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Abstract. We describe a new Schnorr-based multi-signature scheme
(i.e., a protocol which allows a group of signers to produce a short, joint
signature on a common message), provably secure in the plain public-key
model (meaning that signers are only required to have a public key, but
do not have to prove knowledge of the private key corresponding to
their public key to some certification authority or to other signers before
engaging the protocol), which improves over the state-of-art scheme of
Bellare and Neven (ACM-CCS 2006) and its variants by Bagherzandi
et al. (ACM-CCS 2008) and Ma et al. (Des. Codes Cryptogr., 2010) in
two respects: (i) it is simple and efficient, having only two rounds of
communication instead of three for the Bellare-Neven scheme and the
same key and signature size as standard Schnorr signatures; (ii) it allows
key aggregation, which informally means that the joint signature can
be verified exactly as a standard Schnorr signature with respect to a
single “aggregated” public key which can be computed from the individual
public keys of the signers. This comes at the cost of a stronger security
assumption, namely the hardness of the One-More Discrete Logarithm
problem, rather than the standard Discrete Logarithm problem, and a
looser security reduction due to a double invocation of the Forking Lemma.
As an application, we explain how our new multi-signature scheme could
improve both performance and user privacy in Bitcoin.
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1 Introduction

Multi-signatures. Multi-signature protocols, first introduced by Itakura and
Nakamura [IN83], allow a group of signers (each possessing its own private/public
key pair) to produce a single signature σ on a message m. Verification of the
validity of a purported signature σ can be publicly performed given the message
and the set of public keys of all signers. A trivial way to transform a standard
signature scheme into a multi-signature scheme is to have each signer produce a
stand-alone signature for m with its private key and to concatenate all individual
signatures. However, the size of the multi-signature in that case grows linearly
with the number of signers. In order to be useful and practical, a multi-signature
scheme should produce signatures whose size is (ideally) independent from the
number of signers and close to the one of an ordinary signature scheme.

A serious concern when dealing with multi-signature schemes are rogue-
key attacks, where a subset of t corrupted signers, 1 ≤ t < n, use public
keys pk′n−t+1, . . . , pk′n computed as functions of public keys of honest users
pk1, . . . , pkn−t, allowing them to easily produce forgeries for the set of public
keys {pk1, . . . , pkn−t, pk′n−t+1, . . . , pk′n} (even though they may not know the
secret keys associated with pk′n−t+1, . . . , pk′n). Such attacks decimated early
proposals [LHL94, Har94, HMP95, OO91, Lan96, MH96, OO99] until a formal
model was put forward together with a provably secure scheme by Micali, Ohta,
and Reyzin [MOR01] (however, their solution relies on a costly and impractical
interactive key generation protocol).

One way to generically prevent rogue-key attacks is to require that users prove
knowledge (or possession [RY07]) of the secret key during public key registration
with a certification authority, a setting known as the knowledge of secret key
(KOSK) assumption. In particular, the pairing-based multi-signature schemes
by Boldyreva [Bol03] and Lu et al. [LOS+06] rely on this assumption for their
security. We refer to [BN06, RY07] for a thorough discussion regarding why this
assumption is problematic.

To date, the most practical multi-signature scheme provably secure with-
out any assumption on the key setup has been proposed by Bellare and Neven
(BN) [BN06] and is based on the Schnorr signature scheme [Sch91]. Follow-
ing [BN06], we call this setting, where the only requirement is that each potential
signer has a public key, the plain public-key model. Since our proposal can be
seen as a simplification of BN’s scheme, we recall it (as well as basic Schnorr
signatures) first.

The Schnorr signature scheme [Sch91] uses a cyclic group G of prime order
p, a generator g of G, and a hash function H. A private/public key pair is
a pair (x,X) ∈ {0, . . . , p − 1} × G where X = gx. To sign a message m, the
signer draws a random integer r in Zp, computes R = gr, c = H(X,R,m), and
s = r + cx. The signature is the pair (R, s), and its validity can be checked by
verifying whether gs = RXc. Note that what we just described is the so-called
“key-prefixed” variant of the scheme where the public key is hashed together
with R and m [BDL+11]. This variant was argued to have a better multi-user
security bound than the classic variant [Ber15], but key-prefixing was later
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shown to be in fact unnecessary for Schnorr signatures to enjoy good multi-user
security [KMP16]. For our multi-signature scheme, key-prefixing seems to be
required for the security proof to go through, even though we are not aware of
any attack otherwise. In our use case, it also more closely matches reality, as the
message being signed in Bitcoin transactions always indirectly commits to the
public key.

The naive way to design a Schnorr multi-signature scheme would be as
follows. Say a group of n signers want to cosign a message m, and let L =
{X1 = gx1 , . . . , Xn = gxn} be the multiset3 of all their public keys. Each cosigner
randomly generates and communicates to others a share Ri = gri ; then, each of
them computes R =

∏n
i=1 Ri, c = H(X̃, R,m) where X̃ =

∏n
i=1 Xi is the product

of individual public keys, and a partial signature si = ri + cxi; partial signatures
are then combined into a single signature (R, s) where s =

∑n
i=1 si mod p. The

validity of a signature (R, s) on message m for public keys {X1, . . . , Xn} is
equivalent to gs = RX̃c where X̃ =

∏n
i=1 Xi and c = H(X̃, R,m). Note that this

is exactly the verification equation for a traditional key-prefixed Schnorr signature
with respect to public key X̃, a property we call key aggregation. However, as
already pointed out many times [HMP95, Lan96, MH96, MOR01], this simplistic
protocol is vulnerable to a rogue-key attack where a corrupted signer sets its
public key to X1 = gx1(

∏n
i=2 Xi)−1, allowing him to produce signatures for

public keys {X1, . . . , Xn} by himself.
The Micali-Ohta-Reyzin multi-signature scheme [MOR01] solves this problem

using a sophisticated interactive key generation protocol. In their scheme, Bellare
and Neven [BN06] proceeded differently in order to avoid any key setup. Their
main idea is to have each cosigner use a distinct “challenge” ci when computing
their partial signature si = ri + cixi, defined as ci = H(〈L〉, Xi, R,m), where
as before R =

∏n
i=1 Ri and 〈L〉 is some unique encoding of the multiset of

public keys L = {X1, . . . , Xn}. The verification equation for a signature (R, s) on
message m for public keys L then becomes gs = R

∏n
i=1 X

ci
i . On top of that, they

add a preliminary round in the signature protocol where each signer commits to
its share Ri by sending ti = H ′(Ri) to other cosigners first. This prevents any
cosigner from setting R =

∏r
i=1 Ri to some maliciously chosen value (and, on a

more technical level, allows to simulate the signature oracle in the security proof).
Bellare and Neven showed that this yields a multi-signature scheme provably
secure in the plain public key model under the Discrete Logarithm assumption,
modeling H and H ′ as random oracles. However, this scheme does not allow key
aggregation anymore since the entire list of public keys is required for verification.

Our Contribution. We propose a new Schnorr-based multi-signature scheme
which can be seen as a simpler and more efficient variant of the BN scheme. First,
we remove the preliminary commitment phase, so that cosigners start right away
by sending each others the shares Ri. Second, we change the way the challenges
3 Since we do not impose any constraint on the key setup, the adversary can choose
corrupted public keys arbitrarily, hence the same public key can appear multiple
times in L.
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ci are computed from ci = H(〈L〉, Xi, R,m) to

ci = H0(〈L〉, Xi) ·H1(X̃, R,m),

where X̃ is the so-called aggregated public key corresponding to the multiset of
public keys L = {X1, . . . , Xn}, defined as

X̃ =
n∏
i=1

Xai
i

where ai = H0(〈L〉, Xi) (note that the ai’s only depend on the public keys of the
signers). This way, the verification equation of a signature (R, s) on message m
for public keys L = {X1, . . . , Xn} becomes

gs = R

n∏
i=1

Xaic
i = RX̃c,

where c = H1(X̃, R,m). In other words, we have recovered the key aggregation
property enjoyed by the naive scheme, albeit with respect to a more complex
aggregated key X̃ =

∏n
i=1 X

ai
i . Note that using c = H1(〈L〉, R,m) yields a secure

scheme as well, but does not allow key aggregation since verification is impossible
without knowing all the individual signer keys.

These two simplifications come at the price of complications in the security
proof. First, removing the preliminary commitment phase prevents us from using
the same technique as Bellare and Neven for simulating the signature oracle. We
overcome this problem by relying on the stronger One-More Discrete Logarithm
(OMDL) assumption rather than the classic Discrete Logarithm assumption.
Second, the “split” form of the challenges ci prevents us from using directly the
Forking Lemma [PS00] for extracting the discrete logarithm of the challenge
public key by running the forger twice with distinct random oracle answers. We
need a more elaborate strategy which consists in using the Forking Lemma twice,
in a nested way (so that in total the reduction runs the forger four times), forking
first with respect to answers of H1, which allows to obtain some aggregated
key (involving the challenge public key) together with its discrete logarithm,
and then with respect to answers of H0, which allows to retrieve the discrete
logarithm of the challenge public key. The “general” Forking Lemma of Bellare
and Neven (that we need to generalize even a bit further for our setting) comes
in handy to keep the proof as modular as possible. On the downside, this double
application of the Forking Lemma results in a rather loose overall security
bound. This well-known shortcoming of rewinding-based proofs seems somehow
inherent [PV05, GBL08, Seu12] and is often considered as an artifact of the
technique rather than an indication of a real hardness gap between breaking the
scheme and solving the underlying hard problem.

