
SIFA: Exploiting Ineffective Fault Inductions on
Symmetric Cryptography

Christoph Dobraunig1, Maria Eichlseder1, Thomas Korak2, Stefan Mangard1,
Florian Mendel2 and Robert Primas1∗

1 Graz University of Technology, Austria
first.last@iaik.tugraz.at

2 Infineon Technologies AG, Germany
first.last@infineon.com

Abstract. Since the seminal work of Boneh et al., the threat of fault attacks has
been widely known and techniques for fault attacks and countermeasures have been
studied extensively. The vast majority of the literature on fault attacks focuses on
the ability of fault attacks to change an intermediate value to a faulty one, such
as differential fault analysis (DFA), collision fault analysis, statistical fault attack
(SFA), fault sensitivity analysis, or differential fault intensity analysis (DFIA). The
other aspect of faults—that faults can be induced and do not change a value—has
been researched far less. In case of symmetric ciphers, ineffective fault attacks (IFA)
exploit this aspect. However, IFA relies on the ability of an attacker to reliably induce
reproducible deterministic faults like stuck-at faults on parts of small values (e.g.,
one bit or byte), which is often considered to be impracticable.
As a consequence, most countermeasures against fault attacks do not focus on such
attacks, but on attacks exploiting changes of intermediate values and usually try to
detect such a change (detection-based), or to destroy the exploitable information
if a fault happens (infective countermeasures). Such countermeasures implicitly
assume that the release of “fault-free” ciphertexts in the presence of a fault-inducing
attacker does not reveal any exploitable information. In this work, we show that
this assumption is not valid and we present novel fault attacks that work in the
presence of detection-based and infective countermeasures. The attacks exploit the
fact that intermediate values leading to “fault-free” ciphertexts show a non-uniform
distribution, while they should be distributed uniformly. The presented attacks are
entirely practical and are demonstrated to work for software implementations of AES
and for a hardware co-processor. These practical attacks rely on fault induction by
means of clock glitches and hence, are achieved using only low-cost equipment. This
is feasible because our attack is very robust under noisy fault induction attempts and
does not require the attacker to model or profile the exact fault effect. We target two
types of countermeasures as examples: simple time redundancy with comparison and
several infective countermeasures. However, our attacks can be applied to a wider
range of countermeasures and are not restricted to these two countermeasures.
Keywords: fault attack · infective countermeasure · fault detection · countermeasure
· statistical ineffective fault attack · SIFA

1 Introduction
Shortly after the seminal work of Boneh et al. [BDL97] showed fault attacks on RSA, it
became clear that also symmetric schemes are susceptible to this type of active implemen-

∗The list of authors is in alphabetical order. (https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf)

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 547–572
DOI:10.13154/tches.v2018.i3.547-572

mailto:christorph.dobraunig@iaik.tugraz.at,maria.eichlseder@iaik.tugraz.at,stefan.mangard@iaik.tugraz.at,robert.primas@iaik.tugraz.at
mailto:thomas.korak@infineon.com,florian.mendel@infineon.com
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.547-572

548 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

tation attacks. Starting with the differential fault analysis (DFA) of DES by Biham and
Shamir [BS97], a rich field of research emerged that focuses on techniques to recover the
secret key from faulty ciphertexts. Meanwhile, there exists a wide range of publications
on how to apply DFA attacks to different cryptographic algorithms and in particular to
AES [AMT13]. In addition, novel attack techniques have been introduced such as fault
sensitivity analysis (FSA) [LSG+10], differential fault intensity analysis (DFIA) [GYTS14]
and statistical fault attacks (SFA) [FJLT13].

In order to prevent an attacker from learning the secret key from faulty outputs,
extensive research on countermeasures has been conducted. There are essentially two main
categories of countermeasures. The first category covers sensor-based countermeasures
that aim at detecting the physical process of the fault induction. For example, protected
implementations may include light, voltage and temperature sensors in order to detect
fault inductions by lasers [SBHS15], voltage glitches [BECN+06], or temperature varia-
tions [HS13]. Countermeasures of this kind have a long tradition in smart card industry.
However, as there are more and more ways to induce faults, the focus is more and more on
countermeasures that aim at managing the effect of a fault induction. This is the second
category of countermeasures and also the main focus of the academic research.

The effect of a fault induction on a cryptographic algorithm can be modelled as the
change of an intermediate variable x to a faulty intermediate variable x′. Such a change of
a value can occur due to a direct modification of the variable x, but also due to instruction
skips or addressing errors. Independent of the exact effect that leads from x to x′, there
are two approaches on how to prevent that this change is exploited by an attacker. The
first approach is to detect the difference ∆ = x− x′ by adding redundancy to a design and
to suppress an output in case ∆ 6= 0. Corresponding redundancy techniques range from
simple temporal or spacial duplications to error detection codes. The second approach
for managing ∆ 6= 0 are infection-based countermeasures. In this case, a cipher output
is always provided, but the goal is to change the ciphertext in a way that the ciphertext
becomes useless for an attacker.

While most attack techniques and countermeasures focus on exploiting or preventing
information leakage in case ∆ 6= 0, the question of whether an attacker can also learn
information from ineffective faults has not been explored in depth so far. A fault induction
is ineffective in case the fault induction is performed (e.g., a voltage glitch is performed),
but it holds that ∆ = 0 and the cipher output is consequently not changed due to the
fault induction. Information leakage on the secret key can occur in this case, if there is a
dependency between the fault induction being ineffective and the data that is processed.

Exploiting ineffective fault inductions typically implies that a larger number of fault
inductions needs to be performed than in case of classical fault attacks that exploit ∆ 6= 0.
While in case of classical fault attacks a few selected fault inductions are usually sufficient
to determine the key, the exploitation of ineffective faults requires that fault inductions
are performed on many different data inputs in order to find ineffective fault inductions.

To the best of our knowledge, the first attacks that exploit ineffective inductions are
ineffective fault attacks (IFA) by Clavier [Cla07]. For IFA, it is assumed that an attacker
can reliably force an intermediate value x to a known value (e.g., 0) by a fault induction.
Then, the basic idea is to feed random input data into a device and to perform the fault
inductions until an ineffective induction is observed. In this case, the intermediate x is
known and the secret key can be determined. The big drawback of this attack is that it
requires a precise fault induction for a large number of encryptions, which is very difficult
to achieve in practice.

Our contribution. In this work, we generalize IFA attacks and introduce statistical
ineffective fault attacks (SIFA). As we argue and show with practical evaluations, SIFA is
typically not only applicable when SFA or IFA is applicable, but also in a broader range

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 549

of scenarios - in particular in the presence of countermeasures. Our attack does not rely
on a specific fault model. We simply require that there is some dependency between the
observation of an ineffective fault induction and the faulted intermediate value x. However,
the attacker does not need to know any further details of this dependency. This means
simply that the probability for changing an intermediate value x due to a fault induction is
not the same for all values x. This bias of the probabilities for ineffective fault inductions
is the sole requirement on the fault induction.

Like IFA, SIFA can be applied in settings where it is possible to perform many fault
inductions on encryptions with different data inputs and to observe whether the fault
induction was ineffective. While IFA typically requires strong fault models like stuck-at
faults, the requirements for SIFA on the fault induction are minimal and corresponding
faults can be induced easily in practice with a high frequency and without the need for
sophisticated laboratory equipment.

To show this, we attack protected implementations that feature countermeasures
against fault attacks like SFA or DFA. In particular, we target countermeasures based
on detection and infection. In fact, countermeasures that are based on managing a fault
effect ∆ 6= 0 are ideal targets for SIFA. These countermeasures allow the attacker to
collect observations where the fault induction was ineffective. Our empirical study shows
that these countermeasures can be easily bypassed in practice and that it is necessary to
combine them with additional countermeasures to provide protection against SIFA attacks.

Our concrete attack results are as follows. First, we target a detection-based coun-
termeasure for AES that uses simple time redundancy with subsequent comparison. In
order to show the robustness of our attack, this evaluation is performed on 3 different AES
implementations, attacking 8-bit and 32-bit-bitsliced software implementations as well as a
hardware co-processor. The fault is induced by using a simple clock glitch. In all cases, the
number of needed faulty encryptions is comparably low. SFA is not applicable here, since
no exploitable faulty output is released. Although IFA is not prevented by simple time
redundancy with subsequent comparison, it still relies on precise stuck-at faults in certain
bytes, which are hard to achieve in practice, especially in the case of the 32-bit-bitsliced
and the hardware co-processor implementations. In contrast, SIFA can exploit any case
where ineffective faults lead to a biased distribution, even without knowledge about the
distribution of these values.

We then target infective countermeasures, where typically neither SFA nor IFA are
applicable. Here, we extend the software AES implementation from the AVRCryptoLib [avr]
and evaluate our attack for multiple security parameterisations. Again, simple clock glitches
are used to induce the required faults, resulting in attacks that are rather easy to execute
in practice and do not require any expensive laboratory equipment.

