
Secure Remote Attestation

Markus Jakobsson
Agari Inc.∗

Abstract

More than ten years ago, a devastating data substitution attack was
shown to successfully compromise all previously proposed remote attesta-
tion techniques. In fact, the authors went further than simply attacking
previously proposed methods: they called into question whether it is the-
oretically possible for remote attestation methods to exist in face of their
attack. Subsequently, it has been shown that it is possible, by relying on
self-modifying code.

We show that it is possible to create remote attestation that is secure
against all data substitution attacks, without relying on self-modifying
code. Our proposed method relies on a construction of the checksum
process that forces frequent L2 cache overflows if any data substitution
attack takes place.

1 Introduction

Early malware is probably best described as mostly harmless. It typically made
no effort to hide, and rarely did any damage to the systems it corrupted. For ex-
ample, the brain virus, commonly credited for being the first malware instance,
is representative: it simply printed a message containing the names and contact
information of its creators. For years, malware development was in the hands
of nerdy college students, seeking nothing but maybe a bit of fame among their
peers.

The rise of the Internet, though, and its daily use for financial and polit-
ical purposes, has provided ample motivation for malware authors to instead
use their coding expertise to steal funds and data, whether for personal en-
richment or political motives. This opportunity has led to the development of
a plethora of innovative malware monetization strategies, whose functionality
range from stealing or encrypting data to initiating financial transactions. As
countermeasures to malware have been developed and deployed, malware and
malware distribution techniques have evolved to avoid detection. Examples of
such developments include obfuscation tools, such as crypters; and techniques

∗Copyright 2018 Markus Jakobsson, all rights reserved. Patent Pending.

to hide and be persistent, such as those used by rootkits. Similarly, a thriv-
ing market has developed around zero-day attacks, fueled by the opportunities
afforded by these and enabled by the large and complex body of software in use.

Whereas there is an array of heuristic methods developed to detect rootkits
and—to some extent—zero-day attacks, traditional Anti-Virus methods do not
offer any assurance of detecting these attacks. As a case in point, the custom
malware used to attack Bangladesh Bank [15] was only discovered after its effects
made its existence evident, as was the malware used to attack the Ukrainian
power grid [2]. Similarly, Stuxnet was only discovered after it “broke loose”
from its intended targets and started to spread in an unintended manner [8].

To enable detection of unknown malware—including any type of memory-
persistent malware—the concept of remote attestation [5, 6, 7, 9, 10, 11, 12,
13, 14, 16, 19] was proposed. Remote attestation relies on a piece of code
computing a checksum on itself in a way that, if modified, will either generate
the wrong result or cause a measurable increase of the execution time. The
checksum is reported to an external verifier that checks both its correctness and
that it was computed “fast enough”—if both of these conditions are satisfied,
then the checksum process is determined not to have been corrupted. This is
used to bootstrap the computation on the audited system. The beauty of the
concept underlying remote attestation is that it shifts from a paradigm based on
blacklisting to one of whitelisting, thereby sidestepping the problem of unknown
malware instances.

However, ten years ago, the very notion of remote attestation was shaken
to its core by a cunning data substitution attack [18, 17] that defeated all
then-existing remote attestation techniques developed for computer architec-
tures with separate data and instruction caches1. The general principle of a
data substitution attack is to make a malicious checksumming process compute
the checksum of the legitimate checksum process, as opposed to a legitimate
process computing a checksum on itself. Here, the two processes could be iden-
tical but for the action taken after the checksum is computed and approved:
while the legitimate process would perform a desirable action, the malicious
process would load and execute an unwanted routine.

While a general version of the data substitution attack can be detected by
using the program counter and data pointer as inputs to the checksum compu-
tation [12], this countermeasure will not block the data substitution attack de-
scribed in Wurster’s Masters thesis [18] and an associated conference paper [17].
In these publications, multiple ways were shown using which an adversary can
perform a data substitution attack by stealthily causing the L1 data cache and
L1 instruction cache—when reading the same virtual memory location—to load
different contents. One of the attack variants (see Figure 1) is based on chang-
ing the access control privileges for the checksum process from code to data,
thereby causing an exception to be triggered when the processor attempts to
load the process into the L1 instruction cache. An exception handler instru-

1Most remote attestation techniques fall in this class; one exception is remote attestation
for simple smart cards [4].