More on Key Aggregation. Let us elaborate a bit on the benefits of key
aggregation. Say a group of n signers want to authorize an action (say, spend
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Table 1. Comparison between DL-based multi-signature scheme secure in the plain
public-key model when using a group G of order p and hash functions with `-bit outputs.

scheme sig. size pk size sk size rounds key agg.
[BN06] |G|+ |p| |G| |p| 3 No
[BCJ08] 3|G|+ 3|p| |G| |p| 2 No

[MWLD10] |G|+ 2|p| or `+ 2|p| |G| 2|p| 2 No
this paper |G|+ |p| or `+ |p| |G| |p| 2 Yes

some bitcoins) only if all of them agree, but do not necessarily wish to reveal
their individual public keys. Then, they can privately compute the aggregated
key X̃ corresponding to their multiset of public keys and publish it as an ordinary
(non-aggregated) key. Signers are ensured that all of them will need to cooperate
to produce a signature which is valid under X̃, whereas verifiers will not even
learn that X̃ is in fact an aggregated key. Moreover, X̃ can be computed by a third
party (say, someone sending bitcoins to the group of signers) just from the list of
public keys, without interacting with the signers. As we will see, this property
will prove instrumental for obtaining a more compact and privacy-preserving
variant of so-called n-of-n multi-signature transactions in Bitcoin (see below).

Related Work. Two variants of the BN multi-signature scheme have been
proposed previously. Bagherzandi et al. [BCJ08] reduced the number of rounds
from three to two using an homomorphic commitment scheme. However, this
increases the signature size and the computational cost of signing and verifica-
tion. Ma et al. [MWLD10] proposed a variant based on Okamoto’s signature
scheme [Oka92] and a “double hashing” technique (the two hash functions being
composed rather than multiplied as in our scheme), which allows to reduce the
signature size compared to [BCJ08] while using again only two rounds. However,
none of these two variants allows key aggregation. A comparison of the four
discrete logarithm-based multi-signature schemes is provided in Table 1.

Interactive Aggregate Signatures. In some situations, it might be useful
to allow each participant to sign a different message rather than a single com-
mon one. Such a protocol, where each signer has its own message mi to sign,
and the joint signature proves that the i-th signer has signed mi, is called an
interactive aggregate signature (IAS) scheme. IAS schemes are more general than
multi-signature schemes, but less flexible than non-interactive aggregate signa-
tures [BGLS03, BNN07] and sequential aggregate signatures [LMRS04]. Bellare
and Neven [BN06] suggested a generic (i.e., black-box) way to turn any multi-
signature scheme into an IAS scheme: the signers simply run the multi-signature
protocol using as message the tuple of all public key/message pairs involved in
the IAS protocol. (Note that for BN’s scheme and ours, this does not increase
the number of communication rounds since messages can be sent together with
shares Ri.) However, a subtle problem arises with this generic construction in the

5



plain public key model, as we explain in details in Appendix A. We also suggest
a simple (yet non black-box) way to turn the BN multi-signature scheme into a
secure IAS scheme.

Applications to Bitcoin. Bitcoin [Nak08] is a digital currency scheme in
which all participants (are able to) validate transactions. These transactions
consist of outputs, which have a verification key and amount, and inputs4 which
are references to outputs of earlier transactions. Each input contains a signature
of a modified version of the transaction to be validated with its referenced
output’s key. In fact, some outputs even require multiple signatures to be spent.
Transactions spending such an output are often referred to as m-of-n multi-
signature transactions [And11], and the current implementation corresponds to
the trivial way of building a multi-signature scheme by concatenating individual
signatures. Additionally, a threshold policy can be enforced where only m valid
signatures out of the n possible ones are needed to redeem the transaction (again,
this is the most straightforward way to turn a multi-signature scheme into some
kind of basic threshold signature scheme).

Today, Bitcoin uses ECDSA signatures [ANS05, NIS13] over the secp256k1
curve [SEC10] to authenticate transactions. As Bitcoin nodes fully verify all
transactions, signature size and verification time are important design considera-
tions, while signing time is much less so. Besides, signatures account for a large
part of the size of Bitcoin transactions. Because of this, using multi-signatures
seems appealing. However, designing multiparty ECDSA signature schemes is no-
tably cumbersome [MR01, GGN16, Lin17] due to the modular inversion involved
in signing, and moving to Schnorr signatures would definitely help deploying
compact multi-signatures. While several multi-signature schemes could offer an
improvement over the currently available method, two properties increase the
possible impact:

– The availability of key aggregation removes the need for verifiers to see all
the involved keys, improving bandwidth, privacy, and validation cost.

– Security under the plain public key model enables multi-signatures across
multiple inputs of a transaction, where the choice of signers cannot be
committed to in advance. This greatly increases the number of situations in
which multi-signatures are beneficial.

Our contribution is novel in combining these two properties. The removal of BN’s
commitment phase further improves its convenience, requiring only two rather
than three interaction rounds.

Organization of the Paper. We start in Section 2 by providing definitions
and stating our version of the general Forking Lemma. In Section 3, we specify
our new multi-signature protocol, and also describe some attacks on simpler
variants. Section 4 is then entirely devoted to the security proof of the scheme.
Finally, in Section 5 we expose the applications of multi-signatures to Bitcoin.
4 All Bitcoin transactions have at least one input except coinbase transactions which
reward miners when they validate blocks and bootstrap the currency supply.
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2 Preliminaries

2.1 Notation and Definitions

Notation. Given a non-empty set S, we denote s←$ S the operation of sampling
an element of S uniformly at random and assigning it to s. If A is a randomized
algorithm, we let y ← A(x1, . . . ; ρ) denote the operation of running A on inputs
x1, . . . and random coins ρ and assigning its output to y, and y ←$ A(x1, . . .)
when coins ρ are chosen uniformly at random. Given a random variable Y , we
let E[Y ] denote its expected value.

In all the following, we let G be a cyclic group of order p, where p is a k-bit
integer, and g be a generator of G. The group G will be denoted multiplicatively,
and we will conflate group elements and their representation when given as input
to hash functions. We call the triplet (G, p, g) the group parameters. We adopt
the concrete security approach, i.e., we view (G, p, g) as fixed, but the bit length
k of p can be regarded as a security parameter if need be.

The One-More Discrete Logarithm Problem. The One-More Discrete
Logarithm (OMDL) problem is an extension of the standard Discrete Logarithm
(DL) problem which consists in finding the discrete logarithm of q + 1 group
elements by making at most q calls to an oracle solving the discrete logarithm
problem. It was introduced in [BNPS03] and used for example to prove the
security of the Schnorr identification protocol against active and concurrent
attacks [BP02]. The formal definition follows.

Definition 1 (OMDL problem). Let (G, p, g) be group parameters. Let DLg(·)
be an oracle taking as input an element X ∈ G and returning x ∈ {0, . . . , p− 1}
such that gx = X. An algorithm A is said to (q, t, ε)-solve the OMDL problem
w.r.t. (G, p, g) if on input q + 1 random group elements X1, . . . , Xq+1, it runs in
time at most t, makes at most q queries to DLg(·), and returns x1, . . . , xq+1 ∈
{0, . . . , p− 1} such that Xi = gxi for all 1 ≤ i ≤ q + 1 with probability at least
ε, where the probability is taken over the random draw of X1, . . . , Xq and the
random coins of A.

2.2 Syntax and Security Definition of Multi-Signature Schemes

Syntax. A multi-signature scheme Π consists of three algorithms (KeyGen,Sign,
Ver). System-wide parameters are selected by a setup algorithm taking as input
the security parameter. We assume that this setup phase is performed correctly
(or at least that correctness can be checked efficiently, so that it does not have to
be run by a trusted entity) and we do not mention it explicitly in the following.

The randomized key generation algorithm takes no input and returns a
private/public key pair (sk, pk) ←$ KeyGen(). The signature algorithm Sign is
run by each participant on input its key pair (sk, pk), a multiset of public keys
L = {pk1, . . . , pkn} containing at least once its own public key pk, and a message
m, and returns a signature σ for L andm. The deterministic verification algorithm
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Ver takes as input a multiset of public keys L = {pk1, . . . , pkn}, a message m,
and a signature σ, and returns 1 is the signature is valid for L and m and 0
otherwise.

Correctness requires that for any private/public key pairs (sk1, pk1), . . . ,
(skn, pkn) and any message m, if a group of signers with public keys L =
{pk1, . . . , pkn} run the signature protocol for m without deviating from the
specification, then all signers output the same signature σ which is valid for L
and m, i.e., Ver(L,m, σ) = 1. Our syntax assumes that each cosigner outputs
a signature, but most multi-signature schemes (in particular the one presented
in this paper) can be easily modified so that a single designated participant
computes the final output σ.

Security. Our security model is the same as the one of [BN06] and requires that
it be infeasible to forge multi-signatures involving at least one honest signer. As
in previous work [MOR01, Bol03, BN06], we assume wlog that there is a single
honest signer and that the adversary has corrupted all other signers, choosing
corrupted public keys arbitrarily (and potentially as a function of the honest
signer’s public key). The adversary can engage in any number of (concurrent)
signature protocols with the honest signer before returning a forgery attempt.

More formally, the security game involving an adversary (forger) F proceeds
as follows:

– A key pair for the honest signer (sk∗, pk∗) ←$ KeyGen() is generated at
random and the public key pk∗ is given as input to F .

– The forger can engage arbitrary signing protocols with the honest user.
Formally, it has access to a signature oracle which must be called on input
a multiset of public keys L = {pk1, . . . , pkn} where pk∗ occurs at least once
and a message m. The oracle implements the signing algorithm corresponding
to the honest user’s secret key sk∗, while the forger plays the role of all other
signers in L (potentially deviating from the protocol). Note that pk∗ might
appear k ≥ 2 times in L, in which case the forger plays the role of k − 1
instances of pk∗, but since the signing algorithm only depends on the multiset
L there is no need to specify which instances are associated with the honest
oracle and the forger. The forger can interact concurrently with as many
independent instances of the honest signature oracle as it wishes.

– At the end of its execution, the forger returns a multiset of public keys
L = {pk1, . . . , pkn}, a message m, and a signature σ. The forger wins if
pk∗ ∈ L, the forgery is valid, i.e., Ver(L,m, σ) = 1, and F never initiated a
signature protocol for multiset L and message m.

In addition, if we work in the Random Oracle model, the adversary can make
arbitrary random oracle queries at any stage of the game. Security is defined as
follows.

Definition 2. Let Π = (KeyGen,Sign,Ver) be a multi-signature scheme. We say
that an adversary F is a (t, qs, qh, N, ε)-forger in the random oracle model against
the multi-signature scheme Π if it runs in time at most t, initiates at most
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qs signature protocols with the honest signer, makes at most qh random oracle
queries,5 and wins the above security game with probability at least ε, the size of
L in any signature query and in the forgery being at most N .