Related work. SIFA extends and connects several other ideas that have previously been
published in the literature. One keypoint of the presented attack is the fact that it
exclusively exploits cases where a fault does not change the result of the computation.
Therefore, our attack shares a common reference point with safe-error attacks [YJ00] and
IFA [Cla07]. In a safe-error attack, the value of an intermediate variable is changed (fault
effect ∆ 6= 0) and the knowledge whether the faulted value is used or not is exploited.
Typically, safe-error attacks are used to attack asymmetric schemes. In contrast, ineffective
fault attacks [Cla07] exploit specific cases where ∆ = 0 and the fault shows no effect. More
concretely, IFA relies on strong and known fault models, like precise stuck-at-0 faults, in
order to probe values of intermediate variables.

We extend this idea from stuck-at faults as already used by Biham and Shamir [BS97] to
the case that ineffective faults lead to a non-uniform distribution of intermediate values. As
a result, we do not probe specific values; rather, we exploit the non-uniform distributions.
Hence, we are naturally able to deal with noise (e.g., failure of fault induction, or faults

550 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

induced at a wrong position), which allows us to demonstrate the attack in practice. Our
used methods to exploit non-uniform distributions are related to those in SFA [FJLT13].

Outline. First, we give a short overview and summary of statistical fault attacks and the
reviewed countermeasures in section 2. Then, we state the idea and show the working
principle of the attack in section 3. Section 4 contains the results of our practical attack
and we finally conclude in section 6.

2 Background
In this section, we first give a brief introduction to countermeasures against fault attacks
and review the countermeasures we put our focus on more closely. Then we discuss two
attacks which are related to our attack: ineffective fault attacks and statistical fault attacks.

2.1 Countermeasures
To protect against fault attacks, countermeasures aim to detect or prevent faults either
on the physical layer (e.g., light sensors or supply voltage detectors) or on an algorithmic
level. In this work, we solely focus on the second category. The strategy of detection-based
countermeasures is to detect that a fault changes an intermediate value, e.g., by performing
redundant operations. If a fault is detected, the computation is aborted and no ciphertext
is returned. In contrast, infection-based countermeasures always return a ciphertext, but
attempt to process the ciphertext in such a way that the output becomes useless for an
attacker in case of faults during the computation. Next, we review the detection-based
and the infection-based countermeasure that we target in our practical evaluation.

2.1.1 Detection-based Countermeasure

In this work, we consider detection-based countermeasures that detect faults by means of
redundant operations. An overview of various techniques that achieve detection of faults
with the help of redundant operations is given by Bar-El et al. [BECN+06]. We focus
on simple time redundancy with comparison, although the attack is applicable to a wide
range of detection-based countermeasures. The idea of this countermeasure (Algorithm 1)
is to encrypt each plaintext block twice. Then, the resulting ciphertexts are compared.
Only if they match, the ciphertext is released.

Algorithm 1 Simple time redundancy with comparison
Input: key K, plaintext P
Output: ciphertext C = EK(P), or ⊥

1: C1 ← EK(P)
2: C2 ← EK(P)
3: if C1 6= C2 return ⊥
4: return C1

Detection-based countermeasures would also allow to include mechanisms that disable
a device upon a certain amount of fault inductions. While this approach sounds very
appealing at first glance, it is very hard to realize in practice. On the one hand, there
is the risk of false positives that might lead to the disabling of a device in regular use
cases (e.g., due to supply problems when being powered by an electromagnetic field). On
the other hand, there is the need to count faults in such a way that it cannot be easily
bypassed by an attacker. For example, a simple increasing of a counter in non-volatile

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 551

memory can be detected easily by an attacker in the power trace and due to the timing
behavior. Hence, an attacker can detect whether a fault induction was effective or not and
can remove the power supply during the programming of the memory in order to prevent
the increasing of the counter. No sophisticated equipment is needed in this case. For
more secure counting mechanisms, dedicated hardware support is required, which is not
available in most devices (e.g., IoT devices) that are exposed to fault attacks. However, in
applications that allow realizing fault counting in a secure and reliable manner without
the risk of too many false positives, it is an effective countermeasures against classic fault
attacks as well as IFA.

2.1.2 Infective Countermeasure

In contrast to detection-based countermeasures that aim to detect a fault and then
do not release a ciphertext, infective countermeasures always provide a ciphertext, but
amplify a possibly induced fault in such a way that a faulty ciphertext becomes useless
for an attacker. As an example for infection-based countermeasures, we consider the
infective countermeasure presented by Tupsamudre et al. at CHES 2014 [TBM14] as an
extension of an infective countermeasure presented by Gierlichs et al. [GST12]. Patranabis
et al. [PCM15] give a formal proof for this countermeasure against differential fault
analysis using a single fault injection under the assumption that the sequence of executed
instructions is neither skipped, nor altered. The only attacks on this countermeasure so
far are attacks that either skip or alter instructions [BG16]. The approach is summarized
in Algorithm 2.

Algorithm 2 Infective countermeasure by Tupsamudre et al. (taken from [TBM14])
Input: P , kj for j ∈ {1, . . . , n}, (β, k0), (n = 11) for AES-128
Output: C = EK(P), or infected state

1: State R0 ← P , Redundant state R1 ← P , Dummy state R2 ← β
2: i← 1, q ← 1
3: rstr←$ {0, 1}t // #1(rstr) = 2n, #0(rstr) = t− 2n
4: while q ≤ t do
5: λ← rstr[q] // λ = 0 implies a dummy round
6: κ← (i ∧ λ)⊕ 2(¬λ)
7: ζ ← λ · di/2e // ζ is actual round counter, 0 for dummy
8: Rκ ← RoundFunction(Rκ, kζ)
9: γ ← λ(¬(i ∧ 1)) · BLFN(R0 ⊕R1) // check if i is even

10: δ ← (¬λ) · BLFN(R2 ⊕ β)
11: R0 ← (¬(γ ∨ δ) ·R0)⊕ ((γ ∨ δ) ·R2)
12: i← i+ λ
13: q ← q + 1
14: return R0

We will now give the basic intention behind Algorithm 2. For a more detailed description
we refer to the original work of Tupsamudre et al. [TBM14]. Algorithm 2 works on three
different states R0, R1 and R2. State R0 is initialized with the plaintext P and is the state
on which the primary AES computation is performed. State R1 is also initialized with P
and serves as working state for the redundant AES computation. In the fault-free case,
both states R0 and R1 should contain the ciphertext at the end of the computation. The
state R2 is initialized with a random 128-bit value β and serves as working state for the
dummy round calculations. The key k0 is chosen such that RoundFunction(β, k0) = β.

Before the computation starts, a random string rstr of length t is initialized randomly
so that it contains 22 bits “1” and t− 22 bits “0”. The algorithm iterates over rstr and

552 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

executes for every “1” an AES round on R0, or a redundant round on R1 (22 rounds for 2
times 10 rounds AES plus 2 times the whitening key addition) in an alternating sequence,
i.e., if a round on R0 has been calculated, the next “1” executes a redundant round on R1
so that after this calculation, the content of R0 and R1 should be the same in a fault-free
case. For every “0”, a dummy round is computed to update R2. The security level with
respect to the number of dummy rounds that are executed depends on the size of t and
can be chosen by the developer.

After every executed AES round, the algorithm checks if any of the values in registers
R0, R1, or R2 has been modified (R0 6= R1 or R2 6= β). If this is the case, state R0 is,
from this point on, always overwritten with the content of R2, which is then returned as
ciphertext. Since the value stored in R2 is random and has never been mixed with, nor
depends in any other way on the value of the secret key, learning this value should be
useless for the attacker.

2.2 Statistical Fault Attacks
Statistical fault attacks (SFA) were introduced by Fuhr et al. [FJLT13] as a method to
recover the secret key of AES, if an attacker is able to change an intermediate variable to
a biased (i.e., not uniformly distributed) value by inducing a fault. They considered three
different fault models on byte level:

1. Stuck-at-0

2. Stuck-at-0 with probability 0.5, or logical AND with random uniform value with
probability 0.5

3. Logical AND with random uniform value

Fuhr et al. [FJLT13] evaluated various key recovery strategies dependent on the round
where the fault is induced. For instance, they showed that if the fault is induced in one
byte right before the last MixColumns application, 6 faulty ciphertexts in case of fault
model 1, 14 faulty ciphertexts in case of fault model 2, and 80 faulty ciphertexts in case of
fault model 3 are needed to recover 4 bytes of the secret key. These attacks require to
partially decrypt every ciphertext back to the faulted byte for each key candidate and
measure the squared euclidean imbalance (SEI) of this byte. The key candidate that gives
the highest SEI is most likely the correct one.

Since SFAs make use of the ability of faults to change an intermediate value (to a
biased value), they can be prevented by both countermeasures discussed in subsection 2.1.
To bypass both types of countermeasures, an attacker could try to induce identical faults
in both redundant computations and thus evade detection. With strongly biased faults,
this may be easier to achieve than for random faults, as has been demonstrated for a
detection-based countermeasure [PCNM15]. However, the attacker’s task gets more and
more complicated with increasing redundancy of the countermeasure.

