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Abstract. In multi-prover interactive proofs (MIPs), the verifier can provide non-local
resources for the provers intrinsically. In most cases, this is undesirable. Existing proofs
of soundness do not account for the verifier’'s non-local potential. We show that this may
be a problem for many MIPs. We provide a solution by constructing a generalization of
the MIP model, of which standard MIPs are a special case. This new model accounts for
both the prover and the verifier’s non-local correlations. A new property of multi-prover
zero-knowledge naturally emerges as a result.

1 Introduction

An interactive proof is a dialog between two parties: a polynomial-time wverifier and an all-
powerful prover [1,2]. They agree ahead of time on some language L and a string x. The prover
wishes to convince the verifier that « € L. If this is true, the prover should succeed almost all the
time; if not, the prover should fail almost all the time. This is a generalization of the complexity
class NP, except instead of simply being handed a polynomial-sized witness, the verifier is allowed
to quiz the prover. The set of languages that admit an interactive proof is called IP.

An interactive proof is zero-knowledge if the verifier learns nothing except the truth of “x € L”.
This is usually defined by saying that a distinguisher is unable to tell apart a real conversation
between the prover and the verifier, and one which is generated by a lone polynomial-time
simulator. The set of zero-knowledge interactive proofs [1] is called ZKIP.

One of the most important results regarding interactive proofs is that IP = ZKIP =
PSPACE, which follows from seminal works of [3] and [4,5]. However, the only known way
to achieve the ZKIP = PSPACE is through the use of commitments which, in the single-prover
model, is dependent on complexity assumptions.

The multi-prover model was introduced in [6]. This model consists of multiple, non-commu-
nicating provers talking to a single verifier. The inspiration for this model was that of a detective
interrogating a number of suspects, each of whom is isolated in a separate room. The suspects
may share a strategy before being separated, but once the interrogation begins they are no
longer able to talk to one another. The main motivation for studying this model was to remove
the complexity assumptions used in the commitment schemes. We will abbreviate “multi-prover
interactive proof” as MIP (resp. “zero-knowledge multi-prover interactive proof” as ZKMIP)
and the set of languages which can be accepted by MIPs (resp. ZKMIPs) as the boldface MIP
(resp. ZKMIP).

An important consequence of having multiple provers is that the verifier can use one prover
to check the consistency of other provers’ answers. This gives the (weak) verifier more power
over the (all-powerful) provers. Consequently, through the works of [6-9], it was shown that
MIP = ZKMIP = NEXP. That is, any language in NEXP can be accepted by a MIP
(optionally by a zero-knowledge MIP) without any computational assumptions.
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1.1
‘We

(ZK)MIP Blind Spot
have identified a blind spot in what we call the “standard” MIP model (one verifier talking

to a number of provers) that is not addressed in existing literature. As a lead-up to describing
this blind spot, we invite the readers to consider the following ridiculous two-prover protocol:

Protocol 1. ( Ridiculous Protocol )

Verifier sends Prover 1 a random string S.
Prover 1 replies with a string 7T'.

Verifier sends Prover 2 the string 7.
Prover 2 replies with a string S”.

Verifier accepts if S = 5’.

Crk =

Suppose that we claim the following ridiculous theorem:

Theorem 2. (Ridiculous Theorem) The probability that the verifier accepts in the Ridiculous
Protocol is exponentially small.

Proof. (Ridiculous Proof) By the definition of MIPs, the provers cannot communicate. If Prover
2 can output an S’ that is the same as the uniformly random S that only Prover 1 knows, then
they must have communicated. Contradiction. a

The reader is astute in pointing out that steps 2 and 3 of the Ridiculous Protocol clearly show

that the verifier is helping the provers by relaying the very answer it is supposed to keep secret.
The Ridiculous Proof of the Ridiculous Theorem overlooked the blind spot that is the verifier’s
interactions. This is our point, exaggerated.

The blind spot in the standard MIP model is what we shall call “non-local contamination”

by the verifier. For example, a verifier talking to one prover and then talking to another prover
risks unwittingly helping the provers (up to) signal. However, the most important (and the
most subtle) of those contaminations are ones where the verifier helps the provers perform a
no-signaling correlation; examples of this can be found in the following section, and also in [10].

In existing MIP literature, the proofs of soundness do not account for this blind spot. It is

easy to see the Ridiculous Verifier as clearly contaminating (in fact, steps 2 and 3 signals for the
provers). It is not so easy when the verifier is more complex. It is an even subtler point when
we consider that the verifier could be helping the provers in a no-signaling manner. We believe
that proofs within the standard model must be reconsidered in light of this observation. We will
further discuss this last point in section 3.