2

mented by the adversary modifies the address to be accessed when triggered,
thereby forcing the malicious process to be loaded. The exception is only trig-
gered by read requests for the instruction cache, and no redirection takes place
for read requests for the data cache.

L1 data L1 instr.

memory

read readdata data

redirect

Figure 1: The Figure illustrates a data substitution attack in which two read
requests to the same address result in different content being loaded. The request
from the data cache is served without a redirection. However, since the access
control privileges for the contents have been set to “data”, the read request from
the instruction cache triggers an exception and a subsequent redirection.

Later, it was shown by Giffin et al. [3] that the attack can be overcome using
self-modifying code. However, self-modifying code presents other difficulties,
among other reasons due to its use in malicious software, and so, a remote
attestation method that does not rely on this approach would be beneficial. We
introduce a new design approach to counter all data substitution attacks, and
without relying on self-modifying code. Its security is based on how hierarchical
memory accesses work, and its computational efficiency is comparable to that
of the fastest types of remote attestation previously proposed. Our approach
uses no new hardware, and is not specific to any particular instruction set or
device type. We focus on architectures using inclusive caching, i.e., where the
contents of the L1 cache are duplicated in the L2 cache.

2 New Design Principles

Wurster [18, 17] describes several versions of their redirection attack, for a col-
lection of common processor architectures. The result of all of the versions is
that read requests made for the L1 instruction cache and the L1 data cache—
associated with the same virtual memory address—resolve to different physical
addresses. This is sometimes achieved by redirecting reads for the instruction
cache, sometimes by redirecting reads for the data cache. Independently of
what adversarial approach is taken, it results in a data substitution attack that
cannot be detected simply by monitoring the program counter and data pointer.

3

Understanding the problem. We assert that one can detect any data sub-
stitution attack by forcing any memory redirects to cause “additional” cache
misses. This is not a property previous remote attestation proposals have. For
example, neither the Pioneer proposal [12] nor Qualcomm’s FatSkunk approach
[6, 7] avoid attacks based on memory redirects. Looking at why these approaches
fail is instructive. Both involve a checksum process that fits in the L1 cache,
and so, the critical memory redirect can take place before the remote attesta-
tion has even started. If the adversary causes the corrupt version of the routine
to be loaded into the L1 instruction cache using a memory redirect, then any
potential delay incurred from the redirection will very obviously not affect the
execution time of the routine. While it is not sufficient to make the checksum
process too large to fit in the L1 cache for us to counter the attack, we do not
believe any process that does fit can be secure against redirection-based data
substitution attacks.

Forcing cache misses. The example above shows that in order to detect
the delays associated with malicious memory redirection, the memory redirects
need to take place after the checksumming process has started. Practically
speaking, this corresponds to a checksum process that is substantially larger
than the L1 cache, thereby causing frequent flushing of the L1 cache. Moreover,
it requires that the adversary is unable to redirect reads from one L2 location
to another, as the delay associated with this would be limited to the diminutive
delay2 associated with the operation of the exception handler. For maximum
detectability, we therefore need to ascertain that the use of a memory redirection
attack results in an L2 cache miss—and that the “legitimate” execution of the
checksumming process does not.

Figure 2 shows an attempt to a data substitution attack based on redirection,
where the checksum process takes up the entire L2 cache and where the redi-
rected read results in an L2 cache miss. One must remember that an adversary
can also force redirects to be made from one L2 location to another, even if the
checksum process takes up the entire L2 space. However, as shown in Figure 3,
if the process is the size of the L2 cache, this necessitates the displacement of
a portion of the checksum process from the L2 cache to slower memory. When
the displaced portion is requested, that results in a delay.

On one typical PowerPC CPU, an L1 cache miss results in a 40 cycle penalty,
whereas an L2 cache miss is associated with a penalty of at least 500 cycles;
therefore, if one were to force approximately 4000 L2 cache misses on average
for a process running on a 3.4GHz processor, a 0.5ms delay would be incurred.
The typical network latency variation for a LAN is about half of that, making
remote attestation even over a LAN entirely practical, and remote attestation
carried out across a connection with lower latency variance a breeze.