2.3 Ineffective Fault Attacks
The idea of ineffective fault attacks (IFA) by Clavier [Cla07] is that certain faults can
be used to probe intermediate values of a cryptographic algorithm. This technique can
be used to circumvent countermeasures like simple time redundancy with comparison.
Consider an attacker who induces a stuck-at-0 fault in one byte during one execution of
AES, while leaving the other one correct. If the attacker nevertheless receives an output
(ciphertext), the faulted value must already have been 0 before the fault. If this stuck-at-0
fault is induced in one byte of the last AES round before the last key addition, we can
immediately recover one byte of the last round key: All an attacker has to do is to guess

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 553

one byte of the key, decrypt the corresponding byte of the correct ciphertext back to the
intermediate byte that has been faulted, and check if the resulting byte value is 0. If it
is 0, the guessed key byte is the right one. This approach is applicable just as easily for
more than two redundant computations, since only one computation needs to be faulted.

However, the assumption that an attacker is able to deterministically change the value
of an intermediate variable to 0 requires a very strong and powerful attacker. In practice,
an attacker is usually less powerful and has to consider, for instance, false positives in case
of failed fault inductions that do not show any effect. For simple time redundancy with
comparison, one solution for this specific problem would be to repeat the fault induction
several times for encryptions of the same plaintext to get results which are more or less
noise-free, as suggested by Clavier and Wurcker [CW13]. Using this strategy typically
also causes troubles in the case of infective countermeasures. Although the fault might
be induced always at the same byte at the same time, an attacker does not know if the
affected byte belongs to a dummy round or not.

In the following, we demonstrate that not only stuck-at faults can be exploited in
IFA and introduce statistical ineffective fault attacks. On a high level, these attacks
can be seen as an intersection of the principles exploited in the case of IFA [Cla07] and
SFA [FJLT13]. In section 3, we explain the necessary conditions for our attack to work
and demonstrate in section 4 that they are usually fulfilled when attacking real devices
with algorithmic countermeasures. In particular, the attacker does not need to assume
any specific fault model and can successfully recover the key even with very “noisy” faults
with unpredictable, unreliable effects.

3 Statistical Ineffective Fault Attack
In this section, we discuss the ideas behind the extension from ineffective fault at-
tacks [Cla07] (IFA) to statistical ineffective fault attacks (SIFA). First, we review the
effects of faults with the help of fault distribution tables to identify the necessary conditions
for SIFA to work in subsection 3.1. Then we introduce the working principle of SIFA
in subsection 3.2. Finally, we develop some theoretical background of our attacks in
subsection 3.3.

3.1 The Effects of Faults
The effects caused by faults during the execution of cryptographic primitives are manifold
and depend on the method used to induce the fault (e.g., laser, clock glitches), the
architecture and manufacturing technology of the attacked device, and various other
parameters (e.g., targeting a register or arithmetic instruction). However, all faults have in
common that they change the value of a b-bit intermediate variable from a value x, which
it would have for the correct execution, to a value x′ in the presence of a fault. Observing
the probability of transitions from a certain value x→ x′ gives us a fault distribution table
(see subsection 3.3 for the exact definition).

With the help of such a fault distribution table, we are able to characterize the effects of
a wide range of faults that can happen in practice. For example, this allows us to capture
faults where the value of x′ is independent of the value x, like stuck-at faults, random
faults, and biased faults, but also more complex relations where x′ depends in some sense
on x, for instance by faulting the instruction that computes x. In Table 1, we show various
examples of fault distribution tables for different faults on a 2-bit intermediate variable.

Most fault countermeasures that work on an algorithmic level can only conceal cases
where x 6= x′, because a fault that results in x = x′ is indistinguishable from a normal
working condition. As a consequence, an attacker has access to ciphertexts where the
attacked (faulted) intermediate variable follows a distribution determined by the diagonal

554 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

Table 1: Fault distribution tables for several 2-bit fault models.

(a) Stuck-at-0

x′

00 01 10 11

x

00 1 0 0 0
01 1 0 0 0
10 1 0 0 0
11 1 0 0 0

(b) Random-And

x′

00 01 10 11

x

00 1 0 0 0
01 1

2
1
2 0 0

10 1
2 0 1

2 0
11 1

4
1
4

1
4

1
4

(c) Bit-flip

x′

00 01 10 11

x

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

(d) Random fault

x′

00 01 10 11

x

00 1
4

1
4

1
4

1
4

01 1
4

1
4

1
4

1
4

10 1
4

1
4

1
4

1
4

11 1
4

1
4

1
4

1
4

(red values) in Table 1. The attacks presented in the following sections show that a
non-uniform distribution in this diagonal can be exploited to recover the key. Therefore,
for an implementation protected by such a fault countermeasure to be resistant against
our attack, one of the two following conditions has to be fulfilled: Either the probability
that an ineffective fault happens is negligible (as in Table 1c), or the distribution in the
diagonal of the fault distribution table is uniform (as in Table 1d).

Although in theory, the bit-flip and random fault models of Table 1c and Table 1d are not
susceptible to SIFA, our practical experiments in section 4 indicate that countermeasures
cannot rely on the hope that only such “perfect” fault models occur in practice. For
instance, consider the case where a bit-flip occurs probabilistically with the tendency to
flip more often from 1 to 0 than from 0 to 1, as illustrated in Table 2. The resulting
distribution has a biased diagonal.

Table 2: Bit-flip from 1 to 0 with 75 % and from 0 to 1 with 50 %.
x′

00 01 10 11

x

00 1
4

1
4

1
4

1
4

01 3
8

1
8

3
8

1
8

10 3
8

3
8

1
8

1
8

11 9
16

3
16

3
16

1
16

In the following section, we will explain how such distributions can be exploited. Since
the fault distribution tables are typically not known by an attacker (unless the attacker is
able to profile the device), our attack works without any knowledge of the fault distribution
table. This is demonstrated by the practical attacks of section 4, which we perform without
any knowledge of the underlying fault model and fault distribution table.

3.2 Working Principle
We now consider a protected AES implementation as an example to show the working
principle of SIFA. The attack can be split into 3 phases. The first phase is the actual
fault attack and collection of suitable ciphertexts. In the second phase, parts of the last
round key are guessed and the distribution of an intermediate state is evaluated. In the
last phase of the attack, the partial key-guesses are ranked according a metric (e.g., the
Squared Euclidean Imbalance (SEI)) and the correct key is identified.

Collecting ciphertexts. Assume that we target one byte before the last application of
MixColumns. We request the ciphertexts for a number of plaintexts and fault each
encryption. If the implementation is protected with a detection-based countermeasure,

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 555

we only obtain those ciphertexts where the fault was ineffective; in case of an infective
countermeasure, we need to filter for ineffective faults ourselves by comparing the obtained
ciphertexts with a second, unfaulted encryption (or decryption).

Key guessing. Following the fault model of subsection 3.1, we obtain a set of filtered
ciphertexts whose intermediate value in one byte before the last MixColumns is non-
uniformly distributed according to the diagonal of the fault distribution table. This
information can be exploited to recover 32 bits of the last round key with a key-guessing
strategy similar to the approach of SFA [FJLT13]: The attacker guesses 4 bytes of the last
round key K10 and partially decrypts the last operations for each correct ciphertext to
obtain a partial state S9:

S9 = MC−1 ◦ SB−1 ◦ SR−1(C ⊕K10). (1)

Then, the attacker can evaluate the distribution of the byte in (1) where the fault has been
induced, for example by computing the Squared Euclidean Imbalance (SEI) of the byte
for each key candidate. In case of evaluating the SEI, no information of the penultimate
round key has to be guessed, because the constant key addition changes only the values of
the byte, but has no influence on the non-uniformity of the distribution.

Determining the correct key. In the previous phase, for each key candidate, the SEI
of the targeted byte has been calculated. We assume that the right key leads to the
distribution with the highest SEI if a sufficient number of ciphertexts is evaluated. A
closer insight in the number of needed ciphertexts is given in subsection 3.3.

We want to point out that this attack allows to exploit any ineffective fault that causes
a non-uniform distribution of an intermediate value, even if the distribution is not known
by an attacker (as demonstrated in section 4). In addition, SIFA is robust against noise
introduced by failed fault induction attempts, or a fault induction in dummy rounds in the
case of the infective countermeasure. In the next section, we provide a statistical model
for our attacks and justify the use of the SEI.

3.3 Statistical Model
In this section, we provide a more detailed statistical model of the attack. Our aim is
to investigate the effect of various parameters, such as the fault distribution and the
configuration of the countermeasure, on the necessary number of faulted ciphertexts to
perform the attack with a certain success probability. We compare two scenarios: The
practical scenario where the fault distribution is unknown to the attacker (CHI/SEI statis-
tic), but also the theoretical scenario where the attacker happens to know the distribution
(LLR statistic). The emphasis of our analysis is on the hardest case: An unknown fault
distribution, close to uniform, with additional noise induced by countermeasures.

