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Abstract. Learning a model without accessing raw data has been an intriguing idea to the
security and machine learning researchers for years. In an ideal setting, we want to encrypt
sensitive data to store them on a commercial cloud and run certain analysis without ever
decrypting the data to preserve the privacy. Homomorphic encryption technique is a promising
candidate for secure data outsourcing but it is a very challenging task to support real-world
machine learning tasks. Existing frameworks can only handle simplified cases with low-degree
polynomials such as linear means classifier and linear discriminative analysis.
The goal of this study is to provide a practical support to the mainstream learning models (e.g.,
logistic regression). We innovated on: (1) a novel homomorphic encryption scheme optimized
for real numbers computation, (2) the least squares approximation of the logistic function for
accuracy and efficiency (i.e., reduce computation cost), and (3) new packing and paralleliza-
tion techniques. Using real-world datasets, we evaluated the performance of our model and
demonstrated its feasibility in speed and memory consumption. For example, it took about 116
minutes to obtain the training model from homomorphically encrypted Edinburgh dataset. In
addition, it gives fairly accurate predictions on the testing dataset. We present the first homo-
morphically encrypted logistic regression outsourcing model based on the critical observation
that the precision loss of classification models is sufficiently small so that the decision plan stays
still.

Keywords. Homomorphic encryption, approximate arithmetic, logistic regression, gradient
descent

1 Introduction

Biomedical data are highly sensitive and often contain important personal information about
individuals. In the United States, healthcare data sharing is protected by Health Insurance
Portability and Accountability Act (HIPAA) (only use addition and multiplication) [30]
while biomedical research practitioners are covered under federal regulation governing the
“Common Rule”, a federal policy that protects people who volunteer for federally funded
research studies [26]. These policies set high standards on the protection of biomedical data
and violations will lead to financial penalties and lost reputation. On the other hand, cloud
computing, which significantly simplifies IT environments, is the trend for data management
and analysis. According to a recent study by Microsoft, nearly a third of organizations work
with four or more cloud vendors [20]. The privacy concern, therefore, becomes a major hurdle
for medical institutions to outsource data and computation to the commercial cloud. It is
imperative to develop advanced mechanisms to assure the confidentiality of data to support
secure analysis in the cloud environment.

An intuitive solution is to train a model without accessing the data and only obtain the
estimated model parameters in a global manner. Assuming summary statistics can be shared,
this can be done in a joint manner and we have developed the Grid Logistic Regression [33, 17,
32] to show the feasibility of estimating the global parameters from distributed sources (e.g.,
by only exchanging gradients and Hessian matrices). However, there are still vulnerabilities



Fig. 1. Two secure models (a) secure storage and computation outsourcing, (b) secure model outsourcing

in sharing even the summary statistics, for example, the difference in averaged age between
a cohort of n patients and another cohort of n− 1 overlapped patients can reveal the actual
age of a single patient.

Many medical decision making systems rely on the logistic regression model [28, 9, 29].
However, in order to use them appropriately, we need to provide sufficient samples, which
requires a sample size calculation. Peduzzi et al. suggested a simple guideline for a minimum
number of cases to include in the study [25]. Let p be the smallest of the proportions of
negative or positive cases in the population and k the number of covariates (the number of
independent variables), then the minimum number of cases to include is: N = 10 · k/p. For
example, one has 3 covariates to be included in the model and the proportion of positive
cases in the population is 0.2 (20%). The minimum number of cases required is N = 10 ·
3/0.20 = 150. For rare disease studies with many variables, it is even harder to collect
enough samples from a single institution to meet this goal. We need to circumvent the
privacy barriers to feed the model with more samples from different sources. As shown in
Figure 1, homomorphic encryption (HE) techniques can support typical secure computations
(e.g., secure outsourcing and secure multi-party computation) and mitigate the privacy risks
by allowing all computation to be done in the encrypted format.