2From a practical perspective, very short delays may be hard to detect due to the variance
in communication times between the audited system and the external verifier.

4

L1 data

L1 instr.

L2 memory

Figure 2: The Figure shows an example data substitution attack mounted on a
process residing in the L2 cache, where some read operations get redirected from
the L2 cache to slower memory. The resulting delay is detected.

L1 data

L1 instr.

L2 memory

Figure 3: The Figure shows an example data substitution attack mounted on a
process residing in the L2 cache, where some read operations get redirected from
one L2 location to another. However, the legitimate checksum process requires
the entire space of the L2 cache, so the malicious segment must displace some
other segment of the checksum process. When displaced data (moved to the
location of the bold rectangle) is requested, an L2 cache miss occurs, and the
resulting delay is detected.

Amplifying the adversary’s penalty. To amplify the delay associated with
redirection attacks, it is beneficial to maximize the number of expensive cache
misses suffered by a malicious process. This can be achieved in various ways:

• Reduce locality of reference. It is beneficial for the checksumming
process not to exhibit strong locality of reference—whether for instruction
or data reads. The result of low locality of reference is an increased number
of L2 cache misses incurred by a malicious process that uses redirection.
As a special case of this goal, it is desirable that the L1 instruction cache
is automatically flushed for each iteration of the checksum process.

It is crucial that this absence of locality of reference is an inherent property
of the process, as opposed simply to how it is implemented, or an adversary
may be able to create a malicious process with better runtime behavior
than the legitimate process, e.g., by changing the memory layout of the
malicious process. Such a process would potentially go undetected.

• Understand cache prediction. Cache predictors affect the execution
time of processes—whether malicious or not. Whereas it may at first

5

seem that successful cache prediction is always a liability in the context
of remote attestation, the truth is more complex. Successful L2 cache
prediction is undesirable as it makes detection harder by speeding up the
execution of a malicious process. Successful prediction of L1 misses, on the
other hand, is not harmful—and is in fact slightly beneficial as it reduces
the computational time for the legitimate checksum process.

A good way to balance these conflicting design criteria is to compute the
location of the next access, then perform a computation taking the same
number of steps as an L1 cache miss, followed by the access itself. An L2
cache miss would cause a notable delay.

3 A Detailed Construction

We are now ready to start describing the details of the solution we propose,
following the requirements outlined in section 2. This description will be broken
down in terms of computational structure, memory layout, and how to configure
our proposed remote attestation process.

3.1 Computational structure

The checksum process can be broken down into segments of code used to read
input values, compute a checksum, forcing cache misses and amplifying the
penalties associated with cache misses.

read
content
at next
location

combine
content

with
state, get

jump
location

non-
linear
state

update

branch to
jump

location ...

1 2 3 4 5

.

.

Figure 4: The Figure shows the principal execution flow associated with the
checksumming process.

Referring to the steps shown in Figure 4, the checksum process can be described
as follows:

1. The contents of a selected L2 cache location are read to a register, causing
the corresponding cache line to be stored in the L1 cache.

2. The contents that were read are combined with a checksum state s1.

3. The checksum state s1 is combined with the contents of selected registers,
and stored in a secondary state s2.

6

This step preferably takes the same amount of time as an L1 cache miss
incurs. Given the use of cache predictors for the instruction pipeline,
that leads to an efficient execution with no delay after the execution of
the multi-branch instruction in step 4—unless an attacker is performing
a redirect-based attack. However, if a redirection attack is taking place
there will be a delay, as loading a cache line to the L2 cache takes much
longer than to the L1 cache.

4. The checksum state s1 is used to algebraically select a branching location
for a multi-branch with a large number of different procedure locations.
These procedures correspond to the rectangles shown in step 5.

A register j is used to store the location to jump to at the end of the
procedure. The location j is independent of the selected procedure, and
corresponds to the dotted-line component shown at the very right in Fig-
ure 4.