We consider the b-bit intermediate variable which contains the result of the operation
targeted by the fault, and consider its distribution during the attack in more detail. From
the attacker’s point of view, the value of this variable on a particular input (in absence
of faults) is a random variable X which depends on the input and key. Additionally,
the random variable X ′ denotes the value of this variable on the same input, but where
the attacker additionally attempted to fault the operation. We also refer to X and X ′
as “before” and “after” the fault, although this is not strictly accurate. Both X and X ′
take values x ∈ X = {0, . . . , 2b − 1}. The action of the fault can be characterized by the
transition probabilities

px(x′) := P[X ′ = x′|X = x].
In practice, this fault distribution table FDT = (px(x′))x,x′ is usually not known, or can
only be roughly estimated. To perform the proposed attack, the attacker does not need

556 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

to know the FDT. However, the success and efficiency of the attack depends on some of
the table’s properties. In the following, we will analyze the attack complexity and its
dependency on the two relevant metrics: The fault’s ineffectivity rate π=, and the capacity
C(p) of the target distribution p.

3.3.1 Direct sampling: Detection countermeasure

We first consider attacks on detection-based countermeasures. We can only take advantage
of samples where X = X ′, i.e., the fault is ineffective. We assume that X is uniformly
distributed, that is, P[X = x] = 2−b. Then, the probabilities π= of an ineffective fault
(ineffectivity rate) and π 6= of an effective fault are

π= = P[X ′ = X] =
∑
x′∈X

px′(x′)
2b , π6= = 1− π=.

We target the conditional distribution p=(x′) of X ′ in case of ineffective faults, i.e., the
diagonal of the fault distribution table (see subsection 3.1):

p=(x′) := P[X ′ = x′|X ′ = X] = px′(x′)
2b · π=

.

The attacker neither knows this distribution, nor can she directly observe X ′. However,
based on the observed cipher output and a key hypothesis for the κ-bit last-round key
material as in subsection 3.2, she obtains a hypothesis X̂ ′ for the value of X ′, and can
analyze the distribution p̂ of X̂ ′ for a fixed key guess across multiple samples. For an
incorrect key guess, we assume a distribution very close to uniform1. For the correct key
guess, we sample the unknown distribution p(x′) = p=(x′). If p=(x′) differs significantly
from uniform, we can distinguish these two cases, and identify the samples from p=(x′)
produced by the correct key k0 among the collection of samples from the nearly uniform
distributions θi(x′) ≈ θ(x′) = 2−b produced by the wrong keys ki, 1 ≤ i < 2κ.

To identify the correct key k0 and its distribution p = p=, we associate a score statistic
S(p̂) with each key candidate and the corresponding distribution p̂, and rank the key
candidates according to this statistic. This approach is closely related to statistical
cryptanalysis, such as differential and linear cryptanalysis, and has been theoretically
analyzed in those contexts. Under the assumption that S(p̂) is independently normally
distributed for samples from either p or θ,

S(p̂) ∼
{
N (µR, σ

2
R) if p̂ was produced by p ,

N (µW, σ
2
W) if p̂ was produced by θ ,

(2)

Selçuk [Sel08] analyzed the success probability of ranking the correct key k0 among the
top 2κ−a of 2κ key candidates based on N samples, where a is the advantage. Then, the
difference ∆a between the score of k0 and the score of the wrong key with rank 2κ−a
(quantile α = 1− 2−a) is normally distributed with parameters

∆a ∼ N (µ∆, σ
2
∆),

µ∆ = µR − µW − σW Φ−1
0,1(α) ,

σ2
∆ ≈ σ2

R for sufficiently large 2κ [BGN12],

and thus the success probability depending on N and a can be estimated as [Sel08]

P[∆a > 0] ≈ Φ0,1

(
µR − µW − σW Φ−1

0,1(α)
σR

)
. (3)

1In practice, this is not necessarily the case, in particular for partially correct key guesses. For example,
for a byte-stuck-at fault and a key guess that is only incorrect in one byte, the capacity is expected to
drop from 255 to about 1, instead of 0.

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 557

To obtain useful complexity estimates from (3), we need a suitably distributed statistic
S(p̂) and its parameters according to (2). We first consider the (unusual) case2 that we
know the real distribution p = p=. Then, the Neyman-Pearson lemma [NP33,CT06] states
that the optimal statistic S is the log-likelihood ratio

S(p̂) = LLR(p̂) = LLR(p̂, p, θ) := N
∑
x∈X

p̂(x) log2
p(x)
θ(x) .

For large N , LLR(p̂) tends towards a normal distribution as required in (2) [CT06,BJV04].
The success probability in (3) then depends on the Kullback-Leibler divergence D(p‖θ):

D(p‖θ) :=
∑
x∈X
p(x) 6=0

p(x) log2
p(x)
θ(x) , D∆(p‖θ) :=

∑
x∈X
p(x)6=0

p(x)
[
log2

p(x)
θ(x)

]2
−D(p‖θ)2 .

If p is very close to uniform θ, these can be approximated using the capacity C(p, θ) [BDQ04]:

C(p, θ) :=
∑
x∈X

(p(x)− θ(x))2

θ(x) ≈ 2D(p‖θ) ≈ D∆(p‖θ) (only if p is close to θ.)

The resulting estimate for the necessary number of samples NLLR to achieve a success
probability P = P[∆a > 0] can be derived as [BJV04,BGN12]:

NLLR ≈

[
Φ−1

0,1(P)
√
D∆(p‖θ) + Φ−1

0,1(α)
√
D∆(θ‖p)

D(p‖θ) +D(θ‖p)

]2

≈
2[Φ−1

0,1(P) + Φ−1
0,1(α)]2

C(p, θ) .

When applied to the AES fault analysis scenario, knowing p = p= means both knowing the
exact fault distribution of the ineffective faults and guessing the corresponding 8 key bits
in the penultimate round, with a correspondingly increased advantage a. In the context
of differential cryptanalysis, it has been demonstrated [BGN12] that even small errors in
the estimate of p can significantly increase the necessary number of samples. Since such
exact models of p= are usually not available for practical fault attacks, we can consider
less optimal, but more robust statistics.

The classical test statistic for an unknown distribution p is Pearson’s χ2:

S(p̂) = CHI(p̂) := χ2(p̂, θ) = N
∑
x∈X

(p̂(x)− θ(x))2

θ(x) ,

or, for uniform θ, the closely related Squared Euclidean Imbalance (SEI):

S(p̂) = SEI(p̂) :=
∑
x∈X

(p̂(x)− θ(x))2 = (N · 2b)−1 · CHI(p̂) .

The statistic CHI(p̂) is distributed according to the (noncentral) chi-squared distribution
with k = |X | − 1 = 2b − 1 degrees of freedom and noncentrality parameter λR = N C(p, θ)
or λW = 0. For large k and N , this tends towards a normal distribution with parame-
ters [HCN09,DKMO89]

CHI(p̂) ∼
{
N (µR = k +NC(p, θ), σ2

R = 2 [k + 2NC(p, θ)]) ,
N (µW = k, σ2

W = 2k) .

2Note that in this case, we could also target the last round with lower a and N , but more repetitions
to obtain the full key.

558 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

Based on these parameters, we can solve the quadratic equation in (3) to estimate the
necessary number of samples as [BGN12]

NCHI ≈
s+
√
s2 − t

C(p, θ)
(
s =
√

2kΦ−1
0,1(α) + 2Φ−2

0,1(P), t = 2k(Φ−2
0,1(α)− Φ−2

0,1(P))
)

=
√

2kΦ−1
0,1(α)

C(p, θ) (for success probability P = 0.5.)

Summarizing, both statistics lead to an estimated number of samples that is proportional to
1/C(p, θ), where the constant depends on the desired success probability P and advantage
a (or quantile α = 1− 2−a). However, these estimates are only useful if the resulting N is
reasonably large, that is, if p is not extremely different from θ.

3.3.2 Noisy sampling: Infective countermeasure

So far, we assumed that for the correct key guess, the attacker makes the correct hypothesis
X̂ ′ = X ′, and thus directly samples the distribution p=(x′). We will now show that the
same approach also generalizes naturally to cases where the attacker only obtains noisy
measurements.

As an example, consider the infective countermeasure with r dummy rounds. The
attacker targets round R− t of the R = r+ 11 + 11 executed AES rounds, indexed 1, . . . , R.
To identify runs with ineffective faults, she has to compare the faulted ciphertexts C ′
with previously obtained correct ciphertexts C for the same plaintexts P , and keeps only
the samples where C = C ′. Assuming the same fault model as before, she will keep a
fraction of about π= samples. However, she does not know whether the ineffective fault
really occurred in the penultimate AES round of the main (or, equivalently, redundant)
encryption of P , or elsewhere: in a dummy round or the wrong AES round. The probability
σ that the faulted round R− t was a relevant round depends on the attack setup. Figure 1
illustrates the practically observed probability (σ = σ∗, see subsection 4.2), as well as
the expected probability if the attacker can equivalently target both main and redundant
rounds in the practical attack setup (σ = σ+) or if she has to choose the target in advance
(σ = σmax), where

σ =
{
σ+ = σ2 + σ3,

σmax = max{σ2, σ3},
σs =

(
t
s

)
·
(
R−t−1
22−s−1

)(
R
22
) .