To clarify, we are not claiming that any particular existing MIP protocol is unsound, only

that their proofs of soundness either missed the above point, or implicitly assumes it. We would
like to make this explicit. We wish to draw the community’s attention to this situation and offer

our

solution: a multi-prover, multi-verifier model which we shall call locality-explicit multi-prover

interactive proofs (LE-MIP). MIPs in this form have prover-verifier pairs who are talking, but no
communication between any of the pairs. At the end of a locality-explicit protocol, a special, read-
only verifier accepts or rejects. Locality-explicit protocols do not have to worry about non-local
contamination by the verifier. This new model offers the following advantages:

1.

o

The provers and verifiers are guaranteed to be local (i.e., a very strong notion of no-communicating),
if desired.
Any non-local resources of provers and verifiers are made explicit.

. It is possible to enforce “honest non-locality” on the provers by having the verifier provide

them with non-local resources. Our model makes this explicit.

. A new property of zero-knowledge emerges naturally as a result.



1.2 Owur Contributions

— We explain the aforementioned blind spot with the standard (single-verifier) MIP model
(section 3).

— We describe the locality-explicit model and justify its definition by expanding on its advan-
tages over the standard model (section 4).

— We show that, in the LE-MIP model, a new, stronger property of zero-knowledge naturally
emerges. (section 4.1).

— We describe a protocol which is local-verifier, local-prover and zero-knowledge which accepts
oracle-3-SAT, achieving zero-knowledge without needing the provers to authenticate any
messages, and prove its security (section 5).

— We describe how to simulate the above protocol with simulators which have only a specific
no-signaling advantage (section 5.2).

2 Previous Work

The early claims by Ben-Or, Goldwasser, Kilian and Wigderson that ZKMIP = MIP from [6]
and [9] use multi-round protocols and their (honest) verifiers are inherently signaling. This is
precisely the situation we address in this work. Proving soundness is quite subtle in this case
because the provers could use the (signaling) verifier to break binding of the commitments.
In particular, soundness will not be valid if the protocol is composed concurrently with other
executions of itself or even used as a sub-routine. In recent conversations with Kilian [11], we
have realized that controlling the impact of signaling via the verifier has been a concern since
the early days of MIPs. In particular, extra care had to be taken in the zero-knowledge protocols
described in [6] and [9] because the verifier couriered messages from one prover to the other. The
protocols as they are might be sound but it is not fully proven. However, it is also clear that
no considerations had been given to general non-local correlations possible via the verifier. If
soundness rests on the binding property of a commitment scheme (such as those zero-knowledge
proofs) and this binding property rests on the inability to achieve a certain non-local correlation
then impossibility to achieve this correlation via the verifier must be demonstrated.

The reader may think that the entire issue we address may seem trivial because it is a known
fact that multi-round MIPs may be reduced to a single round using techniques of Lapidot-
Shamir [12] and Feige-Lovasz [13]. Nevertheless, if we are interested in zero-knowledge MIPs,
commitment schemes are generally used to obtain the zero-knowledge property and thus the
single-round structure is lost in the process. Although single-round protocols bypass verifier’s
non-local contamination problems we describe in this work, converting multi-round protocols into
single-round ones is highly inefficient and complex. Preserving zero-knowledge while achieving
single-round has turned out to be a major challenge. Practically, keeping a multi-round protocol’s
structure, using only commitments to achieve zero-knowledge is very appealing.

In [12], Lapidot-Shamir proposed a parallel ZKMIP for NEXP, but they removed the zero-
knowledge claim in the journal version [14] of their work without any explanation as of why.
Feige and Kilian [15] were the last ones to follow this approach combining techniques drawn from
Lapidot-Shamir [12], Feige-Lovasz [13] and Dwork, Feige, Kilian, Naor, and Safra, [16] to achieve
a “2-prover 1-round 0-knowledge” proof for NEXP. As far as we can tell, this is the only paper
in the ZKMIP literature that appears to address the problems that we will discuss. However, note
that the analysis of [15] is partly based of that of [12], and the journal version of Feige-Kilian
[17] does not contain their prior claim of zero-knowledge either. All other ZKMIPs for NEXP
in the literature are multi-round, and thus our work applies to them.

Similar issues are possible using more recent results such as Ito-Vidick’s proof [18] that
NEXP C MIP* and Kalai, Raz and Rothblum’s proof [19] that MIP"® = EXP; the multi-
round structure of their protocols requires that any straightforward extensions to ZKMIP* and



ZKMIP"™ via commitment schemes be analyzed carefully and the locality of the verifiers be
established.

At the time of writing this paper, Chiesa, Forbes, Gur, and Spooner [20] discovered a proof
that NEXP C ZKMIP*. Their construction is based on refinements of Ito-Vidick’s proof and
along the lines of Feige-Kilian, building on algebraic structures to bypass the need of commitment
schemes. Unfortunately, this work is too recent to be assessed as to how it is related to ours.