5. In each procedure instance shown in Step 5 of Figure 4, the state s2 is
modified in a different way and the result of the operation is stored in the
register for state s1. The procedure ends by jumping to the location j,
set in step 4. This corresponds to starting the execution of the next code
segment.

We refer to the code of steps 1-4 above as the control portion (as this part
controls the execution flow), and the code of step 5 as the procedure portion (as
it consists of a large array of procedures, each causing different state modifica-
tions.)

A sequence of code segments, as described above, is daisy chained to form
a circular structure, a portion of which is shown in Figure 5. Here, different
segments of the chain use distinct control elements, while the elements corre-
sponding to the procedure portion are reused for each segment in the daisy
chain. At the “end” of the daisy chain, it is determined whether to start a new
iteration based on whether the entire input string has been checksummed.

1 2 3 4 5 1 2 3 4 5 1

Figure 5: The Figure shows daisy chaining of code segments corresponding to
the outline shown in Figure 4.

By design, the amount of memory required to store the instructions executed
for one full rotation of the daisy chain exceeds the size of the L1 cache, thereby

7

automatically forcing the L1 instruction cache to be continually flushed. In
particular, the amount of space needed for one full cycle of the daisy chain
corresponds to the amount needed to store the instructions of steps 1-4 and the
instructions for the selected procedure of step 5, times the number of instances.

3.2 Memory layout

We partition the L2 memory space into sections of contiguous bits. Each mem-
ory section contains code corresponding to setup, a control portion, a procedure
portion, iteration control and concluding code, or a combination of these. The
setup code turns off interrupts, receives initialization values and applies these.
The control portion updates the checksum state—where each control portion
instance does this in a slightly different way3. It then uses the state to select a
procedure to which it branches. Each procedure, of which there is a very large
number, modifies the checksum state in a distinct manner. The iteration control
is used to determine when the checksumming has completed, and the conclud-
ing code transmits the checksum result to an external verifier, then loads the
routine to be run after the checksum has been approved by the external verifier.
The validity of the loaded code is checked using a hash function, where the re-
sult is compared to the expected result, which is stored as part of the checksum
process. For simplicity, we assume hardware support for a hash function, but
note that this code would otherwise be part of the concluding code.

L2

...

...

...
...

...

...

...

Figure 6: The Figure shows the memory layout of the checksum process. The
L2 memory is divided into N2 code sections, a portion of which (marked in
grey) contain code for setup, the control portions, iteration control, and the
concluding code. The remaining code sections (in white) contain code for the
procedure portion.

The control portion, in turn, can be broken down into setup and concluding
code on one hand, and code executed in the loop on the other hand. If the control
portion does not fit in one memory page, the “loop code” should be distributed
as evenly as possible between the pages used for control code so that the number
of accesses per page performing the checksumming is approximately the same.

3The differences between the instances makes an adversary unable to represent the code
using less space without inflicting a run-rime “unpacking delay”.

8

Without lack of generality, we assume that the control portion requires c pages
and that the loop code is distributed evenly between these.

3.3 Configuring the remote attestation process

Determining the length of the daisy chain. As shown in Figure 6, the
L2 memory space is divided into N2 code sections, each one of which has size
S(section), where a section consists of an integer multiple of cache lines. Here,
N2 = S(L2)/S(section), where S(L2) is the size of the L2 cache. Denoting the
size of the L1 cache by S(L1), we see that the number of code sections that fit in
the L1 cache is N1 = S(L1)/S(section). To guarantee that the L1 instruction
cache is flushed for each iteration of the checksum process, each iteration should
therefore execute at least N1 sections. By setting the number of daisy chained
code elements to N1, this is guaranteed.

A concrete example. For clarity, let’s consider one possible configuration,
in which each section corresponds to 16 words, each word 32 bits long. Thus,
S(section) = 16, where the size is measured in 32 bit words; this coincides with
a typical cache line size for a mobile device.

A typical mobile device has a 1 MiB L2 cache (218 words) with a 4KiB
page size (1024 words), and one or more processors with a 4KiB L1 instruc-
tion cache and a 4KiB L1 data cache. Therefore, S(L2)=218, S(L1)=1024
and S(page) = 1024. Thus, we have N2 = S(L2)/S(section) = 16384 and
N1 = S(L1)/S(section) = 64.

