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Abstract. In data security, the main objectives one tries to achieve are
privacy, data integrity and authentication. In a public-key setting, privacy
is reached through asymmetric encryption and both data integrity and au-
thentication through signature. Meeting all the security objectives for data
exchange requires to use a concatenation of those primitives in an encrypt-
then-sign or sign-then-encrypt fashion. Signcryption aims at providing all
the security requirements in one single primitive at a lower cost than using
encryption and signature together. Most existing signcryption schemes are
using ElGamal-based or pairing-based techniques and thus rely on the de-
cisional Diffie-Hellman assumption. With the current growth of a quantum
threat, we seek for post-quantum counterparts to a vast majority of public-
key primitives. In this work, we propose a lattice-based signcryption scheme
in the random oracle model inspired from a construction of Malone-Lee. It
comes in two flavors, one integrating the usual lattice-based key exchange
into the signature and the other merging the scheme with a RLWE encryp-
tion. Our instantiation is based on a ring version of the scheme of Bai and
Galbraith as was done in ring-TESLA and TESLA]. It targets 128 bits of
classical security and offers a save in bandwidth over a naive concatena-
tion of state-of-the-art key exchanges and signatures from the literature.
Another lightweight instantiation derived from GLP is feasible but raises
long-term security concerns since the base scheme is somewhat outdated.

1 Introduction

Enabling secure communication between two parties over a public channel is the
most natural task one can ask from cryptography. Nevertheless, it is not necessar-
ily obvious what is meant by secure. Since the channel is public, the first difficulty
to overcome is to prevent unauthorized people from accessing the transiting data,
that is to say, ensuring privacy of data. Privacy is enabled by using an encryption
scheme. This scheme transforms a plaintext m in an encrypted message c called
ciphertext. Using a secret key, the authorized receiver will be able to reverse this
transformation but no polynomial time adversary should be able to retrieve any
meaningful information on m given only c. Having data secretly transmitted is
clearly a milestone in securing communication but cannot be seen as the final an-
swer. While answering all the real-life security threats of a communication system
seems unfortunately not possible relying solely on mathematics, two common is-
sues in practice are impersonation and data corruption. Hence, data integrity (data
were not modified) and authentication (sender is actually the one they claim to be)
should be guaranteed. In a public-key setting, these properties are both ensured by
digital signatures which allow a signer to create a signature σ(m) on a message m,
verifiable by anyone knowing their public key.



Those cryptographic primitives have been developed somewhat independently and
can be used separately, depending on the context. If the adversary is passive, i.e
they can only read the channel but not write on it, encryption can be enough. If the
secrecy of the message is not important, signing can be enough. Yet, in a situation
in which an active adversary is present during a sensitive communication, privacy,
data integrity and authentication must all be guaranteed at the same time. It is
clearly possible to use encryption and signature together but it implies accepting
the overhead of using two building blocks and forces a careful security analysis
since concatenating two cryptographic primitives in a naive way can be dangerous.
In private-key cryptography, a lot of effort has been put toward the development
of authenticated encryption schemes. The idea is to merge a symmetric encryption
scheme with a message authentication code in a single block providing all the secu-
rity properties listed above. This work gave rise to a dedicated workshop (DIAC)
and a (currently ongoing) competition to establish a portfolio called CAESAR.
On the public-key side, the equivalent primitive is called signcryption. The goal of
a signcryption scheme is to provide the security properties of both encryption and
signature at a lower cost than concatenating them. The (academic) story started
at CRYPTO in 1997 with the original paper of Zheng [34]. In this work, the au-
thor used a clever combination of ElGamal encryption and signature to create an
efficient scheme leading a line of research aiming at formalizing, studying security
and enhancing signcryption [15].
Unfortunately, the techniques used were based on the Diffie-Hellman (or RSA) as-
sumption and their security would be compromised in case of the emergence of a
large quantum computing power. Now, even though it is not clear when or even
if a large enough quantum computer will be built, the importance of ensuring the
security of communication in today’s world is so critical that no risks can be taken
and cryptography should be able to answer at the right moment. Designing and
analyzing new cryptosystems takes time and trust can only be developed in the
long run when the research community has put a huge amount of effort over the
years to break it. Furthermore, the quantum threat could also be already present
now if an adversary is currently recording long-term confidential encrypted data in
order to decrypt it in the future. For those reasons, the post-quantum community
is trying to push, as soon as possible, for development, both on theoretical and
practical side, of quantum-resistant cryptography.

Our contribution. In this paper, we introduce a construction of a signcryption
scheme in the Fiat-Shamir with aborts framework of Lyubashevsky based on the
signature of Bai and Galbraith [7]. It is inspired from a Schnorr-like variant of the
original work of Zheng [34] proposed by Malone-Lee [28]. We provide two versions
of the scheme, both relying on the concept of sharing a key while signing and
forwarding a symmetric encryption of the message under this key. The first one
uses a usual lattice-based key exchange while the second one encrypts the key in a
KEM fashion. Those two flavors of the scheme provide a tradeoff between efficiency
and storage. The key exchange version is slower but uses less memory/bandwidth.
We also provide a concrete instantiation with parameters chosen according to the
methodology of [7] enabling correctness of the scheme and compares the gains of
using this specific scheme instead of a naive concatenation of signature and key
exchange.
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Previous work. Signcryption has not been extensively studied in the post-quantum
world yet. Some works on lattice-based schemes exist [22,33,24,32], however, they
are all based on trapdoors and do not provide concrete practical instantiations.
Our work is, to our knowledge, the first one studying signcryption using the Fiat-
Shamir with aborts technique on lattices. We call the scheme SETLA (Signature
and EncrypTion from LAttices) as a tribute to the TESLA family of signatures
and to facilitate references to it in the text.

Organization of the paper. Section 2 formalizes signcryption and recalls basic
tools needed in the construction. Section 3 presents the two versions of SETLA
and points out their differences. Section 4 and 5 argue the security, correctness and
efficiency of the schemes and section 6 concludes.

2 Preliminaries

2.1 Notations

Let us first explain which notations will be used through the paper. For the sake of
simplicity and readability, they are similar to what is commonly used in the recent
literature on the topic. We write polynomials with bold lower cases, e.g. a ∈ Z[X].

When a value v is sampled from a distribution χ, we use the notation v
r←− χ.