2.3 A General Forking Lemma

As in [BN06], our security proof will rely on a “general Forking Lemma” extending
Pointcheval and Stern’s Forking Lemma [PS00] and which does not mention
signatures nor forgers and only deals with the outputs of an algorithm A run
twice on related inputs. However, for reasons which should become clear later,
the general Forking Lemma of Bellare and Neven [BN06] is not general enough
for our setting. In short, in BN’s lemma, only the values hi, . . . , hq (i.e., the
post-fork random oracle answers used by the reduction) are refreshed in the
second execution of A, whereas we will need to refresh another part of the input
of A (jumping ahead, in our case the reduction must use fresh OMDL challenges,
used as shares R1 sent to the signature oracle in signature queries, after the two
executions of A have forked; see Footnote 15).

Since the proof of the lemma below is very similar to the one of [BN06,
Lemma 1], it is deferred to Appendix B.

Lemma 1. Fix integers q, m, and `. Let A be a randomized algorithm which
takes as input some main input inp following some unspecified distribution,
`-bit strings h1, . . . , hq, and elements V1, . . . , Vm from some arbitrary set S,
and returns either a distinguished failure symbol ⊥, or a tuple (i, j, out), where
i ∈ {1, . . . , q}, j ∈ {0, . . . ,m}, and out is some side output. The accepting
probability of A, denoted acc(A), is defined as the probability, over the random
draw of inp, h1, . . . , hq ←$ {0, 1}`, V1, . . . , Vm ←$ S, and the random coins of
A, that A returns a non-⊥ output. Consider algorithm ForkA, taking as input
inp and V1, V

′
1 , . . . , Vm, V

′
m ∈ S, described on Figure 1. Let frk be the probability

(over the draw of inp, V1, V
′

1 , . . . , Vm, V
′
m ←$ S, and the random coins of ForkA)

that ForkA returns a non-⊥ output. Then

frk ≥ acc(A)
(

acc(A)
q

− 1
2`

)
.

3 Our New Multi-Signature Scheme

3.1 Description

Our new multi-signature scheme, denoted MuSig in all the following, is pa-
rameterized by group parameters (G, p, g) where p is a k-bit integer, G is a
cyclic group of order p, and g is a generator of G, and by two hash functions6

5 If the scheme relies on several random oracles, we assume that F makes at most qh

queries to each of them.
6 These hash functions can be constructed from a single one using proper domain
separation.
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1 algorithm ForkA(inp, V1, V
′

1 , . . . , Vm, V
′

m)
2 pick random coins ρ for A
3 h1, . . . , hq ←$ {0, 1}`

4 α← A(inp, h1, . . . , hq, V1, . . . , Vm; ρ)
5 if α = ⊥ then return ⊥
6 else parse α as (i, j, out)
7 h′i, . . . , h

′
q ←$ {0, 1}`

8 α′ ← A(inp, h1, . . . , hi−1, h
′
i, . . . , h

′
q, V1, . . . , Vj , V

′
j+1, . . . , V

′
m; ρ)

9 if α′ = ⊥ then return ⊥
10 else parse α′ as (i′, j′, out′)
11 if (i = i′ and hi 6= h′i) then return (i, out, out′)
12 else return ⊥

Fig. 1. The “forking” algorithm ForkA built from A.

H0, H1 : {0, 1}∗ → {0, 1}`. Note that for groups used in cryptography (multiplica-
tive subgroups of prime fields and elliptic curve groups), correctness of the group
parameters generation can be efficiently checked, as discussed in Section 2.2.

For notational simplicity, in all the following, we drop notation 〈L〉 used in
the introduction: when a multiset of public keys (in our case, group elements)
L = {pk1 = X1, . . . , pkn = Xn} is given as input to a hash function, we assume
it is uniquely encoded first, e.g. using the lexicographical order.

Key generation. Each signer generates a random private key x ←$ Zp and
computes the corresponding public key X = gx.

Signing. Let X1 and x1 be the public and private key of a specific signer, let m
be the message to sign, let X2, . . . , Xn be the public keys of other cosigners,
and let L = {X1, . . . , Xn} be the multiset of all public keys involved in the
signing process.7 For i ∈ {1, . . . , n}, the signer computes

ai = H0(L,Xi) (1)

and then the “aggregated” public key X̃ =
∏n
i=1 X

ai
i . Then, the signer

generates a random r1 ←$ Zp, computes R1 = gr1 , and sends R1 to all other
cosigners. Upon reception of R2, . . . , Rn from other cosigners, it computes

R =
n∏
i=1

Ri,

c = H1(X̃, R,m),
s1 = r1 + ca1x1 mod p,

7 As in [BN06], indices 1, . . . , n are local references to cosigners, defined within the
specific signer instance at hand.
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and sends s1 to all other cosigners. Finally, upon reception of s2, . . . , sn from
other cosigners, the signer can compute s =

∑n
i=1 si mod p. The signature is

σ = (R, s).
Verification. Given a multiset of public keys L = {X1, . . . , Xn}, a message

m, and a signature σ = (R, s), the verifier computes ai = H0(L,Xi) for
i ∈ {1, . . . , n}, X̃ =

∏n
i=1 X

ai
i , c = H1(X̃, R,m) and accepts the signature if

gs = R
∏n
i=1 X

aic
i = RX̃c.

Correctness is straightforward to verify. Note that verification is similar to
standard Schnorr signatures (with the public key included in the hash call)
with respect to the “aggregated” public key X̃ =

∏n
i=1 X

ai
i . We discuss (secure)

variants of the scheme in Section 4.3.

3.2 Attacks against Simpler Variants and Derandomization

Before proving the security of the scheme described above, we explain why simpler
ways to compute the aggregated public key do not work, and why derandomized
signing cannot be applied.

Simpler Key Aggregation Variants. As already pointed out in the intro-
duction, a simplified version of the scheme where ai is defined to be 1 would be
insecure. In this case, the aggregated public key would be X̃ =

∏n
i=1 Xi. This is

clearly vulnerable to a rogue-key attack where the last signer reveals his key as
Xn(

∏n−1
i=1 Xi)−1, resulting in an aggregated key X̃ = Xn, which the last signer

clearly can forge signatures for.
A more complicated scheme where ai is defined as H0(Xi) is insecure when

multiple keys are controlled by the attacker. Assume that the honest signer
controls key X1. The aggregate of just that key alone is X̃h = X

H0(X1)
1 . The

attacker can then use Wagner’s algorithm [Wag02] to find n−1 integers y2, . . . , yn
such that

∑n
i=2 H0(X̃hg

yi) = −1 mod p. For sufficiently large values of n − 1,
this can be done in O(22

√
k) time, where k is the bit-length of p. The attacker

then reveals public keys Xi = X̃hg
yi for i = 2 . . . n. The overall aggregated key

in that case becomes

X̃ = X̃h

n∏
i=2

(
X̃hg

yi

)H0(X̃hg
yi )

= g
∑n

i=2
yiH0(X̃hg

yi )X̃
1+
∑n

i=2
H0(X̃hg

yi )
h

= g
∑n

i=2
yiH0(X̃hg

yi )

which just the attacker can forge signatures for.

Derandomized Signing. To avoid the need for a strong random number
generation at signing time, the creation of the random values ri is often done using
an algorithm like RFC6979 [Por13], which computes them using a deterministic
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function f(xi,m). When multiple signers are cooperating, one must ensure that
the same random value is not reused when other signers change their random
values in a repeated signing attempt. Otherwise signers can recover others’ private
keys.

Assume Alice and Bob, holding respective key pairs (x1, g
x1) and (x2, g

x2),
want to jointly produce a signature. Alice produces r1 and sends R1 = gr1 to
Bob. In a first attempt, Bob responds with R2. Alice computes

R = R1R2,

c = H1(X̃, R,m),
s1 = r1 + ca1x1 mod p,

and sends s1 over to Bob. Bob chooses not to produce a valid s2, and thus
subsequent protocol steps fail. A new signing attempt takes place, and Alice
again sendsR1. Bob responds withR′2 6= R2. Alice computes c′ = H1(X̃, R1R

′
2,m)

and s′1 = r1 + c′a1x1, and sends s′1 over. Bob can now derive

x1 = s1 − s′1
a1(c− c′) mod p.

To avoid this problem, each signer must ensure that whenever any Rj sent
by other cosigners or the message m changes, his ri value changes unpredictably.
As long as f is deterministic, this implies a circular dependency in the choice of
random values. It can be solved by introducing (non-repeating) randomness or a
counter into the function f . Unfortunately, this requires a secure random number
generator at signing time, or state that is kept between signing attempts.

4 Security of the New Multi-Signature Scheme

4.1 Preliminaries
In this section, we prove the security of the MuSig scheme, expressed by the
following theorem.

Theorem 1. Assume that there exists a (t, qs, qh, N, ε)-forger F against the
multi-signature scheme MuSig with group parameters (G, p, g) and hash functions
H0, H1 : {0, 1}∗ → {0, 1}` modeled as random oracles. Then there exists an
algorithm C which (4qs, t′, ε′)-solves the OMDL problem for (G, p, g), with t′ =
4t+ 4Ntexp +O(N(qh + qs + 1)) where texp is the time of an exponentiation in
G and

ε′ ≥ ε4

(qh + qs + 1)3 −
11
2` .

In other words, C takes as input 4qs + 1 uniformly random group elements

X∗, U1, U
′
1, U

′′
1 , U

′′′
1 , . . . , Uqs

, U ′qs
, U ′′qs

, U ′′′qs
,

makes at most 4qs queries to a discrete logarithm oracle DLg(·), and returns the
discrete logarithm of all its challenges in time at most t′ and with probability at
least ε′.

12



Before proving the theorem, we start with a number of observations.

