 0).

VfyProd: On local input (Pj , prod , ppk)

1: Obtain Mj from FCA(Retrieve, Pj)

2: If FCA returned (Retrieve, Pj ,⊥) then return 0.
3: Else parse ppk as (M ′j , Mj,prod , chj,prod , sj,prod , PS.pk j,prod ).

4: Set R1 := H1(j, prod)sj,prod ·M−chj,prodj,prod and R2 := g
sj,prod
1 ·M−chj,prodj .

5: If Mj 6= M ′j or chj,prod 6= FRO(PS.pk j,prod ,Mj ,Mj,prod , R1, R2) then return 0.
6: Else return 1.

Rate a Product: When Pi receives (Rate, sid , pp, Pj , prod , ppk ,m) from Z
1: If no tuple (usk i, σi) is stored such that PS.Verify(pp, usk i, σi) = 1, or no σi,j,prod is stored

such that PS.Verify(PS.pk i,prod , usk i, σi,j,prod) = 1, or a tuple (m′, σ) = (m′, T1, T2, T3,
T4, T5, ch, s) is stored such that (Verify, sid , pp, Pj , prod , ppk , m′, σ) = 1 then

2: ignore the request.
3: Choose t1, t2, k←u Zp.
4: Compute T1 := σt1i,1, T2 := σt1i,2, T3 := σt2i,j,prod ,1, T4 := σt2i,j,prod ,2, T5 := H1(j, prod)usk i .
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5: Compute R1 := e(T1, Ỹ )k, R2 := e(T3, Ỹj,prod )k, R3 := H1(j, prod)k.
6: Set ch := FRO(T1, T2, T3, T4, T5, R1, R2, R3, prod , ppk ,m), and s := k + ch · usk i.
7: Set σ := (T1, T2, T3, T4, T5, ch, s) and store σ.
8: Output (Rate, sid , pp, Pj , prod , ppk ,m, σ).

Verifying a Rating: When Pi receives (Verify, sid , pp, Pj , prod , ppk ,m, σ) from Z
1: If VfyProd(Pj , prod , ppk) = 0 then ignore the request.
2: Parse σ as (T1, T2, T3, T4, T5, ch, s).
3: Set R′1 := e(T1, X̃)ch · e(T2, g̃)−ch · e(T1, Ỹ )s, R′3 := T−ch5 · H1(j, prod)s,
R′2 := e(T3, X̃j,prod )ch · e(T4, g̃j,prod )−ch · e(T3, Ỹj,prod )s.

4: Set f :=
[
T5 6= Mj,prod ∧ ch = FRO(T1, T2, T3, T4, T5, R′1, R′2, R′3, prod , ppk , m)

]
5: Output (Verify, sid , pp, Pj , prod , ppk ,m, σ, f).

Linking Ratings: When Pi receives (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1) from Z
1: If (Verify, sid , pp, Pj , prod , ppk ,mk, σk) = 1, for k ∈ {0, 1} then
2: Parse σ0 as (T1, T2, T3, T4, T5, ch, s), and σ1 as (T ′1, T

′
2, T

′
3, T

′
4, T

′
5, ch

′, s′).
3: Output (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1, (T5 = T ′5)).
4: Else Output (Link, sid , pp, Pj , prod , ppk ,m0, σ0,m1, σ1, 0).

Determine Raters Identity: When PIDM receives (Open, sid , pp, Pj , prod , ppk ,m, σ) from Z
1: If pp /∈ Params then ignore the request.
2: Set f := (Verify, sid , pp, Pj , prod , ppk ,m, σ).
3: If f = 1 then parse σ as (T1, T2, T3, T4, T5, ch, s) and iterate through Reg to find a tuple

(Pi, pp,Mi, Ỹi, σi) such that e(T5, Ỹ ) = e(H1(j, prod), Ỹi).
4: If f = 0 or no such tuple could be found then output (Open, sid , pp, Pj , prod , ppk ,m, σ,⊥).
5: Else Set Open.Add(pp, Pj , prod , ppk ,m, σ, Pi).
6: Output (Open, sid , pp, Pj , prod , ppk ,m, σ, Pi).

Generate Opening Proof: When PIDM receives (OProof, sid , pp, Pj , prod , ppk ,m, σ, P ) from
Z
1: If pp /∈ Params then ignore the request.
2: Set f := (Verify, sid , pp, Pj , prod , ppk ,m, σ).
3: If f = 0 ∨ (pp, Pj , prod , ppk ,m, σ, P ) /∈ Open then
4: output (OProof, sid , pp, Pj , prod , ppk ,m, σ, P,⊥).
5: Else Parse σ as (T1, T2, T3, T4, T5, ch, s).
6: Select the tuple (P, pp,Mi, Ỹi, σi) such that e(T5, Ỹ ) = e(H1(j, prod), Ỹi).
7: Choose β←u Zp and compute ct = (ct1, ct2, ct3, ct4)← CS.Enc(CS.pk , Ỹi;β).
8: Choose r←u Zp and compute R1 := gr2, R2 := h̃r, R3 := e(H1(j, prod), f̃)r.
9: Compute ω := H(ct1, ct2, ct3), R4 := (b̃ · d̃ω)r, R5 := e(g1, f̃)r.
10: Set ĉh := FRO(ct , R1, R2, R3, R4, R5, σ, i,Mi), ŝ := r + ĉh · β, and τ := (Pi, ct , ĉh, ŝ).
11: Set Open.Add(pp, Pj , prod , ppk ,m, σ, P, τ).
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12: Output (OProof, sid , pp, Pj , prod , ppk ,m, σ, P, τ).

Verifying Opening-Proofs: When Pi receives (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ) from Z
1: Set f := (Verify, sid , pp, Pj , prod , ppk ,m, σ).
2: Obtain M from FCA(Retrieve, P ).
3: If FCA returned (Retrieve, P,⊥) ∨ f = 0 ∨ P = ⊥ ∨ τ = ⊥ then
4: output (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ, 0).

5: Else Parse τ as (Pi, (ct1, ct2, ct3, ct4), ĉh, ŝ).

6: Compute R1 := ct−ĉh1 · gŝ2, R2 := ct−ĉh2 · h̃ŝ.
7: Compute R3 := e(H1(j, prod), ct3)−ĉh · e(T5, Ỹ )ĉh · e(H1(j, prod), f̃)ŝ

8: Compute ω := H(ct1, ct2, ct3).

9: Compute R4 := ct−ĉh4 · (b̃ · d̃ω)ŝ, R5 := e(g1, ct3)−ĉh · e(M, Ỹ )ĉh · e(g1, f̃)ŝ.

10: Set f := (P = Pi ∧ ĉh = FRO(ct , R1, R2, R3, R4, R5, σ, i,M)).
11: Output (Judge, sid , pp, Pj , prod , ppk ,m, σ, P, τ, f)

Protocol 1: Protocol for FRS

Theorem 3.1. Under the Authenticated Channels Assumption, the SXDH-Assumption, the
Pointcheval-Sanders-Assumption, and the assumption that H,H1, and H2 are collision-resistant
hash functions, Protocol ΠRS UC-realizes the FRS functionality in the (FRO, FCRS, FCA)-hybrid
model, in the presence of static adversaries.

3.3.1 Intuition to the Proof

To prove Theorem 3.1 we have to show that for any probabilistic polynomial-time real-world
adversary A there exists a probabilistic polynomial-time ideal-world adversary S such that for
any probabilistic polynomial-time environment Z it holds:{

EXECFRS,SA,Z(1λ, z)
}
λ∈N,z∈{0,1}∗

c≡
{

EXECFRO,FCRS,FCA
ΠRS,A,Z (1λ, z)

}
λ∈N,z∈{0,1}∗

.

We divide the proof of this statement into three parts. In the first part we define the simulator
S that interacts with FRS and simulates the cryptographic computations. Note that during
Rate-requests S does not obtain any identifying information of the rater. Hence, S uses the
zero-knowledge simulator for the Signature of Knowledge that represents a rating. Analogously,
opening-proofs are represented by a Signature of Knowledge. Therefore, S uses the corresponding
zero-knowledge simulator to generate opening-proofs.
In the second part of the proof we define a hybrid game G and a corresponding simulator S1

for which we prove that no environment Z can distinguish whether it interacts with (FRS,S) or
(G,S1). In this game S1 obtains all identifying information during Rate-requests and therefore
can execute the computations as defined in Protocol ΠRS. Also opening-proofs can be generated
by S1 as in Protocol ΠRS. Hence, an environment Z is only able to distinguish (FRS,S) and
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(G,S1), if it can distinguish between simulated and real ratings and opening-proofs. Under the
SXDH-Assumption this is not possible.

In the third part of the proof we show that S1 executes exactly the same computations as
Protocol ΠRS. This implies that any environment Z that distinguishes between (G,S1) and
(ΠRS,A) is able to let FRS output error, whereas the Protocol ΠRS outputs some value, or FRS

outputs 0, whereas Protocol ΠRS outputs 1 (or vice versa). Using different reductions to the
Pointcheval-Sanders-Problem and to the CCA2-security of the Cramer-Shoup encryption scheme
we show that such environments cannot exist. Hence, ΠRS UC-realizes FRS in the (FRO, FCRS,
FCA)-hybrid model.