This notation is extended in a natural way to polynomials (of a given degree),

v
r←− χ means that the coefficients of v are all sampled independently from χ. The

uniform distribution over a set S is written U(S). We use v
r←− S as a shorthand

for v
r←− U(S). For an odd q, we use the representative in

[
−(q−1)

2 , q−12

]
to identify

cosets of Zq. We use the notation bxed = (x − [x]2d)/2d with [x]2d the integer in
(−2d−1, 2d−1] congruent to x modulo 2d to denote the d-bit modular rounding of
x and also extend it to vectors.

2.2 Signcryption

A signcryption scheme is a cryptographic primitive aiming to act at the same time
as encryption and signature on some data. The usual situation is that of a sender
(a.k.a Alice) willing to send a message m to a receiver (a.k.a Bob) while ensuring
at the same time privacy, integrity and authentication. It is the public-key analog
of authenticated encryption.

Definition 1. Formally, a signcryption scheme with message space M and sign-
cryptext space C is a tuple ΓM,C = (ParamGen, KeyGenSender, KeyGenReceiver,
Signcrypt, Unsigncrypt) composed of the five following algorithms:

– ParamGen(λ): a randomized algorithm taking as input the security parameter
λ and outputting the parameters params of the system. We consider params

as an implicit input of all the algorithms.
– KeyGenSender(): a randomized algorithm generating a key pair (ska, pka) for

the sender (Alice). We will call ska the secret signing key and pka the public
verification key.
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– KeyGenReceiver(): a randomized algorithm generating a key pair (skb, pkb) for
the receiver (Bob). We will call skb the secret decryption key and pkb the public
encryption key.

– Signcrypt(ska, pkb,m): a randomized algorithm taking as input Alice’s secret
signing key ska, Bob’s public encryption key pkb, a message m ∈ M and
outputting a signcryptext C ∈ C.

– Unsigncrypt(pka, skb, C): a deterministic algorithm taking as input Alice’s
public verification key pka, Bob’s secret decryption key skb, a signcryptext
C ∈ C and outputting a either a message m ∈M if the signcryptext is valid or
a failure symbol ⊥.

It should be noted that, for efficiency and simplicity reasons, the two key genera-
tion algorithms can be merged in a single KeyGen algorithm outputting a key pair
(sk, pk) in which sk act simultaneously as decryption and signing key and pk as
verification and encryption key.

Non-repudiation. There is no settled answer to the question of non-repudiation
for a signcryption scheme. Indeed, since we want privacy of the message, it is not
clear if a public verification mechanism is required. But if Alice can later repudiate
the message in front of a judge, can we really call it a signature? The consensus is
to set up a mechanism allowing Bob to generate a signature from the signcryptext
at the price of revealing the message. Hence, if at some point Alice tries to be
dishonest, he can create a publicly verifiable signature and present it to the judge.
Hence, we extend the signcryption scheme with two optional algorithms:

– SignExtract(pka, skb, C): a deterministic algorithm taking the same inputs as
Unsigncrypt and outputting a publicly verifiable signature σ(m).

– PublicVerif(pka, σ(m)): a deterministic algorithm taking as input the param-
eters of the system, the public key of Alice and a signature on m and outputting
1 if σ(m) is a valid signature on m, 0 otherwise.

In practice, the SignExtract algorithm can be merged with Unsigncrypt to output
at the same time m together with its signature σ(m).

2.3 Ring Learning with Errors and Decisional Compact Knapsack

The ring learning with errors (RLWE) [27] problem is a variant of the learning with
errors problem offering higher efficiency, both in memory and computing power at
the price of a globally less understood security. It is parametrized by a positive
integer q, an irreducible polynomial p(X) of degree n defining the polynomial ring
R = Z[X]/〈p(X)〉 together with its “mod q version” Rq = R/qR and a narrow
error distribution χ of zero mean over Z. To enable efficient computation, we take
the usual well-known ring Rq = Zq[X]/〈Xn + 1〉 with q ≡ 1 mod 2n. Through
the paper, elements in Rq will be seen alternatively as polynomials or vectors in
Zq together with negacyclic convolution as multiplication. It should be clear from
context which view we use. To denote the set of elements with coefficients in the
range [−B,B] we write Rq,[B]. We define the following problems, all believed to be
hard, even for an adversary in possession of a large-scale quantum computer:

Definition 2. (Search-RLWE ) for a secretRq and a (polynomially bounded) num-

ber of samples ai · s + ei ∈ Rq with ai
r←− Rq and ei ∈ R with coefficients sampled

from χ, find s.
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Definition 3. (Decisional-RLWE ) for a secret s ∈ Rq and a (polynomially bounded)
number of samples ti = ai ·s+ei ∈ Rq with ai and ei sampled as above, distinguish,
with non-negligible probability, the distribution of the ti from U(Rq)

Definition 4. (Decisional Compact Knapsack) In [19], the authors use a small
parameters version of decisional RLWE called the decisional Compact Knapsack
problem (DCK). In that version, the secret and error distributions are U({−1, 0, 1})
which means that the adversary receives tuples of the form (a,a · s + e) with

a
r←− Rq and (s, e)

r←− (Rq,[1] × Rq,[1]), and must distinguish them from samples
from U(Rq×Rq). One can also naturally define the corresponding search problem.

2.4 RLWE Encryption

It is possible to construct an ElGamal-like CPA-secure encryption from RLWE.
This ideal lattices version has been studied in the literature under the name RLWE
encryption [27,14,31,23] and can be found in Figure 1. This scheme is really similar

Decryption key: s
r←− χ

Encryption key: pk = a · s + e with e
r←− χ

RLWE Encrypt(pk,m):

1: y1,y2,y3
r←− χ

2: c1 ← a · y1 + y2

3: c2 ← pk · y1 + y3 + Encode(m)
4: return c1, c2

RLWE Decrypt(c1, c2, s):

1: m = c2 − c1 · s ≈ Encode(m)
2: m = Decode(m)
3: return m

Encode(m):

1: for i in 1...n
2: m[i] = m[i] · b q−1

2
c

3: return m

Decode(m):

1: for i in 1...n
2: if m[i] in

[
−d q

4
e, d q

4
e − 1

]
3: m[i] = 1
4: else
5: m[i] = 0
6: return m

Fig. 1. RLWE Encryption

to ElGamal encryption, the difference lies in the fact that Bob will recover a noisy
version of the ring element representing the message. This is why an encoding and
a decoding algorithms are used. Basically the encoding function maps a bitstring to
a polynomial by encoding one bit per coefficient. The bit b in position i is encoded
as q−1

2 · b. A threshold decoder is applied to recover the message. If the coefficient
at position i is closer to b q2c than 0, we set the bit at the same position to 1,
else, we set it to 0. Hence, has long as no coefficients are modified by more than
q
4 , the decoding algorithm will recover the correct message. Since χ is a narrow
distribution of zero mean, this should happen with overwhelming probability.