Bellare, Feige, and Kilian [21] considered a multi-verifier model similar to ours in order to
analyze the role of randomness in multi-prover proofs. This is completely unrelated to our goal
of analyzing verifier non-local contamination.

Finally, the notion of relativistic commitment schemes put forward by Kent [22] leads to
several results [23-25] where a similar multi-verifier model is necessary in order to assess spatial
separation of the provers.

3 The Standard MIP Model

Multi-prover interactive proofs were introduced in [6]. The intuition for their model was that of
a detective interrogating two suspects held in different rooms. This was formalized as follows:

Definition 1. Let Py,..., Py be computationally unbounded Turing machines and let V be a
probabilistic polynomial-time Turing machine. All machines have a read-only input tape, a read-
only auziliary-input tape, a private work tape and a random tape. The P;’s share a joint, infinitely
long, read-only random tape. Each P; has a write-only communication tape to V, and vice-versa.
We call (Py,...,Px,V) a k-prover interactive protocol (k-prover IP).

This model is essentially equivalent to that of Bell [26] who introduced his famous Bell’s
inequality to distinguish local parties from entangled parties.
Zero-knowledge MIPs were also defined in [6]:

Definition 2. Let (P1,..., P, V) be a k-prover IP for a language L.Let view (P, ..., Py, V, x)
denote the verifier’s incoming and outgoing messages with the provers, including his coin tosses.
We say that (P, ..., Py, V) is perfect zero-knowledge for L if there exists an expected polynomial-
time machine M such that for all V', view(Py,..., P, V', x) and M(zx) are identically dis-
tributed.

Let us call the above two definitions the standard MIP model. There have also been augmen-
tations of the model by giving the provers various non-local resources, such as entanglement [18],
or arbitrary no-signalling power [19].

The first work to point out the aforementioned blind spot in the standard MIP model, al-
though it was not worded explicitly, was [10]. In order to understand their point, we need to
understand the following two-prover protocol.

Protocol 3. ( BGKW-type commitment for bit b )

P, and P, pre-share a random n-bit string w.

1. V sends a random n-bit strings r to Ps.
2. P, replies with = < b x r ® w.
3. P, announces to V a string w’.
4. V accepts iff (w’ @ x) € {0,r}.




This is a two-prover commitment protocol. Steps 1 and 2 commit, while steps 3 and 4 unveil.
An intuitive proof of its binding condition is that, since the provers cannot signal, and they both
need to know 7 in order to unveil the commitment in the way they want, therefore they cannot
cheat. This intuition is incomplete, as was pointed out in [10], because breaking the binding
condition does not require signaling. The following protocol, known as a PR-box, can be used to
break binding without signaling.

C —>~ < T
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Fig. 1. a PR-box

By having Pi, P> obtain w’,z via the PR-box, P; can unveil the commitment the way it
wishes, ¢. This fact will become extremely important in Sections 5 and 4.1.

The punchline of [10] is that the verifier itself can act as a PR-box for the provers without
violating their no-signaling assumption. Consider the following:

1. Any security proof of protocol 3 must show that it does not contain a PR-box as a subroutine.

2. More generally, any security proof of a protocol must show that no subroutine within itself
can be commandeered by the provers to achieve a non-local functionally (like the PR-box).

3. Composition of protocols, for instance between the committing and the opening of commit-
ments, must be done in such a way that provably does not create a non-local box.

The solution proposed in [10] was that of verifier isolation. Informally, this means that any
message an “isolating” verifier sends to a set .S of provers must be computed solely from messages
that are received from S. The end result is that an isolating verifier can never accidentally
implement a PR-box and, in general, it will always enforce the locality of the provers. In a sense,
we can think of an isolating verifier as “local”. Our new model will make this more precise and
more general.

Furthermore, existing zero-knowledge MIPs such as [9] require that the verifier courier an
authenticated message between the provers in order to obtain soundness while ensuring zero-
knowledge. The gist of it goes like this:

1. V asks P; some questions.

2. V wants to check one of P;’s answers with P, for consistency.

3. In order for zero-knowledge to hold, V' must ask P» a question it has already asked P;.

4. Py authenticates a question with a key that was committed at the beginning of the protocol
and sends it to V.

5. V sends the question and the authentication to P», who proceeds only if authentication
succeeds.

Steps 4 and 5 consists of V sending a message from P; to P». Proofs that this act does not
contaminate non-locally (such as simulating a PR-box) is not found in any existing MIP. This
needs to be proven, and the proof contained in [9] does not address this issue. Moreover, the zero-
knowledge protocol of [9] allows P; to send an arbitrary message to P, (via the authentication
key). Therefore, one cannot compose such a protocol in a nested fashion (as a subroutine call)
since the inner instance would violate the no-communication assumption of the outer instance.
For more details on the problems of the standard MIP model, see [27].

