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Abstract. Learning a model without accessing raw data has been an intriguing idea to the
security and machine learning researchers for years. In an ideal setting, we want to encrypt
sensitive data to store them on a commercial cloud and run certain analysis without ever
decrypting the data to preserve the privacy. Homomorphic encryption technique is a promising
candidate for secure data outsourcing but it is a very challenging task to support real-world
machine learning tasks. Existing frameworks can only handle simplified cases with low-degree
polynomials such as linear means classifier and linear discriminative analysis.
The goal of this study is to provide a practical support to the mainstream learning models
(e.g. logistic regression). We adapted a novel homomorphic encryption scheme optimized for real
numbers computation. We devised (1) the least squares approximation of the logistic function for
accuracy and efficiency (i.e., reduce computation cost) and (2) new packing and parallelization
techniques.
Using real-world datasets, we evaluated the performance of our model and demonstrated its fea-
sibility in speed and memory consumption. For example, it took about 116 minutes to obtain the
training model from homomorphically encrypted Edinburgh dataset. In addition, it gives fairly
accurate predictions on the testing dataset. We present the first homomorphically encrypted
logistic regression outsourcing model based on the critical observation that the precision loss of
classification models is sufficiently small so that the decision plan stays still.

Keywords. Homomorphic encryption, approximate arithmetic, logistic regression, gradient
descent

1 Introduction

Biomedical data are highly sensitive and often contain important personal information about
individuals. In the United States, health care data sharing is protected by the Health In-
surance Portability and Accountability Act [30], whereas biomedical research practitioners
are covered under federal regulation governing the “Common Rule”, a federal policy that
protects people who volunteer for federally funded research studies [26]. These policies set
high standards on the protection of biomedical data and violations will lead to financial
penalties and lost reputation. On the other hand, cloud computing, which significantly sim-
plifies information technology environments, is the trend for data management and analysis.
According to a recent study by Microsoft, nearly a third of organizations work with four or
more cloud vendors [20]. The privacy concern, therefore, becomes a major hurdle for medical
institutions to outsource data and computation to the commercial cloud. It is imperative to
develop advanced mechanisms to assure the confidentiality of data to support secure analysis
in the cloud environment.

An intuitive solution is to train a model without accessing the data and only obtain
the estimated model parameters in a global manner. Assuming summary statistics can be
shared, this can be done in a joint manner and we have developed the “grid logistic regres-
sion” [33, 17, 32] to show the feasibility of estimating the global parameters from distributed
sources (e.g. by only exchanging gradients and Hessian matrices). However, there are still



Fig. 1. Two secure models: (a) secure storage and computation outsourcing, (b) secure model outsourcing

vulnerabilities in sharing even the summary statistics; for example, the difference in mean
age between a cohort of n patients and another cohort of n−1 overlapped patients can reveal
the actual age of a single patient.

Many medical decision-making systems rely on the logistic regression model [28, 9, 29].
However, to use them appropriately, we need to provide a sufficient sample, which requires a
sample size calculation. Peduzzi et al. [25] suggested a simple guideline for a minimum num-
ber of cases to include in the study: let p be the smallest of the proportions of negative or
positive cases in the population and k the number of covariates (the number of independent
variables), then the minimum number of cases to include is N = 10 · k/p. For example, one
has three covariates to be included in the model and the proportion of positive cases in the
population is 0.2 (20%). The minimum number of cases required is 10 · 3/0.20 = 150. For
rare disease studies with many variables, it is even harder to collect enough samples from a
single institution to meet this goal. We need to circumvent the privacy barriers to feed the
model with more samples from different sources. As shown in Fig. 1, homomorphic encryp-
tion (HE) techniques can support typical secure computations (e.g. secure outsourcing and
secure multiparty computation) and mitigate the privacy risks by allowing all computation
to be done in the encrypted format.