This probability is assumed to be independent of whether the fault was ineffective or not.

−14 −12 −10 −8 −6 −4 −2
0

0.2

0.4

−t

σ 0.49

0.310.33

0.20
0.14

0.08

0.44

0.25

0.11

r σ+ σmax σ∗

11
22
66

Figure 1: Probability σ of successful sampling for r ∈ {11, 22, 66} dummy rounds.

Depending on whether round t was indeed relevant, the hypothesis X̂ ′ for the correct key
now samples one of two distributions: If t was relevant, X̂ ′ = X ′ and we sample p=(x′);

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 559

else, we sample a distribution close to uniform. Thus, we sample a noisy variable X ′′ with
distribution p≈(x′′), where

p≈(x′′) = σ p=(x′′) + (1− σ) 2−b = σ (p=(x′′)− 2−b) + 2−b.

The capacity of this distribution is

C(p≈) =
∑
x∈X

(p≈(x)− 2−b)2

2−b =
∑
x∈X

(
σ (p=(x′′)− 2−b)

)2
2−b = σ2 C(p=).

Thus, the expected data complexity for noisy sampling is σ−2 times higher compared to
direct sampling.

In summary, the expected number of faults the attacker has to induce to collect enough
samples is inverse proportional to π= · σ2 · C(p=), where the constant depends on the
desired success probability P and advantage a.

3.4 Examples and Simulations
To illustrate the statistical model in more detail, we consider a simulation of the attack
with a random-and fault, i.e., each set bit of the target byte is flipped from 1 to 0 with
probability 1

2 . The ineffectivity rate of this fault is π= = (3/4)8 ≈ 10 %. We attack an
AES implementation protected with the infective countermeasure (subsection 2.1) with
r = 22 dummy rounds and target round R − t = 44 − 4 = 40, obtaining a signal of
σ = 1111

3526 ≈ 0.315 among the ineffectively faulted samples. The expected target distribution
p(x) for the correct key is illustrated together with the uniform distribution θ in Figure 2
and depends on the Hamming weight hw(x):

p(x) = σ · 28−hw(x)/38 + (1− σ) · 2−8.

0 20 40 60 80 100 120 140 160 180 200 220 2400.0000

0.0050

0.0100

0.0150
p(x)
θ(x)

Figure 2: Distributions p and θ for random-and fault and infective countermeasure.

To compare the practically necessary number of samples N (with or without knowledge of
p(x)) with the predictions of subsection 3.3, we evaluate the statistics LLR(p̂) and CHI(p̂)
for the correct last-round key and for 224 wrong key candidates (out of 232; we set one
byte to the correct value).

For the LLR(p̂) statistic, we need to know the exact target distribution after addition
of the penultimate round key, so we need to guess a byte K ′ of the penultimate round key
in addition to the 24-bit key guess K. For simplicity, we evaluate each candidate K based
on the statistic

S(p̂) = max
K′

LLR(p̂, pK′ , θ) = max
K′

N
∑
x∈X

p̂(x) · log2
p(x⊕K ′)
θ(x) .

560 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

To reflect this in the model and evaluate the probability that the correct 24-bit K is ranked
highest, we set the advantage to a = κ+ 8 = 32, so α = 1− 2−32. Based on the model of
subsection 3.3, we expect the statistics LLRR of the right key, LLRW of any wrong key,
and LLR∗W of the best wrong key to be normally distributed with the following parameters:

µR = ND(p‖θ) ≈ 0.075N σ2
R = ND∆(p‖θ) ≈ 0.252N

µW = −ND(θ‖p) ≈ −0.064N σ2
W = ND∆(θ‖p) ≈ 0.157N

µ∗W = µW + Φ−1
0,1(α)σW ≈ −0.064N + 2.469

√
N σ2∗

W � σ2
W .

For the CHI statistic, we use a = κ = 24 and expect the statistics CHIR, CHIW, and
CHI∗W to be normally distributed with the following parameters:

µR = k +N C(p, θ) ≈ 255 + 0.131N σ2
R = 2k + 4N C(p, θ) ≈ 510 + 0.525N

µW = k = 255 σ2
W = 2k = 510

µ∗W = µW + Φ−1
0,1(α)σW ≈ 375 σ2∗

W � σ2
W .

Figure 3 compares the resulting model (dashed: µR, µ
∗
W) with the statistics obtained in the

practical key-recovery attack (solid: S(p̂R), S(p̂∗W)). The predicted necessary number of
samples N for success probability P = 0.8 and with advantage a = 24 (for CHI) or a = 32
(for LLR) is marked as NCHI and NLLR, respectively. This estimate quite accurately
matches the practically necessary N . It is worth noting that for both statistics, the best
wrong key candidate scores slightly better than predicted with µW. This can be partly
explained with the not-entirely-uniform distribution of the target value for partially correct
key guesses, as discussed in subsection 3.3. In case of CHI(p̂), both the right and wrong
keys scored slightly higher than expected.

500 1000
21

23

25

27

NLLR

LLR∗W µ∗W LLRR µR

(a) LLR(p̂) statistic

500 1000

28

29

NCHI

CHI∗W µ∗W CHIR µR

(b) CHI(p̂) statistic

Figure 3: Simulation results for infection countermeasure and random-and fault.

We repeated simulations for other fault models (bit-stuck-at-0, byte-stuck-at-0) and
for both countermeasures (detection, infective). The model matches the practical results
similarly well when the capacity C(p, θ) is not too large and thus N is not too small to
justify the normal approximation. In particular, for the byte-stuck-at-0 fault, C(p, θ)� 1,
and the model predicts fewer than the practically necessary N ≈ 4 (σ = 1, detection) or
N ≈ 15 (σ = 0.315, infective) samples.

In summary, having insight in the concrete effect of a fault allows to model the scores
of the correct and best wrong key and accurately predict the necessary number of samples

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 561

for a successful attack. In such a case, the LLR outperforms the CHI (or SEI) statistic in
terms of required samples. However, for LLR, even small errors in the estimate of p can
significantly increase the necessary number of samples [BGN12]. Hence, in practice, the
CHI (or SEI) statistic is preferable, since the attacker can reliably and efficiently recover
the key in the presence of countermeasures without any knowledge of p as demonstrated
in section 4.

4 Practical Evaluation
For the practical evaluation of SIFA we have performed multiple experiments implemented
on various microcontrollers listed in Table 3. First, we show the practical applicability
of SIFA against a time redundant 8-bit software AES, a time redundant hardware AES
co-processor, and a time redundant 32-bit bitsliced AES. We then show practical attacks
against the infective countermeasure by Tupsamudre et al. [TBM14] for several security
parameterizations.

Table 3: Target microcontrollers of our attack evaluation

Name ALU Size Core CPU Freq.
ATXmega 256A3 8-bit Atmel AVR 12 MHz
ATXmega 128D4 8-bit Atmel AVR 7 MHz
STM32F3 32-bit ARM Cortex-M4 7 MHz

Fault Setup. In order to induce the faults we have used clock glitches. To be more precise,
we xor an additional fast clock edge on the original clock signal to violate the critical
path. By additionally varying width and offset of the induced clock edge, it is possible to
influence the fault induction success rate and its impact on the faulted instruction. We
have used an FPGA for generating both the original clock signal and the clock glitch for
the device under test. For sake of simplicity, we determined our attack parameters with the
help of an unprotected implementation in the case of the detection-based countermeasure.
In case that an unprotected implementation is not accessible to an attacker, determining
the fault parameters is much more time consuming, but still feasible. We want to point
out that the demonstrated attacks do not require a profiling of the actual distribution of
the induced fault. In fact, we performed the key recovery attacks without any knowledge
about the distribution of the targeted byte.

All experiments are performed in a fully automated attack setup. By using this setup,
we are able to perform about 20 faulted encryptions per second, or 72 000 per hour. The
time required to collect enough correct ciphertexts for key recovery is somewhere between
1 minute and 2 hours.

Possible Effects of Clock Glitches. We first give some intuition explaining the possible
scenarios that can occur when using clock glitches for fault induction on various platforms.
Later, when discussing the individual attack results, we will refer to these scenarios to
help explain our results. The following three scenarios can arise:

1. Missed Fault. Occurs if the timing of the induced fast clock edge is incorrect and
can occur in two situations. (1) The induced clock edge is too short and the
microprocessor never sees a logical ‘1’ on the clock signal. (2) The induced clock
edge is too long and the microprocessor is able to execute the current instruction
correctly.

562 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

2. Successful and Effective Fault. Occurs if the induced fast clock edge influences the
target instruction/register in such a way that the outcome of the whole computation
is affected.

3. Successful but Ineffective Fault. Occurs if the induced fast clock edge influences the
target instruction/register but no effect on the outcome of the whole computation is
observed.

Generally speaking, traditional fault attacks exploit Successful and Effective Faults,
while IFA, and SIFA exploit Successful but Ineffective Faults. Depending on the attacked
implementation and the quality of laboratory equipment, the occurrence of Missed Faults
varies. For an attacker, it is usually not possible to distinguish between a Missed Faults
and a Successful but Ineffective Fault, since both have no effect on ciphertexts. In fact
even if we know the key in our attacks, we cannot reliably distinguish between those two
cases. However, distinguishing between both cases is not needed in the attack.