2.5 Reconciliation mechanism

A common issue in learning with errors key exchanges [20,29,5,12,11] is that both
parties end up with two values that are close to each other but not exactly the same.
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It is due to the fact that, as in the encryption scheme, it is often made of ElGamal-
like cryptography but with noisy elements. For example in the RLWE version, Alice
eventually computes ass′ + e′s while Bob has ass′ + es′ (this can really be seen
has them agreeing on a noisy version of gab in Diffie-Hellman). Obviously, the key
exchange cannot be considered successful if each party has a different value. The
solution is to use a reconciliation mechanism deriving a common value from noisy
data (a.k.a fuzzy extractor [16]). For example let us assume we work in Zq with ele-
ments represented as values in [−(q−1)/2, ..., (q−1)/2]. Alice possesses a and Bob
b = a+e for a small e. They could map their values to, say, {0, 1} by partitioning Zq
in S0 = [−dq/4e, dq/4e − 1] and S1 = [dq/4e, (q − 1)/2] ∪ [−(q − 1)/2,−dq/4e − 1]
and outputting in which subset lies their value. This works well if a and b are
close to 0 or q/2 but can fail if they are close to q/4 or −q/4. To overcome that
possibility, Alice can send a reconciliation value v ∈ {0, 1} indicating if a is in
[0, dq/4e] ∪ [−(q − 1)/2, b−q/4c] or [dq/4e + 1, (q − 1)/2] ∪ [d−q/4e − 1,−1]. The
value v thus conveys no information about the partition in which a lies but helps
Bob to reconcile on the correct value using his knowledge of b. This approach has
been used by Peikert in [29], by applying the above technique separately on each
coefficients of an element of Rq (with a slight modification dealing with the fact
that an odd q cannot be split in two equal parts).

Clearly, any reconciliation technique has an error tolerance threshold over which
agreement cannot be reached. To increase the threshold, a possibility is to use
multiple values to agree on a common bit. The motivation is that polynomials used
in RWLE-based are often of size 512 or 1024 to ensure the security of the underlying
lattice problem while symmetric secrets of bit size 256 appear to be enough, even
in a post-quantum world. Hence we should use mappings from Znq to {0, 1}256 with
n ∈ {512, 1024}. Of course mappings for higher n or larger symmetric keys can
be used but in practice, those parameters are good enough. For the key exchange
version of our construction, we borrow the notations from NewHope [5]. In their
paper, they show how to agree on a n bit key from either a polynomial of degree
2n or 4n. The description of their whole reconciliation mechanism is quite tedious
and takes a lot of space. Hence we redirect the interested reader to their paper for
a full explanation and analysis. By borrowing their notations, we mean that we
will use two algorithms HelpRec(x) and Rec(x′,hr) (as defined below) but that
the scheme is unaffected by how those functions work under the hood, they could
implement any reconciliation mechanism.

– HelpRec(x) taking as input a ring element and outputting a reconciliation
vector hr

– Rec(x′,hr) taking as input a ring element and a reconciliation vector and out-
putting a symmetric key K

If x and x′ are close to each other (the distance between their coefficients is small),
the output of Rec(x,hr) and Rec(x′,hr) are the same.

2.6 Fiat-Shamir lattice-based signatures

In [25], Lyubashevsky presented the Fiat-Shamir with aborts technique to con-
struct digital signatures in the random oracle model. It spawned a long line of re-
search enabling practical instantiations of lattice-based signatures such as BLISS,
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Dilithium or qTESLA. The construction is following the same pattern as Schnorr
signatures. It starts by defining an identification scheme with a Σ protocol and
then use the generic Fiat-Shamir transformation to create a signature scheme. As
Schnorr identification protocol acts as a zero-knowledge proof for a discrete log-
arithm, Lyubashevsky’s protocol acts as a zero-knowledge proof for a LWE/SIS
instance. In figure 2 we informally recall such a signature instantiated with RLWE.
The public parameter a is uniform in the ring, E and Y denote two small distri-
butions (with Y significantly larger then E but still small in comparison to the
modulus q). The crucial difference between this signature and Schnorr’s scheme is
the rejection sampling step performed after generating the zi. It is required in order
to avoid leakage of the secret over the release of signatures. Indeed, since the yi
are not sampled uniformly over the whole ring, they do not act as a one-time pad
perfectly hiding the value s · c. The rejection sampling procedure will reject some
signatures such that the output distribution of the zi is statistically independent
of the secret and hence do not reveal anything about it.

Public parameter: a
Secret key: s, e

r←− E
Public key: t← a · s + e

Sign(s,m):

1: do
2: y1, y2

r←− Y
3: c← H(a · y1 + y2,m)
4: z1 ← s · c + y1, z2 ← e · c + y2

5: while Rejected(z1z2)
6: return z1, z2, c

Verify(z1, z2, c, t,m):

1: v← a · z− t · c
2: return 1 if c = H(v) and both zi are

small else 0

Fig. 2. Generic RLWE signature scheme in the Fiat-Shamir with aborts framework

3 Lattice-based Signcryption Schemes

Hereunder, we describe both versions of our scheme. The discussion in section 5
will only be made for the first version for the sake of brevity but the analysis is
basically the same. In the following, when we talk about lattice signatures, we mean
lattice-based signatures obtained from the Fiat-Shamir transformation.

3.1 SETLA-KEX Signcryption

First we describe how to integrate encryption into a lattice signature, following the
steps of the ElGamal modification of Zheng. From a high-level point of view, the
idea of the original signcryption scheme is to sign a message with an ElGamal sig-
nature and to realize a non-interactive Diffie-Hellman ephemeral key exchange at
the same time reusing the“commit” value of the signature. The gain in efficiency
comes from the fact that the same operation is used in both primitives. Subse-
quently, the message is symmetrically encrypted with the key derived from the
exchange and forwarded to the receiver. While the first scheme of Zheng was not
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directly translatable in a lattice version, one of its derivative due to Malone-Lee
[28] caught our attention. Indeed, even though its primary advantage over Zheng in
pre-quantum cryptography was to enable non-interactive non-repudiation, namely
that Bob alone can create a valid signature from a signcryptext, the second differ-
ence is that it is based on Schnorr signature. The lattice-based signatures schemes
coming from identification schemes through Fiat-Shamir transform being Schnorr-
like [26,7,17,3], this is where post-quantum can meet signcryption. We use a ring
version of the signature proposed by Bai and Galbraith as a base to construct the
scheme but it can be generalized to most signatures derived from the original work
of Lyubashevsky as long as the parameters offer at the same time security and
correctness for the key reconciliation. We actually also have a construction based
on GLP working out of the box with the original parameters which is omitted in
this conference version of the paper for the sake of compactness.