Graepel et al. shed light on machine learning with homomorphically encrypted data [14].
The paper discussed scenarios that are appropriate and inappropriate to exercise machine
learning with HE techniques. The authors provided two examples: linear means classifier
and linear discriminative analysis, which can be achieved by using low-degree polynomials
in HE. However, these simple parametric models do not handle complex datasets well and
they are not representing the mainstream machine learning technologies used in biomedical
research [10, 21]. Additional work was carried out by Bos et al. to demonstrate the feasi-
bility of making a prediction on encrypted medical data in the Microsoft’s Azure cloud [3].
However, instead of learning from the data, this model only makes prediction using learned
logistic regression models in a privacy-preserving manner. Similarly, a more recent work
called CryptoNets applied trained neural networks to encrypted data only for the evaluation
purpose [13]. In the current literature, most similar to our work are Aono et al. [1] and
Mohassel et al. [22], but they are also very different from ours in assumptions and meth-
ods. Aono et al. [1] introduced an approximation to convert the likelihood function into a
low-degree polynomial and used an additive HE to aggregate some intermediary statistics.
However, their scenario relies on the client to decrypt these intermediary statistics so that it
can minimize the parameters locally. This is not a completely secure outsourcing scenario as
ours, which works on encrypted data to obtain encrypted parameters without any client in-
volvement. Mohassel et al. [22] developed secure two-party computation protocols to conduct
the stochastic gradient descent for solving logistic regression and neural network problems.
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Table 1. Research works in secure analysis

Reference Problem Techniques

Graepel et al. [14] Linear means classifier/Discriminative analysis HE

Bos et al. [3] Prediction using learned logistic regression model HE

Gilad-Bachrach [13] Prediction using learned neural networks HE

Aono et al. [1] Logistic regression Additive HE

Mohassel et al. [22] Logistic regression MPC

This work Logistic regression HE

This method takes a completely different approach (garbled circuit and secret sharing vs.
HE) and the assumptions are widely different from ours (secure multi-party computation vs.
secure outsourcing).

There are several prominent challenges related to scalability and efficiency. Traditional
methods cannot handle many iterations of multiplications, which lead to a deep circuit and
exponential growth in computational cost and storage size of the ciphertext. On the other
hand, it is a non-trivial task to approximate certain critical functions in machine learning
models using only low-degree polynomials. Naive approximation might lead to big errors
and makes the solutions intractable. Our framework proposes novel methods to handle these
challenges and makes it possible to learn a logistic regression model on encrypted data based
completely on HE.

2 Backgrounds

In this section, we introduce the setting of our problem, followed by the homomorphic en-
cryption scheme.

2.1 Logistic Regression

Logistic regression is a widely used learning model in biomedicine [10]. Data for supervised
learning consist of pairs (xi, yi) of a vector of co-variates xi = (xi1, · · · , xid) ∈ Rd and a
class label yi for i = 1, · · · , n. We assume that yi ∈ {±1} for binary classification. The model
looks like

Pr[yi|xi] = σ(yi · (1,xi)Tβ)

for the sigmoid function σ(x) = 1
1+exp(−x) where β = (β0, β1, β2, · · · , βd) are the model

parameters to be estimated. Training methods of logistic regression aim to find the optimal
parameters β which minimizes the cost (negative log-likelihood)

1

n

n∑
i=1

log(1 + exp(−yi · (1,xi)Tβ)).

2.2 Homomorphic Encryption for Approximate Arithmetic

HE is an encryption technique that allows computations on ciphertexts and generates en-
crypted results which match those of plaintext computation. This technology has great poten-
tials in real-world applications since it allows us to securely outsource expensive computation
on public (untrusted) server. The security of practical HE schemes [5, 11, 2] is based on the
hardness of ring learning with errors (RLWE) problem. The inherent limitation of these
constructions is that they only support the arithmetic operations over modular spaces so
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the required size of parameter for real number operations (i.e., no modular reduction over
plaintext space) is too large to be practically implemented. On the other hand, real-world
applications such as statistical testing, neural networks, and machine learning do not require
absolute precision and they are all to a certain degree approximate.

We adopted a special cryptosystem developed by Cheon et al. [6], which supports an
approximate arithmetic of encrypted messages. Different from existing methods, this cryp-
tosystem trades precision for efficiency so that the size of parameters does not grow too
large (thus computationally feasible). The cryptosystem supports key generation, encryp-
tion, decryption, addition, and multiplication operations. It also supports message packing
and rotation, which are important to parallelize similar tasks.