3.4 The Proof of Theorem 3.1

Formally, we prove the following: for every A and every Z{
EXECFRS,SA,Z(1λ, z)

}
λ∈N,z∈{0,1}∗

c≡
{

EXECFRO,FCRS,FCA
ΠRS,A,Z (1λ, z)

}
λ∈N,z∈{0,1}∗

by introducing a hybrid game G and proving the two relations{
EXECFRS,SA,Z(1λ, z)

}
λ∈N,z∈{0,1}∗

c≡
{
GFRS,SA1 ,Z

(1λ, z)
}
λ∈N,z∈{0,1}∗

and {
GFRS,SA1 ,Z

(1λ, z)
}
λ∈N,z∈{0,1}∗

c≡
{

EXECFRO,FCRS,FCA
ΠRS,A,Z (1λ, z)

}
λ∈N,z∈{0,1}∗

.

As abbreviations we set

IDEAL :=
{

EXECFRS,SA,Z(1λ, z)
}
λ∈N,z∈{0,1}∗

and
HYBRID :=

{
EXECFRO,FCRS,FCA

ΠRS,A,Z (1λ, z)
}
λ∈N,z∈{0,1}∗

.

3.4.1 Foundations for the Proof of Theorem 3.1

The protocols ΠRS.Register, ΠRS.NewProduct, ΠRS.Purchase, ΠRS.Rate, and ΠRS.OProof are based
on zero-knowledge proofs of knowledge. In this section we prove these properties because they
are used in the proof of Theorem 3.1. To formalize the statements to prove we use the notation
introduced by Camenisch and Stadler [CS97].

Lemma 3.1. In the protocols ΠRS.Register and ΠRS.Purchase party Pi proves the statement
ZKPK{(usk i) : Mi = guski} to PIDM and Pj, respectively.

Proof.

• Completeness: An honest prover will generate an accepting transcript as the verification
equations hold: M ch

i · T = (gusk i1 )ch · gα1 = gα+ch·usk i
1 = gsα1 and R = uH(T ) · vr.
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• Interactive Simulator: In order to simulate transcripts of the protocol, the simulator has
to set up the Trapdoor Pedersen Commitment (Definition 3.5). By running the KeyGen
algorithm the simulator knows the trapdoor td . With this value the simulation works as
follows:

Choose α′, r′←u Zp, compute T ′ := gα
′

1 , R := uH(T ′) · vr′ and send the commitment R to
the verifier. On receiving a challenge ch ∈ Zp the simulator chooses sα←u Zp and sets
T := gsα1 ·M

−ch
i . Finally, by using the commitment trapdoor td the simulator computes

r := (H(T ′)−H(T ) + td · r′) · td−1, according to the Equiv algorithm, and outputs (sα, T, r)
to the verifier. The resulting transcripts are identically distributed as real transcripts.

• Extractor: Given two accepting transcripts (R, ch, sα, T, r) and (R, ch ′, s′α, T, r) the extrac-
tor computes usk i := (sα − s′α)/(ch − ch ′), which is the discrete logarithm of Mi to base g1:
M ch
i · T = gsα1 ∧M ch ′

i · T = g
s′α
1 =⇒M ch−ch ′

i = g
sα−s′α
1 =⇒Mi = g

(sα−s′α)/(ch−ch ′)
1 .

Lemma 3.2. The value ppk i,prod output in Protocol ΠRS.NewProduct is a Signature of Knowl-
edge on message PS.pk i,prod proving the statement ZKPK{(usk i) : Mi = guski1 ∧ Mi,prod =

H1(i, prod)usk i}.

Proof.

• Completeness: An honest prover will generate an accepting transcript as the verification
equations hold:

H1(i, prod)si,prod ·M−chi,prodi,prod = H1(i, prod)r+chi,prod ·usk i · H1(i, prod)−usk i·chi,prod

= H1(i, prod)r = R1 (1)

g
si,prod
1 ·M−chi,prodi = g

r+chi,prod ·usk i
1 · g−usk i·chi,prod1 = gr1 = R2 (2)

and hence

chi,prod = FRO(PS.pk i,prod ,Mi,Mi,prod , R1, R2). (3)

• Simulator: Given Mi,Mi,prod , and PS.pk i,prod as input and using the random oracle FRO,
transcripts can be simulated, as follows:

Choose chi,prod , si,prod←u Zp, set R1 := H1(i, prod)si,prod · M−chi,prodi,prod and R2 := g
si,prod
1 ·

M
−chi,prod
i , and patch FRO(PS.pk i,prod ,Mi,Mi,prod , R1, R2) := ci,prod . The resulting tran-

scripts are identically distributed as real transcripts.

• Extractor: Given two accepting transcripts, as Signatures of Knowledge on message
PS.pk i,prod , (Mi,Mi,prod , chi,prod , si,prod ) and (Mi,Mi,prod , ch

′
i,prod , s

′
i,prod ) the extractor com-

putes usk i := (si,prod − s′i,prod)/(chi,prod − ch ′i,prod), which is the discrete logarithm of

Mi to base g1: M
chi,prod
i · R1 = g

si,prod
1 ∧M ch ′i,prod

i · R1 = g
s′i,prod
1 =⇒ M

chi,prod−ch ′i,prod
i =

g
si,prod−s′i,prod
1 =⇒ Mi = g

(si,prod−s′i,prod )/(chi,prod−ch ′i,prod )

1 . Analogously on can argue for the
discrete logarithm of Mi,prod to base H1(i, prod).
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Lemma 3.3. The value σ output in Protocol ΠRS.Rate is a Signature of Knowledge on message
m proving the following statement:

ZKPK{(usk i, σi, σi,j,prod ) : Verify(PS.pk , usk i, (T1, T2)) = 1

∧ Verify(PS.pk j,prod , usk i, (T3, T4)) = 1

∧ T5 = H1(j, prod)usk i}.

Proof.

• Completeness: An honest prover will generate an accepting transcript as the verification
equations hold:

e(T1, X̃)ch · e(T2, g̃)−ch · e(T1, Ỹ )s = e(T1, g̃
ξ1)ch · e(T2, g̃)−ch · e(T1, g̃

ξ2)k+ch·usk i

= e(T1, g̃
ξ1)ch · e(T1, g̃

ξ2·usk i)ch · e(T2, g̃)−ch · e(T1, g̃
ξ2)k

= e(T1, g̃
ξ1+ξ2·usk i)ch · e(T2, g̃)−ch · e(T1, g̃

ξ2)k

= e(T1, Ỹ )k = R1 (4)
⇐⇒ PS.Verify(PS.pk , usk i, (T1, T2)) = 1 (5)

e(T3, X̃j,prod )ch ·e(T4, g̃j,prod )−ch · e(T3, Ỹj,prod )s

= e(T3, g̃
ξ1j,prod
j,prod )ch · e(T4, g̃j,prod )−ch · e(T3, g̃

ξ2j,prod
j,prod )k+ch·usk i

= e(T3, g̃
ξ1j,prod
j,prod )ch · e(T3, g̃

ξ2j,prod ·usk i
j,prod )ch · e(T4, g̃j,prod )−ch · e(T3, g̃

ξ2j,prod
j,prod )k

= e(T3, g̃
ξ1j,prod +ξ2j,prod ·usk i
j,prod )ch · e(T4, g̃j,prod )−ch · e(T3, g̃

ξ2j,prod
j,prod )k

= e(T3, Ỹj,prod )k = R2 (6)
⇐⇒ PS.Verify(PS.pk j,prod , usk i, (T3, T4)) = 1 (7)

T−ch5 · H1(j, prod)s = H1(j, prod)−usk i·ch · H1(j, prod)k+usk i·ch = H1(j, prod)k = R3 (8)

and hence

ch = FRO(T1, T2, T3, T4, T5, R1, R2, R3, prod , ppk ,m). (9)

• Simulator: Given pp, j, prod , ppk and m as input and using the random oracle FRO, tran-
scripts can be simulated, as follows:

Choose ch, s←u Zp and T1, T2, T3, T4, T5←u G1, set R1 := e(T1, X̃)ch · e(T2, g̃)−ch · e(T1, Ỹ )s,
R2 := e(T3, X̃j,prod)ch · e(T4, g̃j,prod)−ch · e(T3, Ỹj,prod)s, R3 := T−ch5 · H1(j, prod)s, and
patch FRO(T1, T2, T3, T4, T5, R1, R2, R3, prod , ppk ,m) := ch. Under the assumption that
the Decisional Diffie-Hellman Problem is hard in G1 the tuples (T1, T2), and (T3, T4) are
indistinguishable from real signatures on message usk i, under the respective public keys
PS.pk and PS.pk j,prod . Futhermore, the value T5 is chosen uniformly at random. Hence, the
tuple (g1,Mi,H1(j, prod), T5) is indistinguishable from real transcripts (all values Mi are
given by FCA and hence known to a verifier). The remainder of the transcript is simulated
perfectly.
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• Extractor: Given two accepting transcripts (T1, T2, T3, T4, T5, ch, s) and (T1, T2, T3, T4, T5,
ch ′, s′) the extractor computes usk i := (s− s′)/(ch− ch ′), which is the discrete logarithm of
T5 to base H1(j, prod): T−ch5 ·H1(j, prod)s = R3∧T−ch

′

5 ·H1(j, prod)s
′

= R3 =⇒ T ch−ch ′
5 =

H1(j, prod)s−s
′

=⇒ T5 = H1(j, prod)(s−s′)/(ch−ch ′). The tuples (T1, T2) and (T3, T4) are
valid signatures on message usk i and do not need further extraction.