Algorithm 1 SETLA Key generation

Input: Public parameter a1,a2

Output: Key pair pk = (t1, t2), sk = (s, e1, e2)

1: s, e1, e2 ←Rq,[1]

2: t1 ← a1 · s + e1, t1 ← a2 · s + e2

3: return pk = (t1, t2), sk = (s, e1, e2)

Key generation. (Algorithm 1) The key generation is simple and straightforward
for a scheme using ideal lattices cryptography. It uses some public parameters a1,a2

shared among all users and output two RLWE samples pk = (t1, t2) together with
a secret polynomial s. The error and secret distributions are the same and output a
polynomial with uniform coefficients in {−1, 0, 1}. The choice of such a distribution
is suboptimal in terms of security since it has low variance and its special struc-
ture may enable specialized attacks but has been made for reasons that will come
clear later. Note that in the context of signcryption, both Alice and Bob will run
the key generation procedure to retrieve their keys since two key pairs are used in
the full signcrypt/unsigncrypt procedure. In the following, we use subscripts (e.g.
pka = (ta,1, ta,2) ) to differentiate them.

SETLA-KEX Signcrypt. (Algorithm 2) The signcrypt procedure contains three
interleaved parts: signature, key exchange and encryption. The signature follows the
structure of [1,8] as a Fiat-Shamir signature from aΣ protocol. First, a commitment
consisting of two rounded polynomials ba1 · yed, ba2 · yed depending on a masking
value y is computed. Then, an unpredictable challenge c is retrieved by simulating
a verifier with a random oracle H taking inputs depending on the commitment.
Finally, the response consists of a polynomial of the form z = s · c + y. Note that
for reasons related specifically to signcryption schemes, the random oracle should
take as input a symmetric key K and both public identities. If the key was not
included in the input, the adversary playing a signcryption specific CCA2 game
would easily be able to distinguish between two messages m0,m1 by computing
both H(.,mi, ., .) and verify the equality with c. Having the public identities in the
hash is a common practice in signcryption schemes to prove security in advanced
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Algorithm 2 SETLA-KEX Signcrypt

Input: Public parameters a1,a2, Bob’s public key pkb, Alice’s keys (sa, ea,1, ea,2,pka),
a message m, random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric encryption
algorithm E
Output: a signcryptext of m: C = (z, c, E , r)

1: do
2: y,y′

r←− Rq,[B]

3: v← tb,1 · y + y′ = a1 · sb · y + eb,1 · y + y′

4: r← HelpRec(v)
5: K ← Rec(v, r)
6: c← H(ba1 · yed, ba2 · yed,m,K,pka,pkb)
7: z← sa · c + y
8: w1 ← a1 · y − ea,1 · c, w2 ← a2 · y − ea,2 · c
9: while not( z in Rq,[B−ω] and ba1 · yed = bw1ed and ba2 · yed = bw2ed )

10: E ← EK(m)
11: return z, c, E , r

models [15].
The key exchange part is performed by deriving a secret value K from a noisy
version of a1 · sb · y. Alice cannot find the exact value since it means she would
know Bob’s secret key but she can find an approximate value from Bob’s public key
by computing tb,1 ·y = a1 · sb ·y + e′b,1 ·y ≈ a1 · sb ·y. This is exactly the technique
employed in lattice-based key exchanges such as NewHope. The efficiency gain
comes from the fact that Bob will later be able to retrieve an approximation version
of a1 ·y without sending him any other ring element than the polynomials computed
in the signature (z, c). As in [12,5], Alice gets a symmetric key by applying a
reconciliation procedure on the noisy shared value. The last part is straightforward,
now that a key is available, a symmetric cipher E is used to encrypt the data.
Finally, Alice outputs the signature (z, c), the symmetric ciphertext E and a small
reconciliation vector r. It means that the message was at the same time encrypted
and authenticated in an asymmetric manner with only the overhead of sending
a symmetric ciphertext (obviously we need to send something at least as long as
the message for encryption) and a small reconciliation vector on the top of the
signature.

Algorithm 3 SETLA-KEX Unsigncrypt

Input: Public parameters a1,a2, Bob’s keys (sb,pkb), Alice’s public key pka, a sign-
cryptext C = (z, c, E , r), random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric
encryption algorithm E
Output: A message m or failure symbol ⊥
1: w1 ← a1 · z− ta,1 · c, w2 ← a2 · z− ta,2 · c
2: K ← Rec(w1 · sb, r)
3: m← E−1

K (E)
4: return m if c = H(bw1ed, bw2ed,m,K,pka,pkb) and z ∈ Rq,[B−ω] else ⊥

SETLA-KEX Unsigncrypt. (Algorithm 3) The goal of this algorithm is to allow
Bob to find the secret key to decrypt the symmetric cipher and at the same, to
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provide authentication of the message through a signature.
First, Bob will recover the commitment part of the signature by rounding the val-
ues w1 ← a1 ·z− ta,1 ·c and w2 ← a2 ·z− ta,2 ·c. Without rounding, c would have
been different since Alice queried the random oracle with ba1 · yed and ba2 · yed.
The difference with the original signature scheme is that Bob must now find the
key K and the message in order to verify the hash value. To recover it, he shall use
the reconciliation vector r with an approximate version of a1 · sb · y. Such a value
can be found by computing the product w1 · sb = a1 · sb ·y + ea,1 · sb · c ≈ a1 · sb ·y.
Once the message is decrypted, Bob verifies the signature by checking the size of z
and the hash value. He outputs the message if everything is correct and a failure
symbol otherwise.

SETLA-KEX SignExtract. This scheme also inherits the capability to perform
a signature extraction from the signcryption of Malone-Lee. It is a simple transfor-
mation of the unsigncrypt procedure and can be found in Appendix B.