Graepel et al. [14] shed light on machine learning with homomorphically encrypted data.
The article discussed scenarios that are appropriate and inappropriate to exercise machine
learning with homomorphic encryption techniques. The authors provided two examples: lin-
ear means classifier and linear discriminative analysis, which can be achieved by using low-
degree polynomials in homomorphic encryption. However, these simple parametric models
do not handle complex datasets well and they do not represent the mainstream machine
learning technologies used in biomedical research [10, 21]. Additional work was carried out
by Bos et al. [3] to demonstrate the feasibility of making a prediction on encrypted medical
data in Microsoft’s Azure cloud. However, instead of learning from the data, this model only
makes predictions using learned logistic regression models in a privacy-preserving manner.
Similarly, a more recent work called CryptoNets applied trained neural networks to encrypted
data only for the evaluation purpose [13]. Related works are summarized in Table 1.

In the current literature, most similar to our work are Aono et al. [1] and Mohassel
et al. [22], but they are also very different from ours in assumptions and methods. Aono
et al. [1] introduced an approximation to convert the likelihood function into a low-degree
polynomial and used an additive homomorphic encryption to aggregate some intermediary
statistics. However, their scenario relies on the client to decrypt these intermediary statistics
so that it can minimize the parameters locally. This is not a completely secure outsourcing
scenario as ours, which works on encrypted data to obtain encrypted parameters without any
client involvement. Mohassel et al. [22] developed secure two-party computation protocols
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Table 1. Research works in secure analysis

Reference Problem Techniques

Graepel et al. [14]
Linear means classifier/

HE
Discriminative analysis

Bos et al. [3]
Prediction using learned

HE
logistic regression model

Gilad-Bachrach et al. [13]
Prediction using

HE
learned neural networks

Aono et al. [1] Logistic regression Additive HE
Mohassel et al. [22] Logistic regression MPC
This work Logistic regression HE

to conduct the stochastic gradient descent for solving logistic regression and neural network
problems.

This method takes a completely different approach (garbled circuit and secret sharing vs
homomorphic encryption) and the assumptions are widely different from ours (secure mul-
tiparty computation vs secure outsourcing). There are several prominent challenges related
to scalability and efficiency. Traditional methods cannot handle many iterations of multi-
plications, which leads to a deep circuit and exponential growth in computational cost and
storage size of the ciphertext. On the other hand, it is a nontrivial task to approximate cer-
tain critical functions in machine learning models using only low-degree polynomials. Naive
approximation may lead to big errors and makes the solutions intractable. Our framework
proposes novel methods to handle these challenges and makes it possible to learn a logistic
regression model on encrypted data based completely on homomorphic encryption.

2 Backgrounds

In this section, we introduce the setting of our problem, followed by the homomorphic en-
cryption scheme.

2.1 Logistic Regression

Logistic regression is a widely used learning model in biomedicine [10]. Data for supervised
learning consist of pairs (xi, yi) of a vector of co-variates xi = (xi1, · · · , xid) ∈ Rd and a
class label yi for i = 1, · · · , n. We assume that yi ∈ {±1} for binary classification. The model
looks like:

Pr[yi|xi] = σ(yi · (1,xi)Tβ)

for the sigmoid function σ(x) = 1
1+exp(−x) where β = (β0, β1, β2, · · · , βd) are the model

parameters to be estimated. Training methods of logistic regression aim to find the optimal
parameters β, which minimizes the cost (negative log-likelihood)

1

n

n∑
i=1

log(1 + exp(−yi · (1,xi)Tβ)).

2.2 Homomorphic Encryption for Approximate Arithmetic

Homomorphic encryption is an encryption technique that allows computations on ciphertexts
and generates encrypted results that match those of plaintext computation. This technology
has great potentials in real-world applications since it allows us to securely outsource expen-
sive computation on public (untrusted) server. The security of practical HE schemes [5, 11, 2]
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is based on the hardness of ring learning with errors (RLWE) problem. The inherent limita-
tion of these constructions is that they only support the arithmetic operations over modular
spaces so the required size of parameter for real number operations (i.e., no modular reduc-
tion over plaintext space) is too large to be practically implemented. On the other hand,
real-world applications such as statistical testing, neural networks, and machine learning do
not require absolute precision and they are all to a certain degree approximate.