Lemma 3.4. The value τ output in Protocol ΠRS.OProof is a Signature of Knowledge on message
(σ, i,Mi) proving the following statement:

ZKPK{(β, Ỹi) : ct = CS.Enc(CS.pk , Ỹi;β) ∧ e(T5, Ỹ ) = e(H1(j, prod), Ỹi).

Proof.

• Completeness: An honest prover will generate an accepting transcript as the verification
equations hold:

ct−ĉh1 · gŝ2 = g−β·ĉh2 · gr+ĉh·β
2 = gr2 = R1 (10)

ct−ĉh2 · h̃ŝ = h̃−β·ĉh · h̃r+ĉh·β = h̃r = R2 (11)

e(H1(j, prod), ct3)−ĉh · e(T5, Ỹ )ĉh · e(H1(j, prod), f̃)ŝ

= e(H1(j, prod), Ỹi · f̃β)−ĉh · e(H1(j, prod)usk i , Ỹ )ĉh · e(H1(j, prod), f̃)r+ĉh·β

= e(H1(j, prod), Ỹ −1
i · f̃−β)ĉh · e(H1(j, prod), Ỹ usk i)ĉh · e(H1(j, prod), f̃)r+ĉh·β

= e(H1(j, prod), Ỹ −1
i · f̃−β · Ỹ usk i)ĉh · e(H1(j, prod), f̃β)ĉh · e(H1(j, prod), f̃)r

= e(H1(j, prod), Ỹ −1
i · f̃−β · Ỹ usk i · f̃β)ĉh · e(H1(j, prod), f̃)r

= e(H1(j, prod), 1G2)ĉh · e(H1(j, prod), f̃)r = e(H1(j, prod), f̃)r = R3 (12)

ω := H(ct1, ct2, ct3)

ct−ĉh4 · (b̃ · d̃ω)ŝ = (b̃ · d̃ω)−β·ĉh · (b̃ · d̃ω)r+ĉh·β = (b̃ · d̃ω)r = R4 (13)

e(g1, ct3)−ĉh · e(M, Ỹ )ĉh · e(g1, f̃)ŝ = e(g1, Ỹi · f̃β)−ĉh · e(gusk i1 , Ỹ )ĉh · e(g1, f̃)r+ĉh·β

= e(g1, Ỹ
−1
i · f̃−β)ĉh · e(g1, Ỹ

usk i)ĉh · e(g1, f̃)r+ĉh·β

= e(g1, Ỹ
−1
i · f̃−β · Ỹ usk i)ĉh · e(g1, f̃)r+ĉh·β

= e(g1, Ỹ
−1
i · f̃−β · Ỹ usk i)ĉh · e(g1, f̃

β)ĉh · e(g1, f̃)r

= e(g1, Ỹ
−1
i · f̃−β · Ỹ usk i · f̃β)ĉh · e(g1, f̃)r

= e(g1, 1G2)ĉh · e(g1, f̃)r = e(g1, f̃)r = R5, (14)

where Equation 12 holds, if and only if dlogỸ (Ỹi) = dlogH1(j,prod)(T5) and Equation 14
holds, if and only if dlogg1(M) = dlogỸ (Ỹi).
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• Simulator: Given j, prod , ppk , and a rating (m,σ) as input and using the random oracle
FRO, transcripts can be simulated, as follows:

Choose ĉh, ŝ←u Zp and ct1, ct2, ct3, ct4←u G2, compute R1 := ct−ĉh1 · gŝ2, R2 := ct−ĉh2 · h̃ŝ,

R3 := e(H1(j, prod), ct3)−ĉh · e(T5, Ỹ )ĉh · e(H1(j, prod), f̃)ŝ, ω := H(ct1, ct2, ct3),

R4 := ct−ĉh4 · (b̃ · d̃ω)ŝ, R5 := e(g1, c3)−ĉh · e(M, Ỹ )ĉh · e(g1, f̃)ŝ,

and patch FRO(ct1, ct2, ct3, ct4, R1, R2, R3, R4, R5, σ, i,M) := ĉh. The ciphertext ct =
(ct1, ct2, ct3, ct4) is indistinguishable from real ciphertexts, assuming the Decisional Diffie-
Hellman Problem is hard in G1 and the remainder of the transcript is simulated perfectly.

• Extractor: Given two accepting transcripts (ct1, ct2, ct3, ct4, ĉh, ŝ) and (ct1, ct2, ct3, ct4,
ˆch ′,

ŝ′) the extractor computes β := (ŝ− ŝ′)/(ĉh − ˆch ′), which is the discrete logarithm of ct1 to

base g2: ct−ĉh1 · gŝ2 = R1 ∧ ct−
ˆch ′

1 · gŝ′2 = R1 =⇒ gŝ−ŝ
′

2 = ct ĉh−
ˆch ′

1 =⇒ g
(ŝ−ŝ′)/(ĉh− ˆch ′)
2 = ct1.

Analogously, one can argue for R2 and R4. Further, the extractor computes Ỹi := ct−β3 ,
which is the encrypted value: dividing two instances of Equation 14 gives

e(M, Ỹ )ĉh−
ˆch ′ · e(g1, f̃)ŝ−ŝ

′
= e(g1, ct3)ĉh−

ˆch ′

⇐⇒ e(M, Ỹ ) · e(g1, f̃)(ŝ−ŝ′)/(ĉh− ˆch ′) = e(g1, ct3)

⇐⇒ e(M, Ỹ ) · e(g1, f̃)β = e(g1, ct3)

⇐⇒ e(M, Ỹ ) = e(g1, ct3) · e(g1, f̃)−β = e(g1, ct3 · f̃−β),

which means that ct3 encrypts an element Ỹ ′ ∈ G2 such that e(M, Ỹ ) = e(g1, Ỹ
′). The

only element Ỹ ′ with this property is Ỹi = Ỹ usk i .

3.4.2 The Simulator S

S manages the same lists as FRS, namely Params, Reg, Prods, Purch, Ratings, and Open which
are initially empty. Lists indexed with an “s” additionally store secret key material.

Simulation of FRO: S manages the list LRO and answers to requests exactly the same way
as FRO. At some points during the simulation - while generating anonymous ratings and
opening-proofs - S will have to patch the list LRO because S simulates Σ-protocols that
were transformed into non-interactive zero-knowledge proofs using the Fiat-Shamir heuristic.
How S handles this cases is described later in detail.

Simulation of FCRS: S chooses (GD,PD.pk ,H,H1,H2) according to the definition of FCRS

and hands CRS := (GD,PD.pk ,H,H1,H2) to every party requesting it.

Simulation of FCA: S manages the lists LCA and LsCA. Whenever an honest party Pi is acti-
vated for the first time, S chooses usk i←u Zp, computesMi := gusk i1 and sets LCA.Add(Pi,Mi)
and LsCAAdd(Pi,Mi, usk i). When S receives (Register, Pi, v) from some (corrupted) party
Pi for the first time, the tuple (Pi, v) is added to the list LCA. All later Register-requests
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from the same party are ignored. When S receives (Retrieve, Pi) from some party P and
a tuple (Pi, v) is stored in LCA, S sends (Retrieve, Pi, v) to P . If no such tuple could be
found in LCA, S sends (Retrieve, Pi,⊥) to P .

Simulation of Registry Key Generation: When S receives (KeyGen, sid) from FRS, S
executes the protocol in behalf of PIDM, sets Params.Add(pp), Paramss.Add(pp, idmsk)
and sends (KeyGen, sid , pp) to FRS.

Simulation of User Registration:

• PIDM and Pi honest: When S receives (Register, sid , pp′, Pi) from FRS, S executes the
registration protocol in behalf of Pi and PIDM. S can do this by using (Pi,Mi, usk i) ∈
LsCA and (pp ′, idmsk ′) ∈ Paramss.

• PIDM honest and Pi corrupted: When S receives (pp′, R) from A as it intends to
send from Pi to PIDM, S sends (Register, sid , pp′) in behalf of Pi to FRS, receives
(Register, sid , pp′, Pi) from FRS, and executes the protocol in behalf of PIDM using
(pp′, idmsk ′) ∈ Paramss. When FRS outputs (Register, sid , pp′, Pi, f) to Pi, S does
not deliver this message because a corrupted Pi does not expect to receive this message
from FRS.

• PIDM corrupted and Pi honest: When S receives (Register, sid , pp′, Pi) from FRS, S
executes the protocol in behalf of Pi by using (Pi,Mi, usk i) ∈ LsCA. If S receives a
value σi from PIDM and PS.Verify(pp′, usk i, σi) = 1, setReg.Add(Pi, pp

′,Mi, Ỹi, σi) and
output (Register, sid , pp′, Pi, 1) to FRS. When FRS outputs (Register, sid , pp′, Pi, f) to
PIDM, S does not deliver this message because a corrupted PIDM does not expect to
receive this message from FRS.

Simulation of Product Addition: When S receives (NewProduct, sid , Pi, prod) from
FRS, S executes the protocol in behalf of Pi using (Pi, Mi, usk i) ∈ LsCA. The re-
quest to FRO does not require any special handling. After completing the protocol, S
sets Prods.Add(Pi, prod , ppk i,prod ), Prodss.Add(Pi, prod , ppk i,prod ,PS.sk i,prod ) and outputs
(NewProduct, sid , Pi, prod , ppk i,prod ) to FRS.