To continue with the example, we’ll assume that the code (marked in grey in
Figure 6) that does not correspond to procedures requires space corresponding to
105 sections—corresponding to two pages (i.e., c = 2). This leaves 16384−105 =
16279 sections for the procedures. In each control section, state s1—which is
a 32 bit number—is converted to a branching location. One can compute a
tentative branch location as (s1 AND FFFFFFF0)—effectively generating one of
the 16384 section addresses. It is then determined whether the result is less than
105 × 16 = 1696, which corresponds to a location outside the procedure space;
if so, then one of the 28 most significant bits of the tentative branch location is
set to 1, thereby remapping the location into the range of procedure addresses.
Practically speaking, this can be approximated with a uniform distribution.

A look at the locality of reference. We note that the process we described
exhibits a very limited locality of reference for execution, beyond the execution of
instructions within a code section. Therefore, if the adversary has instrumented
the system to trigger an exception when code corresponding to one or more
pages is accessed, then each cache line read within such pages will trigger the
exception.

To achieve a similar absence of locality of reference for the data accesses, we
avoid linear reads of the L2 cache. This is achieved if the distance between two
consecutive data reads is d = S(cache line) + 1 before the reduction modulo the

9

size of the L2 cache. This way, no N1 consecutive read accesses will be made to
one and the same cache line. Since d is odd, all S(L2) addresses will be read
without getting stuck in a smaller cycle. Coming back to the example above,
where we assume S(cache line) = 16, this would mean that d = 17.

Function properties. Step 3 of Figure 4 combines the content of a collection
of registers with the state register s1. These registers are modified in the proce-
dures. For example, in one procedure instance, the existing contents of register
r5 may be XORed with the state s2; in a second procedure instance, the contents
of register r6 are rotated two bits to the right; while in a third instance, the
contents of r5 and r6 are added to each other and stored in register r3; and in a
fourth instance, the contents of the processor flags are XORed with the contents
of the register keeping state s1. Each procedure instance comprises a different
set of such operations, modifying the contents of the registers. The operations
are selected so that the effect of a large portion of pairs of procedures are non-
commutative. This implies that the order in which the procedures are invoked
matters to the final outcome. Consequently, the checksum function implements
a non-linear accumulator.

Setup and Concluding code. The setup code turns off interrupts; receives
initialization values for the states s1 and s2. Since these two states correspond to
multiple registers, and the state impacts both the computation and the selection
of procedures, the entropy makes it impossible for an adversary to exhaustively
pre-compute any non-negligible portion of results or anticipate the program
flow. Moreover, to increase the entropy of the system, the first read operation
would be performed from a location start, selected by the external verifier as
an integer in the the range 0 ≤ start < S(L2). This value is also received as
part of the setup. In addition, the setup code initializes the counters used for
the iteration control.

The concluding code transmits the final checksum value to the external ver-
ifier; awaits a response; then loads and verifies the correctness of the process to
be run in a safe state. In some instances, the response contains a key (to be
used to decrypt a resource); in other cases, it contains the result of an operation
that the audited device requested.

Some remarks.

• The process we have described works both for single-core and multi-core
processors; however, it is worth noting that multi-core implementations
cause bus contention every time two or more cores make simultaneous
accesses to data in the L3 cache or DRAM. This amplifies the delay asso-
ciated with attempting a data substitution attack. It should also be noted
that this type of contention takes place —even for the legitimate checksum
process—on systems with shared L2 caches. Legitimate L2 contention can
simply be taken into consideration when determining what the expected
computational time is.

10

• We have not discussed how to warm the L2 cache prior to the execution.
One straightforward way to do this is to run the checksum process twice in
a row—receiving different initialization values for each time—and ignoring
the checksum value from the first computation.

• To increase the entropy for the data accesses, one can instead of using a
fix value for d use a random odd number set by the external verifier. The
number would be chosen to avoid multiple reads during a sequence of N1

consecutive reads, where any two of these access the same cache line. To
keep the security argument simple, however, we do not use this approach.