The main idea is to consider an encryption noise (on the ciphertext for security) as a
part of computation error occurring during approximate arithmetic. In other words, given a
secret key sk, an encryption c of a plaintext m satisfies the equation 〈c, sk〉 = m+e (mod q)
for some small error e.

We suppose that the underlying HE scheme is based on the RLWE assumption over the
cyclotomic ring R = Z[X]/(XN + 1) for N being a power of two. Let us denote by [·]q the
reduction modulo q into the interval (−q/2, q/2]∩Z of the integer. We write Rq = R/qR for
the residue ring ofR modulo an integer q. The following is a description of the HE scheme [6].

• ParamsGen(λ): Given the security parameter λ, choose a power of two integer N , a mod-
ulus Q = q2, and a discrete Gaussian distribution χ. The RLWE problem of parameter
(N,Q, χ) should achieve at least λ bits of security level for the semantic security of
cryptosystem. Output params← (N, q, χ).
• KeyGen(params). Generate a polynomial s ∈ R by sampling its coefficient vector ran-

domly from a sparse distribution on {0,±1}N and set the secret key as sk ← (1, s).
Sample a polynomial a uniformly at random from Rq and an error polynomial e from χ.
Set the public key as pk ← (b, a) ∈ Rq ×Rq where b ← −as + e (mod q). Let s′ ← s2.
Sample a polynomial a′ uniformly at random from RQ and e′ from χ. Set the evaluation
key as evk ← (b′, a′) ∈ RQ ×RQ where b′ ← −a′s+ e′ + qs′ (mod Q).
• Encpk(m). Sample a small polynomial v (with 0,±1 coefficients) and two error polyno-

mials e0, e1 from χ. Output the ciphertext v · pk + (m+ e0, e1) ∈ Rq ×Rq.
• Decsk(c). For c = (c0, c1), output m← c0 + c1 · s (mod q).
• Add(c, c′). Add two ciphertext and output cadd ← c + c′ (mod q).
• Mult(c, c′). For two ciphertexts c = (c0, c1) and c′ = (c′0, c

′
1), let (d0, d1, d2) = (c0c

′
0, c0c

′
1+

c1c
′
0, c1c

′
1) (mod q). Output (d0, d1) +

⌊
1
qd2 · evk

⌉
(mod q).

The native plaintext space is simply represented as the set of polynomials in R with
coefficient less than q, but it can be understood as a vector of N/2-dimensional complex
vector using an encoding/decoding method described in [6] (each factor is called a plaintext
slot). The SIMD technique enables to parallelize both space and computation time as in BGV
scheme [12]. Addition and multiplication in R correspond the component-wise addition and
multiplications on the plaintext slots. In addition, we could get a shift of the plaintext slots,
that is, if c encrypts a plaintext vector (m1,m2, . . . ,m`), we could obtain the encryption of the
shifted vector (mk+1,mk+2, . . . ,m`,m1, . . . ,mk). Let us denote the operation by Rot(c; k).

A unique property of this cryptosystem is the following rescaling procedure, which plays
an important role in controlling the magnitude of messages, and therefore, achieving the
efficiency of approximate computation. The rescaling procedure coverts a ciphertext c of a
message m with a ciphertext modulus q into a ciphertext c′ of r−1m with the same secret
key but a smaller modulus q′ = r−1 · q, in which r is a scaling factor. We denote the output
ciphertext by RS(c; r) . It enables us to round the message and reduce the size of significand by
removing some inaccurate least significant bits as in the floating-point arithmetic. Informally,
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we will say that the input ciphertext modulus is reduced by log r bits after this procedure
where the binary logarithm will be simply denoted by log(·).

3 Secure Logistic Regression based on Homomorphic Encryption

Unlike linear regression, logistic regression does not have a closed form solution in most cases.
As a result, we need to use nonlinear optimization methods to find the maximum likelihood
estimators of the regression parameters. Newton Raphson [34] and the gradient descent [4] are
the most commonly used methods for training. Since the Newton’s method involves matrix
inversion and most HE schemes do not naturally support division or matrix inversion, it is
difficult to evaluate the method with HE schemes. On the other hand, gradient descent does
not require the division operation, and therefore is a better candidate for homomorphically
encrypted logistic regression. Thus, we choose the gradient descent algorithm as the training
method for logistic regression.