Simulation of Purchasing a Product:

• Pi and Pj honest: When S receives (Purchase, sid , Pi, Pj , prod , ppk) from FRS, S
executes the purchasing protocol in behalf of Pi and Pj . S can do this by using
(Pi,Mi, usk i), (Pj ,Mj , usk j) ∈ LsCA and (Pj , prod , ppk j,prod , PS.sk j,prod ) ∈ Prodss.

• Pi honest and Pj corrupted: When S receives (Purchase, sid , Pi, Pj , prod , ppk) from
FRS, S executes the purchasing protocol in behalf of Pi, including the request to
VfyProd. S can do this by using (Pi,Mi, usk i) ∈ LsCA. When FRS outputs (Purchase,
sid , Pi, Pj , prod , ppk , f) to Pj , S does not deliver this message because a corrupted
Pj does not expect to receive this message from FRS.

• Pi corrupted and Pj honest: When S receives (prod , ppk , R) from A as it intends to
send from Pi to Pj , S sends (Purchase, sid , Pj , prod , ppk) in behalf of Pi to FRS, receives
(Purchase, sid , Pi, Pj , prod , ppk) from FRS, and executes the purchasing protocol in
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behalf of Pj . S can do this by using (Pj , Mj , usk j) ∈ LsCA and (Pj , prod , ppk j,prod ,
PS.sk j,prod ) ∈ Prodss. When FRS outputs (Purchase, sid , Pi, Pj , prod , ppk , f) to Pi, S
does not deliver this message because a corrupted Pi does not expect to receive this
message from FRS.

Simulation of VfyProd: When S receives (VfyProd, sid , Pj , prod , ppk) from FRS, S executes
VfyProd(Pj , prod , ppk) as a local algorithm and responds as defined in the protocol. If
(Pj ,Mj) /∈ LCA, S does not respond to this request, which means that FRS waits infinitely
for a response.

Remark: This product-verification is done whenever a rating is verified. It implies that all
subsequent requests based on the product-verification are ignored, whenever this verification
cannot be executed due to missing parameters (Pj ,Mj) /∈ LCA.

Simulation of Rating a Product:

• PIDM is honest: In this case S cannot simply execute the protocol because the
identity of the rater is not known. Hence, S computes an accepting transcript of
the underlying Σ-protocol, as follows: When receiving (Rate, sid , pp, Pj , prod , ppk ,m)
from FRS, S uses the Zero-Knowledge simulator given in the proof of Lemma 3.3.
During the simulation, S tries to patch the random oracle. If there is some value v
such that

[
(T1, T2, T3, T4, T5, R1, R2, R3, prod , ppk ,m), v

]
∈ LRO then S outputs error

and halts. Otherwise, S sets LRO.Add
[
(T1, T2, T3, T4, T5, R1, R2, R3, prod , ppk ,m), ch

]
,

σ := (T1, T2, T3, T4, T5, ch, s), Ratings.Add(pp,⊥, Pj , prod , ppk ,m, σ) and outputs
(Rate, sid , pp, Pj , prod , ppk ,m, σ) to FRS.

• PIDM is corrupted: When receiving (Rate, sid , pp, Pi, Pj , prod , ppk ,m) from FRS, S
generates an accepting transcript of the underlying Σ-protocol as a rating by using
(Pi,Mi, usk i) ∈ LsCA, (Pi, pp,Mi, Ỹi, σi) ∈ Reg, and (Pi, Pj , prod , ppk , σi,j,prod) - as
defined in the rating protocol. Finally, S sets Ratings.Add(pp, Pi, Pj , prod , ppk ,m, σ)
and outputs (Rate, sid , pp, Pi, Pj , prod , ppk , m, σ) to FRS.

Simulation of Rating Verification: When S receives (Verify, sid , pp, Pj , prod , ppk , m, σ)
from FRS, S executes the verification protocol. Once the value f is obtained from the
protocol (which implies that VfyProd returned 1), S tries to determine the author of the
rating:

Parse σ as (T1, T2, T3, T4, T5, ch, s).
If f = 0 then S outputs (Verify, sid , pp, Pj , prod , ppk ,m, σ, 0,⊥) to FRS. As defined

in FRS, invalid ratings will never be opened.
Else If (pp,⊥, Pj , prod , ppk ,m, σ) ∈ Ratings then output (Verify, sid , pp, Pj , prod ,

ppk , m, σ, 1, ⊥) to FRS. In this case, PIDM and the author of the rating Pi
are honest - FRS will include the correct identity for the rating.

Else If PIDM is honest and there exists a tuple (Pk, pp,Mk, Ỹk, σk) ∈ Reg such that
e(T5, Ỹ ) = e(H1(j, prod), Ỹk) then Output (Verify, sid , pp, Pj , prod , ppk , m,
σ, 1, Pk). This covers the case that a rating was created by a corrupted
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party, while PIDM is honest. Hence, S can use the registration information to
determine the raters identity.

Else Output (Verify, sid , pp, Pj , prod , ppk ,m, σ, 1,⊥) to FRS. In the case that PIDM is
corrupted, S is not requested to output the correct identity.

Simulation of Linking Ratings: When S receives (Link, sid , pp, Pj , prod , ppk , m1, σ1, m2,
σ2) from FRS, S executes the linking protocol as defined in Protocol ΠRS.Link and outputs
(Link, sid , pp, Pj , prod , ppk ,m1, σ1,m2, σ2, b) to FRS, where b is the bit computed during the
protocol execution. This implies that VfyProd returned 1.

Simulation of Determining the Raters Identity: Since FRS already asked S for the raters
identity during verification, S is not involved in this step. Hence, S does not need to
simulate something.

Simulation of Generating Opening-Proofs: When S receives (OProof, sid , pp, Pj , prod ,
ppk , m, σ, P ) from FRS, S computes f := (Verify, sid , pp, Pj , prod , ppk , m, σ). If f = 0,
S sends (OProof, sid , pp, Pj , prod , ppk , m, σ, P , ⊥) to FRS. Otherwise, it is possible
that (pp,⊥, Pj , prod , ppk ,m, σ) ∈ Ratings - meaning S simulated this rating for an honest
but unknown party. In this case, S has to simulate an opening-proof such that P is
accepted as the author of the rating. To do so, S uses the tuple (P,M) ∈ LCA, which has
to exist because the rating is valid (f = 1), and executes the Zero-Knowledge simulator
given in the proof of Lemma 3.4. During the simulation, S tries to patch the random
oracle. If there is some value v such that

[
(ct1, ct2, ct3, ct4, R1, R2, R3, R4, R5, σ, i,

M), v
]
∈ LRO then S outputs error and halts. Otherwise, S sets LRO.Add

[
(ct1, ct2, ct3,

ct4, R1, R2, R3, R4, R5, σ, i, M), ĉh
]
and τ := (P, ct1, ct2, ct3, ct4, ĉh, ŝ) and outputs

(OProof, sid , pp, Pj , prod , ppk ,m, σ, P, τ) to FRS.

In the case (pp,⊥, Pj , prod , ppk ,m, σ) /∈ Ratings S did not simulate the rating. Hence, S
executes the opening protocol according to ΠRS.OProof and outputs (OProof, sid , pp, Pj ,
prod , ppk , m, σ, P , τ) to FRS.

Note that S creates the proof for party P , even if the rating was not opened yet or P
was not the author of the rating. In both cases, FRS will ignore the proof and output
(OProof, sid , pp, Pj , prod , ppk ,m, σ, P,⊥), as expected.

Simulation of Opening-Proof Verification: When S receives (Judge, sid , pp, Pj , prod ,
ppk , m, σ, P , τ) from FRS, S executes the opening-proof verification protocol as defined
in Protocol ΠRS.Judge and outputs (Judge, sid , pp, Pj , prod , ppk , m, σ, P , τ , f) to FRS,
where f is the bit computed during the protocol execution.

3.4.3 Hybrid game G

In this game the ideal functionality always gives S1 the identifying information during rating
requests, i.e. instead of sending (Rate, sid , pp, Pj , prod , ppk , m) when PIDM is honest, the
ideal functionality sends (Rate, sid , pp, Pi, Pj , prod , ppk , m) to S1 both when PIDM is honest
and corrupted. S1 works exactly as S except when simulating ratings for honest parties and
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when simulating opening-proofs. To simulate ratings - both when PIDM is honest and corrupted
- S1 executes the same protocol as S does for corrupted PIDM, which is possible because S1

knows the identity of the honest rater and can use its key material to generate a rating. To
simulate the opening-proof generation, S1 executes the same protocol as S does for the case
(pp,⊥, Pj , prod , ppk ,m, σ) /∈ Ratings. Even for ratings that S1 created for honest parties correct
opening-proofs can be generated, because S1 used the correct identifying information for these
ratings.

3.4.4 Indistinguishability of IDEAL and G

We need to show that ratings and opening-proofs generated by S and S1 are indistinguishable.
These are the only differences of the algorithms.