Existing simulators for zero-knowledge protocols such as those found in [9] needs to know how
to break commitments in order to simulate. The simulator accomplishes this by acting as both
provers, thereby receiving the secret string » which was meant for one prover only. This standard
model of zero-knowledge gives the simulator unnecessary power, in a sense. We will discuss this
further in section 4.1.



4 Locality-Explicit MIP

The standard MIP model allows the verifier to non-locally contaminate the provers. We neutralize
this problem by defining a model with multiple verifiers, each of which talks to a single prover;
in turn, each prover talks to a single verifier. There are no communication tapes between the
verifiers, nor are there between provers. There is a special verifier Vy which only reads the outputs
of the other verifiers; this is the verifier that will decide to accept or reject membership to L. We
call this model “locality-explicit” since the provers and verifiers are explicitly local, and if any
non-local resources (such as entanglement) are available to them, then it is explicitly specified
via a supplementary entity named P for the provers and V for the verifiers.

This model is a generalization of the standard model because the special setting where Pis
empty and V signals for the verifiers corresponds to the standard MIP model.

Definition 3. An interactive Turning machine (ITM) is a Turing machine augmented with the
following tapes:

— k1 read-only incoming communication tapes.
— ko write-only outgoing communication tapes.
— Private work, auziliary-input, and random tapes.

An ITM A can signal to an ITM B if A’s write-only outgoing tape is B’s read-only incoming
tape.

Definition 4. Let (16, Py, ..., Py, 17, Vo, Vi, ..., Vi) be a tuple of ITMs, where the P’s are com-
putationally all-powerful and the V’s are polynomial-time. For each i, there are two-way com-
munication tapes between V; and P;, and that for all j, there is a two-way communication tape
between V and Vi and also between P and P;. In addition, for each £, there is a read-only tape
going from Vi to Vy (where Vi reads). Then this is said to be a locality-explicit multi-prover
interactive proof.

We call P and V correlators and say that the provers and verifiers are P-ocal and V-local
respectively.

It is perhaps easier to understand our definition with the help of figure 2.

P,

Fig. 2. Locality-Explicit MIP



The solid lines represents two-way communication and the dashed arrows represents one-way
communication, with the arrow indicating the direction of information flow.

We can define that an LE-MIP accepts a language L if the usual soundness and completeness
conditions hold:

Definition 5. An LE-MIP (17, Vo, Viyoooy Vi, ﬁ, Py, ..., Py) accepts a language L if and only if

— (completeness) Vo € L,Pr[Vo(z,t1,...,tx) = accept] > 2/3,
— (soundness) Yz ¢ L,\VYP{,..., P, Pr[Vy(z,t1,...,t;) = accept] < 1/3,

where t; is the read-only tape from V; to Vi at the end of the interaction of V; with P; (or P!)
on nput x.

Note that we do not quantify over P (nor XA/)7 as we want to use them not as (possibly
malicious) participants to the protocol, but as a description of non-local resources available to
the provers and verifiers.

Definition 6. An LE-MIP is local if V=P=02 and all of the provers’ (resp. verifiers’) ran-
dom tapes are initialized with the same uniformly random string R (resp. verifiers with another,
independent uniformly random string S)***.

Note that (single-verifier) standard MIPs in which provers do not have non-local resources
are equivalent to LE-MIPs where P = @ and V acts as a bulletin board. That is, a single
verifier communicating with multiple provers is equivalent to multiple verifiers communicating
with provers and each other.

In standard MIPs, it is possible that the honest (single) verifier bridges the provers non-locally.
If a protocol does not desire this — and most existing MIPs do not — it must be proven. With local
LE-MIPs, the special verifier V; decides to accept or reject. This verifier cannot communicate
with anyone else, avoiding the aforementioned non-local contamination.

4.1 Zero-Knowledge LE-MIPs

Zero-knowledge is defined by simulations, the fundamental idea that if a transcript can be pro-
duced by an entity (simulator) with no more power than one (verifier) interrogating all-powerful
provers, then no knowledge is gained.

The simulator of single-prover IP and standard MIP are equal to the verifier in computational
power, but they do have “advantages” which allow them to fake transcripts. For single-prover
IPs, the simulator is allowed to rewind computation; for standard MIPs, the simulator is given a
(commitment-breaking) secret. Those advantages are, of course, independent of knowledge.

LE-MIPs naturally induces a new advantage for the simulator: non-local correlations. This is
a very powerful advantage. Using the correct non-local correlations, simulators do not need to
rewind, do not need to pretend to be multiple (isolated) provers, and do not need to know any
commitment-breaking secrets. Multiple, no-signaling simulators can even produce transcripts in
“real-time” (example will follow) if the proper correlations are used.