Obstacles on the Way to the Security Proof. Let us recall the security
game defined in Section 2.2, adapting the notation to our setting. Group parame-
ters (G, p, g) are fixed and a key pair (x∗, X∗) is generated for the honest signer.
The target public key X∗ is given as input to the forger F . Then, the forger can
engage in protocol executions with the honest signer by providing a message m
to sign and a multiset L of public keys involved in the signing process where X∗
occurs at least once, and simulating all signers except one instance of X∗. More
concretely, it has access to an interactive signature oracle working as follows:
the forger sends a multiset L of public keys with X∗ ∈ L (we assume the oracle
returns ⊥ if X∗ /∈ L) and a message m to sign; the signing oracle parses L as
{X1 = X∗, X2, . . . , Xn}, draws a random r1 ←$ Zp, and sends R1 = gr1 to the
forger; the forger sends group elements R2, . . . , Rn; the signing oracle computes

R =
r∏
i=1

Ri,

c = H1(X̃, R,m),
s1 = r1 + ca1x

∗ mod p,

and returns s1 to the forger. Note that the remaining of the protocol, where F
sends s2, . . . , sn to the signature oracle which outputs s =

∑n
i=1 si mod p, can be

omitted since the oracle’s behavior does not depend on x∗ and can be perfectly
simulated by the forger.

Observe that the forger “controls” the value of R used in signature queries since
he can choose R2, . . . , Rn after having received R1 from the signature oracle. This
stands in contrast to standard Schnorr signatures, where R is randomly chosen by
the signature oracle. This also forbids to use the textbook way of simulating the
signature oracle by randomly drawing s1 and c, computing R1 = gs1(X∗)−a1c,
and later programming H1(X̃, R,m) := c, since the forger might have made the
random oracle query H1(X̃, R,m) before engaging the corresponding signature
protocol.8 To solve this problem, we let the simulator compute s1 by querying
DLg(R1(X∗)a1c) to the DL oracle available in the formulation of the OMDL
problem. We use a fresh DL challenge as R1 in each signature query, and the
reduction will be able to compute its discrete logarithm once x∗ has been retrieved.

The second difficulty is to extract the discrete logarithm x∗ of the challenge
public key X∗. The standard technique for this would be to “fork” two executions
of the forger in order to obtain two valid forgeries (R, s) and (R′, s′) for the same
multiset of public keys L = {X1, . . . , Xn} with X∗ ∈ L and the same message
m such that R = R′, H1(X̃, R,m) was programmed in both executions to some
common value h1, H0(L,Xi) was programmed in both executions to the same
8 This is the reason why Bellare and Neven [BN06] add an extra round at the beginning
of the protocol where each signer commits to its share Ri before receiving the shares
of other signers.
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value ai for each i such that Xi 6= X∗, and H0(L,X∗) was programmed to two
distinct values h0 and h′0 in the two executions, implying that

gs = R(X∗)n
∗h0h1

∏
i∈{1,...,n}
Xi 6=X∗

Xaih1
i

gs
′

= R(X∗)n
∗h′0h1

∏
i∈{1,...,n}
Xi 6=X∗

Xaih1
i ,

where n∗ is the number of times X∗ appears in L. This would allow to compute
the discrete logarithm of X∗ by dividing the two equations above.

However, simply forking the executions with respect to the answer to the
query H0(L,X∗) does not work: indeed, at this moment, the relevant query
H1(X̃, R,m) might not have been made yet by the forger,9 and there is no
guarantee that the forger will ever make this same query again in the second
execution, let alone return a forgery corresponding to the same H1 query. In
order to remedy this situation, we fork the execution of the forger twice: once
on the answer to the query H1(X̃, R,m), which allows to retrieve the discrete
logarithm of the aggregated public key X̃ with respect to which the adversary
returns a forgery, and then on the answer to H0(L,X∗), which allows to retrieve
the discrete logarithm of X∗.

4.2 Security Proof

Proof Sketch. We first construct a “wrapping” algorithm A which essentially
runs the forger, simulating H0 and H1 uniformly at random and the signature
oracle thanks to a DL oracle, and returns a forgery together with some information
about the forger execution unless a couple of bad events happen.10 Then, we use
A to construct an algorithm B which runs the forking algorithm ForkA as defined
in Section 2.3 (where the fork is w.r.t. the answer to the H1 query related to
the forgery), allowing him to return a multiset of public keys L together with
the discrete logarithm of the corresponding aggregated public key. Finally, we
use B to construct an algorithm C solving the OMDL problem by running ForkB
(where the fork is now w.r.t. the answer to the H0 query related to the forgery).
Throughout the proof, the reader might find helpful to refer to Figure 2 which
illustrates the inner working of C.
9 In fact, it is easy to see that the forger can only guess the value of the aggregated
public key X̃ corresponding to L at random before making the relevant queries
H0(L,Xi) for Xi ∈ L, so that the query H1(X̃, R,m) can only come after the
relevant queries H0(L,Xi) except with negligible probability.

10 In particular, we must exclude the case where the adversary is able to find two
distinct multisets of public keys L and L′ such that the corresponding aggregated
public keys are equal, since when this happens the forger can make a signature query
for (L,m) and return the resulting signature σ as a forgery for (L′,m). Jumping
ahead, this will correspond to bad event AKColl defined in the proof of Lemma 2.
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T0(L,X∗)
h0

T1(X̃, R,m)

h1 L,m, (R, s)

h′1

L,m, (R, s′)h′0

T1(X̃′, R′,m′)

h′′1 L,m′, (R′, s′′)

h′′′1

L,m′, (R′, s′′′)

Fig. 2. A possible execution of algorithm C. Each path from the leftmost root to one of
the four rightmost leaves represent an execution of the forger. Each vertex symbolizes
an assignment to tables T0 or T1 used to program H0 and H1, and the edge originating
from this vertex symbolizes the value used for the assignment. Leaves symbolize the
forgery returned by the forger. Only vertices and edges that are relevant to the forgery
are labeled.

Normalizing Assumptions. In all the following, we assume that the forger
never repeats a query, and only makes “well-formed” queries, meaning that
X∗ ∈ L and X ∈ L for any query H0(L,X) (this is without loss of generality,
since “ill-formed” queries are irrelevant and could simply be answered uniformly
at random in the simulation). We also assume wlog that the adversary makes
exactly qh queries to each random oracle and exactly qs signature queries.

We start with the construction of the wrapping algorithm A.

Lemma 2. Assume that there exists a (t, qs, qh, N, ε)-forger F in the random
oracle model against the multi-signature scheme MuSig with group parameters
(G, p, g) and let q = qh + qs + 1. Then there exists an algorithm A that takes
as input qs + 1 uniformly random group elements X∗, U1, . . . , Uqs

and uniformly
random `-bit strings h0,1, . . . , h0,q and h1,1, . . . , h1,q,11 makes at most qs queries
to a discrete logarithm oracle DLg(·), and, with accepting probability (as defined
in Lemma 1) at least

ε− 2(qh + qs + 1)2

2` ,

outputs (i0, j0, i1, j1, L,R, s,a) where i0, i1 ∈ {1, . . . , q}, j0, j1 ∈ {0, . . . , qs}, L =
{X1, . . . , Xn} is a multiset of public keys such that X∗ ∈ L, a = (a1, . . . , an) is
a tuple of `-bit values such that ai = h0,i0 for any i such that Xi = X∗, and

gs = R

n∏
i=1

X
aih1,i1
i . (2)

11 Strings h0,i, resp. h1,i will be used to answers queries to H0, resp. H1. We need
qh + qs + 1 answers for each random oracle because one query to H0 and one query
to H1 may be incurred by each signature query and by the final verification of the
validity of the forgery.
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Proof. We construct algorithm A as follows. It initializes two empty tables T0
and T1 for storing simulated values for respectively H0 and H1 and three counters
ctrh0, ctrh1, and ctrs (initially zero) that will be incremented respectively each
time an entry of the form T0(·, X∗) is assigned, each time an assignment is made
in T1, and each time the forger makes a signature query. Then, it picks random
coins ρF and runs the forger F on input the public key X∗, answering its queries
as follows.

– Hash query H0(L,X): (Recall that by assumption X∗ ∈ L and X ∈ L.) If
T0(L,X) is undefined, A increments ctrh0, assigns T0(L,X∗) := h0,ctrh0 , and
assigns random values to T0(L,X ′) for all X ′ ∈ L \ {X∗}. Then, it returns
T0(L,X).

– Hash query H1(X̃, R,m): If T1(X̃, R,m) is undefined, then A increments
ctrh1 and assigns T1(X̃, R,m) := h1,ctrh1 . Then, it returns T1(X̃, R,m).

– Signature query (L,m): If X∗ /∈ L, then A returns ⊥ to the forger. Otherwise,
it parses L as {X1 = X∗, X2, . . . , Xn}. If T0(L,X∗) is undefined,12 it makes an
“internal” query to H0(L,X∗) which ensures that T0(L,Xi) is defined for each
i ∈ {1, . . . , n}, sets ai := T0(L,Xi), and computes X̃ :=

∏n
i=1 X

ai
i . Then, it

increments ctrs, lets R1 := Uctrs, and sends R1 to the forger. Upon reception
of R2, . . . , Rn, A computes R :=

∏n
i=1 Ri. If T1(X̃, R,m) is undefined, it

makes an “internal” query to H1(X̃, R,m) and lets c := T1(X̃, R,m). Finally,
it queries the DL oracle on R1(X∗)a1c, obtaining an answer s1 that it returns
to the forger.

If F returns ⊥, A outputs ⊥ as well. Otherwise, if the forger returns a purported
forgery (R, s) for a public key multiset L such that X∗ ∈ L and a message m, A
parses L as {X1 = X∗, . . . , Xn} and checks the validity of the forgery as follows.
If T0(L,X∗) is undefined, it makes an “internal” query to H0(L,X∗) which
ensures that T0(L,Xi) is defined for each i ∈ {1, . . . , n}, sets ai := T0(L,Xi),
and computes X̃ :=

∏n
i=1 X

ai
i . If T1(X̃, R,m) is undefined, it makes an “internal”

query to H1(X̃, R,m) and lets c := T1(X̃, R,m).13 If gs 6= RX̃c, i.e., the forgery
is invalid, A outputs ⊥, otherwise it takes the following additional steps. Let

– i0 be the index such that T0(L,X∗) = h0,i0 ,
– j0 be the value of ctrs at the moment T0(L,X∗) is assigned,
– i1 be the index such that T1(X̃, R,m) = h1,i1 ,
– j1 be the value of ctrs at the moment T1(X̃, R,m) is assigned.