3.2 SETLA-KEM Signcryption

Now, we describe the second version of the scheme based on key encapsulation in-
stead of direct key exchange. The approach is similar to the one used in NewHope-
Simple [4] or Kyber [10]. The high-level perspective is now to perform a noisy El-
Gamal encryption of a chosen key during signature instead of noisy Diffie-Hellman.
While in NewHope-Simple the goal of the new approach is to make the protocol
simpler by getting rid of the reconciliation mechanism but not really to enhance
the scheme, here, using an encryption based method leads to better performances
in terms of speed and can enable parallelism, at the cost of a significantly bigger
signcryptext.

Algorithm 4 SETLA-KEM Signcrypt

Input: Public parameters a1,a2, Bob’s public key pkb, Alice’s key (sa, ea,1, ea,2,pka),
a message m, random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric encryption
algorithm E
Output: a signcryptext of m: C = (z, c,x, E)

1: K
r←− {0, 1}256

2: do
3: y

r←− Rq,[B]

4: c← H(ba1 · yed, ba2 · yed,m,K,pka,pkb)
5: z← sa · c + y
6: w1 ← a1 · y − ea,1 · c, w2 ← a2 · y − ea,2 · c
7: while not( z in Rq,[B−ω] and ba1 · yed = bw1ed and ba2 · yed = bw2ed )

8: y′
r←− Rq,[B]

9: x← tb,1 · y + y′ + Encode(K)
10: E ← EK(m)
11: return z, c,x, E

SETLA-KEM Signcrypt. (Algorithm 4) In the same way as before, one can find
three phases: signature, key encapsulation and symmetric encryption. The signa-
ture is now more isolated and almost exactly the same as in [8], the small difference
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is that the random oracle (as in the KEX version) takes as input the message, the
symmetric decryption key and the public identities.
The key encapsulation part is a RLWE encryption of a randomly sampled key K.
Such an encryption consists of two ciphertexts c1 = a·y1+y2 and c2 = pkb ·y1+y3.
Basically, c2 is the message masked with a ring element depending on the public-key
looking random under the decisional-RLWE assumption and c1 is a value allowing
the owner of sb to remove the mask without conveying any (computable) informa-
tion on y1 under the search-RLWE assumption. Here we gain efficiency by having
the value ba1 ·yed acting at the same time as the commitment of the signature and
the c1 part of the encryption scheme.
Globally, the KEM version is adding a lot of overhead on the size of the signcryptext
which is problematic since this is where we are looking for efficiency. Nevertheless,
we see two advantages of using encryption instead of key exchange.First, the scheme
is faster because it has less computation in the rejection sampling loop (which can
run several times depending on the parameters) and we can now parallelize the
symmetric encryption algorithm. Indeed, in the KEX version, the key depends on
y and was not known until the end of the rejection sampling procedure, hence, ev-
erything had to be sequential and a multiplication with tb,1 had to be done at each
iteration. Now, the symmetric encryption can start at the same time as the rejec-
tion sampling. It is fair to say that in general symmetric operations are lightweight
in comparison to polynomial multiplication. Nevertheless, if a really large message
has to be encrypted, say such that EK(m) takes as long as the do...while loop,
the saving becomes non-negligible. Obviously, this argument only makes sense if
the rejection sampling procedure itself is not affected by the size of the message.
One solution would be to pre-hash the message before the loop and only inject this
hash in the random oracle. Actually this issue is not specific to signcryption, all the
signature schemes using rejection sampling would be badly affected by a really long
message if the hash function cannot restart from its previous sate. Hence, in this
case, hashing the message once before would save some computation. This small
modification could be done in the KEX version as well as in existing Fiat-Shamir
lattice-based signatures.
Second, depending on the parameters, if the correctness during reconciliation is
a real issue, having the key encoded as a polynomial with coefficients in {0, q−12 }
is optimal for the since they are at“maximum distance” in Zq. Also, because the
symmetric key needed being often smaller than the encoding polynomial, having
control over the value eases the process of embedding an error-correcting code in
the extra space. Even though in the current state of affairs and with the parame-
ters proposed in the next section the KEM version would not outperform neither
the KEX version nor the naive concatenation of efficient schemes, we think the
construction may be of interest in some contexts.

SETLA-KEM Unsigncrypt. (Algorithm 5) The unsigncrypt algorithm follows
in the obvious manner. Bob retrieves the c1 part of the RLWE encryption from the
signature and run the decryption algorithm to find the key. Then, he decrypts the
symmetric ciphertext and verifies the signature.
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Algorithm 5 SETLA-KEM Unsigncrypt

Input: Public parameter a1,a2, Bob’s key (sb, s
′
b,pkb), Alice’s public key pka, a sign-

cryptext C = (z, c,x, E , r), random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric
encryption algorithm E
Output: A message m or failure symbol ⊥
1: w1 ← a1 · z− ta,1 · c
2: w2 ← a2 · z− ta,2 · c
3: K ← Decode(x−w1 · sb)
4: m← E−1(E)
5: return m if c = H(v,m,K,pka,pkb) and z ∈ Rq,[k−ω] else ⊥

4 Security arguments

The security aspects of interest for signcryption are unforgeability and privacy. The
construction combining both a signature scheme using the Fiat-Shamir heuristic
and a public key encryption scheme, we argue the security by using the forking
lemma [30] and a standard hybrid argument. This does not provide a formal argu-
ment of security in a signcryption specific security model since it does not consider
the primitive as an encryption and a signature but rather successively as an en-
cryption or a signature. Nevertheless, having both unforgeability and privacy of
the two underlying schemes is a good pointer toward the fact the design is sound.
Providing a formal argument in advanced signcryption models is a tedious task
(see [6]) and we do not attempt to do so here.

4.1 Unforgeability

The underlying signature of the signcryption scheme is the ring variant of the Bai-
Galbraith signature which is itself a derivative of the original proposal of Lyuba-
shevsky [26]. The full security argument can be found in [7] but the idea is to use the
forking lemma to get two different signatures for the same commitment that would
allow us to solve a special SIS instance. We use the adversary to get two forgeries z, c
and z′, c′ for different random oracles but the same random tape (hence the same
y). We have (providing the argument for only one RLWE sample instead of two as
in the signature for the sake of simplicity) ba·z−ta ·ced = ba·z′−ta ·c′ed = ba·yed.
This means that for some small e, a · z − ta · c = a · z′ − ta · c′ and thus, with
ta = a · sa + ea, a · (z− z′ − sa · c + sa · c′) + (ea · (c′ − c) + e) = 0. As pointed in
[7] section 4.2, (if z− z′ − sa · c + sa · c′ and ea · (c′ − c) + e are non-zero) we have
found a solution to the SIS instance. This argument still holds for the signcryption
scheme.