Definition 7. Let M = (]\//.7, My, ..., My) be a tuple of polynomial-time ITMs. Each machine
has a random tape, and every random tape is initialized with the same random bits. For1 <i <k,
there is a two-way communication tape between M and M;. There are no communication tapes
between any of the M;’s. Then this is called a tuple of locality-explicit simulators and M s the
locality class of M, which will be abbreviated M-local.

*** By & we mean the empty correlator that provides everyone with nothing at all as output.



Definition 8. Let § = (ﬁ, Py ... Py, ‘7, Vo, Vi,...,Vk) be an LE-MIP for language L. If there
exists a correlator M such that for all verifiers (V',Vy,V{, ..., V}), there exists (M,...,My),
such that the transcripts of conversations between

(ﬁ7pla"'aPk7‘7/aV()/7Wa"'aVlc/)

and . R
(M, My,...,Mp, V' Vi,V ..., V)

are identically distributed, where (]\/4\7 My, ..., My) is a tuple of locality-explicit simulators, then
we say that S is a perfectly indistinguishable, M-local zero-knowledge LE-MIP for L.

Our motivations for the above definitions are twofold.

First, a simulator (or simulators) should not have more power than necessary. If two local
simulators can output for two local verifiers, then it is not necessary to have a single simulator
(equivalent to two signaling simulators) do the job. Allowing simulators to signal (equivalently,
having a single simulator) in the multi-prover setting is analogous to allowing unbounded running-
time simulation in single-prover zero-knowledge. In general, finding the minimal M that will allow
simulation may be of some theoretic interest.

Second, the non-locality of simulators is a characterization of the resilience of zero-knowledge.
A protocol which local simulators can withstand arbitrary (malicious) verifiers is more resilient
than one which signaling simulators are needed.

This may be of practical interest, if transcripts are timestamped. For example, under the
relativistic assumption that one may not signal faster-than-light, one may be able to distinguish
two spatially separated simulators from two spatially separated verifiers, if the simulators need to
signal (transmit a commitment-breaking secret) in order to generate a transcript. On the other
hand, if two entangled simulators are sufficient to produce the transcript, then they are indis-
tinguishable from real verifiers and provers. Our protocol 7 can be modified as to let entangled
simulators do their work, without needing PR-boxes or signaling. Details in section 5.

4.2 The Power of LE-MIPs

Local LE-MIPs form a subclass of standard MIPs. They are, by design, more restricted in what
you can make the verifier do. An immediate question is whether this is too restrictive. Perhaps,
in all interesting cases, it is necessary for a single verifier to go back-and-fourth between provers,
using previous discussions to generate new questions.

The answer is that, of all the literature we have surveyed, almost all protocols can be re-
written in a local-verifier manner without any loss of functionality. We explicitly demonstrate
this for the multi-prover protocol for oracle-3-SAT in [8]. The protocol details can be found in
the appendix. For the purpose of our discussion, we only need to look at the general form of the
protocol:

Protocol 4. ( BFL Classic, Single-Verifier )

. V asks P; some questions non-adaptively.

.V chooses a question @ from the pool of questions which were asked to P;.

. V asks Q to Ps.

. V accepts if the interaction with P; was successful, and the answer from Ps is con-
sistent with those of P;.

=W N =




The crucial observation is that V does not adaptively ask questions to P;. Therefore, the
questions asked on that entire side of the conversation can selected in advance, and thus they
can be shared in advance with a second verifier. We can therefore naturally rewrite the BFL
classic protocol as a local LE-MIP in the following way. The reader can check the details in the
appendix, and in section 3 of [8].

Protocol 5. ( BFL as an LE-MIP )

V1 prepares the questions which it will ask P;.

V1 chooses a question Q) from the above list and shares it with V5.

LE-MIP begins. All parties are local as per definitions.

V1 asks the questions to P;.

V5 asks Q to Ps.

Vb, reading the responses, decides to accept or reject, based on the same criteria as
in protocol 4.

SOtk W=

The BFL protocol is for oracle-3-SAT, which is NEXP-complete. Rewritten as a local LE-
MIP, it circumvents all non-locality issues we have mentioned. Thus, we can conclusively say that
“local LE-MIP” = MIP = NEXP; no transformation to single-round MIP necessary, and no
need to invoke the general theory of PCPs.

5 A Local, Zero-Knowledge LE-MIP for NEXP

The question which follows naturally is whether there exists a zero-knowledge, local LE-MIP for
NEXP. The existing technique for achieving zero-knowledge in MIP [6, 9] requires the (single)
verifier to courier an authenticated message between provers. This is not possible with local-
verifier LE-MIPs. We show that there is a way around that constraint.

By adapting the protocol from [8], we will exhibit a protocol with the following properties:

1. The provers and verifiers are local: V=P=o. e
2. The simulators need only access to instances of PR-boxes to work. That is, M simply com-
putes indexed instances of PR-boxes. We will abbreviate this as “PR-local.”