If the assignment T0(L,X∗) := h0,i0 occurred after the assignment T1(X̃, R,m) :=
h1,i1 , we say that bad event BadOrder happened. If there exists another multiset
12 This is true iff L never appeared in a previous query to H0 or a previous signature

query.
13 In general, we cannot assume that the forger has made the random oracle queries

corresponding to its forgery attempt, even though the forgery is valid only with
negligible probability in this case.
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of public keys L′ such that, at the end of the execution, T0(L′, X ′) is defined
for each X ′ ∈ L′ and the aggregated keys corresponding to L and L′ are equal,
we say that event AKColl (aggregated key collision) happened. In both cases, A
returns ⊥. Otherwise, it returns (i0, j0, i1, j1, L,R, s,a), where a = (a1, . . . , an).
By construction, ai = h0,i0 for each i such that Xi = X∗, and the validity of the
forgery implies Equation (2).

We must now lower bound the accepting probability of A. It is easy to
see that A perfectly simulates the security experiment to the forger when
h0,1, . . . , h0,q, h1,1, . . . , h1,q are uniformly random. Hence, with probability at
least ε, the forger eventually returns a valid forgery. It remains to upper bound
the probability that BadOrder or AKColl occurs.

Note that by construction of A, for any multiset L′ appearing at some point
in the queries of the adversary or in its forgery, assignments T0(L′, X ′) for all
X ′ ∈ L′ are concomitant and occur the first time L′ appears either in a query
to H0, or in a signature query, or in the forgery. We will refer to the set of
assignments {T0(L′, X ′) := a′, X ′ ∈ L′} as the set of T0 assignments related to
L′. Note that there are at most q sets of T0 assignments and that each of them
contains a unique assignment T0(L′, X∗) := h0,i for some i ∈ {1, . . . , q}.

In order to upper bound the probability that BadOrder happens, we upper
bound the probability that some set of T0 assignments related to some multiset L′
(not necessarily the one returned in the forgery) results in the aggregated key X̃ ′
corresponding to L′ being equal to the first argument of a defined entry in table
T1 (which is clearly a necessary condition for BadOrder to happen). Considering
the i-th set of T0 assignments, one has

X̃ ′ = (X∗)n
∗h0,i · Z

where n∗ ≥ 1 is the number of times X∗ appears in L′ and h0,i is uniformly
random in {0, 1}` and independent from Z which accounts for public keys different
fromX∗ in L′. Hence, X̃ ′ is uniformly random in a set of at least 2` group elements.
Since there are always at most q defined entries in T1 and at most q sets of
assignments, BadOrder happens with probability at most q2/2`.14

In order to upper bound the probability that AKColl happens, we upper bound
the probability that some set of T0 assignments related to some multiset L′ (not
necessarily the one returned in the forgery) results in the aggregated key X̃ ′
corresponding to L′ being equal to the aggregated key X̃ ′′ corresponding to some
previous set of T0 assignments related to some other multiset L′′ (again, neither
L′ nor L′′ need be the multiset returned in the forgery). Since each aggregated
key is uniform in a set of at least 2` group elements and independent from other
aggregated keys, this happens with probability at most q2/2`.

14 Note that for this argument to go through, we rely on X̃ being included in the call
to H1. As already said in introduction, we do not know how to prove the security for
the variant without “aggregate key-prefixing” where X̃ is omitted from the call to
H1, even though we are not aware of any attack.
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Using A, we now construct an algorithm B which returns a multiset of public
keys L together with the discrete logarithm of the corresponding aggregated key.

Lemma 3. Assume that there exists a (t, qs, qh, N, ε)-forger F in the random
oracle model against the multi-signature scheme MuSig with group parameters
(G, p, g) and let q = qh + qs + 1. Then there exists an algorithm B that takes
as input 2qs + 1 uniformly random group elements X∗, U1, U

′
1, . . . , Uqs

, U ′qs
and

uniformly random `-bit strings h0,1, . . . , h0,q, makes at most 2qs queries to a
discrete logarithm oracle DLg(·), and, with accepting probability (as defined in
Lemma 1) at least

ε2

qh + qs + 1 −
4(qh + qs + 1) + 1

2` ,

outputs a tuple (i0, j0, L,a, x̃) where i0 ∈ {1, . . . , q}, j0 ∈ {0, . . . , qs}, L =
{X1, . . . , Xn} is a multiset of public keys such that X∗ ∈ L, a = (a1, . . . , an) is
a tuple of `-bit values such that ai = h0,i0 for any i such that Xi = X∗, and x̃ is
the discrete logarithm of X̃ =

∏n
i=1 X

ai
i in base g.

Proof. Algorithm B runs ForkA with A as defined in Lemma 2 and takes a few
additional steps described below. The mapping with notation of Lemma 1 is as
follows:

– X∗ and h0,1, . . . , h0,q play the role of inp,
– h1,1, . . . , h1,q play the role of h1, . . . , hq,
– U1, U

′
1, . . . , Uqs

, U ′qs
play the role of V1, V

′
1 , . . . , Vm, V

′
m,

– (i1, j1) play the role of (i, j),
– (i0, j0, L,R, s,a) play the role of out.

In more details, B picks random coins ρA and runs algorithm A on coins ρA,
group elements X∗, U1, . . . , Uqs and `-bit strings h0,1, . . . , h0,q and h1,1, . . . , h1,q,
where h1,1, . . . , h1,q are drawn uniformly at random by B (recall that h0,1, . . . ,
h0,q are part of the input of B and will be the same in both runs of A). All DL
oracle queries made by A are relayed by B to its own DL oracle. If A returns ⊥, B
returns ⊥ as well. Otherwise, if A returns a tuple (i0, j0, i1, j1, L,R, s,a), where
L = {X1, . . . , Xn} and a = (a1, . . . , an), B runs A again with the same random
coins on input

X∗, U1, . . . , Uj1 , U
′
j1+1, . . . , U

′
qs
,

h0,1, . . . , h0,q,

h1,1, . . . , h1,i1−1, h
′
1,i1 , . . . , h

′
1,q,

where h′1,i1 , . . . , h
′
1,q are uniformly random. We will see shortly that the first j1 DL

oracle queries made by A in this second execution are the same as in the first one,
so that B only relays the qs − j1 last DL oracle queries made by A to its own DL
oracle. If A returns ⊥ in this second run, B returns ⊥ as well. If A returns another
tuple (i′0, j′0, i′1, j′1, L′, R′, s′,a′), where L′ = {X ′1, . . . , X ′n′} and a′ = (a′1, . . . , a′n′),
B proceeds as follows. Let X̃ =

∏n
i=1 X

ai
i and X̃ ′ =

∏n′

i=1(X ′i)a
′
i denote the
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aggregated public keys corresponding to the two forgeries. If i1 6= i′1, or i1 = i′1
and h1,i1 = h′1,i1 , then B returns ⊥. Otherwise, if i1 = i′1 and h1,i1 6= h′1,i1 , we
will prove shortly that necessarily

i0 = i′0, j0 = j′0, L = L′, R = R′, and a = a′, (3)

which implies in particular that X̃ = X̃ ′. By Lemma 2, the two outputs returned
by A are such that

gs = RX̃h1,i1 and gs
′

= R′(X̃ ′)h
′
1,i1 = RX̃h′1,i1 ,

which allows B to compute the discrete logarithm of X̃ as

x̃ = (s− s′)(h1,i1 − h′1,i1)−1 mod p.

Then B returns (i0, j0, L,a, x̃).
It is easy to see that B returns a non-⊥ output iff ForkA does, so that by

Lemma 1 and Lemma 2, B’s accepting probability is at least

acc(A)
(

acc(A)
q

− 1
2`

)
= (ε− 2q2/2`)2

q
− ε− 2q2/2`

2`

≥ ε2

qh + qs + 1 −
4(qh + qs + 1) + 1

2` .

It remains to prove the equalities of Equation (3). In A’s first execution,
h1,i1 is assigned to T1(X̃, R,m), while is A’s second execution, h′1,i1 is assigned
to T1(X̃ ′, R′,m′). Note that these two assignments can happen either because
of a direct query to H1 by the forger, during a signature query, or during the
final verification of the validity of the forgery. Up to these two assignments,
the two executions are identical since A runs F on the same random coins and
input, uses the same values h0,1, . . . , h0,q for T0(·, X∗) assignments, the same
random values for T0(·, X 6= X∗) assignments, the same values h1,1, . . . , h1,i1−1
for T1 assignments, and the same shares U1, . . . , Uj1 for signature queries. This
implies in particular that the first j1 DL oracle queries made by A in this
second execution are the same as in the first one, as claimed above. Since both
executions are identical up to the two assignments T1(X̃, R,m) := h1,i1 and
T1(X̃ ′, R′,m′) := h′1,i1 , the arguments of the two assignments must be the same,
which in particular implies that R = R′ and X̃ = X̃ ′. Assume that L 6= L′. Then,
since X̃ = X̃ ′, this would mean that the bad event AKColl happened in both
executions, a contradiction since A returns a non-⊥ output in both executions.
Hence, L = L′. Since in both executions of A, the bad event BadOrder does
not happen, assignments T0(L,X∗) := h0,i0 and T0(L′, X∗) := h0,i′0 necessarily
happened before the fork. This implies that i0 = i′0, j0 = j′0, and a = a′.

We are now ready to prove Theorem 1, which we restate below for convenience,
by constructing from B an algorithm C solving the OMDL problem.
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Theorem. Assume that there exists a (t, qs, qh, N, ε)-forger F against the multi-
signature scheme MuSig with group parameters (G, p, g) and hash functions
H0, H1 : {0, 1}∗ → {0, 1}` modeled as random oracles. Then there exists an
algorithm C which (4qs, t′, ε′)-solves the OMDL problem for (G, p, g), with t′ =
4t+ 4Ntexp +O(N(qh + qs + 1)) where texp is the time of an exponentiation in
G and

ε′ ≥ ε4

(qh + qs + 1)3 −
11
2` .