4.2 Confidentiality

We argue the confidentiality of the scheme with a sequence of games showing
semantic security under the DCK assumption in the random oracle model. We
model the adversary as a tuple of two algorithms A = (A1,A2), the first choosing
messages for the game according to the public keys and the second trying to guess
which one was signcrypted. The encryption scheme E is seen as an ideal primitive.
The sequence of games for the KEX version can be found in Figure 4. Games for
the KEM version are really similar and can be found in Appendix A.
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Game 0:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: y,y′

r←− Rq,[B]

4: v← tb,1 · y + y′

5: r← HelpRec(v)
6: K ← Rec(v, r)
7: h1 ← ba1 · yed,h2 ← ba2 · yed
8: c← H(h1,h2,m,K,pka,pkb)
9: z← sa · c + y

10: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
11: if h1 6= bw1ed or h1 6= bw2ed, goto 3
12: if z not in Rq,[B−ω], goto 3
13: E ← EK(m)
14: b̂← A2(z, c, E , r)
15: return b̂

Game 1:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: y,y′

r←− Rq,[B]

4: v← tb,1 · y + y′

5: r← HelpRec(v)
6: K ← Rec(v, r)
7: h1 ← ba1 · yed,h2 ← ba2 · yed
8: c← H(h1,h2,m,K,pka,pkb)
9: z

r←− Rq,[B−ω]

10: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
11: if h1 6= bw1ed or h1 6= bw2ed, goto 3
12: with probability P, goto 3
13: E ← EK(m)
14: b̂← A2(z, c, E , r)
15: return b̂

Game 2:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: y,y′

r←− Rq,[B]

4: a′
r←− Rq

5: v← a′ · y + y′

6: r← HelpRec(v)
7: K ← Rec(v, r)
8: h1 ← ba1 · yed,h2 ← ba2 · yed
9: c← H(h1,h2,m,K,pka,pkb)

10: z
r←− Rq,[B−ω]

11: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
12: if h1 6= bw1ed or h1 6= bw2ed, goto 3
13: with probability P, goto 3
14: E ← EK(m)
15: b̂← A2(z, c, E , r)
16: return b̂

Game 3:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: y,y′

r←− Rq,[B]

4: v
r←− Rq

5: r← HelpRec(v)
6: K ← Rec(v, r)
7: h1 ← ba1 · yed,h2 ← ba2 · yed
8: c← H(h1,h2,m,K,pka,pkb)
9: z

r←− Rq,[B−ω]

10: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
11: if h1 6= bw1ed or h1 6= bw2ed, goto 3
12: with probability P, goto 3
13: E ← EK(m)
14: b̂← A2(z, c, E , r)
15: return b̂

Fig. 3. Sequence of games for the KEX version

Game 0: Game 0 is the usual CPA game against SETLA, the adversary chooses
two messages m0,m1 and tries to guess which one was signcrypted.

Game 1: By virtue of the rejection sampling performed during signcryption, the
output distribution of z should be exactly the same as a uniform over Rq,[k−ω].
Hence, we can replace z by random elements over this range without modifying the
view of the adversary.

Game 2: Using the DCK assumption, we can replace the public key of Bob by a
random element in Rq without being detected by the polynomial time adversary.

Game 3: In game 3, we use the same argument again to replace v by a uniformly
random value (and hence K is uniform as well by design of Rec).
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In conclusion, using the fact that both H(.) and E(.) are modeled as ideal
primitives and that H takes one random unknown to the adversary value (K)
uncorrelated to the message, they do not reveal anything about their inputs. Hence,
the values given to A2 looks all random and independent from the messages. Thus,
the adversary cannot guess which one was signcrypted.

4.3 ROM vs QROM

It is known that the forking lemma cannot be used if the adversary has quantum
access to the random oracle. This issue has been recently discussed a lot in the
literature on lattice-based signatures and some schemes took it into consideration
([3]) while others ignored it to focus on performances ([18]). Since our goal is to
improve practicability, we decided to stick to the classical ROM. Having a classical
reduction is essential to claim provable security but the implications of the QROM
issue in practice are not clear enough to require QROM security for all the schemes.
We redirect the interested reader to [21,9] for more details.

5 Analysis and parameters

5.1 Parameter selection

To select the parameters, we followed the methodology described in [7]. It allows
the scheme to reduce to worst-case problems on ideal lattices. Be careful that it
does not mean that the parameters are chosen such that the problem we reduce to
is hard (since the proofs are non-tight) but merely that the reduction works. This is
a common practice and as pointed in [21], it is reasonable to assume that it does not
create any security issue. Our parameters can be found in Table 1. The dimension
n has been set to 1024 because it seems to be the minimal lattice dimension such
that RLWE is hard with such a small error distribution. The value m represents the
number of rows of the LWE instance written in matrix form. Here it means that we
work with two polynomials (which are explicit in the construction) since m = 2n.
The entropy of the output of the random oracle is given by κ = log2

(
2ω
(
n
ω

))
, that

is to say the logarithm of the cardinality of the set {v | v ∈ Rq,[1], ‖v‖1 = ω}. The
modulus q = 225 − 212 + 1 is a prime such that q ≡ 1 mod 2n .The parameters
d and B are chosen such that the rejection probability of the signature is not too

high in order to keep the runtime reasonable and qm−n ≥ 2(d+1)m+κ

(2B)n .

To assess the security of the scheme, we used the LWE-Estimator tool of Albrecht
and al. [2]. We ran the estimator with the following command:

n = 1024; q = 33550337;

stddev = sqrt(2/3); alpha = alphaf(sigmaf(stddev), q)

_ = estimate_lwe(n, alpha, q,

secret_distribution=(-1,1),reduction_cost_model=BKZ.sieve)

It estimates a bit security of 131 against the most efficient attack. The estimation
of the hardness of directly forging the signature without recovering the private key
has been made in the same way as in [13]. It gave overwhelming results, which is not
a surprise since the parameters are a harder version of the most secure parameters
set of [19].
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n m ω d B q κ

1024 2048 16 15 215 33550337 ≈ 225 131

Table 1. Parameters targeting 128 bits of classical security.