Properties of (Ineffective) Biased Faults. Besides the scenarios discussed before, also
the actual properties of an Successful but Ineffective Faults on a certain instruction/register
determines the efficiency of SIFA combined with the occurrence of Missed Faults. Hence,
we define the following two properties:

1. Bias. The resulting bias of a certain intermediate value/byte defines its distance
from a uniform random distribution, when observed over multiple encryptions. In
the context of SIFA, we measure this distance via the Squared Euclidean Imbalance
(SEI). The bias that we observe and exploit in SIFA stems from the combination of
Missed Faults and Successful but Ineffective Faults.

2. Fault Ineffectivity Rate. This rate determines how often there is no effect on the
computational outcome after fault induction:

#(Successful but Ineffective Faults) + #(Missed Faults)
#(Successful and Effective Faults)

The performance of a fault attack is often measured in the number of required faulted
encryptions. An ideal fault for SIFA would cause a strong bias, have a high Fault Ineffectivity
Rate, and would never miss. Such ideal faults are difficult to achieve in practice, since the
requirements are somewhat contradictory. When considering the common fault models
the stuck-at fault on bit-level is a good candidate for SIFA, since it has a very high Fault
Ineffectivity Rate of 50% while still causing a decent bias. Higher rates are possible if, e.g.,
Missed Faults occur but this is not desired.

In our practical evaluation of SIFA, we deal with faults that are not optimal for SIFA.
On some platforms we observe strong biases but in combination with very low Fault
Ineffectivity Rates. On other platforms we observe high Fault Ineffectivity Rates but weak
biases. Nevertheless, we are able to perform practical attacks on various platforms with
different countermeasures in place. This demonstrates the versatility of SIFA and biased
faults in general. At the end of each practical experiment we shortly discuss our findings
regarding fault scenarios in combination with the fault properties described above.

4.1 Attacks on Detection-based Countermeasure
We first target a detection-based countermeasure that uses simple time redundancy with
subsequent comparison (Algorithm 1). Here, the encryption is executed twice and only
if the results of both encryptions are identical, the ciphertext is returned. Note that our
attack is just as effective in case more than two redundant executions are performed. We

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 563

evaluated our attack both for pure software AES implementations and AES co-processor
implementations. The attacks against software AES were evaluated using an 8-bit register-
based AES implementation on the ATXmega 256A3, and a 32-bit-bitsliced AES on the
STM32F3. The attack against the hardware co-processor AES was performed on the
ATXmega 256A3.

4.1.1 8-bit Software AES

We used the AES implementation from the AVRCryptoLib [avr] as a basis for our pro-
tected implementation and performed experiments on both a ATXmega 256A3 and a
ATXmega 128D4. Our attacks target the output of the S-box calculation in round 9, and
we only induce a fault in one of the two AES encryptions.

The results presented in Figure 4 show the number of correct ciphertexts (≈ 220 and 5)
needed until the correct 4-byte key candidate has the highest SEI and thus can be reliably
distinguished. In both cases, roughly 1 000 faulted encryptions were necessary to collect
the required amount of unaffected and correct ciphertexts. From these results we can
see that our fault inductions had quite different effects on both types of microprocessors.
On the ATXmega 128D4 platform we are able to induce reliable faults that affect single
instructions/bytes. Here, the Fault Ineffectivity Rate of 0.39% is very low but the induced
bias is strong. In contrast to that, the Fault Ineffectivity Rate of 34% is comparably high
on the ATXmega 256A3 platform. Here, we suspect that (1) the induced fault affects
individual bits of a byte only with a certain probability, (2) the resulting induced bias is
rather weak, and (3) Missed Faults might occur.

50 100 150 200 250
2−7

2−6

2−5

2−4

Correct ciphertexts

SE
I

Correct key
Wrong keys

(a) ATXmega 256A3: 220 correct ciphertexts
stemming from about 1 000 faulted encryptions
are required.

2 4 6 8 10

2−1

20

Correct ciphertexts

SE
I

Correct key
Wrong keys

(b) ATXmega 128D4: 5 correct ciphertexts stem-
ming from about 1 300 faulted encryptions are
required.

Figure 4: Attacks on 8-bit software AES, detection countermeasure. SEI of the correct
key (SEIR) vs. best SEI for a wrong key (SEI∗W) for N correct encryptions.

4.1.2 32-bit-bitsliced Software AES on STM32F3

In order to evaluate our attack for bitsliced AES implementations, we have used the
constant-time bitsliced implementation by Schwabe et al. [SS16]. The attack setup itself is
similar to the one in the previous section.

About 22 000 correct ciphertexts were required to reliably recover 4 bytes of the AES
key, as shown in Figure 5. In total we have performed 130 000 faulted AES encryptions
and received about 26 000 correct ciphertexts. Hence, the Fault Ineffectivity Rate was 20%
in this setting. Again, we do expect a mixture of weak biases and Missed Faults. Please
note that this result is meant as a proof of concept rather than a concrete performance
estimation of SIFA against 32-bit platforms. With a more precise fault setup, e.g., a laser
fault induction setup, we expect significantly better results.

564 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

5 000 10 000 15 000 20 000 25 0002−14

2−13

2−12

2−11

Correct ciphertexts

SE
I

Correct key
Wrong keys

Figure 5: Attacks on 32-bit bitsliced SW AES, STM32F3, detection countermeasure. SEI
of the correct key (SEIR) vs. best SEI for a wrong key (SEI∗W) for N correct encryptions.
22 000 correct ciphertexts were required, stemming from about 130 000 faulted encryptions.

4.1.3 Hardware Co-Processor AES on ATXmega 256A3

In our attack against the integrated AES co-processor on the ATXmega 256A3, approxi-
mately 550 correct ciphertexts were required for recovering 4 bytes of the AES key as shown
in Figure 6. In total about 800 faulted encryptions were required, the Fault Ineffectivity
Rate is hence about 69%. As explained before, such a high rate is only possible if Missed
Faults occur. We strongly expect that the former is the case, maybe in combination with
a weak bias.

200 300 400 500 600

2−8

2−7

Correct ciphertexts

SE
I

Correct key
Wrong keys

Figure 6: Attacks on HW AES co-processor, ATXmega 256A3, detection countermeasure.
SEI of the correct key (SEIR) vs. best SEI of a wrong key (SEI∗W) for N correct encryptions.
550 correct ciphertexts were required, stemming from about 800 faulted encryptions.

4.2 Attacks on Infective Countermeasures
We evaluated our attack on the infective countermeasure by Tupsamudre et al. [TBM14]
from CHES 2014 (Algorithm 2). Since the hardware co-processor of the ATXmega 256A3
only computes one complete call of AES, we limit this attack evaluation to purely software-
based implementations on the ATXmega 128D4.

We extended the AES implementation from the AVRCryptoLib [avr] according to
Algorithm 2. The implementation of the AES round functions itself was not modified.
Since the authors in [TBM14] did not give any recommendations for t, we have evaluated
our attack for t ∈ [11, 22, 66], leading to AES encryptions that require 33, 44, and 88 AES
round function calls, respectively.

We started with a simulation of multiple encryption runs in order to determine when a
penultimate, non-dummy AES round is performed with highest probability. Clearly, the
best time for the attack depends on t. According to the simulation results in Table 4 we

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 565

hit a penultimate, non-dummy round with highest probability when targeting the 31st,
41st, and 83rd round, respectively. Once we know the best round for the attack, we can use
a similar fault parameterisation as in the other experiments with the ATXmega 128D4. In
contrast to the detection-based scenario, we cannot detect ineffective faults by observing
just one encryption when infection is used. Hence, we always perform one encryption
twice, one with fault induction, and one without.

Table 4: Occurrence of dummy round hits for infective AES

Dummy Total AES Target Correct Round Hit
Rounds t Rounds Round Probability

11 33 31 44%
22 44 41 25%
66 88 83 11%

As mentioned earlier the efficiency of SIFA is, among others, determined by the bias of
the induced fault, the fault’s ineffectivity rate, and thus might vary between experiments.
In order to allow for an easier comparison between the results for various t we only show
practical results where the ineffectivity rate and the strength of the bias are similar. Both
properties can be roughly estimated by an attacker after successful key recovery.

Our attack evaluation was performed for a variable number of dummy rounds with
t ∈ [11, 22, 66], the results are shown in Figure 7. In our practical evaluation on the
ATXmega 128D4 platform, and depending on t, 6 500, 9 000, 46 000 faulted encryptions
were necessary to gather the 25, 34, 180 correct ciphertexts that allowed us to recover 4
key bytes. Here we conclude that the bias of the induced fault was strong, the ineffectivity
rate was low, and the number of Missed Faults was also low.