In other words, C takes as input 4qs + 1 uniformly random group elements

X∗, U1, U
′
1, U

′′
1 , U

′′′
1 , . . . , Uqs

, U ′qs
, U ′′qs

, U ′′′qs
,

makes at most 4qs queries to a discrete logarithm oracle DLg(·), and returns the
discrete logarithm of all its challenges in time at most t′ and with probability at
least ε′.

Proof. In the following we let q = qh + qs + 1. Algorithm C runs ForkB with B
as defined in Lemma 3 and takes a few additional steps described below. The
mapping with notation of Lemma 1 is as follows:

– X∗ plays the role of inp,
– h0,1, . . . , h0,q play the role of h1, . . . , hq,
– (U1, U

′
1), (U ′′1 , U ′′′1 ), . . . , (Uqs

, U ′qs
), (U ′′qs

, U ′′′qs
) play the role of V1, V

′
1 , . . . , Vm,

V ′m,
– (i0, j0) play the role of (i, j),
– (L,a, x̃) play the role of out.

In more details, C picks random coins ρB and runs algorithm B on coins ρB,
group elements X∗, U1, U

′
1, . . . , Uqs

, U ′qs
, and uniformly random `-bit strings

h0,1, . . . , h0,q. It relays all DL oracle queries made by B to its own DL oracle. If
B returns ⊥, C returns ⊥ as well. Otherwise, if B returns a tuple (i0, j0, L,a, x̃),
C runs B again with the same random coins ρB on input

X∗, U1, U
′
1, . . . , Uj0 , U

′
j0
, U ′′j0+1, U

′′′
j0+1, . . . , U

′′
qs
, U ′′′qs

and
h0,1, . . . , h0,i0−1, h

′
0,i0 , . . . , h

′
0,q,

where h′0,i0 , . . . , h
′
0,q are uniformly random. We will see shortly that the first j0

DL oracle queries made by B in this second execution are the same as in the first
one, so that C only relays the DL oracle queries made by B to its own DL oracle
starting from the j0 + 1-th one. If B returns ⊥ in this second run, C returns ⊥
as well. If B returns another tuple (i′0, j′0, L′,a′, x̃′), B proceeds as follows. Let
L = {X1, . . . , Xn}, a = (a1, . . . , an), and a′ = (a′1, . . . , a′n). Let also n∗ be the
number of times X∗ appears in L. If i0 6= i′0, or i0 = i′0 and h0,i0 = h′0,i0 , B
returns ⊥. Otherwise, if i0 = i′0 and h0,i0 6= h′0,i0 , we will prove shortly that
necessarily

L = L′ and ai = a′i for each i such that Xi 6= X∗. (4)
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By Lemma 3, we have that

gx̃ =
n∏
i=1

Xai
i = (X∗)n

∗h0,i0
∏

i∈{1,...,n}
Xi 6=X∗

Xai
i ,

gx̃
′

=
n∏
i=1

X
a′i
i = (X∗)n

∗h′0,i0
∏

i∈{1,...,n}
Xi 6=X∗

Xai
i .

Thus, C can compute the discrete logarithm of X∗ as

x∗ = (x̃− x̃′)(n∗)−1(h0,i0 − h′0,i0)−1 mod p.

Once x∗ has been computed, C can deduce the discrete logarithm of all challenges
which were used in signature queries as follows: if U (j)

i was assigned to R1 in
a signature query and the DL oracle was queried on R1(X∗)a1c, returning s1,
then the discrete logarithm of U (j)

i is s1 − a1cx
∗ mod p. Each challenge was used

for at most one signature query,15 hence C can retrieve the discrete logarithm
of challenges which have not been used by directly querying the DL oracle: the
total number of DL oracle queries is then exactly 4qs.

Neglecting the time needed to compute discrete logarithms, the running time
t′ of C is twice the running time of B, which itself is twice the running time of A.
The running time of A is the running of F plus the time needed to maintain tables
T0 and T1 (we assume each assignment takes unit time) and answer signature
queries. The size of T0, resp. T1 is always at most qN , resp. q, and answering
signature queries is dominated by the time needed to compute the aggregated
key which is at most Ntexp. Therefore, t′ = 4t+ 4Ntexp +O(N(qh + qs + 1)).

Clearly, C is successful iff ForkB returns a non-⊥ answer. By Lemma 1 and
Lemma 3, the success probability of C is at least

acc(B)
(

acc(B)
q

− 1
2`

)
= (ε2/q − (4q + 1)/2`)2

q
− ε2/q − (4q + 1)/2`

2`

≥ ε4

q3 −
(8 + 2/q)
q · 2` − 1

q · 2`

≥ ε4

(qh + qs + 1)3 −
11
2` .

It remains to prove the equalities of Equation (4). In the two executions of
A run within the first execution of B, h0,i0 is assigned to T0(L,X∗), while in
the two executions of A run within the second execution of B, h′0,i0 is assigned
to T0(L′, X∗). Note that these two assignments can happen either because of a
direct query H0(L,X) made by the forger for some key X ∈ L (not necessarily
X∗), during a signature query, or during the final verification of the validity of

15 Note that this is why we need to use fresh values U (j)
i after each fork.
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the forgery. Up to these two assignments, the four executions of F are identical
since A runs F on the same random coins and the same input, uses the same
values h0,1, . . . , h0,i0−1 for T0(·, X∗) assignments, the same random values for
T0(·, X 6= X∗) assignments, the same values h1,1, . . . , h1,q for T1 assignments, and
the same shares U1, . . . , Uj0 for signature queries (the last two claims following
from the fact that in the four executions of A, bad event BadOrder does not
happen). This implies in particular that the first j0 DL oracle queries made by B in
the second execution are the same as in the first execution, as claimed above. Since
the four executions of A are identical up to the assignments T0(L,X∗) := h0,i0
and T0(L′, X∗) := h′0,i0 , the arguments of these two assignments must be the
same, which implies that L = L′. Besides, all values T0(L,X) for X ∈ L \ {X∗}
are chosen uniformly at random by A using the same coins in the four executions,
which implies that ai = a′i for each i such that Xi 6= X∗.

4.3 Discussion

We conclude this section with a number of remarks.

Optimized Signatures. It is customary to output (c, s) rather than (R, s) as
the signature of message m for multiset of public keys L with aggregated public
key X̃, where c = H1(X̃, R,m). This makes the signature shorter when working
in subgroups of prime finite fields, where group elements are integers of 2048 bits
or more, whereas H1 outputs are typically 256-bit long. (In elliptic curve groups,
where group elements representation is more compact, this optimization is not
as interesting.) It is straightforward to verify that our security proof applies
mutatis mutandis to this variant as well (the simulation of signature queries by
A is unaffected, only the final verification of the forgery by A must be slightly
adapted but this does not modify Lemma 2).

Hashing L. For efficiency reasons, it might be interesting to replace L by a
hash H ′0(L) when computing coefficients ai in Equation (1). This does not affect
the security of the scheme but the security proof becomes slightly more complex.
Informally, any query H0(h,X) where h is distinct from all previous answers to
H ′0 queries is useless to the adversary unless a subsequent H ′0 queries returns
h, which happens only with negligible probability. Hence, we can modify A as
follows: at the moment the forger makes a query H0(h,X), A checks whether a
previous H ′0 queries was answered with h; if not, it answers randomly; otherwise,
A looks for the multiset L such that H ′0(L) was queried and answered with h (in
the unlikely case where there is more than one such multiset we let A return ⊥)
and behaves as described in Lemma 2 on query H0(L,X).

Modified Verification Algorithm. For efficiency and privacy, we can
replace the verification algorithm with the one that takes as input X̃ rather
than computing it from L (in other words, with the verification algorithm for
the standard signature scheme). This also better matches key aggregation use
cases where the signers agree beforehand on L before publishing X̃ as their “joint
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public key”. At first sight, this seems to impact how a successful forgery is defined,
which in turns impacts the security model and the security proof. However, note
that we cannot simply allow the attacker to freely choose the public key for
which it returns a forgery (this would imply trivial wins where the attacker picks
a secret key and returns a signature for the corresponding public key). Hence,
in this case, we still require the adversary to output, along with a message m
and a signature σ, the multiset of public keys L (containing the challenge public
key X∗) for which the forgery is intended. The forgery is considered valid if
the modified verification algorithm returns 1 on input m, σ, and the aggregated
public key X̃ corresponding to L, and if the attacker never initiated the signature
protocol for L and m. Hence, we are brought back to the original security model
and the security proof applies.

Using the Same Key for Normal Signatures and Multi-Signatures.
Signers might be tempted to use their key both for issuing normal signatures and
participating to multi-signatures. Signing “normally” under public key X is not
equivalent to creating a multi-signature under the singleton key set L = {X}.
Hence, this situation is not captured by our security model where only the latter
is allowed.

In order to take this possibility into account, we must augment the security
game with an additional oracle and an extra winning condition: first, the adversary
is granted access to a special signature oracle taking as input a message m and
returning a standard signature for key X∗; second, the adversary is considered
successful if it returns a valid forgery under key X∗. It is easy to adapt the
security proof to this modified security model: the special signature oracle can
be simulated using the standard strategy for simulating Schnorr signatures since
A gets to select R randomly in this case (and moreover, this does not modify
the probability of events BadOrder and AKColl), and if the adversary returns a
forgery under key X∗, the standard way of extracting the discrete logarithm of
X∗ with a single application of the Forking Lemma can be applied.

5 Applications to Bitcoin

5.1 Introduction

Deployed in 2009, Bitcoin [Nak08] is a digital currency with no trusted issuer or
transaction processor, which works by means of a publicly verifiable distributed
ledger, called the blockchain.16 It contains every transaction since the system’s
inception, resulting in a final state, the set of unspent coins (also called the
UTXO17 set). Each unspent coin has an associated value (expressed as a multiple
of the currency unit, 10−8 bitcoin) and a programmable public key of the owner.
16 While temporary disagreement between nodes is possible about which chain is to

be accepted, we use the blockchain to refer to the chain that an individual node
currently considers its best one.