Let us call the set of multi-prover protocols with these properties “PR-local ZK, local
LE-MIP”. This implies that “PR-local ZK, local LE-MIP” = ZKMIP = NEXP.

The generic way of turning an interactive proof into a zero-knowledge one is by running it
in committed form [6,9]. With this technique, provers commit their answers instead of directly
responding, and use cryptographic techniques to convince the verifier that the answers are correct.

As shown in section 4.2, the BFL protocol can be turned into a local LE-MIP. If we try to
turn it into a zero-knowledge LE-MIP by having the provers commit their answers (for example
using protocol 3 as commitment), we run into a problem. In order to achieve zero-knowledge,
the provers must ensure that the question P receives from V5 is one of the questions which V;
has asked P;. On the other hand, since the provers and verifiers are local, the provers cannot
communicate, nor can they ask the verifiers to courier authenticated messages between them.

Our solution essentially asks the provers to (strongly-universal-2) hash the selected committed
answer with a key that is based on the verifier’s question. We force V5 to behave honestly (to
ask a question that V; has asked) by making bad questions meaningless. If the verifiers ask the
provers the same question, they will receive the same hash of the same answer. Otherwise, they
will receive two unrelated random hash values.

We need the PR commitment (protocol 6), which is secure in the local setting as previously
proved in [22, 10, 23].



5.1 The Protocols

The following is a PR-type commitment that is perfectly concealing and statistically binding. In

general, we use the commitment-box notation “@” as the name of a commitment to bit b in the
next two protocols.

Protocol 6. A statistically binding, perfectly concealing commitment protocol to bit b.

All parties agree on a security parameter 1%,
P; and P, partition their private random tape into two k-bit strings wq, ws.

Pre-computation phase:
— V1 samples two k-bit strings z1, 2o independently and uniformly, and provides them
to Va.
— V1 sends z; to P; and V5 sends z9 to Ps.
Commit phase:
— P; commits b to V7 as @ = (b X z1) ® wy, where b X z; is a multiplication in Fan.
— Py sends Va: d = (wy X 22) @ we.
Unveiling phase:
— Py sends w1y, ws to V.
— V1 computes b =1 if@@wl =z,orb=0 if@:wl.
— Vp rejects if@@ w1 is anything but 21 or 0, or if d ® we # wy X 22 and accepts b
otherwise.

Below is the zero-knowledge, local LE-MIP for oracle-3-SAT (Protocol 7). The basis of pro-
tocol 7 is the localized BFL protocol we presented in section 4.2 (details in the appendix). A
note on notation: for a circuit f, we will denote f() as the gate-by-gate committed circuit
evaluated with x as the input. We also use statements such as “P; proves to V; that m was
computed correctly”. The reader is expected familiarity with zero-knowledge computations on
committed circuits as put forward by [28, 29,4, 9].

Protocol 7. A local zero-knowledge LE-MIP for oracle-3-SAT

Let = = (B,r,s), an instance of oracle-3-SAT, be the common input, let k = |z| =
r 4+ 3s+ 3, and let A be the verifier’s program in protocol 11 (see appendix).
1. Pre-computation:
(a) Vi samples two k-bit strings zi,ze independently and uniformly, and provides
them to V5.
(b) W1 selects k + 3 random bit strings Ry, ..., Rg+3 (size specified implicitly by A)
and evaluates the circuit of A using the R; as randomness, resulting in questions
Q1, ..., Qr+3, and provides them to V5
(¢) V7 randomly chooses i, 1 < i < k + 3, the index of an oracle query that will be
made to both P; and Ps. V; provides i to V5.
(d) V1 sends z; to P; and V3 sends 23 to Py for future commitments.
(e) All parties agree on a family of strongly-universal-2 hash functions {H;} indexed
by k-bit keys.
(f) Py and P, agree on a k-bit key v, an index to the above family.

10



(g) Py commits [v]to V.
2. Sumcheck with oracle:

— Let f be the arithmetization obtained in protocol 10, let z be a string from I”
and Qk11, Qk+2, Qr+s be strings of I® as generated in protocol 11. V; and Py
execute protocol 10 in committed form. At the end of this phase, P; shows that
the committed final value is equal to

f(% Qr+1, Qri2, Qk+37‘ A(Qry1) H A(Qry2) H A(Qry3) D ;

an evaluation in committed form of f using the committed values that were used
during the protocol’s loop. If this fails, V7 instructs Vj to reject.

3. Multilinearity test:
(a) For 1 <i<k:
i. V7 sends Q; to Py,
ii. P; commits his answer as .

(b) Py and V; evaluate a circuit description of A in committed form with inputs

‘A(Ql) ‘, . ,‘ A(Qr) ‘ to verify proper linearity among them. P; unveils the cir-

cuit’s committed output. If it rejects, V7 instructs Vj to reject.
4. Consistency test:
(a) Vi sends i to P.