5.2 Failure probability

The main bottleneck of the signcryption scheme is the correctness regarding decryp-
tion. Indeed, as in a lot of RLWE-based protocols, the two parties end up with two
ring elements close to each other but not exactly the same. In our case, the differ-
ence between the value of Alice and the value of Bob is ∆ab = eb,1 ·y−ea,1 ·c·sb+y′.
While in those schemes the parameters are chosen in order to get correctness with
overwhelming probability, we face here a strong constraint which is that the pa-
rameters should also be compatible with the signature scheme. In their case, the y
is coming from the error distribution and hence is very small. In our case, it is the
masking polynomial for the signature s · c + y which should be significantly larger.
Obviously, one strategy to reduce the norm of ∆ab is to reduce B. This would give
better results for correctness but unfortunately decrease the speed of the scheme
since the rejection sampling loop would have to run longer to find a small enough
z. This is the reason why we decided to use such a small distribution for the secret
and the errors. Of course, it is possible to work with slightly larger distributions in
a more specific context in which correctness matters less.

We now provide an analysis of the failure probability for the KEX-version. Us-
ing the reconciliation method of [5], the KEX-Unsigncrypt algorithm recovers the
correct key if ‖∆ab‖∞ < b 3q8 c (actually the requirement is that the `1 norm of

packs of 4 coefficients should be smaller than b 3q4 c − 2). In the following, we write
(p)i, to denote the i-th coefficient of a polynomial p.
We shall bound the magnitude of one coefficient (∆′ab)i = (e′b,1 ·y)i. Since the poly-
nomial product is computed modulo 〈Xn + 1〉 and all distributions are symmetric,
one such coefficient is the result of a sum of n products between a coefficient of a
polynomial in Rq,[1] and a polynomial in Rq,[B].
Let S ∼ U ({−1, 0, 1}) and Y ∼ U ([−B,B]) be random variables, we denote their
product SY . Each coefficient of ∆′ab is the sum of n samples from SY , hence
(∆′ab)i ∼

∑n
i=1(SY )i. Fortunately, computing the exact distribution SY is easy:

P [SY = 0] =
2B + 3

6B + 3

P [SY = z | z ∈ [−B,B]\{0}] =
2

6B + 3

Since the value of B is reasonable, to find the distribution of ∆′ab, one could hope to
compute log(n) time the convolution of the distribution with itself. Unfortunately,
this approach failed to give accurate results because of numerical stability issues.
Instead, as in [5], we use the Chernoff-Cramer inequality to bound the sum of the
random variables.
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Chernoff-Cramer inequality Let χ be a distribution over R and let X1, . . . , Xn

be i.i.d. symmetric random variables of law χ. Then, for any t such that Mχ(t) =
E[etX ] <∞ it holds that

P

[∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ > α

]
< 2e−αt+n log(Mχ(t)).

Using the above inequality with

MSY (t) =
2B + 3

6B + 3
+

2

6B + 3
·
(
et(B+1) − 1

et − 1
+
e−t(B+1) − 1

e−t − 1
− 2

)
and setting α = b q4c−B−nω, t ≈ 2.5 ·10−5, n = 1024 and k = 215 (our parameters

from the previous section), we find that P
[
(∆′ab)i > b

3q
16c
]
≈ 2−115. By virtue of the

union bound on the 1024 coefficients, we get that the failure probability is ≈ 2−105.

5.3 Performances

Even if the construction of the signcryption scheme is conceptually interesting on
its own, its usage only makes sense if we gain something over the trivial solution of
concatenating an encryption/key exchange and a signature scheme. In table 2, we
compare the performances regarding bandwidth between SETLA and a selection
of schemes of the same kind. Since lattice-based schemes are already doing great
in terms of speed, especially when they can take advantage of SIMD instructions,
reducing bandwidth will a major factor for adoption in the future. We decided to
compare SETLA to the pairs given in the table for the following reasons:

– Dilithium + Kyber: They were very recently designed and are part of the same
family of algorithms.

– qTESLA + NewHope: They are the two up-to-date RLWE based schemes and
are both candidates for future standardization.

– TESLA] + Kyber: This seems to be the most efficient pair regarding compact-
ness out of the reasonably secure Fiat-Shamir/key exchange schemes in the
literature.

For the record, we also indicates the performances of the GLP version of signcryp-
tion that is using the original parameters of the signature [19]. It obviously gives
goods results since we get the key exchange for free without modifying the param-
eters but the security has been reduced so much over the years that it does not
seem reasonable to use it without further modifications. The signcryptext size for
SETLA was computed without the symmetric cipher (since it depends on the size
of the message itself and would be needed in the naive construction as well) and
with Peikert’s reconciliation which is less efficient but more compact than the one
of NewHope but still gives good correctness results in practice. The last column
compares the gain in compactness of signcryptext when using SETLA instead of
the mentioned scheme. We see that at the price of a larger public key, SETLA out-
performs the naive concatenation of popular schemes by a significant margin. This
is not a surprise since we only have to output a signature and the key exchange is
done implicitly. The large public key comes partially from the lack of flexibility of
RLWE which limits fast implementations to power of two cyclotomics and m as a
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multiple of n. We also evaluated the speed of a research oriented implementation
made to verify that the design of the scheme is sound. The SETLA-KEX signcrypt
procedure took 1 735 234 cycles while the unsigncrypt procedure took 391 944 cy-
cles. Those tests were made on an Intel Core i7-4600M processor using a reasonable
but unoptimized implementation and can be greatly improved using AVX2 parallel
instructions for the polynomial operations, even if the scheme is already quite fast.

Scheme |sk| |pk| |Signcryptext| Gain

Dilithium[18]+Kyber[10] 2863(=463+2400) 2560(=1472+1088) 3852(=2700+1152) 48%
qTESLA+NewHope[5] 3648(=1856+1792) 4800(=2976+1824) 4896(=2720+2176) 60%
TESLA][8]+Kyber 4512(=2112+2400) 4416(=3328+1088) 2768(=1616+2176) 29%
SETLA-KEX 608 6400 1972 -
GLP-Signcrypt 202 1475 1247 -

Table 2. Comparison between similar schemes using the naive construction. Values
are in bytes.