4 Security Analysis

We provide a security argument that is not specific to a particular instruction
set, nor to the performance of the hardware or the size of the caches. Thus, our
argument is, with necessity, based on the structure of the building blocks and
their effects on the memory management, as opposed to the specific sequence
of instructions in an implementation. We will break down our security argu-
ment into a collection of separate arguments, covering the principles that, when
combined, results in the security of the proposed approach.

The computation cannot start early. The computation of the checksum
function depends on the initialization values received during the setup phase.
These have a sufficient entropy that it is not feasible to precompute a non-
negligible portion of the potential (init, checksum) pairs a priori, where init =
(s1, s2, start).

Moreover, the operations of the procedures of the checksum function are
non-commutative4, by virtue of of consisting of computational elements that by
themselves are non-commutative. For example, using a combination of XOR
and bitwise shifting in the function makes it non-commutative. Therefore, it
is not possible to pre-compute any portion of the checksum function ahead of
receiving the initialization values.

The absence of efficient compression. The checksum process consists of
code sections with substantial individual variations. This protects against the
creation of a more compact process. In contrast, assume for a moment that
the code for a large number of different control segments were identical to each
other, they could be “rolled”—by which we mean the opposite of unrolled—with
a rather small computational penalty. Similarly, if the individual procedures all
belonged to the same family of functions, that could lead to more compact rep-
resentations of the code. For example, if the ith procedure were to perform the

4Note that the checksum function does not implement a hash function, and does not satisfy
collision-freeness, since this is not needed to guarantee security.

11

simple function of adding the number i to the input, then this would enable a no-
table code size reduction without an associated ballooning of the computational
costs.

While computationally expensive compression methods could potentially be
used to reduce the effective size of the code to some extent, there is a substantial
run-time cost associated with such methods. The individual variation of the
code elements means that the checksum code cannot be modified in a manner
that both reduces its size and maintains its approximate execution time. In
particular, it is implausible that there exists a more compact representation of
the checksum process that is at least one memory page smaller than the original
version, and where the modified checksum process has a comparable execution
time to the original.

The guarantee of delays. The checksum process is the same size as the L2
cache. Since redirection attacks operate on the granularity of pages, an attacker
would have to cause an L2 cache miss for at least one page (as shown in Figures 1
– 3) as a result of performing a redirection-based data substitution attack.

Similarly, performing a data substitution attack that does not rely on redirec-
tions necessitates L2 cache misses, since—simply speaking—to use one process
to checksum another process, both of these processes need to be stored and
accessed.

The amplification of delays. The goal of the proposed construction is not
only to make delays an inevitable result of any data substitution attack, but also
to maximize these delays. Recall that the delay is incurred when information
residing neither in the L1 nor L2 cache is requested. Thus, delays are maximally
amplified if two reads to the same location always result in two L1 cache misses.
In other words, it is important that, during the execution of the checksumming
process, both the L1 data cache and the L1 instruction cache are “constantly
flushed”.

Establishing that the L1 data cache is constantly flushed is relatively straight-
forward. This is because the distance d between two read locations is d =
S(cache line) + 1. Thus, if the a first read operation is performed at a lo-
cation x, then the next i reads (for i ≤ N1) will be made from locations
[x+i×(S(cache line)+1)]S(L2), where []S(L2) denotes reduction modulo S(L2).
As long as S(L2) > (S(cache line) + 1)×N1, any N1 consecutive read requests
will be from different cache lines. This is always satisfied by existing cache
hierarchies.

Since d is odd and S(L2) is a power of two, it will take S(L2) additions
of d modulo S(L2) before the starting point is arrived at. In other words, the
checksumming process reads the entire L2 cache, never reading two words from
the same page before first having flushed the L1 data cache. Therefore, each
data read request will result in an L1 cache miss. Since all words of the L2
cache are read, each page will be requested the same number of times.