(b) Py computes = @ H(Qi) and sends to V1.

P, proves to V; that was computed correctly, from the existing commitments.

Py unveils for Vi, who gets (2;.

)
c)
)
) Vi sends Q; to Py (recall that this was pre-agreed in step 1.(c))
)
)

Q.

(
(
(e
(f
(g

P, responds to Vz with 25 = A(Q;) & H,(Q;).

Vo accepts if and only if all of the following conditions are met:
— =1
— All commitments which have been unveiled are valid.
— V1 did not reject in the two previous cases

5.2 Proofs of Security

Locality

Since the protocol is written as an LE-MIP in which P=V=uo0 , the protocol is local by
definition 6.

Completeness

Completeness follows from the completeness of the underlying protocol [8], and the fact that
the commitment protocol (protocol 6) is well-defined for honest provers (who will never send a
commitment that they cannot unveil).

11



Soundness

Without loss of generality, we may assume that the soundness error in the BFL protocol to
be 1/3, through sequential amplification. The probability that our commitment scheme (protocol
6) fails binding is exponentially small in k. Local probabilistic provers are equivalent to local
deterministic provers. This is because the success probability « of randomized provers of breaking
soundness is an average over the randomized provers’ random tapes. Each instance of a random
tape represents a deterministic strategy. Therefore there is a deterministic strategy which succeeds
with probability at least a, and hence we only need to consider local deterministic provers.

Since P; is deterministic, we may unambiguously consider what happens if we were to
“rewind” the prover machine. Suppose that at some point P; unveils a particular commitment ¢
to 0. We rewind P; and let V; make different choices before that point. Suppose that, with these
alternate choices, P; then unveils ¢ to 1 (an attempt to break binding). Because of locality, P;’s
behavior is independent of what P, receives (namely zs). Therefore, there is only one such z
which Vj will ultimately accept as a valid unveiling of ¢ in both ways (recall that our commitment
is statistically binding).

Therefore, in the worst case, for every commitment there exists a sequence of interactions
between Vi and P; such that P; will attempt to break the binding of that commitment. Each
such commitment-breaking corresponds to at most one string z5 that will actually work.

Let us denote the set of such binding-breaking strings by B. If zo ¢ B, then the provers will
not break binding, and the soundness error is reduced to that of the underlying protocol (at most
1/3). On the other hand, since | B| < poly(k), the probability that zo € B is at most poly(k)/2*.

Therefore, the soundness error of our protocol is at most

1  poly(k)

Pr[ze ¢ B and underlying protocol accepts] + Pr[z; € B] < 3 + ok

Zero-Knowledge The simulation will be divided in two parts. In the first part, the simulator
produces a transcript of the pre-computation, multilinearity test and sumcheck with oracle parts,
which involves only interactions with V;. In the second part, the simulator will fake a valid
consistency test.

Protocol 8. ( Perfectly Indistinguishable, PR-Local Simulator for Protocol 7, Part 1)

The setup:
— Let (Z/W\ , M1, Ms) be a set of locality-explicit simulators.
— M; and M; can send M an index along with a bit.
— M completes the indexed PR box (protocol 3) for both simulators.
The simulation strategy:
1. The simulators agree on unique indices for every commitment used in the protocol.
2. M interacts with V; the way P; would. Whenever P; should commit, M; commits
to random bits, just like the single-simulator from section 5.
3. For each commitment, V5 sends M, a string s. M> sends to M the index of the
commitment and s.
4. M runs the PR box (protocol 3) and replies with V3's half of the output.
5. Whenever M7 needs to unveil a commitment, it can be unveiled in the way M; desires
by sending the corresponding index and bit to M.
M completes the corresponding PR box which outputs ¢. M sends t to M.
7. My sends t to V.

&
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The second part (the consistency test) can be done by having the simulators ignore the
question.

Protocol 9. ( Perfectly Indistinguishable, PR-Local Simulator for Protocol 7, Part 2)

1. Vi sends i to Mj.

2. M, computes = H(Qz)

Using M to break binding, M, convinces V; that is actually | A(Q;) @H(Qi).
M7 unveils for Vi, who gets 21 = H,(Q;).

Vs sends Q) to Mo.
M, responds with (25 = H.,(Qj).

7

AN S

By the properties of the strongly-universal-2 hash H, if Q; = @} then 1 = {25. Otherwise
21 # (25 with probability exponentially close to one. This produces the result as desired. The
simulators then feed the transcripts to V{, and terminates simulation.