17 UTXO is an abbreviation of Unspent Transaction (TX) Output.
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Every transaction consumes one or more coins, providing a signature for each to
authorize its spending, and creates one or more new coins, with a total value not
larger than the value of the consumed coins.

Programmable Public Keys and Signatures. Bitcoin uses a programmable
generalization of a digital signature scheme. Instead of a public key, a predicate
that determines spendability is included in every output (implemented in a
concise programming language, called Bitcoin Script). When spending, instead
of a signature, a witness that satisfies the predicate is provided. In practice, most
output predicates effectively18 correspond to a single ECDSA verification.

This is also how Bitcoin supports a naive version of multi-signatures with a
threshold policy19: coins can be assigned a predicate that requires valid signatures
for multiple public keys. Several use cases for this exist, including low-trust escrow
services [GBGN17] and split-device security. While using the predicate language
to implement multi-signatures is very flexible, it is inefficient in terms of size,
computational cost, and privacy.

Challenges. As a global consensus system, kept in check by the ability for
every participant to validate all updates to the ledger, the size of signatures
and predicates20, and the computational cost for verifying them are the primary
limiting factors for its scalability. The computational requirements for signing, or
the communication overhead between different signers are far less constrained.
Bitcoin does not have any central trusted party, so it is not generally possible
to introduce new cryptographic schemes that require a trusted setup. Finally,
to function as a currency, a high degree of fungibility and privacy is desirable.
Among other things, this means that ideally the predicates of coins do not leak
information about the owner. In particular, if several styles of predicates are in
use, the choice may reveal what software or service is being used to manage it.

5.2 Native Multi-Signature Support

An obvious improvement is to replace the need for implementing n-of-n multi-
signatures in an ad-hoc fashion with a constant-size multi-signature primitive
like Bellare-Neven. While this is on itself an improvement in terms of size, it still
requires the predicate itself — whose size also matters — to contain all of the
signers’ public keys. Key aggregation improves upon this further, as a single-key
predicate can be used instead which is both smaller and has lower computational
cost for verification. It also improves privacy, as the participant keys and their
count remain private to the signers.
18 Specifically, a function is used that takes a public key and a signature, and requires

that the hash of the public key is a fixed constant and that the signature verifies
with that key.

19 Note that the term “multisig” in the context of Bitcoin is used to refer to any spending
policy that requires signatures with m out of n public keys.

20 The size of predicates is even more important, as they are part of the UTXO set that
is maintained by every node.
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When generalizing to the m-of-n scenario, several options exist. One is to
forego key aggregation, and still include all potential signer keys in the predicates
while still only producing a single signature for the chosen combination of keys.
Alternatively, a Merkle tree [Mer87] where the leaves are permitted combinations
of keys (in aggregated form) can be employed. The predicate in this case would
take as input an aggregated public key, a signature with it, and a proof. Its
validity would depend on the signature being valid with the provided key, and
the proof establishing that the key is in fact one of the leaves of the Merkle tree,
identified by its root hash. This approach is very generic, as it works for any
subset of combinations of keys, and as a result has very good privacy as the exact
policy is not visible from the proof. It is only feasible however when the total
number of combinations is tractable.

Alternatives. Some key aggregation schemes that do not protect against rogue-
key attacks can be used instead in the above cases, under the assumption that
the sender is given a proof of knowledge/possession for the receivers’ private keys.
However, these schemes are difficult to prove secure except by using very large
proofs of knowledge [MOR01, Problem 5]. As those proofs of knowledge/possession
do not need to be seen by verifiers — they are effectively certified by the sender’s
signature on the transaction which includes the predicate — they do not burden
validation. However, passing them around to senders is inconvenient, and easy
to get wrong. Using a scheme that is secure in the plain public-key model
categorically avoids these concerns.

Another alternative is to use an algorithm whose key generation requires a
trusted setup, for example in the KOSK model. While many of these schemes
have been proven secure [Bol03, LOS+06], they rely on mechanisms that are
usually not implemented by certification authorities [BN06, RY07].

5.3 Cross-Input Multi-Signatures

The previous sections explained how the number of signatures per input can
generally be reduced to one, but we would like to go further, and replace it with
a single signature per transaction. Doing so requires a fundamental change in
validation semantics, as the validity of separate inputs is no longer independent.
As a result, the outputs can no longer be modeled as predicates. Instead, we model
them as functions that return a boolean plus a set of zero or more public keys.
Overall validity requires all returned booleans to be True and a multi-signature
of the transaction with L the union of all returned keys.

More concretely, this can be implemented by providing an alternative to
the signature checking opcode OP_CHECKSIG21 and related opcodes in the Script
language. Instead of returning the result of an actual ECDSA verification, they
always return True, but additionally add the public key with which the verification
would have taken place to a transaction-wide multiset of keys. Finally, after all
21 See https://bitcoin.org/en/developer-reference#term-op-checksig for more informa-

tion.
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Fig. 3. Size of the Bitcoin blockchain with and without multi-signatures.

inputs are verified, a multi-signature present in the transaction is verified against
that multiset. In case the transaction spends inputs from multiple owners, they
will need to collaborate to produce the multi-signature, or choose to only use the
original opcodes. Adding these new opcodes is possible in a backward-compatible
way.

Protection against Rogue-Key Attacks. In the case of cross-input signa-
tures, there is no published commitment to the set of signers, as each transaction
input can independently spend an output that requires authorization from dis-
tinct participants. We do not wish to restrict this functionality, as it would
interfere with fungibility improvements like CoinJoin [Max13]. Due to the lack
of certification, security against rogue-key attacks is essential here.

Assume transactions used a single multi-signature that was vulnerable to
rogue-key attacks, like the simpler schemes described in Section 3.2. An attacker
could identify an arbitrary number of outputs he wants to steal, with public keys
X1, . . . , Xn−t, and then use the rogue-key attack to determine Xn−t+1, . . . , Xn

such that he can sign for the aggregated key X̃. He would then send a small
amount of his own money to outputs with predicates corresponding to the keys
Xn−t+1, . . . , Xn. Finally, he can create a transaction that spends all of the victim
coins together with the ones he just created by forging a multi-signature for the
whole transaction.
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We observe that in the case of multi-signatures across inputs, theft can occur
by merely being able to forge a signature over a set of keys that includes at
least one key not controlled by the attacker — exactly what the plain public key
model considers a win for the attacker. This is in contrast to the single-input
multi-signature case, where theft is only possible by forging a signature for the
exact (aggregated) keys contained in an existing output. As a result, it is no
longer possible to rely on proofs of knowledge/possession that are private to the
signers.

Space Savings. To analyze the impact of multi-signatures, a simulation on
Bitcoin’s historical blockchain was performed to determine the potential space
savings. Figure 3 shows the cumulative blockchain size together with what the
size would be if all transactions’ signatures were replaced with just one per
transaction, giving an indication of what could have been saved if MuSig had
been used since the beginning. Note that this only encompasses the savings from
using multi-signatures, and does not include the savings that are possible from
key aggregation.
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A Interactive Aggregate Signatures

Interactive Aggregate Signature (IAS) schemes extend multi-signature schemes
by allowing each signer to sign a different message. Bellare and Neven [BN06]
suggested a generic way to transform any multi-signature scheme into an IAS
scheme. Here, we take a closer look at this transformation and show that it subtly
fails to provide the strongest security guarantees in the plain public key model.

A.1 Syntax and Security Model

The syntax is adapted as follows. An IAS scheme Π is a triple of algorithms
(KeyGen,Sign,Ver). The randomized key generation algorithm takes no input
and returns a private/public key pair (sk, pk) ←$ KeyGen(). The signature
algorithm Sign is run by each participant on input its key pair (sk, pk), a
message m, and a set of public key/message pairs for other cosigners S′ =
{(pk′1,m′1), . . . , (pk′n−1,m

′
n−1)} such that (pk,m) /∈ S′; it returns a signature σ

for the set of public key/message pairs S = S′ ∪ {(pk,m)}.22 The determinis-
tic verification algorithm Ver takes as input a set of public key/message pairs
22 S is a set, i.e., no public key/message pair repeats, even though the same public key

might appear multiple times. This is without loss of generality since any repeated
public key/message pair in S can be deleted by the signature/verification algorithm.
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S = {(pk1,m1), . . . , (pkn,mn)} and a signature σ, and returns 1 if the signature
is valid for S and 0 otherwise.

Alternatively, one can specify the signature algorithm to take as input a key
pair (sk, pk), an ordered set of public key/message pairs S = {(pk1,m1), . . . ,
(pkn,mn)} such that the public key pk of the signer appears at least once in S,
and a message index i such that pki = pk specifying which message mi is “really”
signed by the signer. We require the set S to be ordered in this case mainly
because it makes the definition of the message index i simpler. If S is given
as input to the signing algorithm as an unordered set, one can still define the
message index with respect to some specified ordering, e.g. the lexicographical
one. Note that the message index is necessary to make both definitions equivalent
since in the plain public key model, an attacker can copy the public key of an
honest signer, in which case there is no way to define which message is intended
to be signed by the honest signer from S alone.

The security model for an IAS scheme is very similar to the one of a multi-
signature scheme. Formally, the security game involving an adversary (forger) F
proceeds as follows:

– A key pair for the honest signer (sk∗, pk∗) ←$ KeyGen() is generated at
random and the public key pk∗ is given as input to F .

– The forger can engage arbitrary signing protocols with the honest user.
Formally, it has access to a signature oracle which must be called on input
an ordered set of public key/message pairs S = {(pk1,m1), . . . , (pkn,mn)}
where pk∗ occurs at least once and a message index i such that pki = pk∗. The
oracle implements an execution of the signing algorithm on input (sk∗, pk∗),
S, and message index i while the forger plays the role of all other signers
in S (potentially deviating from the protocol). Note that pk∗ might appear
multiple times in S, in which case the forger plays the role of all instances of
pk∗ except the one corresponding to message index i. The forger can interact
concurrently with as many independent instances of the honest signature
oracle as it wishes.

– At the end of its execution, the forger returns a set of public key/message
pairs S = {(pk1,m1), . . . , (pkn,mn)} and a signature σ. The forger wins if
the forgery is valid, i.e., Ver(S, σ) = 1, and there exists i ∈ {1, . . . , n} such
that pki = pk∗ and F never initiated a signature protocol with the oracle on
input S and message index i.