The rating protocol S executes for honest PIDM uses the zero-knowledge simulator of the Σ-
protocol that underlies the signature of knowledge for rating products in Protocol ΠRS, extended
by patching FRO to generate valid ratings (see Lemma 3.3 for details). Assuming DDH is
hard in G1 the tuples (σi,1, σi,2, T1, T2), (σi,j,prod ,1, σi,j,prod ,2, T3, T4), and (g1,Mi,H1(j, prod), T5)
generated by S are random DDH-instances, whereas such tuples generated by S1 are DDH-tuples.
Given elements (T1, T2, T3, T4, T5) ∈ G5

1 the Σ-protocol can be simulated perfectly and S outputs
ratings that are indistinguishable from ratings S1 outputs, assuming patching FRO does not fail.

Analogously to the simulation of ratings, the protocol for generating opening-proofs executed by
S uses the zero-knowledge simulator for the Σ-protocol that underlies the signature of knowledge
for generating an opening-proof in Protocol ΠRS, extended by patching FRO to generate valid
proofs (see Lemma 3.4 for details). The Cramer-Shoup encryption scheme is CCA2-secure
under the DDH assumption, which means that no adversary can distinguish a valid encryption
ct = (ct1, ct2, ct3, ct4) from completely random tuples. Given (ct1, ct2, ct3, ct4) ∈ G4

2 the Σ-
protocol can be simulated perfectly and S outputs opening-proofs that are indistinguishable from
opening-proofs S1 outputs, assuming patching FRO does not fail.

Patching FRO only fails with negligible probability, because the challenge-values ch, ĉh used for
the simulation of the Σ-protocols are chosen uniformly and independently at random. Since LRO
only contains polynomially many entries, choosing some values ch, ĉh that are already stored in
LRO as v only happens with negligible probability. Hence, IDEAL and G are indistinguishable.

3.4.5 Indistinguishability of G and HYBRID

By definition, S1 executes exactly the same operations as honest parties do when running
Protocol ΠRS. Hence, the only way for Z to distinguish between G and HYBRID is to force FRS

to output values that differ significantly from the values output by ΠRS. This only happens when
FRS outputs error and halts, whereas the Protocol ΠRS outputs some value, or FRS outputs 0,
whereas Protocol ΠRS outputs 1 (or vice versa). We show that every environment Z can do this
only with negligible probability, which results in the indistinguishability of G and HYBRID.

Registry Key Generation: FRS always outputs the values obtained from S1. Since S1 behaves
exactly as Protocol ΠRS, the outputs of G and HYBRID are indistinguishable.
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User Registration: FRS enforces the outcome of this protocol only in Steps 3 and 4. For
both conditions Protocol ΠRS generates exactly the same outputs as FRS. Hence, G and
HYBRID are indistinguishable.

Product Addition: In Step 3, FRS outputs error and halts, when S1 outputs some ppk i,prod =

(Mi,Mi,prod , chi,prod , si,prod , g̃i,prod , X̃i,prod , Ỹi,prod ) that is already registered for some other
party Pj or for another product prod ′. If this happens, it must hold that H2(i, prod) =
H2(j, prod) ∨ H2(i, prod) = H2(i, prod ′) ∨ H2(i, prod) = H2(j, prod ′). In any case, this
would be a collision in the collision-resistant hash function H2. Analogously we can argue
for H1. Furthermore, ppk i,prod includes a proof of knowledge of the value usk i, which is
chosen uniformly and independently for honest parties. Hence, the probability that ppk i,prod
is already registered for some other party or some other product is negligible, implying that
G and HYBRID are indistinguishable.

Purchase: The purchasing request will be ignored, according to Step 2 in FRS, when Pi = Pj
or when VfyProd returned 0. The same is done in Protocol ΠRS. If Pj is corrupted and did
not register (Pj ,Mj) to FCA, S1 is not able to execute the VfyProd-algorithm and ignores
the request. This means that FRS gets no response from S1 and hence does not execute the
purchasing protocol. That implies that G and HYBRID are indistinguishable.

Only in Step 4 the outcome of the purchasing protocol is fixed by FRS. But in that case S1

knows all information needed to execute the protocol in behalf of Pi and Pj as defined in
Protocol ΠRS and outputs 1. Hence, G and HYBRID are indistinguishable.

VfyProd The product verification is only used as a subprotocol within the purchasing protocol
and all rating verifications - there is no direct activation from Z for this. Whenever VfyProd
returns 0 the calling protocol will ignore the request, both in FRS and Protocol ΠRS. S1

exploits this behavior by ignoring the VfyProd-request, when a corrupted party did not
register at FCA. This will in turn ignore the request to the calling protocol. Hence, G and
HYBRID are indistinguishable in that case.

During the product verification FRS could differ in the output from Protocol ΠRS in Steps
2, 3, and 5. Step 2 ensures consistency. Since VfyProd is a deterministic algorithm in
Protocol ΠRS, consistency is guaranteed. Step 3 covers the case that a maliciously generated
ppk would be accepted as honestly generated (by an honest party). We can prove that this
happens only with negligible probability, via a reduction to the PS1-Problem. In Step 5
FRS ensures that every ppk is only valid for exactly one party Pi and one product prod .
Analogously to Product Addition, if ppk would also be valid for some party Pj and/or a
product prod ′, this breaks the collision-resistance of the hash functions H1 and H2. Hence,
G and HYBRID are indistinguishable.

Rate a Product: To generate valid ratings FRS ensures in Step 2 that the party Pi is registered,
purchased the product to rate - which implies that the product is valid - and did not rate
the specified product yet. The same is checked in Protocol ΠRS. Step 7 covers consistency:
the tuple (pp, P ′, Pj , prod , ppk , m, σ, 0, lid , oid), for some P ′, lid , oid , only exists in the
list Ratings, if (pp, Pj , prod , ppk ,m, σ) is verified by S1 as invalid and was verified before
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the rating request occurred. This is because the only possibility to store σ as invalid is Step
6 during the verification of ratings in FRS. During rating requests Protocol ΠRS, and hence
the simulator S1, only generates valid ratings, i.e. the deterministic verification algorithm
will output 1. Hence, the rating σ output by S1 cannot exist in Ratings or is verified as
valid. In both cases the tuple (pp, P ′, Pj , prod , ppk ,m, σ, 0, lid , oid) is not stored in Ratings.
Hence, G and HYBRID are indistinguishable.

Remark: In Game G the simulator S1 always gets the identity of a rater and can generate
ratings as defined in Protocol ΠRS.

Verifying a Rating: To verify ratings the VfyRtg-protocol is used. This subprotocol is also an
essential tool during the Link, Open, OProof, and Judge protocols, because these protocols
are only meaningful for valid ratings. During the VfyRtg-protocol the specified product
is verified by the VfyProd-protocol. Hence, whenever S1 does not respond to a VfyProd
request, also VfyRtg and its calling protocols will not proceed, which exploits the request
ignoring behavior.

Analogously to Step 7 of the Rate protocol, Step 4 covers consistency. Since the verification
algorithm in Protocol ΠRS is deterministic, two verification requests with the same input
will generate the same output, as required by FRS. The Steps 5–9 can only occur for ratings
that were not generated by honest parties using the Rate-protocol.

Step 5 handles invalid ratings and self-ratings. The verification protocol in Protocol ΠRS

covers the same cases: invalid ratings are recognized by the test ch = FRO(T1, T2, T3, T4, T5,
R1, R2, R3, prod , ppk , m) and self-ratings are recognized by T5 6= Mj,prod . Obviously, when
PIDM and Pj are corrupted, it is possible to generate arbitrary tuples (usk ′j , σ

′
j , σj,j,prod)

such that PS.Verify(PS.pk , usk ′j , σ′j) = 1 and PS.Verify(PS.pk j,prod , usk
′
j , σj,j,prod) = 1, but

H1(j, prod)usk
′
j 6= Mj,prod . With these values Pj can rate his own product, such that the

verification algorithm cannot detect it. But in this case S1 is not requested to output the
identity of the signer (P = ⊥). Hence, FRS either outputs 0 because the rating is invalid
(b = 0), or continues executing the verification protocol. Since PIDM and Pj are considered
as corrupted in this case, the Steps 7–9 do not occur. Hence, FRS will output 1 in Step
VfyRtg, as it would also happen in Protocol ΠRS. When PIDM is honest and a corrupted
Pj generates a valid rating (T1, T2, T3, T4, T5, ch, s) for his own product, this means that
he proved knowledge of a value usk , such that (T1, T2) is a valid signature for message
usk 6= usk j under the public key PS.pk from PIDM and that T5 6= Mj,prod . Since PIDM is
honest, S1 has to output the identity of the rater. If usk = usk i for some honest party Pi,
S1 will find an entry in Reg that falsely identifies Pi as the rater. If PIDM does not find an
identifying entry in Reg, S1 returns ⊥ to FRS. Both cases are discussed in Steps 8 and 9.

Step 7 ensures that rating a product of an honest party Pj is only possible after purchasing
it. Every rating includes a proof of knowledge of a valid signature for some message usk
under the public key PS.pk j,prod from party Pj . This signature is handed to the rater during
the Purchase-protocol, but in this case some corrupted party proved knowledge of such a
signature without executing the Purchase-protocol. That means, the signature must be a
forgery, which contradicts the EUF-CMA security of the signature scheme in use. We will
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prove this in detail via a reduction to the PS1-Problem. Hence, under the PS1-Problem G
and HYBRID are indistinguishable in that case.