5.3 Entangled Simulators

The binding condition of commitment used above (protocol 6) can be broken given PR-boxes.
However, if the verifier were willing to tolerate approximately 15% of errors in the provers’
unveiling string (z; or 0), then it is possible to break binding with shared entanglement [30]
while maintaining soundness against local provers. Using this weakened version of commitment
in place of protocol 6 still yields a local LE-MIP for oracle-3-SAT, but easier to simulate (using
weaker non-local resources). We leave the details of this modified protocol to the reader.

6 Conclusions and Future Work

We close with three open questions.

First, although protocol 7 is a local LE-MIP, the only known ways of simulating the transcript
are to give the simulators some kind of non-local resource such as a PR box (or a fully signaling
box, but that is not necessary). We do not know whether it is possible to simulate protocol 7
with local simulators, but we are unable to show this to be impossible.

Second, as of the time of this writing, it is an open question whether NEXP ¢ MIP*
[18]. Under the locality-explicit setup, we ask a slightly more general question: does there exist
a correlator P and a corresponding LE-MIP which accepts a language ¢ NEXP? We remind
the reader that characterizing the complexity classes of MIPs where the provers have non-local
resources are generally open questions.

Third, although the verifier’s non-local contamination is undesirable (in the standard MIP
model) and is the motivation for this work, is it possible to turn it into a resource? For example,
given local provers, let the verifier provide them with some non-local resources, such PR boxes or
entanglement that can be simulated in polynomial-time. This can be seen as “enforceable honest
non-local resources.” Malicious provers would not be able to use these resources at will. Perhaps
this concept would be useful in the design of multi-prover protocols.
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Appendix: Babai, Fortnow and Lund’s MIP for Languages in NEXP

This section describes a variant of the multi-prover protocol for oracle-3-SAT found in [8]. We
refer to this as the BFL protocol, or BFL classic.

Definition 9. Let r,s > 0 be integers. Let z,by,ba, bs be strings of variables, where |z| = r and
|bi| = s. Let B(z,b1,ba,bs, t1,t2,t3) be a Boolean formula in r 4+ 3s + 3 variables. A Boolean
function A :{0,1}* — {0,1} is a 3-satisfying oracle for B if

B(Za bla b2a b3’ A(bl)a A(62)7A(b3)) =1

for every string z,by, ba, bs.

B is oracle-3-satisfiable if such a function A exists.

The Oracle-3-SAT problem (B, r,s) asks whether a Boolean formula B is oracle-3-satisfiable,
where v and s denote the lengths of z and b;, as above.

Lemma 1. Oracle-3-SAT is NEXP-complete.

Definition 10. Let F be an arbitrary field. Let ¢ : {0,1}™ — {0,1} be a Boolean function. An
arithmetization of ¢ is a polynomial f(x1,...,xm) € F[X1,..., Xy] such that for all z € {0,1}™,
#(z) =0< f(z) =0. A specific one is given in [8], proposition 3.1 .

Equivalently, the ¢(z) =0 < f(z) = 0 condition can be replaced with ¢(z) =1 < f(z) = 0.

Protocol 10. ( Sumcheck Protocol )

Let ¢(x1,...,2m) be the 3-CNF formula which the prover P is trying to show to be a
tautology to a verifier V. Let F be a field of sufficient size (of order at least (3¢ + 1)m
will suffice where c is the number of clauses of ¢).
1. V takes ¢ and computes its arithmetization f according to [8] Proposition 3.1 and
sends it to P.
2. V and P agree on a set I C F of size at least 2dm where d is the degree of f.
3. V assigns by = 0, which is supposed to be equal to the sum

Z Z flzy,...,z,)% =0

x1=0 Ty, =0

4. 1+ 1.
5. P sends the coefficients of the univariate polynomial in x,

1 1
gi(x) =h(ry,...,ri1,2) = Z Z Frey i1, @iy, e T)?

I1/+1i0 l‘m:O

V checks whether b;_1 = ¢;(0) + g;(1). If not, abort.

V' chooses a random r; € I, computes b; = g;(r;) and sends r; to P.
If i <m then i + i+ 1 and go to step 4.

V checks whether b, = f(r1,...,7m)>.

© XN

Protocol 11. ( Babai, Fortnow and Lund’s MIP for Oracle-3-SAT )
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Given (B, r,s) as common input.

1. (sumcheck with oracle) V and P; execute protocol 10. Let (Qx+1,Qrt2, Qrts) =
(PptdoeTrgss Trdst1--Tri2s, Trr2st1--Tri3s) € (I°)% be Vs questions during this phase.

2. (multilinearity test) V asks P; to simulate an oracle storing the function A. V' queries
P; with random, linearly related values in I°. If any response does not satisfy linearity,
abort protocol. Let Q1,...,Qk € I° be V’s questions during this phase.

3. (non-adaptiveness test) V' chooses uniformly at random an ¢ such that 1 <i<k+3
and asks Q; to P». If Py’s answer differs from that of P;, reject. Otherwise accept.

17