We adopted a special cryptosystem developed by Cheon et al. [6], which supports an
approximate arithmetic of encrypted messages. Different from existing methods, this cryp-
tosystem trades precision for efficiency so that the size of parameters does not grow too
large (thus computationally feasible). The cryptosystem supports key generation, encryp-
tion, decryption, addition, and multiplication operations. It also supports message packing
and rotation, which are important to parallelize similar tasks.

The main idea is to consider an encryption noise (on the ciphertext for security) as a
part of computation error occurring during approximate arithmetic. In other words, given a
secret key sk, an encryption c of a plaintext m satisfies the equation 〈c, sk〉 = m+e (mod q)
for some small error e.

We suppose that the underlying HE scheme is based on the RLWE assumption over the
cyclotomic ring R = Z[X]/(XN + 1) for N being a power of two. Let us denote by [·]q the
reduction modulo q into the interval (−q/2, q/2]∩Z of the integer. We write Rq = R/qR for
the residue ring ofR modulo an integer q. The following is a description of the HE scheme [6].

• ParamsGen(λ): Given the security parameter λ, choose a power of two integer N , a mod-
ulus Q = q2, and a discrete Gaussian distribution χ. The RLWE problem of parameter
(N,Q, χ) should achieve at least λ bits of security level for the semantic security of
cryptosystem. Output params← (N, q, χ).
• KeyGen(params). Generate a polynomial s ∈ R by sampling its coefficient vector ran-

domly from a sparse distribution on {0,±1}N and set the secret key as sk ← (1, s).
Sample a polynomial a uniformly at random from Rq and an error polynomial e from χ.
Set the public key as pk ← (b, a) ∈ Rq ×Rq where b ← −as + e (mod q). Let s′ ← s2.
Sample a polynomial a′ uniformly at random from RQ and e′ from χ. Set the evaluation
key as evk ← (b′, a′) ∈ RQ ×RQ where b′ ← −a′s+ e′ + qs′ (mod Q).
• Encpk(m). Sample a small polynomial v (with 0,±1 coefficients) and two error polyno-

mials e0, e1 from χ. Output the ciphertext v · pk + (m+ e0, e1) ∈ Rq ×Rq.
• Decsk(c). For c = (c0, c1), output m← c0 + c1 · s (mod q′).
• Add(c, c′). Add two ciphertext and output cadd ← c + c′ (mod q′).
• Mult(c, c′). For two ciphertexts c = (c0, c1) and c′ = (c′0, c

′
1), let (d0, d1, d2) = (c0c

′
0, c0c

′
1+

c1c
′
0, c1c

′
1) (mod q′). Output (d0, d1) +

⌊
1
qd2 · evk

⌉
(mod q′).

The native plaintext space is simply represented as the set of polynomials in R with
coefficient less than q, but it can be understood as a vector of N/2-dimensional complex
vector using an encoding/decoding method described in [6] (each factor is called a plaintext
slot). The SIMD technique enables to parallelize both space and computation time as in BGV
scheme [12]. Addition and multiplication in R correspond the component-wise addition and
multiplications on the plaintext slots. In addition, we could get a shift of the plaintext slots,
that is, if c encrypts a plaintext vector (m1,m2, . . . ,m`), we could obtain the encryption of the
shifted vector (mk+1,mk+2, . . . ,m`,m1, . . . ,mk). Let us denote the operation by Rot(c; k).

A unique property of this cryptosystem is the following rescaling procedure, which plays
an important role in controlling the magnitude of messages, and therefore, achieving the
efficiency of approximate computation. The rescaling procedure coverts an encryption c of a
message m with a ciphertext modulus q into an encryption c′ of r−1 ·m with the same secret
key but a smaller modulus q′ = r−1 · q, in which r is a scaling factor. We denote the output
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ciphertext by RS(c; r). It enables us to round the message and reduce the size of significand by
removing some inaccurate least significant bits as in the floating-point arithmetic. Informally,
we will say that the input ciphertext modulus is reduced by log r bits after this procedure
where the binary logarithm will be simply denoted by log(·).