12

Consider now the L1 instruction cache. Recall that there are N1 code ele-
ments in the daisy chain, each one of which comprises a control portion and a
procedure portion. Here, N1 = S(L1)/S(section), where S(L1) is the size of
the L1 cache. For each round of the daisy chain, we know that we will execute
N1 control segments and N1 procedure segments. The former are guaranteed to
be distinct, and the latter are likely to be distinct—but not guaranteed to be so.
However, it is plain that the N1 control segments will flush the L1 cache, since
each one is of size S(section) and S(L1) = N1 × S(section). Thus, the instruc-
tion read accesses the execution of the checksumming process never reads two
words from the same page before first having flushed the L1 instruction cache.
In other words, this means that the L1 caches will be automatically flushed
between two accesses to the same cache line, whether we are considering the
instruction or data cache, which, in turn, implies the maximum L2 cache miss
penalty, should any data substitution attack take place.

Turning now to the number of accesses per page, we note first that the control
portion is expected to fit in a small number of pages, with the procedure code
taking up the remaining pages in the L2 cache. In our example in section 3.3,
the control portion fits in two pages. More generally, assume the control code
requires c pages, where the loop component is evenly divided between these.
This means that each “control page” will be accessed S(L2)/c number of times
since the loop will be executed exactly once for each of the S(L2) words in the
cache, as these are read.

We can prove that the “procedure pages” will be accessed at least S(L2)/c
number of times (for c > 1) with all but a negligible probability. Recall that
that the selection of the procedure is pseudo-random with a close-to-uniform dis-
tribution5. The distribution of accesses among the pages containing procedure
code is governed by a binomial distribution, where each page corresponds to a
different-colored ball and where S(L2) balls are drawn with replacement. If we
wish to compute the probability of less than S(page)/c accesses of one control
page, we can use Chernoff’s inequality for estimating the cumulative distribution

function. This states that F (k;n, p) ≤ exp(− 1
2p

(np−k)2

n) where k = S(page)/c

is the minimum number of page requests, n = S(L2) the total number of read
accesses, and p = S(page)/S(L2) is the probability that a particular read access
will be made to the page of interest6. Simplifying the above expression gives

us F (k;n, p) ≤ exp(−(c−1
c)

2 × S(page)/2). Using the example in section 3.3,
where c = 2 and S(page) = 1024, we get an upper bound on the probability of
exp(−128), which is less than 2−184. This is the probability that there will be

5We make the simplifying assumption that the distribution is uniform here in spite of
the slight bias introduced by the procedure selection method described in section 3.3. This
uniform distribution does not apply to potential pages that contain a combination of control
content and procedure content. However, these have already been considered in the “control”
case, and can be ignored here.

6Note that the probability is a lower bound of Chernoff’s lower bound since we are making
the simplifying assumption that the entire L2 cache is occupied by procedure code, whereas
in reality, only a portion (N2 − c)/N2 of it is. The smaller the procedure portion, the greater
the probability of any particular portion of it to be accessed for each round.

13

S(page)/c or fewer accesses to a page that is corrupted by an adversary, each
one of which will result in a delay.

When c = 1, we can prove that the pages will be accessed at least 3/4×S(L2)
times, but for a negligible probability. The argument is the same as above,
except that we use k = S(page)× 3

4 . This results in a probability upper bounded
by F (k;n, p) ≤ exp(−(S(page)/32)), which is even smaller than the probability
for c > 1. Thus, we can conclude that each page will be accessed at least
S(page)/c times when c > 1, or at least S(page) × 3

4 times when c = 1. The
delay associated with accessing a page not in the L2 cache is guaranteed to equal
the product of this count and the delay per access to the corrupted page.

The memory layout cannot be optimized. An attacker wishing to speed
up the computation by remapping memory before the start of the checksum
process will not be successful. Considering instruction accesses first, it is clear
that the access pattern for the procedure calls is not a priori predictable to an
adversary, since it depends directly on the initialization values received from
the external verifier. Moreover, the adversary cannot change the L2 memory
mapping in the context of data access without also changing it for instruction
access, and vice versa. Therefore, at most, the adversary can change the ordering
of the sections (which are units of S(section) words); doing so, however, will incur
the tremendous computational cost of performing a reverse mapping for each
multi-branch instruction.

The guaranteed detection of attacks. Based on the above analysis, we can
conclude that a data substitution attack will be be detected as long as the guar-
anteed delay exceeds the latency variance between the external verifier and the
audited device. For situations where this does not hold, however, the standard
approach of iterating the checksum process multiple consecutive rounds brings
up the necessary delay above the detection threshold. Security, in other words,
has been reduced to a matter of proper configuration in terms of the number of
iterations, and depends directly on the measured network latency variance.