Step 8 ensures strong-exculpability, meaning that it is not feasible to produce valid ratings
in behalf of honest parties. Impersonating an honest party requires to find the parties’ secret
key usk . Using a reduction to the PS1-Problem we can prove that this is only possible with
negligible probability.

Step 9 ensures traceability, meaning that the identity of every rater can be determined
from valid ratings. Being able to create valid but untraceable ratings requires to forge a
signature of the EUF-CMA secure signature scheme used by PIDM. Analogously to Step 8,
we can prove that such attacks are infeasible under the PS1-Problem.

Linking Ratings: Whenever S1 has to respond to a Link-request, we know that the specified
product is valid (VfyProd returned 1) and FRS stored the ratings to link in the list Ratings.
Both the simulator S1 and FRS return 0 to the Link request when at least one of the ratings
is invalid. Hence, for the analysis of Link we only consider valid ratings that passed all
verification-tests.

Now we analyze Link-requests.

Step 4 claims that ratings are unique. This is ensured by the Verify-request because FRS

adds a rating only if it is not present in the list Ratings.

In Step 5 FRS enforces consistency. If two ratings are linkable, RebLDB is used to store this
information and subsequent Link-requests for ratings of the same equivalence class must
be linkable, too. In Protocol ΠRS for every party and a given product the element T5 of a
rating σ = (T1, T2, T3, T4, T5, ch, s) is a fixed value. Hence, all ratings for a fixed product
with identical values T5 belong to the same equivalence class and are linkable, as expected.

In Step 6 FRS has no information that could be used to link the given ratings. This can only
happen when PIDM is corrupted and the ratings are also generated by corrupted parties.
So the value obtained from the simulator S1 is used as output. Hence, Protocol ΠRS and
FRS generate the same output.

Step 7 expresses that it must be infeasible to generate ratings that can be opened to different
parties but are linkable. Since every rating σ = (T1, T2, T3, T4, T5, ch, s) in Protocol ΠRS

includes a zero-knowledge proof of knowledge of some value usk such that (T1, T2) and
(T3, T4) are valid signatures for message usk and the discrete logarithm of T5 to the base
H1(j, prod) is the same value usk , this requirement holds. Hence, in this case Protocol ΠRS

and FRS generate the same output.

Step 8 covers the case that it must be infeasible to generate a valid rating in behalf of an
honest user. This is analogue to VfyRtg-Step 8 for an corrupted PIDM and we can also prove
via a reduction to the PS1-Problem that this event does not occur.

Step 9 is analogue to Step 6.

The RebLDB-Step 18 is analogue to VfyRtg-Step 7 for corrupted PIDM. With a reduction
to the PS1-Problem we can prove that this event does not occur.
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Summarizing the analysis of Link and RebLDB, G and HYBRID are indistinguishable.

Determine Raters Identity: S1 outputs the raters’ identity within the Verify-protocol. Since
S can correctly output the identity, also S1 can do this.

Generate Opening-Proofs: This activation is only of interest for honest PIDM. FRS and
Protocol ΠRS only generate an opening-proof for valid ratings that were opened to the given
party. For invalid or unopened ratings and when the given rater identity is incorrect both
protocols output ⊥. Hence, for the analysis of OProof we only consider valid ratings that
passed all verification-tests. Step 7 covers consistency: an opening-proof that was once
invalid cannot be made valid. Since the Judge-protocol is deterministic in Protocol ΠRS

and OProof only generates valid proofs, this cannot happen. Hence, G and HYBRID are
indistinguishable.

Verifying Opening-Proofs: If the rating is invalid, no party identity or no opening-proof is
given, FRS and Protocol ΠRS both output 0. For the analysis of Judge we only consider valid
ratings that passed all verification-tests. Step 5 expresses that PIDM is honest, the rating
was generated by an honest party, or Step 16 occurred previously for this specific rating. The
Steps 7 and 8 cover consistency, which is ensured by Protocol ΠRS because the verification
of opening-proofs is deterministic. Every valid opening-proof for the correct identity will be
verified as valid by Protocol ΠRS; invalid proofs will detected as those. Opening-proofs to a
wrong identity can be detected by Protocol ΠRS because the real identity the proof was
generated for is a part of τ . Step 9 covers non-frameability. Maliciously generated but valid
opening-proofs cause FRS to output error and halt, when PIDM and P are honest. Via a
reduction to the CCA2-security of the Cramer-Shoup encryption scheme we can prove that
such opening-proofs cannot be generated. Step 10 expresses that PIDM is corrupted and the
given rating was generated by a corrupted party. Otherwise, FRS would know the identity
of the rater. In Step 12 consistency is guaranteed, as in Steps 7 and 8. In Step 13 an honest
user is accepted as the author of the given rating. Since FRS does not know the identity
of that rating (X = ⊥) the rating must be maliciously generated in behalf of an honest
party. This is impossible as we will prove via a reduction to PS1-Problem. In Step 15 the
simulator accepts the opening-proof as valid for party P . Hence, the identity P is stored to
ensure consistency for future verification requests. The Steps 16 and 17 store the verified
opening-proof for the given rating to ensure consistency for future verification requests.

As discussed above, using reductions to the PS1-Problem and a reduction to the CCA2-
security of the Cramer-Shoup encryption scheme, we can conclude that no environment Z
can distinguish between G and HYBRID. The reductions complete the proof.

3.4.6 The Reductions used within the Security Proof

To complete the proof of Theorem 3.1 we have to show that no environment can use the Steps
VfyProd.3, VfyRtg.7/8/9, RebLDB.18, LinkRtgs.8 and Judge.9/13 to its advantage. We prove this
with several reductions using a proof of knowledge extractor which needs rewinding. In UC the
environment is treated as an interactive distinguisher, i.e. rewinding an interactive machine is not
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possible. This is not contradicting because we use rewinding to prove the indistinguishability of
hybrid games and not within the simulation. The same technique was used within other UC-based
proofs [Lin11, BCPV13, Gro04].

All proofs have the same structure: assuming there exists an environment Z that can distinguish
between G and HYBRID, and given either a PS1-instance or a CCA2-challenger for the Cramer-
Shoup encryption scheme, we define a simulator interacting with FRS in game G we use to
find a solution to the given problem instance. Since we assume the PS1-Problem and the
SXDH-Assumption hold, no such environment can exist.

Lemma 3.5. If the PS1-Problem holds for bilinear group generator BiGrGen, then no environment
can distinguish between G and HYBRID at Steps VfyProd.3, VfyRtg.8, LinkRtgs.8, or Judge.13.

Proof. Assume that there exists an environment Z interacting with game G that is able to
let FRS output error and halt at the Steps VfyProd.3, VfyRtg.8, LinkRtgs.8, or Judge.13 with
non-negligible probability. We will use this environment to define a simulator S2 that we can use
to compute a solution to the Pointcheval-Sanders-Problem with non-negligible probability. The
hash function H1 is treated as a random oracle.
We are given GD as the output of BiGrGen, (g, Y, g̃, X̃, Ỹ ) and unlimited access to oracle O

from our challenger and have to output a tuple (m∗, s, sx+m∗·y) such that s 6= 1G1 and m∗ was
not asked to O. In the first part of the proof, we will describe how S2 interacts with FRS and
handles the interaction with Z and the real-world adversary A. In the second part we analyze S2.
Simulator S2 works as S1, except in the following cases:

Calls to FRO: S2’s answers are generated the same way as S1 does. We will point out the
situations in which S2 deviates from this policy.

Calls to FCRS: S2 runs PD.KeyGen(GD) to obtain PD.pk := (u, v) and PD.td := dlogu(v). The
common reference string is set to (GD, PD.pk , H, H1, H2) according to the definition of
FCRS in G.

Calls to H1: S2 manages the list LH1 to respond identically to repeated requests. When some
x is queried for the first time (H1(x) is called for some x ∈ {0, 1}∗), S2 chooses αx←u Zp,
computes ĝx := gαx1 , and stores (x, αx, ĝx) in LH1 . Finally, S2 hands ĝx to the caller, as it
is also done for repeated queries H1(x), i.e. (x, αx, ĝx) ∈ LH1 .

Calls to FCA: Whenever an honest party Pi is activated for the first time, S2 chooses ui←u Zp,
computes Mi := Y ui and sets LCA.Add(Pi,Mi). Note that the user-secret-key usk i is
implicitly set to be y · ui for an unknown y. Calls from corrupted parties are handled as
defined for S1.

Registry Key Generation: For an honest PIDM S2 handles the KeyGen-requests as defined
for S1. A corrupted PIDM is managed by adversary A.

User Registration: For honest PIDM S2 works exactly as S1. S2 simulates the computations
for an honest party Pi using the interactive simulator given in the proof of Lemma 3.1.
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Product Addition: For honest party Pi, S2 sets Mi,prod := Y ui·αi,prod and computes g̃i,prod :=
H2(i, prod), where αi,prod is set during the request H1(i, prod). Then, S2 runs the algo-
rithm PS.KeyGen(GD) to obtain PS.pk i,prod := (g̃i,prod , X̃i,prod , Ỹi,prod) and PS.sk i,prod :=
(ξ1i,prod , ξ2i,prod ) and simulates the non-interactive zero-knowledge proof of knowledge using
the simulator given in the proof of Lemma 3.2. With these values, S2 runs the remaining
steps defined in Protocol ΠRS.

Purchase: In behalf of an honest seller Pj , S2 behaves as S1. For an honest purchaser Pi, S2

uses the same simulator as during the Register-protocol (see Lemma 3.1).