3 Secure Logistic Regression based on Homomorphic Encryption

Unlike linear regression, logistic regression does not have a closed form solution in most
cases. As a result, we need to use nonlinear optimization methods to find the maximum like-
lihood estimators of the regression parameters. The Newton-Raphson [34] and the gradient
descent [4] are the most commonly used methods for training. Because the Newton-Raphson
method involves matrix inversion and most HE schemes do not naturally support division
or matrix inversion, it is difficult to evaluate the method with HE schemes. On the other
hand, gradient descent does not require the division operation, and therefore, it is a better
candidate for homomorphically encrypted logistic regression. Thus, we choose the gradient
descent algorithm as the training method for logistic regression.

Let (xi, yi) ∈ Rd × {±1} be the supervised learning samples for i = 1, · · · , n. If we
write zi = yi · (1,xi) ∈ Rd+1, then the cost function for logistic regression is defined by
1
n

∑n
i=1 log(1+exp(−zTi β)). Its gradient with respect to β is computed by− 1

n

∑n
i=1 σ(−zTi β)·

zi. To find a local minimum point, the gradient descent method updates the regression pa-
rameters using the following formula until β converges:

β ← β +
α

n

n∑
i=1

σ(−zTi β) · zi,

where α is the learning rate.

3.1 Least Squares Approximation of the Sigmoid Function

Although the gradient descent method seems better suited than other training methods
for homomorphic evaluation, some technical problems remain for implementation. In the
preceding update formula, the sigmoid function is the biggest obstacle for evaluation, since
the existing HE schemes only allow evaluation of polynomial functions. Hence the Taylor

polynomials Td(x) =
∑d

k=0
f (k)(0)
k! xk have been commonly used for approximation of the

sigmoid function ([3, 22]):

σ(x) =
1

2
+

1

4
x− 1

48
x3 +

1

480
x5 − 17

80640
x7 +

31

1451520
x9 +O(x11).

However, we observed the input values zTi β of the sigmoid function during iterations on
real-world datasets and concluded that the Taylor polynomial T9(x) of degree 9 is still not
enough to obtain the desired accuracy (see Fig. 2). The size of error grows rapidly as |x|
increases. For instance, we have T9(4) ≈ 4.44, T9(6) ≈ 31.23, and T9(8) ≈ 138.12. In addition,
we have to use a higher degree Taylor polynomial to guarantee the accuracy of regression,
but it requires too many homomorphic multiplications to be practically implemented. In
summary, the Taylor polynomial is not a good candidate for approximation because it is
a local approximation near a certain point. Therefore, we adopted a global approximation
method that minimizes the mean squared error (MSE). For an integrable function f , its
mean square over an interval I is defined by 1

|I|
∫
I f(x)2dx, where |I| denotes the length of

I. The least squares method aims to find a polynomial g(x) of degree d which minimizes the
MSE 1

|I|
∫
I(g(x)− f(x))2dx. The least squares approximation has a closed formula that can

be efficiently calculated using linear algebra.
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Fig. 2. Graphs of sigmoid function and Tay-
lor polynomials
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Fig. 3. Graphs of sigmoid function and least
squares approximations
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In our implementation, we used the degree 3 and 7 least squares approximations of the
sigmoid function over the interval [−8, 8], which contains all of the input values (−zTi β)
during iterations. The least square polynomials are computed as:

g3(x) = a0 + a1(x/8) + a3(x/8)3,

g7(x) = b0 + b1(x/8) + b3(x/8)3 + b5(x/8)5 + b7(x/8)7,

where the coefficients vectors are (a0, a1, a3) ≈ (0.5, 1.20096,−0.81562) and (b0, b1, b3, b5, b7) ≈
(0.5, 1.73496,−4.19407, 5.43402,−2.50739). The degree 3 least squares approximation re-
quires a smaller depth for evaluation while the degree 7 polynomial has a better precision
(see Fig. 3).

3.2 Homomorphic Evaluation of Gradient Descent Algorithm

We will describe how to encode data and explain how to analyze logistic regression on
encrypted data. To speed up the computation, we will use the packing mechanism to batch
n slots and perform n evaluations in parallel, where n is the number of training data samples.