References

[1] Cyware. UK: Multiple Hospitals Cancel Hun-
dreds of Operations Due to a Computer Virus,
cyware.com/news/uk-multiple-hospitals-cancel-hundreds-

of-operations-due-to-a-computer-virus-fbecf7d7 Nov 1, 2016.

[2] E-ISAC and SANS. Analysis of the Cyber At-
tack on the Ukrainian Power Grid Defense,
www.nerc.com/pa/ci/esisac/documents/e-isac sans ukraine duc

18mar2016.pdf.

14

[3] J. T. Giffin, M. Christodorescu, and L. Kruger. Strengthening software
self-checksumming via self-modifying code. In ACSAC, pages 23–32. IEEE
Computer Society, 2005.

[4] V. Gratzer and D. Naccache. Alien vs. quine. IEEE Security and Privacy,
5(2):26–31, 2007.

[5] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei. Remote attestation on
program execution. In STC ’08: Proceedings of the 3rd ACM workshop on
Scalable trusted computing, pages 11–20, New York, NY, USA, 2008. ACM.

[6] M. Jakobsson and K.-A. Johansson. Retroactive detection of malware with
applications to mobile platforms. In ACM HotSec 10, 2010.

[7] M. Jakobsson and G. Stewart. Mobile Malware: Why the Traditional
AV Paradigm is Doomed, and How to Use Physics to Detect Undesirable
Routines. In BlackHat, 2013.

[8] D. Kushner. The Real Story of Stuxnet—How Kasper-
sky Lab tracked down the malware that stymied
Iran’s nuclear-fuel enrichment program, IEEE Spectrum,
spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet/.

[9] D. Schellekens, B. Wyseur, and B. Preneel. Remote attestation on legacy
operating systems with trusted platform modules. In In Science of Com-
puter Programming, pages 13–22, 2008.

[10] A. Seshadri, M. Luk, and A. Perrig. SAKE: software attestation for key
establishment in sensor networks. pages 372–385. 2008.

[11] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. SCUBA:
Secure Code Update By Attestation in sensor networks. In WiSe ’06:
Proceedings of the 5th ACM workshop on Wireless security, pages 85–94,
New York, NY, USA, 2006. ACM.

[12] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pi-
oneer: verifying code integrity and enforcing untampered code execution
on legacy systems. In SOSP ’05: Proceedings of the twentieth ACM sym-
posium on Operating systems principles, pages 1–16, New York, NY, USA,
2005. ACM Press.

[13] A. Seshadri, A. Perrig, L. V. Doorn, and P. Khosla. SWATT: SoftWare-
based ATTestation for Embedded Devices. In Proceedings of the IEEE
Symposium on Security and Privacy, 2004.

[14] M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim. Remote software-based
attestation for wireless sensors. In ESAS, pages 27–41, 2005.

[15] S. Shevchenko. Two Bytes To $951M,
baesystemsai.blogspot.com/2016/04/two- bytes-to-951m.html.

15

[16] E. Shi, A. Perrig, and L. V. Doorn. Bind: A fine-grained attestation ser-
vice for secure distributed systems. In SP ’05: Proceedings of the 2005
IEEE Symposium on Security and Privacy, pages 154–168, Washington,
DC, USA, 2005. IEEE Computer Society.

[17] P. C. van Oorschot, A. Somayaji, and G. Wurster. Hardware-assisted cir-
cumvention of self-hashing software tamper resistance. IEEE Trans. De-
pendable Sec. Comput., 2(2):82–92, 2005.

[18] G. Wurster. A Generic attack on hashing-based software tamper resistance.
Master’s Thesis, Carleton University, April 2005.

[19] Y. Yang, X. Wang, S. Zhu, and G. Cao. Distributed software-based at-
testation for node compromise detection in sensor networks. In SRDS
’07: Proceedings of the 26th IEEE International Symposium on Reliable
Distributed Systems, pages 219–230, Washington, DC, USA, 2007. IEEE
Computer Society.

16