Compared to the analysis in subsubsection 3.3.2 and Table 4, the observed increase
in the necessary number of ciphertexts roughly matches the predictions, in particular
from t = 22 to t = 66 (increase roughly ×5.9, predicted ×5.2). The observed increase
compared to t = 11 (roughly ×1.4 to t = 22 and ×8.0 to t = 66) is less than predicted
using the the measured probabilities from Table 4 (predicted ×3.1 and ×16.0, respectively).
This may indicate that the probabilities are closer to the theoretical estimates σ+ from
Figure 1 (predicted ×1.4 and ×11.0, respectively) and/or a relatively high number of
ciphertexts required in the specific experiment for t = 11. The latter is very likely because
the estimates and normal approximations of subsection 3.3 assume a relatively low capacity
and are not accurate for high capacities and small N , as we have for t = 11.

The small available number of samples is not sufficient to derive a detailed fault model
(for the sake of comparing our results in more detail with the theoretical model; of course,
we do not require the model to perform the attack). However, based on the available
data for t = 22 and t = 66, we can make an educated guess at the effects of our fault
setup. The fault ineffectivity rate is very close to 1/256, as we would expect from a fault
that affects a whole byte and a very small number of missed faults, as discussed above.
The observed distribution among the ineffective faults during the key recovery phase also
suggests a noisy stuck-at distribution, with a signal σ less strong than expected for the
infection countermeasure. This may indicate that if the stuck-at fault hits the correct
round, it hits the correct byte (correct fault effect) in a fraction around half or three
quarters of the cases. This model is also a good fit to explain the necessary number of
correct ciphertexts for t = 22 and t = 66 (for t = 11, the number of samples is too low to
make any useful statements): For example, for t = 66 based on N = 237 collected samples,
assuming σ ≈ 0.065 (see Figure 1, and close to 0.5 · 0.11 from Table 4 as assumed above),
we would expect about 16.5 stuck-at hits (observed: 18). Using advantage a = 32 and
target success probability p = 0.8, the model would predict that we need roughly 160

566 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

ciphertexts, which is only slightly less than we actually needed (Figure 7c). For the other
cases, similar models also slightly underestimate the necessary number of ciphertexts.

5 10 15 20 25 30
2−3

2−2

2−1

Correct ciphertexts

SE
I

Correct key
Wrong keys

(a) ATXmega 128D4, t=11. 25 correct ciphertexts were
required, stemming from about 6 500 faulted encryptions.

5 10 15 20 25 30 35
2−4

2−2

Correct ciphertexts

SE
I

Correct key
Wrong keys

(b) ATXmega 128D4, t=22. 34 correct ciphertexts were
required, stemming from about 9 000 faulted encryptions.

30 60 90 120 150 180 2102−7

2−6

2−5

2−4

Correct ciphertexts

SE
I

Correct key
Wrong keys

(c) ATXmega 128D4, t=66. 180 correct ciphertexts were
required, stemming from about 46 000 faulted encryptions.

Figure 7: Attacks on infective countermeasure. SEI of the correct key (SEIR) vs. best SEI
of a wrong key (SEI∗W) for N correct encryptions.

5 Discussion of other Implementation Countermeasures
We have demonstrated the effectiveness of SIFA on two different countermeasures using
various platforms in the previous section. Nevertheless, more countermeasures exist and
we discuss the impact of some of them on SIFA in this section. Overall, SIFA seems to be
a powerful attack vector and so far, the main point we can say regarding countermeasures
is that more noise, e.g., by using dummy rounds increases the attack complexity.

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 567

5.1 Infection by Patranabis et al.
The infection countermeasure by Patranabis et al. [PCM15] can be seen as an extended
version of the one described in subsubsection 2.1.2. Hence, we limit our description solely
to the actual differences between both designs. The extended countermeasure aims at
tackling a shortcoming of the previous design that allowed successful attacks if an attacker
is able to alter the control flow or force precise instruction skips. To mitigate this attack
vector two adaptations were proposed.

First, an additional randomized string cstr is introduced that raises the uncertainty
in the execution order of cipher state R0 and redundant state R1 in each round. cstr is
of length 2t and is made up of t 2- bit tuples [xi, yi], each of which has either the value
[0, 1] or [1, 0]. While the execution order of R0 and R1 within one round was fixed in the
previous design, cstr can now be used to additionally shuffle their execution.

Second, temporary masking is introduced that hides R0 and R1 at the end of an odd
round and reveals them at the beginning of the corresponding even round. This has the
effect that neither R0 nor R1 expose the output of the previous round after an odd round.

In SIFA, every time we receive a correct ciphertext stemming from an ineffective fault
induction on an AES with correct key, we can reduce the number of key candidates. Since
both R0 and R1 use the correct key, their execution order within one round is irrelevant
for SIFA. The additional temporary masking of states does not affect SIFA either, since all
round function calls still work with the original states. Hence, we expect SIFA to perform
against the extended version of infection as well as against the version by Tupsamudre et
al. [TBM14].

5.2 Fault Space Transformation
Fault Space Transformation (FST), is a novel fault countermeasure proposed by Patranabis
et al. [PCMC17]. This countermeasure works with two redundant states R0 and R1, similar
as a detection-based countermeasure that uses redundancy with subsequent comparison. So
the encryption is performed on R0 and R1, but under a special linear encoding R1 = W (R0)
such that it is difficult to induce similar faults in both states.

While there are many possible choices for the linear encoding W , the authors propose
the usage of the AES-MixColumns function. This choice of W has the beneficial side effect
that a one-byte fault in one state is mapped to a 4-byte fault in the other state and vice
versa. This linear dependency between R0 and R1 increases the difficulty of inducing two
equivalent faults or the exploitation of two biased faults up to a point where they can
be considered infeasible in practice. The threat of both DFA as well as DFIA is hence
prevented. For a more detailed description of FST we refer to the original paper [PCMC17].

However, SIFA solely relies on observing whether a fault induction in one AES state
(either R0 and R1) is ineffective. Since the state R0 is calculated without linear encoding,
an attacker, who is able to only fault the branch calculating R0 can expect the same attack
complexities as on an ordinary detection-based countermeasures (subsection 4.1). Faulting
the encoded state would work too, the observed bias would be different but still be as
strong as in the non-encoded state. Like mentioned before, in SIFA the existence of a bias
is sufficient for key recovery. The exact distribution of the bias does not need to be known
by the attacker. Hence, SIFA performs against FST as well as shown in the attacks against
AES with detection-based countermeasure.

5.3 Majority Voting
SIFA relies on detecting whether an induced fault is ineffective. A complete mitigation of
this attack vector would require a compensation of any fault induction such that every
observed encryption is correct. One technique that attempts to do this is Majority Voting

568 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

(MV) to select which ciphertext is returned. In MV the same computation is performed n
times, where n is odd and ≥ 3. The final output is then defined as the majority over all
computed outputs. It depends on the implementations what happens if all ciphertexts
differ. Here, we assume that in this case no ciphertext is returned. Such a scheme would
prevent SIFA, using single faults per encryption, since one faulty ciphertext is always
“overruled“ by at least two correct ciphertexts.

In the case of SIFA against MV with n = 3 one can simply perform one ordinary targeted
9th round biased fault induction in one computation and any random fault induction in one
of the other computations. That way a correct ciphertext has the majority if the biased
fault induction is ineffective. For this implementation of the countermeasure, we expect
that an attack works with a similar complexity as for detection-based countermeasures,
but requiring two faults per execution.

Note that different implementations of a majority voting are possible. For instance,
a majority voting on bit level is possible. If n = 3, and at least two computations are
erroneous, an attacker will get an erroneous ciphertext returned. Still, SIFA is possible
as described before, however, an attacker now needs additional computations in order to
identify erroneous ciphertexts.

5.4 Masking
Masking is a widely-deployed countermeasure against side-channel attacks, where the secret
intermediate values are split into d-shares. On the first glance, masking prevents a direct
application of SIFA. One way to apply SIFA on masking is to use multiple faults on all
shares of a single intermediate variable. While using only single faults for their proposed
attack, using faults on multiple locations is a strategy already proposed by Clavier [Cla07]
to apply IFA on masked implementations. As a simple example consider an attacker, who
is able to induce a fault that sets one value more likely to 0. If this fault is applied on all
shares of the same variable, also the unshared value will likely be biased and hence, SIFA
will work.

A straight-forward application scenario for SIFA against masking are bitsliced imple-
mentations that work on all shares concurrently [JS17]. Here, one biased fault is likely to
cause a joint non-uniform distribution over all shares that can be exploited by an attacker
in the exact same way as described in this paper. However, SIFA against masking is not
restricted to these implementations, or multiple faults. In particular, recent follow-up
work demonstrates that SIFA is applicable on masked implementations of cryptographic
primitives with fault countermeasures using single faults [DEG+18].

6 Conclusion
In this work, we provide an extensive insight on ineffective faults, where faults are being
induced, but not showing an effect. The introduced statistical ineffective fault attacks
(SIFA) can be seen as an intersection of the principles exploited by ineffective fault attacks
(IFA) [Cla07] and by statistical fault attacks (SFA) [FJLT13]. While previous work on IFA
relies on strong models like stuck-at faults, we were able to relax these conditions up to a
point were we only require that intermediate values follow an unknown but non-uniform
distribution in cases where fault inductions have been ineffective. Hence, no special fault
profiling of a targeted device is necessary.