We start with a useful aggregation operation across plaintext slots from the litera-
ture [15, 7, 8]. Specifically, given a ciphertext representing a plaintext vector (m1, · · · ,m`),
we introduce an algorithm (denoted by AllSum) that generates a ciphertext representing a
value of

∑`
i=1mi in each plaintext slot. Assume that ` is chosen as a power-of-two inte-

ger. The cyclic rotation by one unit produces a ciphertext encrypting the plaintext vector
(m2, · · · ,m`,m1). Then an encryption of the vector (m1 + m2,m2 + m3, · · · ,m` + m1) is
obtained by adding the original ciphertext. We repeatedly apply this method (log ` − 1)
times with a rotation by a power of two, which generates the desired ciphertext: that is,
every plaintext slot contains the same value of

∑`
i=1mi. The AllSum algorithm is explicitly

described in Algorithm 1.

Algorithm 1 AllSum(ct)

Input: Ciphertext ct encrypting plaintext vector (m1, · · · ,m`)
Output: Ciphertext ct encrypting

∑`
i=1mi in each plaintext slot

1: for i = 0, 1, . . . , log `− 1 do
2: Compute ct← Add(ct,Rot(ct; 2i))
3: end for
4: return ct
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Let us assume that we are given n training data samples zi with (d + 1) features. As
mentioned before, our goal is to securely evaluate the following arithmetic circuit:

β ← β +
α

n

n∑
i=1

g(−zTi β) · zi, (1)

where g(x) denotes the approximating polynomial of the sigmoid function chosen in the
previous subsection. We set the initial β parameters as the zero vector for simplicity.

Because our cryptosystem only supports integer computation, all the elements are scaled
by a factor of an integer p and then converted into the nearest integers for quantization.
The client first receives the ciphertexts encrypting the vector p · zi from n users, and then
compromises them to obtain (d+1) ciphertexts ct.zj for j = 0, 1, . . . , d, each of which encrypts
the vector p ·(z1j , · · · , znj) of the j-th attributes using batching technique. If n is not a power
of two, the plaintext slots are zero padded so that the number of slots divides N/2. Finally,
these resulting ciphertexts (ct.z0, · · · , ct.zd) are sent to the the server for the computation of
gradient descent.

The public server generates the trivial ciphertexts (ct.beta0, · · · , ct.betad) as zero poly-
nomials in Rq. At each iteration, it performs a homomorphic multiplication of ciphertexts
ct.betaj and ct.zj , and outputs a ciphertext encrypting the plaintext vector p2(z1jβj , . . . , znjβj)
for j = 0, 1, . . . , d. Then it aggregates the ciphertexts and performs the rescaling operation
with a scaling factor of p to manipulate the size of plaintext, returning a ciphertext ct.ip that
represents a plaintext vector approximating to p(zT1 β, . . . ,z

T
nβ).

For the evaluation of the least squares polynomial g(x) at (−zTi β), we adapt the poly-
nomial evaluation algorithm, denoted by PolyEval(·), suggested in [6]. Each coefficient of the
polynomial should be scaled by a factor of p to be transformed into an integral polynomial.
The output ciphertext ct.g contains p · g(−zTi β) in the i-th slot. Finally, the server per-
forms a homomorphic multiplication of the ciphertexts ct.g and ct.zj , AllSum procedure, and
rescaling by a factor of bnαe. These procedures generate the ciphertexts ct.grad0, . . . , ct.gradd
corresponding to the entries of the gradient vector weighted by the learning rate and the
sample size. Then it only needs to perform an addition with the model parameters β and
the gradient vector over encryption, which yields a new ciphertext ct.betaj that encrypts
an approximation of the j-th scaled value of the gradient update in Equation 1. Our secure
logistic regression algorithm is described in Algorithm 2.