A.2 BN’s Generic Conversion Method

Bellare and Neven [BN06] suggested a generic way to transform a multi-signature
scheme Π into an IAS scheme Π ′ which simply consists of using the tuple of
all public key/message pairs as message in the multi-signature scheme. More
precisely, using the second syntactic definition of an IAS signature algorithm, on
input (sk, pk), S = {(pk1,m1), . . . , (pkn,mn)}, and message index i, the algorithm
Π ′.Sign runs Π.Sign on input (sk, pk), L = {pk1, . . . , pkn}, and m = 〈S〉 where
〈S〉 is some unique encoding of S (e.g. lexicographical ordering of the public
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key/message pairs) and outputs the signature σ returned by Π.Sign. Note that
the execution of the signature algorithm Π ′.Sign((sk, pk), S, i) is independent of
the message index i, which allows the following attack.23

Consider an adversary proceeding as follows against an honest signer with
key pair (sk∗, pk∗). The adversary chooses two distinct messages m1 and m2, and
queries the signature oracle on input S = {(pk∗,m1), (pk∗,m2)} with message
index 1 (i.e., the honest signer intends to sign m1). Note that the alleged cosigner
would run the signing algorithm on input (sk∗, pk∗), S = {(pk∗,m1), (pk∗,m2)},
and message index 2. If the execution of the signature algorithm is independent
from the message index, the adversary can perfectly emulate the cosigner by
simply copying all messages received from the signature oracle. Hence, the
adversary can compute a valid signature for S = {(pk∗,m1), (pk∗,m2)}. This is
a valid forgery since the signature oracle was never called on S with message
index 2.

For concreteness, we detail the attack against the IAS scheme obtained from
the BN multi-signature scheme with the above generic conversion. Let (x∗, X∗)
be the key pair of the honest signer. On input S = {(X∗,m1), (X∗,m2)} and
message index 1, the signature oracle chooses r1 ←$ Zp, computes R1 = gr1 and
t1 = H ′(R1), and sends t1 to the adversary. The adversary simply sends back t1.
The oracle then sends R1, and the adversary similarly answers with R1. Finally,
the oracle computes R = (R1)2, c1 = H(〈L〉, X∗, R, 〈S〉) where L = {X∗, X∗},
and s1 = r1 + c1x

∗ mod p, and returns s1 to the adversary. The adversary is now
able to compute s = 2s1 mod p and the forgery σ = (R, s) for S.

It is easy to see that BN generic conversion method turns a secure multi-
signature scheme into an IAS scheme which is secure in a security model weaker
than the one described in Section A.1, differing only in the winning condition,
namely where the adversary F is successful if it returns a valid signature for
a set S = {(pk1,m1), . . . , (pkn,mn)} such that for any i ∈ {1, . . . , n} such that
pki = pk∗, F never initiated a signature protocol for S and message index i.
Such a security model is sufficient if one makes the assumption that each signer
checks other participants’ public keys and aborts the protocol if his own public
key has been copied (indeed, in that case, the winning conditions of the two
security models become equivalent since any public key appears at most once in
S). However, given how many vulnerabilities result from incorrect assumptions
under which a cryptographic primitive can be used, an IAS scheme that remains
secure without this assumption would be preferable.

A.3 Turning BN’s Scheme into a Secure IAS

In order to transform the BN multi-signature scheme into an IAS scheme secure
in the model of Section A.1, we propose the following simple fix which makes the
execution of the signing algorithm dependent on the message index (unfortunately
the transformation is not black-box anymore).

23 This attack was communicated to us privately by Russell O’Connor.
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Let S = {(X1,m1), . . . , (Xn,mn)} be the ordered set of public key/mes-
sage pairs of all participants, where Xi = gxi . In practice, if X is the pub-
lic key of a specific signer and m the message he wants to sign, and S′ =
{(X ′1,m′1), . . . , (X ′n−1,m

′
n−1)} is the set of the public key/message pairs of

other signers, this specific signer merges (X,m) and S′ into the ordered set
S = {(X1,m1), . . . , (Xn,mn)} and retrieves the resulting message index i such
that (Xi,mi) = (X,m).

Then, as in the BN multi-signature scheme, each signer draws ri ←$ Zp,
computes Ri = gri , sends commitment ti = H ′(Ri) in a first round and then Ri
in a second round, and computes R =

∏n
i=1 Ri. The signer with message index i

then computes ci = H(R, 〈S〉, i) and si = ri + cixi mod p and sends si to other
signers. All signers can compute s =

∑n
i=1 si mod p. The signature is σ = (R, s).

Given an ordered set S = {(X1,m1), . . . , (Xn,mn)} and a signature σ =
(R, s), σ is valid for S iff

gs = R

n∏
i=1

X
H(R,〈S〉,i)
i .

Note that there is no need to include in the hash computation an encoding of
the multiset L = {X1, . . . , Xn} of public keys nor the public key Xi of the local
signer since they are already “accounted for” through S and the message index i.

We leave a complete security analysis of this scheme for future work.

B Proof of Lemma 1

As in [BN06], we will need the following two lemmas which are consequences of
Jensen’s inequality.

Lemma 4. Let Y be a real-valued random variable. Then E[Y 2] ≥ E[Y ]2.

Lemma 5. Let q ≥ 1 be an integer and y1, . . . , yq ≥ 0 be real numbers. Then

q∑
i=1

y2
i ≥

1
q

(
q∑
i=1

yi

)2

.

Proof of Lemma 1. Let acc(inp) be the probability (over the draw of h1, . . . , hq,
V1, . . . , Vm, and the random coins of A) that A returns a non-⊥ output when
run with inp as first input. Let also frk(inp) be the probability (over the draw of
V1, V

′
1 , . . . , Vm, V

′
m and the random coins of ForkA) that ForkA returns a non-⊥

output when run with inp as first input. We will show shortly that for all inp,

frk(inp) ≥ acc(inp)
(

acc(inp)
q

− 1
2`

)
. (5)
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Then, exactly as in [BN06], taking the expectation over inp we have

frk = E[frk(inp)] ≥ E
[
acc(inp)

(
acc(inp)

q
− 1

2`

)]
(6)

= E[acc(inp)2]
q

− E[acc(inp)]
2` (7)

≥ E[acc(inp)]2

q
− E[acc(inp)]

2` (8)

= acc(A)
(

acc(A)
q

− 1
2`

)
, (9)

where we used Lemma 4 for Equation (8). It remains to prove Equation (5).
From now on, we fix inp and consider the random experiment of running

ForkA(inp, V1, V
′

1 , . . . , Vm, V
′
m) with V1, V

′
1 , . . . , Vm, V

′
m ←$ S and random coins.

We regard the first two elements of the outputs (i, j, out) and (i′, j′, out′) returned
by A in each of its two executions as random variables denoted I, J , I ′, and
J ′, with the convention that I = 0, resp. I ′ = 0 if A returns ⊥ in its first, resp.
second execution.

Again, exactly as in the proof of [BN06, Lemma 1], we have

frk(inp) = Pr [(I > 0) ∧ (I = I ′) ∧ (hI 6= h′I)]
≥ Pr [(I > 0) ∧ (I = I ′)]− Pr [(I > 0) ∧ (hI = hI′)]

= Pr [(I > 0) ∧ (I = I ′)]− Pr [I > 0]
2`

= Pr [(I > 0) ∧ (I = I ′)]︸ ︷︷ ︸
def= pr

−acc(inp)
2` .

It remains to lower bound the term pr. Let R denote the set of random
coins for A. For each i ∈ {1, . . . , q} and j ∈ {0, . . . ,m}, we define the function
Yi,j : R× ({0, 1}`)i−1 × Sj → [0, 1] as

Yi,j(ρ,h,V) def= Pr

hi, . . . , hq ←$ {0, 1}`,
Vj+1, . . . , Vm ←$ S,
(I, J, out)← A(inp, h1, . . . , hq, V1, . . . , Vm; ρ)

 : I = i


for all ρ ∈ R, h = (h1, . . . , hi−1) ∈ ({0, 1}`)i−1, and V = (V1, . . . , Vj) ∈ Sj .

Then

pr =
m∑
j=0

q∑
i=1

Pr [(I = i) ∧ (J = j) ∧ (I ′ = i)] (10)

=
m∑
j=0

q∑
i=1

Pr [J = j] · Pr [I = i|J = j] · Pr [I ′ = i|(I = i) ∧ (J = j)] (11)

34



=
m∑
j=0

q∑
i=1

Pr [J = j]
∑
ρ

h=(h1,...,hi−1)
V=(V1,...,Vj)

Yi,j(ρ,h,V)2

|R| · 2`(i−1) · |S|j
(12)

=
m∑
j=0

Pr [J = j]
q∑
i=1

E[Y 2
i,j ] (13)

≥
m∑
j=0

Pr [J = j]
q∑
i=1

E[Yi,j ]2 (14)

≥ 1
q

m∑
j=0

Pr [J = j]
(

q∑
i=1

E[Yi,j ]
)2

(15)

≥ 1
q

 m∑
j=0

Pr [J = j]
q∑
i=1

E[Yi,j ]

2

(16)

= acc(inp)2

q
. (17)

Above we used Lemma 4 to derive Equation (14) and Equation (16) and Lemma 5
for each j with yi = E[Yi,j ] to derive Equation (15).

35


	 Simple Schnorr Multi-Signatures with Applications to Bitcoin 
	Introduction
	Preliminaries
	Notation and Definitions
	Syntax and Security Definition of Multi-Signature Schemes
	A General Forking Lemma

	Our New Multi-Signature Scheme
	Description
	Attacks against Simpler Variants and Derandomization

	Security of the New Multi-Signature Scheme
	Preliminaries
	Security Proof
	Discussion

	Applications to Bitcoin
	Introduction
	Native Multi-Signature Support
	Cross-Input Multi-Signatures

	References
	Interactive Aggregate Signatures
	Syntax and Security Model
	BN's Generic Conversion Method
	Turning BN's Scheme into a Secure IAS

	Proof of Lemma 1