Let (xi, yi) ∈ Rd × {±1} be the supervised learning samples for i = 1, · · · , n. If we
write zi = yi · (1,xi) ∈ Rd+1, then the cost function for logistic regression is defined by
1
n

∑n
i=1 log(1+exp(−zTi β)). Its gradient with respect to β is computed by− 1

n

∑n
i=1 σ(−zTi β)·

zi. To find a local minimum point, the gradient descent method updates the regression pa-
rameters using the following formula until β converges:

β ← β +
α

n

n∑
i=1

σ(−zTi β) · zi,

where α is the learning rate.

3.1 Least Squares Approximation of the Sigmoid Function

Although the gradient descent method seems better suited than other training methods
for homomorphic evaluation, some technical problems remain for implementation. In the
above update formula, the sigmoid function is the biggest obstacle for evaluation, since
the existing HE schemes only allow evaluation of polynomial functions. Hence the Taylor

polynomials Td(x) =
∑d

k=0
f (k)(0)
k! xk have been commonly used for approximation of the

sigmoid function ([3, 22]):

σ(x) =
1

2
+

1

4
x− 1

48
x3 +

1

480
x5 − 17

80640
x7 +

31

1451520
x9 +O(x11).

However, we observed the input values (zTi β) of the sigmoid function during iterations on
real-world datasets and concluded that the Taylor polynomial T9(x) of degree 9 is still not
enough to obtain the desired accuracy (see Figure 2). The size of error grows rapidly as |x|
increases. For instance, we have T9(4) ≈ 4.44, T9(6) ≈ 31.23, and T9(8) ≈ 138.12. In addition,
we have to use a higher degree Taylor polynomial to guarantee the accuracy of regression,
but it requires too many homomorphic multiplications to be practically implemented. In
summary, the Taylor polynomial is not a good candidate for approximation because it is a
local approximation near a certain point. Therefor, we adopt a global approximation method
which minimizes the mean squared error. For an integrable function f , its mean square over
an interval I is defined by

1

|I|

∫
I
f(x)2dx,

where |I| denotes the length of I. The least squares method aims to find a polynomial g(x)
of degree d which minimizes the mean squared error 1

|I|
∫
I(g(x)−f(x))2dx. The least squares

approximation has a closed formula that can be efficiently calculated using linear algebra.
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Fig. 2. Sigmoid function and Taylor poly-
nomials
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Fig. 3. Sigmoid function and least squares
approximations
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In our implementation, we use the degree 3 and 7 least squares approximations of the
sigmoid function over the interval [−8, 8], which contains all of the input values (−zTi β)
during iterations. The least square polynomials are computed as

g3(x) = a0 + a1(x/8) + a3(x/8)3,

g7(x) = b0 + b1(x/8) + b3(x/8)3 + b5(x/8)5 + b7(x/8)7,

where the coefficients vectors are (a0, a1, a3) ≈ (0.5, 1.20096,−0.81562) and (b0, b1, b3, b5, b7) ≈
(0.5, 1.73496,−4.19407, 5.43402,−2.50739). The degree 3 least squares approximation re-
quires a smaller depth for evaluation while the degree 7 polynomial has a better precision
(see Figure 3).

3.2 Homomorphic Evalutaion of Gradient Descent Algorithm

We will describe how to encode data and explain how to analyze logistic regression on
encrypted data. To speed up the computation, we will use the packing mechanism to batch
n slots and perform n evaluations in parallel, where n is the number of training data samples.

We start with a useful aggregation operation across plaintext slots from the litera-
tures [15, 7, 8]. Specifically, given a ciphertext representing a plaintext vector (m1, · · · ,m`),
we introduce an algorithm which generates a ciphertext representing a value of

∑`
i=1mi in

each plaintext slot. Assume that ` is chosen as a power of two integer. The cyclic rotation by
one unit produces a ciphertext encrypting the plaintext vector (m2, · · · ,m`,m1). Then an
encryption of the vector (m1 +m2,m2 +m3, · · · ,m`+m1) is obtained by adding the original
ciphertext. We repeatedly apply this method log ` − 1 times with a rotation by a power of
two, which generates the desired ciphertext, that is, every plaintext slot contains the same
value of

∑`
i=1mi. The whole procedure is described in Algorithm 1.