Algorithm 2 Procedure of secure logistic regression algorithm

Input: Ciphertexts {ct.zj}0≤j≤d, a polynomial g(x), and number of iterations IterNum
1: for j = 0, 1, . . . , d do
2: ct.betaj ← 0
3: end for
4: for i = 1, 2, . . . , IterNum do
5: ct.ip← RS(

∑d
j=0Mult(ct.betaj , ct.zj); p)

6: ct.g← PolyEval(−ct.ip, bp · g(x)e)
7: for j = 0, 1, . . . , d do
8: ct.gradj ← RS(Mult(ct.g, ct.zj); p)
9: ct.gradj ← RS(AllSum(ct.gradj); bnαe)

10: ct.betaj ← Add(ct.betaj , ct.gradj)
11: end for
12: end for
13: return (ct.beta0, . . . , ct.betad).
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Fig. 4. Evaluation procedure of least squares approximations (2g(zT
i β)− 1) · ( 1

8
zi) when g(x) = g3(x) (left)

or g(x) = g7(x) (right)
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Our solution can compute the gradient descent algorithm securely; however, its direct
implementation is not efficient and requires a total ciphertext modulus of log p ·(dlog deg ge+
3)+dlog(nα)e bits at each iteration. We further optimized this algorithm by manipulating the
arithmetic circuit for the update term α

n

∑n
i=1 g(−zTi β) · zi and could reduce the ciphertext

modulus. We express the evaluation circuit as follows:

β ← β +
4α

n

n∑
i=1

zi
8
− 4α

n

n∑
i=1

(
2g(zTi β)− 1

)
· zi

8
. (2)

If the client generates encryptions of p(18zi) instead of pzi, the required bit length of
ciphertext modulus per iteration can be reduced. On the other hand, the server uses a pre-
computation step to reduce the complexity of update equation: it performs AllSum procedure
and applies the rescaling operation with the scale factor of b n4αe on ct.zj for all j = 0, 1, . . . , d.

As a result, we obtain a ciphertext ct.sumj that encrypts an approximate value of 4αp
n

∑n
i=1

zij
8

in each plaintext slot. These ciphertexts will be stored during evaluation and used for update
of the j-th component of weight vector β. In particular, the ciphertexts ct.beta0, · · · , ct.betad
corresponding to the entries β becomes ct.sum0, · · · , ct.sumd at the first iteration.

Fig. 4 shows how to evaluate the arithmetic circuit (2g(zTi β) − 1) · (18zi) when g(x) =
g3(x) or g(x) = g7(x). We take encryptions of pβ and p

8zi as inputs of the algorithm to
minimize the number of required multiplications and depth. Consequently, the proposed
method reduces the ciphertext modulus by 3 log p + dlog( n

4α)e bits (or 4 log p + dlog( n
4α)e

bits) when g(x) = g3(x) (or g(x) = g7(x), respectively).

4 Implementations

In this section, we explain how to set the parameters and present our implementation results
using the proposed techniques.

4.1 How to Set Parameters

It follows from Section 3.2 that a lower-bound on the bit length of a fresh ciphertext modulus,
denoted by log q, is as follows:{

dlog( n
4α)e+ (IterNum− 1)(dlog( n

4α)e+ 3 log p) + log q0 when g(x) = g3(x),

dlog( n
4α)e+ (IterNum− 1)(dlog( n

4α)e+ 4 log p) + log q0 when g(x) = g7(x),
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where IterNum is the number of iterations of the gradient descent algorithm and q0 is the
output ciphertext modulus. The final ciphertext represents the desired vector β but is scaled
by a factor of p, which means that log q0 should be larger than log p.

The security of the underlying HE scheme relies on the hardness of the RLWE assumption.
We derive a lower-bound on the ring dimension as N ≥ λ+110

7.2 · logQ to get λ-bit security
level from the security analysis of [12]. In other words, we will take the smallest integer N
that is a power-of-two integer satisfying this inequality.

4.2 Implementation Details

Experimentation Environment. All the experiments were performed on an Intel Xeon running
at 2.3 GHz processor with 16 cores and 64GB of RAM, which is an m4.4xlarge AWS EC2
instance. In our implementation, we used a variant of a fixed-point homomorphic encryption
scheme of Cheon et al. [6] with C++ based Shoup’s NTL library [27]. Our implementation is
publicly available at github [16].