SIFA inherits the ability from IFA that it only exploits the output of valid computations,
which makes the attack independent of the degree of redundancy used in a countermeasure.
As a consequence, it is not harder to attack a detection-based countermeasure performing
16 redundant operations compared to a countermeasure just performing 2. On the other
hand, like SFA, SIFA works with minimal assumptions on the effect of the faults. Thus,

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 569

similar as it has been shown for SFA (e.g., in [DEK+16]), we are able to demonstrate
the feasibility of SIFA on various platforms in practice. However, in contrast to SFA, the
practical attacks with SIFA are possible even in the presence of countermeasures against
fault attacks.

We demonstrate the improvements of our work over IFA, amongst others by showing the
applicability of SIFA on detection-based countermeasures utilizing 32-bit-bitsliced software
AES implementations, or hardware co-processor AES implementations. In both cases the
induction of precise stuck-at faults in certain bytes, as required by IFA, is considerably
harder and was not possible in our fault setup.

Ultimately, we show that SIFA has new applications where neither SFA nor IFA are
applicable by demonstrating attacks against an infective AES countermeasure presented
at CHES 2014 [TBM14]. Here, SFA does not work, since the induced errors are amplified
up to a point where the faulty output is unexploitable. Also IFA is not possible in this
case, because even if precise faults were feasible, IFA cannot deal with the large amount of
noise resulting from a low fault induction success rate that is caused by the presence of
dummy rounds at random points in time.

Acknowledgments
This work has been supported in part by the Austrian Science Fund (project P26494-N15),
the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681402), the European Union’s Horizon
2020 research and innovation programme under grant agreement No 644052 (HECTOR),
and the Austrian Research Promotion Agency (FFG) via the K-project DeSSnet, which is
funded in the context of COMET – Competence Centers for Excellent Technologies by
BMVIT, BMWFW, Styria and Carinthia.

References
[AMT13] Subidh Ali, Debdeep Mukhopadhyay, and Michael Tunstall. Differential fault

analysis of AES: towards reaching its limits. J. Cryptographic Engineering,
3(2):73–97, 2013.

[avr] AVR crypto lib. https://git.cryptolib.org/?p=avr-crypto-lib.git.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology – EUROCRYPT ’97, volume 1233 of
LNCS, pages 37–51. Springer, 1997.

[BDQ04] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. On multiple
linear approximations. In Matthew K. Franklin, editor, Advances in Cryptology
– CRYPTO 2004, volume 3152 of LNCS, pages 1–22. Springer, 2004.

[BECN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The sorcerer’s apprentice guide to fault attacks. Proceedings of the
IEEE, 94(2):370–382, 2006.

[BG16] Alberto Battistello and Christophe Giraud. A note on the security of CHES
2014 symmetric infective countermeasure. In François-Xavier Standaert and
Elisabeth Oswald, editors, Constructive Side-Channel Analysis and Secure
Design – COSADE 2016, volume 9689 of LNCS, pages 144–159. Springer,
2016.

https://git.cryptolib.org/?p=avr-crypto-lib.git

570 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

[BGN12] Céline Blondeau, Benoît Gérard, and Kaisa Nyberg. Multiple differential
cryptanalysis using LLR and χ2 statistics. In Ivan Visconti and Roberto De
Prisco, editors, Security and Cryptography for Networks – SCN 2012, volume
7485 of LNCS, pages 343–360. Springer, 2012.

[BJV04] Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go
beyond linear cryptanalysis? In Pil Joong Lee, editor, Advances in Cryptology
– ASIACRYPT 2004, volume 3329 of LNCS, pages 432–450. Springer, 2004.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO
’97, volume 1294 of LNCS, pages 513–525. Springer, 1997.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems – CHES 2007, volume 4727 of LNCS, pages
181–194. Springer, 2007.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (2.
ed.). Wiley, 2006.

[CW13] Christophe Clavier and Antoine Wurcker. Reverse engineering of a secret AES-
like cipher by ineffective fault analysis. In Wieland Fischer and Jörn-Marc
Schmidt, editors, Fault Diagnosis and Tolerance in Cryptography – FDTC
2013, pages 119–128. IEEE Computer Society, 2013.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical ineffective fault attacks on
masked AES with fault countermeasures. Cryptology ePrint Archive, 2018.
https://eprint.iacr.org/2018/357.

[DEK+16] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. Statistical fault attacks on nonce-based authenticated en-
cryption schemes. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances
in Cryptology – ASIACRYPT 2016, volume 10031 of LNCS, pages 369–395,
2016.

[DKMO89] Feike C. Drost, Wilbert C. M. Kallenberg, D. S. Moore, and J. Oosterhoff.
Power approximations to multinomial tests of fit. Journal of the American
Statistical Association, 84(405):130–141, 1989.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, Fault Diagnosis and Tolerance in Cryptography –
FDTC 2013, pages 108–118. IEEE Computer Society, 2013.

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective
computation and dummy rounds: Fault protection for block ciphers without
check-before-output. In Alejandro Hevia and Gregory Neven, editors, Progress
in Cryptology – LATINCRYPT 2012, volume 7533 of LNCS, pages 305–321.
Springer, 2012.

[GYTS14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa M. I. Taha, and Patrick
Schaumont. Differential fault intensity analysis. In Fault Diagnosis and
Tolerance in Cryptography – FDTC 2014, pages 49–58. IEEE Computer
Society, 2014.

https://eprint.iacr.org/2018/357

C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel and R. Primas 571

[HCN09] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional extension
of Matsui’s Algorithm 2. In Orr Dunkelman, editor, Fast Software Encryption
– FSE 2009, volume 5665 of LNCS, pages 209–227. Springer, 2009.

[HS13] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and
heating fault attacks. In Smart Card Research and Advanced Applications –
CARDIS 2013, volume 8419 of LNCS, pages 219–235. Springer, 2013.

[JS17] Anthony Journault and François-Xavier Standaert. Very high order masking:
Efficient implementation and security evaluation. Cryptology ePrint Archive,
2017. https://eprint.iacr.org/2017/637.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Cryptographic
Hardware and Embedded Systems – CHES 2010, volume 6225 of LNCS, pages
320–334. Springer, 2010.

[NP33] Jerzy Neyman and Egon S. Pearson. On the problem of the most efficient
tests of statistical hypotheses. Philosophical Trans. of the Royal Society of
London, pages 289–337, 1933.

[PCM15] Sikhar Patranabis, Abhishek Chakraborty, and Debdeep Mukhopadhyay. Fault
tolerant infective countermeasure for AES. In Rajat Subhra Chakraborty,
Peter Schwabe, and Jon A. Solworth, editors, Security, Privacy, and Applied
Cryptography Engineering – SPACE 2015, volume 9354 of LNCS, pages 190–
209. Springer, 2015.

[PCMC17] Sikhar Patranabis, Abhishek Chakraborty, Debdeep Mukhopadhyay, and P. P.
Chakrabarti. Fault space transformation: A generic approach to counter
differential fault analysis and differential fault intensity analysis on AES-like
block ciphers. IEEE Transactions on Information Forensics and Security,
12(5):1092–1102, 2017.

[PCNM15] Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen, and Debdeep
Mukhopadhyay. A biased fault attack on the time redundancy countermeasure
for AES. In Stefan Mangard and Axel Y. Poschmann, editors, Constructive
Side-Channel Analysis and Secure Design – COSADE 2015, volume 9064 of
LNCS, pages 189–203. Springer, 2015.

[SBHS15] Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl. Precise laser
fault injections into 90 nm and 45 nm SRAM-cells. In Smart Card Research
and Advanced Applications – CARDIS 2015, volume 9514 of LNCS, pages
193–205. Springer, 2015.

[Sel08] Ali Aydin Selçuk. On probability of success in linear and differential crypt-
analysis. Journal of Cryptology, 21(1):131–147, 2008.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and
M4. In Roberto Avanzi and Howard M. Heys, editors, Selected Areas in
Cryptography - SAC 2016, volume 10532 of LNCS, pages 180–194. Springer,
2016.

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroying
fault invariant with randomization - A countermeasure for AES against
differential fault attacks. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems – CHES 2014, volume 8731
of LNCS, pages 93–111. Springer, 2014.

https://eprint.iacr.org/2017/637

572 SIFA: Exploiting Ineffective Fault Inductions on Symmetric Cryptography

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be enough
against fault-based cryptanalysis. IEEE Trans. Computers, 49(9):967–970,
2000.

	Introduction
	Background
	Countermeasures
	Statistical Fault Attacks
	Ineffective Fault Attacks

	Statistical Ineffective Fault Attack
	The Effects of Faults
	Working Principle
	Statistical Model
	Examples and Simulations

	Practical Evaluation
	Attacks on Detection-based Countermeasure
	Attacks on Infective Countermeasures

	Discussion of other Implementation Countermeasures
	Infection by Patranabis et al.
	Fault Space Transformation
	Majority Voting
	Masking

	Conclusion