Let us assume that we are given n training data samples zi with (d + 1) features. As
mentioned before, our goal is to securely evaluate the following arithmetic circuit:

β ← β +
α

n

n∑
i=1

g(−zTi β) · zi, (1)

where g(x) denotes the approximating polynomial of the sigmoid function chosen in the
previous subsection. We set the initial β parameters as the zero vector for simplicity.
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Algorithm 1 AllSum(ct)

Input: Ciphertext ct encrypting plaintext vector (m1, · · · ,m`)
Output: Ciphertext ct encrypting

∑`
i=1mi in each plaintext slot

1: for i = 0, 1, . . . , log `− 1 do
2: Compute ct← Add(ct,Rot(ct; 2i))
3: end for
4: return ct

Algorithm 2 Procedure of secure logistic regression algorithm

Input: Ciphertexts {ct.zj}0≤j≤d, a polynomial g(x), and number of iterations IterNum
1: for j = 0, 1, . . . , d do
2: ct.betaj ← 0
3: end for
4: for i = 1, 2, . . . , IterNum do
5: ct.ip← Rescaling(

∑d
j=0Mult(ct.betaj , ct.zj), p)

6: ct.g← PolyEval(−ct.ip, bp · g(x)e)
7: for j = 0, 1, . . . , d do
8: ct.gradj ← Rescaling(Mult(ct.g, ct.zj), p)
9: ct.gradj ← Rescaling(AllSum(ct.gradj),

n
α)

10: ct.betaj ← ct.betaj + ct.gradj
11: end for
12: end for
13: return (ct.beta0, . . . , ct.betad).

Because our cryptosystem only supports integer computation, all the elements are scaled
by a factor of an integer p and then converted into the nearest integers for quantization. The
client first receives the ciphertexts encrypting p · zi’s from n users and then compromises
them to obtain (d+ 1) ciphertexts ct.zj for j = 0, 1, . . . , d, each of which encrypts the vector
p · (z1j , · · · , znj) of the j-th attributes using batching technique. If n is not a power of two,
the plaintext slots are zero-padded so that the number of slots divides N/2. Finally, these
resulting ciphertexts (ct.z0, · · · , ct.zd) are sent to the the server for the computation xof
gradient descent.

The public server generates the trivial ciphertexts (ct.beta0, · · · , ct.betad) as zero poly-
nomials in Rq. At each iteration, it performs a homomorphic multiplication of ciphertexts
ct.betaj and ct.zj , and outputs a ciphertext encrypting the plaintext vector p2(z1jβj , . . . , znjβj)
for j = 0, 1, . . . , d. Then it aggregates the ciphertexts and performs the rescaling operation
with a scaling factor of p to manipulate the size of plaintext, returning a ciphertext ct.ip that
represents a plaintext vector approximating to p(zT1 β, . . . ,z

T
nβ).

For the evaluation of the least squares polynomial g(x) at (−zTi β), we adapt the polyno-
mial evaluation algorithm, denoted by PolyEval(·), suggested in [6] (see Theorem 1 for more
detail). Each coefficient of the polynomial should be scaled by a factor of p to be transformed
into an integral polynomial. The output ciphertext ct.g contains p · g(−zTi β) in the i-th slot.
Finally the server performs a homomorphic multiplication of the ciphertexts ct.g and ct.zj ,
AllSum procedure, and rescaling by a factor of bnαe. These procedures generate the cipher-
texts ct.grad0, . . . , ct.gradd corresponding to the entries of the gradient vector weighted by
the learning rate and the sample size. Then it only needs to perform an addition with the
model parameters β and the gradient vector over encryption, which yields a new ciphertext
ct.betaj that encrypts an approximation of the j-th scaled value of the gradient update as
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Fig. 4. Evaluation procedure of least squares approximations (2g(zT
i β)− 1) · ( 1

8
zi) when g(x) = g3(x) (left)

or g(x) = g7(x) (right)
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given in the equation (1) in each plaintext slot. Our secure logistic regression algorithm is
described in Algorithm 2.