Datasets. We develop our approximation algorithm using the Myocardial Infarction dataset
from Edinburgh [18]. The others were obtained from Low Birth Weight Study (lbw), Nhanes
III (nhanes3), Prostate Cancer Study (pcs), and Umaru Impact Study datasets (uis) [19,
23, 24, 31]. All these datasets have a single binary outcome variable, which can be readily
used to train binary classifiers like logistic regression. Table 2 illustrates the datasets with
the number of observations (rows) and the number of features (columns), respectively. We
utilized five-fold cross-validation (CV) that randomly partitions the original datasets into
five folds with the approximately equal size; we used four subsets for learning (with the
learning rate α ≈ 1) and one subset for testing the trained model.

Table 2. Description of datasets

Dataset Number of observations Number of features

Edinburgh 1253 10

lbw 189 10

nhanes3 15649 16

pcs 379 10

uis 575 9

Parameters for the HE Scheme. In our implementation, each coefficient of the secret key
is chosen at random from {0,±1} and we set the number of nonzero coefficients in the key
at h = 64. We used the standard deviation σ = 3.2 for a discrete Gaussian distribution to
sample random error polynomials. We assumed that all the inputs had log p = 28 bits of
precision and set the bit length of the output ciphertext modulus as log q0 = log p + 10.
As discussed before, when evaluating the gradient descent algorithm with g(x) = g7(x),
a ciphertext modulus is reduced more than g(x) = g3(x) at each iteration. Thus, we set
the number of iterations as IterNum = 25 (resp. IterNum = 20) when g(x) = g3(x) (resp.
g(x) = g7(x)) to take an initial ciphertext modulus of similar size. We could actually obtain
the approximate bit length of fresh ciphertext modulus (log q) around 2204 to 2406. We
took the ring dimension N = 217 to ensure 80 bits of security. Since all the computations
were performed on encrypted data, the security against a semi-honest adversary follows from
the semantic security of the underlying HE scheme. For this setting, the public key and a
freshly encrypted ciphertext have two ring elements in Rq = Zq[X]/(XN + 1), so the size is

9



2N log q ≈ 75 MB. The key generation takes about 56∼58 seconds and the encryption takes
about 1.1∼1.3 seconds.

In Table 3, we evaluated our models performance based on average running time (en-
cryption, evaluation, decryption) and storage (encrypted dataset size) in each fold.

Table 3. Experiment results of our HE-based logistic regression

Dataset Enc deg(g) Eval Dec Storage

Edinburgh 12s
3 131min 6.3s 0.69GB

7 116min 6.0s 0.71GB

lbw 11s
3 101min 4.9s 0.67GB

7 100min 4.5s 0.70GB

nhanes3 21s
3 265min 12s 1.15GB

7 240min 13s 1.17GB

pcs 11s
3 119min 4.4s 0.68GB

7 100min 4.5s 0.70GB

uis 10s
3 109min 5.1s 0.61GB

7 94min 4.3s 0.63GB

We used a popular metric, Area Under the ROC Curve (AUC), to measure the model’s
classification performance where the true positive rate (TPR) is plotted against the false
positive rate (FPR) at various thresholds. Fig. 5 plots the average AUC values from five-fold
CV for datasets. The program was implemented by MATLAB 2017a.

Fig. 5. Average AUC of encrypted logistic regression

We can converge to the optimum within a small number of iterations (20∼25), which
makes it very promising to train a homomorphically encrypted logistic regression model and
mitigate the privacy concerns.
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Table 4. Comparison of encrypted/unencrypted logistic regression