VfyProd: S2 works exactly as S1.

Rate a Product: To simulate ratings for an honest party Pi (note that S2 obtains the identity
from FRS), S2 uses the values σi from the Register-protocol with PIDM, σi,j,prod from the
Purchase-protocol with Pj , αj,prod chosen by H1, ui chosen by FCA, and Y given by the
PS1-instance: choose t1, t2, k←u Zp and compute T1 := σt1i,1, T2 := σt1i,2, T3 := σt2i,j,prod ,1,
T4 := σt2i,j,prod ,2, T5 := Y αj,prod ·ui . With these values S2 simulates the zero-knowledge
proof of knowledge as given in the proof of Lemma 3.3. Then S patches FRO by setting
LRO.Add(T1, T2, T3, T4, T5, R1, R2, R3, prod , ppk ,m), ch), sets σ := (T1, T2, T3, T4, T5, ch, s)
and outputs σ as the rating.

For all remaining protocols (Verify, Link,Open,OProof, Judge) S2 works exactly as S1.

Now we show how S2 can be used to find a solution to the given PS1-instance.

When FRS outputs error in VfyProd.3, we know that the party Pj is honest, ppk fulfills the
verification equations defined in VfyProd, and Pj did not use the NewProduct-protocol to
generate ppk . Especially, for ppk = (Mj , Mj,prod , chj,prod , sj,prod , g̃j,prod , X̃j,prod , Ỹj,prod)
the non-interactive zero-knowledge proof of knowledge (Mj , Mj,prod , chj,prod , sj,prod) is
valid. Now we rewind the game G up to the point where FRO outputs chj,prod for the first
time. In the rewound game, S2 lets FRO output a new value ch ′j,prod 6= chj,prod . Eventually,
S2 obtains some ppk ′ for the same pair (j, prod) as in the first run of the game, where the
non-interactive zero-knowledge proof of knowledge (Mj , Mj,prod , ch ′j,prod , s′j,prod) is valid,
too. Using the extractor of Lemma 3.2 we obtain usk i = y · ui, where ui is chosen by
FCA. Furthermore, we can compute y := u−1

i · usk i and use it to find a solution to the
PS1-Problem.

When FRS outputs error in VfyRtg.8, LinkRtgs.8, or Judge.13, the given rating σ = (T1, T2, T3,
T4, T5, ch, s) is valid and must be maliciously generated in behalf of an honest user P , as
discussed previously. We rewind the game G up to the point where FRO outputs c for the
first time. In the rewound game, S2 lets FRO output a new value ch ′ 6= ch. Eventually,
S2 obtains another valid rating σ′ = (T1, T2, T3, T4, T5, ch

′, s′) for the same Pj , prod , ppk
and m. Using the extractor of Lemma 3.3 we obtain usk = y · ui, where ui is chosen by
FCA. Analogously to VfyProd.3, we can compute y := u−1

i · usk and use this value to find a
solution to the PS1-Problem.
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To compute a solution to the PS1-Problem given the value y, we choose m←u Zp, query the
oracle O(m) and obtain a pair (H1, H2) := (h, hx+m·y) ∈ G1 for some unknown x ∈ Zp. Then we
set H3 := H2 ·H−m·y1 = hx+m·y ·h−m·y = hx, choose r,m∗←u Zp and output (m∗, Hr

1 , H
r
3 ·H

r·m∗·y
1 ).

All outputs from S2 are distributed identically to the outputs of S1, assuming patching the
random oracles does not fail. As argued previously, this only happens with negligible probability.
Hence, when Z can distinguish between the game G and HYBRID at the Steps VfyProd.3, VfyRtg.8,
LinkRtgs.8, or Judge.13 we can solve the PS1-Problem with non-negligible probability.

Lemma 3.6. If the SXDH-Assumption holds for bilinear group generator BiGrGen, and hence
the Cramer-Shoup encryption scheme is CCA2-secure in G2, then no environment can distinguish
between G and HYBRID at Step Judge.9.

Proof. Assume that there exists an environment Z interacting with game G that is able to let FRS

output error at the Step Judge.9 with non-negligible probability. We will use this environment to
define a simulator S3 which we use to break the CCA2-security of the Cramer-Shoup encryption
scheme. We use the LR-formulation for CCA2-security [BR07], which is equivalent to the standard
CCA2-notion.

We are given GD as the output of BiGrGen, CS.pk = (g2, h̃, b̃, d̃, f̃ ,H), access to an encryption-
oracle LR and access to a decryption-oracle D from our challenger. We have to output a bit b as
a guess whether the left (b = 0) or the right (b = 1) message given to oracle LR was encrypted,
under the limitation not to query D to decrypt some ciphertext produced by LR.
In the first part of the proof, we will describe how S3 interacts with FRS and handles the

interaction with Z and the real-world adversary A. In the second part we analyze S3. Note that
Step Judge.9 is only of interest for honest PIDM. A corrupted PIDM is always able to generate
opening-proofs, because it controls the encryption scheme. Hence, we assume A does not corrupt
PIDM.
Simulator S3 works as S1, except in the following cases:

Registry Key Generation: S3 generates PS.pk and PS.sk as S1 does and sets the public key
of the Cramer-Shoup encryption to be CS.pk given from the challenger.

User Registration: When the honest PIDM interacts with an corrupted party Pi, S3 works
exactly as S1, except when decrypting the value ct = (ct1, ct2, ct3, ct4) obtained from party
Pi. Here, S3 queries its decryption oracle D(ct) to obtain the value Ỹi. When PIDM interacts
with an honest party Pi, S3 queries the LR-oracle with 1G2 and Ỹi = Ỹ usk i as LR(1G2 , Ỹi)
to obtain the ciphertext ct = (ct1, ct2, ct3, ct4) and uses it during the protocol execution.

For the protocols NewProduct, Purchase, VfyProd, Rate, Verify, Link, and Open S3 works exactly
as S1, because there is no encryption involved.

Generating Opening-Proofs: When PIDM has to generate an opening-proof for a corrupted
party Pi, it executes exactly the same protocol as S1. When PIDM has to generate an
opening-proof for an honest party Pi, S3 runs the same verification checks as S1 does, queries
LR(1G2 , Ỹi) to obtain the ciphertext ct = (ct1, ct2, ct3, ct4) and simulates the opening-proof
using the simulator of Lemma 3.4. Then S3 patches FRO, sets τ := (Pi, ct1, ct2, ct3, ct4, ĉh, ŝ)
and outputs τ .
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Opening-Proof Verification: S3 works exactly as S1.

Now we show how S3 can be used to break the CCA2-security of the Cramer-Shoup encryption
scheme.

We are working with Type-3 pairings where no map from G1 to G2 exists. Therefore, elements
from G1 cannot be used to compute elements in G2 and we can concentrate on the group
G2 during the analysis.

When FRS outputs error in Step 9 of (Judge, sid , pp, Pj , prod , ppk ,m, σ, Pi, τ) we know from
the validity of the non-interactive zero-knowledge proofs of knowledge σ and τ that

T5 = H1(j, prod)uski (T5 is given by σ,)

ct3 = Z̃ · f̃β (ct3 is given by τ , β is unknown)

and

e(H1(j, prod)usk i , Ỹ ) = e(H1(j, prod), Z̃), (since τ is valid)

which is only possible, when Z̃ = Ỹi. This in turn means that the opening-proof contains
the correct value Ỹi for party Pi.

The ciphertexts of Ỹi that were generated during the Register-protocol and for other opening-
proofs for the same party are the only values that depend on Ỹi. But these ciphertexts
contain Ỹi only if the LR-oracle encrypts the message on the right-hand side of a call
(b = 1). Hence, we output b′ = 1 as our guess to the CCA2-challenger.

When FRS never outputs error, meaning that it was not possible to maliciously produce an
opening-proof, we output b′ = 0 as our guess to the CCA2-challenger, because we assume
that 1G2 was encrypted using LR. In this case all ciphertexts are independent of Ỹi, which
implies that computing Ỹi is not possible.

All outputs from S3 are distributed identically to the outputs of S1, assuming patching the
random oracle does not fail. As argued previously, this only happens with negligible probability.
Hence, when Z can distinguish between the game G and HYBRID at the Step Judge.9 we can break
the CCA2-security of the Cramer-Shoup encryption scheme with non-negligible probability.

Lemma 3.7. If the PS1-Problem holds for bilinear group generator BiGrGen, then no environment
can distinguish between G and HYBRID at Steps VfyRtg.7/9 and RebLDB.18.

Proof. Assume that there exists an environment Z interacting with game G that is able to let
FRS output error at the Steps VfyRtg.7, VfyRtg.9 or RebLDB.18 with non-negligible probability.
We will use this environment to define a simulator S4 that we can use to compute a solution
to the Pointcheval-Sanders-Problem with non-negligible probability. The hash function H2 is
treated as a random oracle.
We are given GD as the output of BiGrGen, (g, Y, g̃, X̃, Ỹ ) and unlimited access to oracle O

from our challenger and have to output a tuple (m∗, s, sx+m∗·y) such that s 6= 1G1 and m∗ was
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not asked to O. In the first part of the proof, we will describe how S4 interacts with FRS and
handles the interaction with Z and the real-world adversary A. In the second part we analyze S4

Simulator S4 works as S1, except in the following cases:

Calls to FRO: S4’s answers are generated the same way as S1 does.