6 Conclusion

In this work we presented a lattice-based signcryption scheme called SETLA. We
chose a scheme of Malone-Lee as a starting point and proposed two construction
both using the Bai-Galbraith signature at their cores. The first construction di-
rectly embeds a RLWE key exchange in the signature exactly as in the classical
signcryption scheme while the second one uses RLWE encrypt as a key encapsula-
tion mechanism. The KEX version seems to globally outperform the KEM version
since even if it is heavier in terms of computation, this is not the main issue with
lattices. We proposed a set of parameters targeting 128 bits of classical security
following the reduction of Bai and Galbraith. We provided an analysis of correct-
ness and a comparison with most recent schemes (using the naive construction)
in the literature regarding signcryptext size. We also made a research oriented
implementation to verify the soundness of the scheme while providing reasonable
benchmarks. We conclude that it is possible to instantiate SETLA with param-
eters providing security, correctness and efficiency while still outperforming the
naive construction of encrypt-then-sign with state-of-the-art schemes.
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and D. Stehlé. Crystals – kyber: a cca-secure module-lattice-based kem. Cryptology
ePrint Archive, Report 2017/634, 2017. http://eprint.iacr.org/2017/634.

11. J. W. Bos, C. Costello, L. Ducas, I. Mironov, V. Nikolaenko, A. Raghunathan, and
D. Stebila. Frodo : Take off the ring ! practical , quantum-secure key exchange from
lwe. 2016.

12. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for
the tls protocol from the ring learning with errors problem. In 2015 IEEE Symposium
on Security and Privacy, pages 553–570, May 2015.
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A Security games for the KEM version

Game 0:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: K

r←− {0, 1}256
4: y

r←− Rq,[B]

5: h1 ← ba1 · yed,h2 ← ba2 · yed
6: c← H(h1,h2,m,K,pka,pkb)
7: z← sa · c + y
8: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
9: if h1 6= bw1ed or h1 6= bw2ed, goto 3

10: if z not in Rq,[B−ω], goto 3

11: y′
r←− Rq,[B]

12: x← tb,1 · y + y′ + Encode(K)
13: E ← EK(m)
14: b̂← A2(z, c,x, E)
15: return b̂

Game 1:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: K

r←− {0, 1}256
4: y

r←− Rq,[B]

5: h1 ← ba1 · yed,h2 ← ba2 · yed
6: c← H(h1,h2,m,K,pka,pkb)
7: z

r←− Rq,[B−ω]

8: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
9: if h1 6= bw1ed or h1 6= bw2ed, goto 3

10: with probability P, goto 3
11: y′

r←− Rq,[B]

12: x← tb,1 · y + y′ + Encode(K)
13: E ← EK(m)
14: b̂← A2(z, c,x, E)
15: return b̂

Game 2:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: K

r←− {0, 1}256
4: y

r←− Rq,[B]

5: h1 ← ba1 · yed,h2 ← ba2 · yed
6: c← H(h1,h2,m,K,pka,pkb)
7: z

r←− Rq,[B−ω]

8: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
9: if h1 6= bw1ed or h1 6= bw2ed, goto 3

10: with probability P, goto 3
11: y′

r←− Rq,[B]

12: a′
r←− Rq

13: x← a′ · y + y′ + Encode(K)
14: E ← EK(m)
15: b̂← A2(z, c,x, E)
16: return b̂

Game 3:

1: (m0,m1)← A1(pka,pkb)
2: b

r←− {0, 1}
3: K

r←− {0, 1}256
4: y

r←− Rq,[B]

5: h1 ← ba1 · yed,h2 ← ba2 · yed
6: c← H(h1,h2,m,K,pka,pkb)
7: z

r←− Rq,[B−ω]

8: w1 ← a1 ·y−ea,1 ·c, w2 ← a2 ·y−ea,2 ·c
9: if h1 6= bw1ed or h1 6= bw2ed, goto 3

10: with probability P, goto 3
11: x

r←− Rq

12: E ← EK(m)
13: b̂← A2(z, c,x, E)
14: return b̂

Fig. 4. Sequence of games for the KEM version

Game 0 → Game 1: Rejection sampling
Game 1 → Game 2: Decisional Compact Knapsack/RLWE
Game 2 → Game 3: Decisional Compact Knapsack/RLWE
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B Publicly verifiable signature from signcryptext

An interesting feature of Malone-Lee’s signcryption scheme is that the receiver Bob
can himself create a fully valid publicly verifiable signature under Alice’s secret key
on the message he unsigncrypted. Even if we chose to start from this scheme for
its similarity with Schnorr signature (and thus, lattice-based signature), this really
helpful feature carries to our construction. Below are the algorithms for the KEX
version but the same technique can trivially be applied to the KEM version.

Algorithm 6 SETLA-KEX SignExtract

Input: Public parameters a1,a2, Bob’s keys (sb,pkb), Alice’s public key pka, a sign-
cryptext C = (z, c, E , r), random oracle H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}, symmetric
encryption algorithm E
Output: A message m together with its signature σ(m) or a failure symbol

1: w1 ← a1 · z− ta,1 · c, w2 ← a2 · z− ta,2 · c
2: K ← Rec(w1 · sb, r)
3: m← E−1

K (E)
4: b← c = H(bw1ed, bw2ed,m,K,pka,pkb) and z ∈ Rq,[B−ω]

5: return m,σ(m) = (K, z1, z2, c) if b = 1 else ⊥

SETLA-KEX SignExtract. (Algorithm 6) To extract a publicly verifiable sig-
nature σ(m) from a signcryptext, Bob will use the fact that the output of KEX-
Signcrypt is essentially equivalent to a TESLA] signature on m with a nonce de-
pending on K,pka and pkb queried to the random oracle. Since a verifier should
obviously know the message to validate the signature, the confidentiality of the
key K is not required anymore. Thus, KEX-SignExctract will output m and K
together with the signature and anyone will be able to perform the verification.

Algorithm 7 PublicVerif

Input: Public parameters a1,a2, Alice’s public key pka, Bob’s public key pkb, a message
m, a signature σ(m) = (K, z, c), hash function H : ∗ → {v | v ∈ Rq,[1], ‖v‖1 = ω}
Output: 1 if the signature is valid, 0 otherwise

1: w1 ← a1 · z− ta,1 · c, w2

2: return 1 if c = H(bw1ed, bw2ed,m,K,pka,pkb) and z ∈ Rq,[B−ω] else 0

PublicVerif. (Algorithm 7) The public verification is the same as in usual lattice-
based signatures, except that the hash function also takes as input K,pka and
pkb.
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