Dataset IterNum deg(g)
HE-based LR Unencrypted LR

MSE NMSE
Accuracy AUC Accuracy AUC

Edinburgh
25 3 86.03% 0.956 88.43% 0.956 0.0259 0.0261

20 7 86.19% 0.954 86.19% 0.954 0.0007 0.0012

lbw
25 3 69.30% 0.665 68.25% 0.668 0.0083 0.0698

20 7 69.29% 0.678 69.29% 0.678 0.0003 0.0049

nhanes3
25 3 79.23% 0.732 79.26% 0.751 0.0033 0.0269

20 7 79.23% 0.737 79.23% 0.737 0.0002 0.0034

pcs
25 3 68.85% 0.742 68.86% 0.750 0.0085 0.0449

20 7 69.12% 0.750 69.12% 0.752 0.0002 0.0018

uis
25 3 74.43% 0.585 74.43% 0.587 0.0074 0.0829

20 7 75.43% 0.617 74.43% 0.619 0.0004 0.0077

In Table 4, we compared the produced models using our encrypted approach and unen-
crypted logistic regression. In the unencrypted cases, we used the original sigmoid function
on the same training dataset with the same iteration numbers as the encrypted cases. For
discrimination, we calculated the accuracy (%), which is the percentage of the correct pre-
dictions on the testing dataset. For a more accurate comparison, we used the MSE that
measures the average of the squares of the errors. We could also normalize it by dividing
by the average of the squares of the (unencrypted) model parameters, called a normalized
mean-squared error (NMSE).

5 Discussion

5.1 Principal Findings

Our implementation shows that the evaluation of the gradient descent algorithm with the de-
gree 7 least squares polynomial yields better accuracy and AUC than degree 3. It is quite close
to the unencrypted result of logistic regression using the original sigmoid function with the
same number of iterations; for example, on the training model of Edinburgh dataset, we could
obtain the model parameters β as follows: β = (−1.7086, 0.0768, 0.1119, 0.3209, 1.2033, 0.3684,
0.9756, 0.2020, 0.2259,−0.1641), which can reach 86.19% accuracy and 0.954 AUC on the
testing dataset. When using the sigmoid function on the same training dataset, the model pa-
rameters β are (−1.6308, 0.0776, 0.1097, 0.3155, 1.1809, 0.3651, 0.9599, 0.2083, 0.2298,−0.1490),
which give the same accuracy and AUC. On the other hand, as shown in Table 4, the MSE
and NMSE values of degree 7 are closer to zero, which inspires us that the polynomial
approximation of that degree is fairly accurate for logistic regression.

One of the inherent properties of our underlying HE scheme is that the inserted errors
for security may increase after some homomorphic operations. Hence, the size of error and
the precision loss should be discussed carefully to guarantee the correctness of the resulting
value. On the other hand, the gradient descent method has a property of negative feedback
on computational error. Because we use the gradient at the current weight vector β to
move it closer to the optimal point of minimized cost, the effect of noise disappears after
some iterations. Therefore, there is no need to manage the precision of messages to confirm
the correctness of resulting value because the noises are not amplified during evaluation.
In our experimentation on the Edinburgh dataset, for instance, the difference between the
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model parameters obtained from encrypted/unencrypted evaluations was less than 2−11. This
means that we can precisely compute at least most significant 11 bits after the radix point
of the model parameters and this approximate vector is accurate enough to achieve a good
performance in testing data samples.

5.2 Limitations

There are still a number of limitations in the application of our evaluation model to an
arbitrary dataset. First of all, the use of HE yields the overheads in computation and storage.
The size of dataset should be limited for practical evaluation, but this is not a big problem
since there have been significant improvements in the existing HE schemes. The development
of HE technology will achieve much better practical performance in our protocol.

Another issue arises from the polynomial approximation. We suggested the least squares
method on a certain interval [−8, 8], but the precision of result can increase by managing
approximation error from wider range inputs. Finally, our model is based on fixed hyper
parameters that should be decided before starting of the evaluation. It would be highly
beneficial if we could detect convergence of the loss function in the training process and
support early stop instead.

6 Conclusions

This paper presents the first effective methodology to evaluate the learning phase of logis-
tic regression using the gradient descent method based on HE. We have demonstrated the
capability of our model across the experiments with different biological datasets. In partic-
ular, our solution can be applied to a large-scale dataset, which shows the feasibility of our
approach.
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