Calls to FCRS: S4 runs PD.KeyGen(GD) to obtain PD.pk := (u, v) and PD.td := dlogu(v). The
common reference string is set to (GD, PD.pk , H, H1, H2) according to the definition of
FCRS in G.

Calls to FCA: S4 works exactly as S1.

Calls to H2: S4 manages the list LH2 to respond identically to repeated requests. When some
x is queried for the first time (H2(x) is called for some x ∈ {0, 1}∗), S4 chooses αx←u Zp,
computes g̃x := g̃αx , and stores (x, αx, g̃x) in LH2 . Finally, S4 hands g̃x to the caller, as it is
also done for repeated queries H2(x), i.e. (x, αx, g̃x) ∈ LH1 . Note that g̃ is used here, which
is given by the PS1-Problem instance.

Registry Key Generation: For an honest PIDM S4 sets PS.pk := (g̃, X̃, Ỹ ), runs the algorithm
CS.KeyGen(GD) to obtain CS.pk and CS.sk , sets pp := (PS.pk ,CS.pk) and outputs pp. A
corrupted PIDM is managed by adversary A.

User Registration: For an honest party Pi, S4 works exactly as S1.

For an honest PIDM interacting with an honest party Pi, S4 executes the operations defined
in Protocol ΠRS, but instead of computing a signature (σ1, σ2) itself, S4 queries its oracle
O(usk i), with usk i given by FCA, to obtain a valid signature for the registrating party.

For an honest PIDM interacting with a corrupted party Pi, S4 executes Protocol ΠRS up to
the point where PIDM has to generate a signature for Pi. Now we rewind the adversary A
up to the point where it sent its first message (pp′, R) in behalf of Pi and respond with a
new random challenge ch ′ 6= ch (the same technique is used in [BCPV13]). Now, we extract
usk i, query O(usk i) to obtain a valid signature for party Pi, and finalize the interaction
according to Protocol ΠRS.

Product Addition: For honest party Pi, S4 chooses βi,prod , γi,prod←u Zp and sets g̃i,prod :=
H2(i, prod) = g̃αi,prod , according to the random oracle H2, X̃i,prod := X̃αi,prod ·βi,prod , Ỹi,prod :=
Ỹ αi,prod ·βi,prod ·γi,prod , where g̃, X̃, Ỹ are given by the PS1-Problem instance. Then, S4 gener-
ates the non-interactive zero-knowledge proof of knowledge and outputs ppk i,prod as defined
in Protocol ΠRS.

Purchase: For an honest party Pi, S4 works exactly as S1.

For an honest party Pj interacting with an honest party Pi, S4 executes the operations
defined in Protocol ΠRS, but instead of computing a signature σi,j,prod itself, S4 queries its
oracle O(γj,prod · usk i), with γj,prod chosen during NewProduct and usk i given by FCA, to
obtain a pair (σ′1, σ

′
2). Then S4 sets σi,j,prod := (σ′1, σ

′βj,prod
2 ) and finalizes Protocol ΠRS.
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For an honest party Pj interacting with a corrupted party Pi, S4 executes Protocol ΠRS up
to the point where Pj has to generate a signature for Pi. Now we rewind the adversary A
up to the point where it sent its first message (prod , ppk , R) in behalf of Pi and respond
with new random challenge ch ′ 6= ch (the same technique is used in [BCPV13]). Now, we
extract usk i, query O(γj,prod · usk i) to obtain a pair (σ′1, σ

′
2), set σi,j,prod := (σ′1, σ

′βj,prod
2 ),

and finalize the interaction according to Protocol ΠRS.

For all remaining protocols (VfyProd, Rate, Verify, Link, Open, OProof, Judge) S4 works exactly
as S1.

Now we show how S4 can be used to find a solution to the given PS1-instance.

When FRS outputs error in VfyRtg.7 some registered party Pi generated a valid rating σ =
(T1, T2, T3, T4, T5, ch, s) without purchasing the corresponding product. We now rewind the
whole game G up to the point where the random oracle FRO output ch for the first time.
In the rewound game, S4 lets FRO output a new value ch ′ 6= ch. Eventually, S4 obtains
a second valid rating σ′ = (T1, T2, T3, T4, T5, ch

′, s′) and we can compute usk i using the
extractor of Lemma 3.3. Furthermore, since σ and σ′ are valid, (T3, T4) must be a valid
signature for message usk i under the public key (g̃j,prod , X̃j,prod , Ỹj,prod ):

e(T3, X̃j,prod · Ỹ usk i
j,prod ) = e(T3, g̃

x·βj,prod
j,prod · g̃y·βj,prod ·γj,prod ·usk ij,prod ) = e(T4, g̃j,prod )

=⇒ T
x·βj,prod+y·βj,prod ·γj,prod ·usk i
3 = T4.

And we can compute

T
1/βj,prod
4 = T

x+y·γj,prod ·usk i
3 ,

which is a valid signature for message m = γj,prod · usk i. Since oracle O is only queried for
usk i during Register and was not called during Purchase, we can output (m,T3, T

1/βj,prod
4 ) as

a solution to the given PS1-Problem instance. The probability that m was already queried
is negligible, because all values γx are chosen uniformly and independently at random.

When FRS outputs error in VfyRtg.9, a valid rating σ = (T1, T2, T3, T4, T5, ch, s) could not be
opened by the honest PIDM, which means that the rating was generated in behalf of an
unregistered party. Furthermore, we know that T5 = H1(j, prod)usk for some usk ∈ Zp and
(T1, T2) is a valid signature for the message usk under the public key PS.pk = (g̃, X̃, Ỹ ),
because σ is valid. As described above, we rewind the whole game G to extract usk . S4

queries O only during the Register-protocol and the Purchase-protocol. Since PIDM cannot
open the rating, O(usk) was not queried in the Register-protocol. The probability that S4

queried O(usk) in the Purchase-protocol, meaning usk = γx · usk i for some γx and some
usk i, is negligible, because all values γx are chosen uniformly and independently at random.
Hence, we can output (usk , T1, T2) as the solution to the given PS1-Problem instance.

When FRS outputs error in RebLDB.18, then there exist to many valid, but non-linkable
ratings for the given product. Since two ratings σ′ = (T ′1, T ′2, T ′3, T ′4, T ′5, ch

′, s′), σ′′ =
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(T ′′1 , T
′′
2 , T

′′
3 , T

′′
4 , T

′′
5 , ch

′′, s′′) are linkable, iff T ′5 = T ′′5 , there must exist at least one rating
σ = (T1, T2, T3, T4, T5, ch, s), where T5 = H1(j, prod)usk for some usk that was not extracted
during the Purchase-protocol. Rewinding the game G and extracting usk , we can output
(γj,prod · usk , T3, T

1/βj,prod
4 ) as the solution to the PS1-Problem instance, as described above.

All outputs from S4 are distributed identically to the outputs of S1, assuming patching the
random oracles does not fail. As argued previously, this only happens with negligible probability.
Hence, when Z can distinguish between the game G and HYBRID at the Steps VfyRtg.7/9 or
RebLDB.18 we can solve the PS1-Problem with non-negligible probability.

4 Considering Revocation and Adaptive Adversaries

Revocation: The opening-proof mechanism FRS provides is a revocation technique that rescinds
anonymity of the author of a single rating. More extensive notions of revocation include, but are
not limited to:

• Revoke a user completely: the user cannot purchase products anymore, all existing ratings
become invalid, and all future ratings will be invalid.

• Revoke all existing ratings of a user while preserving the ability to rate.

• Preserve existing ratings of a user but prohibit future ratings.

Which revocation technique to use depends on the higher-level application. Because of that,
we do not integrate revocation in the definition of FRS.

Nevertheless, Protocol ΠRS can be easily extended to support verifier-local revocation, which
revokes a user completely: to revoke the party Pi the System Manager PIDM, or even Pi himself,
publishes the value Ỹi as the users’ revocation token rt i on a revocation-list RL. Then any
verifier can check whether the author of a given rating σ = (T1, T2, T3, T4, T5, ch, s) is revoked by
testing if the equation e(T5, Ỹ ) = e(H1(j, prod), rt) holds for any entry rt ∈ RL. Analogously,
during Purchase-requests the product owner can test whether e(Mi, Ỹ ) = e(g1, rt) holds to detect
a revoked user Pi. This revocation mechanism conflicts with our definition of anonymity and it is
an open problem how to prove security when revocation is considered.

Adaptive Adversaries: Theorem 3.1 only claims security against static adversaries, because
anonymity and linkability are conflicting security properties, which impede the construction of
UC-secure protocols in the presence of adaptive adversaries. To illustrate that, consider the
following scenario with an adaptive adversary A:
An honest party Pi rates some product and becomes corrupted after outputting the rating.

Then the adversary A generates a second rating for the same product.
According to the definition of FRS, the two ratings must be linkable. In the real protocol this

is true (because the same keys can be used), but in the ideal protocol the simulator S does not
obtain any identifying information about Pi during a Rate-request and has to simulate a rating.
Hence, with overwhelming probability the ratings are not linkable in the ideal protocol and it
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is easy to distinguish between the ideal and the real protocol. Therefore, it seems unlikely that
FRS is UC-realizable in the presence of adaptive adversaries. This problem will be investigated in
future research.
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