Algorithm 2 solves the gradient descent problem for logistic regression, however, its direct
implementation is not efficient and requires a total ciphertext modulus of log p ·(dlog deg ge+
3) log p + logbnαe bits at each iteration. We further optimized this algorithm by manipulat-
ing the arithmetic circuit for the update term α

n

∑n
i=1 g(−zTi β) · zi and could reduce the

ciphertext modulus. We express the evaluation circuit as follows:

β ← β +
4α

n

n∑
i=1

zi
8
− 4α

n

n∑
i=1

(
2g(zTi β)− 1

)
· zi

8
. (2)

If the client generates encryptions of p(18zi) instead of pzi, the required bit length of
ciphertext modulus per iteration can be reduced. On the other hand, the server uses a
pre-computation step to reduce the complexity of update equation: it performs AllSum pro-
cedure and applies the rescaling operation with the scale factor of b n4αe on ct.zj for all
j = 0, 1, . . . , d. As a result, we obtain a ciphertext ct.sumj which encrypts an approximate
value of 4αp

n

∑n
i=1

zij
8 in each plaintext slot. These ciphertexts will be stored during evaluation

and used for update of the j-th component of weight vector β. In particular, the ciphertexts
ct.beta0, · · · , ct.betad corresponding to the entries β becomes ct.sum0, · · · , ct.sumd at the first
iteration.

Figure 4 shows how to evaluate the arithmetic circuit (2g(zTi β)− 1) · (18zi) when g(x) =
g3(x) or g(x) = g7(x). We take encryptions of pβ and p

8zi as inputs of the algorithm to
minimize the number of required multiplications and depth. Consequently, the proposed
method reduces the ciphertext modulus by 3 log p+ log(b n4αe) bits or 4 log p+ log(b n4αe) bits
when g(x) = g3(x) or g(x) = g7(x), respectively.

4 Implementations

In this section, we explain how to set the parameters and present our implementation results
using the proposed techniques.
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4.1 How to Set Parameters

It follows from Section 3.2 that a lower-bound on the bit length of a fresh ciphertext modulus,
denoted by log q, is as follows:{

logb n4αe+ (IterNum− 1)(logb n4αe+ 3 log p) + log q0 when g = g3,

logb n4αe+ (IterNum− 1)(logb n4αe+ 4 log p) + log q0 when g = g7,

where IterNum is the number of iterations of the gradient descent algorithm and q0 is the
output ciphertext modulus. The final ciphertext represents the desired vector β but is scaled
by a factor of p, which means that log q0 should be larger than log p.

The security of the underlying HE scheme relies on the hardness of the RLWE assumption.
We derive a lower-bound on the ring dimension as N ≥ λ+110

7.2 · logQ to get λ-bit security
level from the security analysis of [12]. In other words, we will take the smallest integer N
that is a power of two integer satisfying this inequality.

4.2 Implementation Details

Experimentation Environment. All the experiments were performed on an Intel Xeon running
at 2.3 GHz processor with 16-cores and 64GB of RAM, which is an m4.4xlarge AWS EC2
instance. In our implementation, we used a variant of a fixed-point homomorphic encryption
scheme of [6] with C++ based Shoup’s NTL library [27]. Our implementation is publicly
available at github [16].

Datasets. We develop our approximation algorithm using the Myocardial Infarction dataset
from Edinburgh [18]. The others were obtained from Low Birth Weight Study (lbw), Nhanes
III (nhanes3), Prostate Cancer Study (pcs), and Umaru Impact Study datasets (uis) [19,
23, 24, 31]. All these datasets have a single binary outcome variable, which can be readily
used to train binary classifiers like logistic regression. Table 2 illustrates the datasets with
the number of observations (rows) and the number of features (columns), respectively. We
utilized 5-fold cross validation (CV) that randomly partitions the original datasets into five
folds with the approximately equal size; we used four subsets for learning (with the learning
rate α ≈ 1) and one subset for testing the trained model.

Table 2. Description of datasets

Dataset Number of observations Number of features

Edinburgh 1253 10

lbw 189 10

nhanes3 15649 16

pcs 379 10

uis 575 9

Parameters for the HE Scheme. In our implementation, each coefficient of the secret key is
chosen at random from {0,±1} and we set the number of nonzero coefficients in the key at
h = 64. We use the standard deviation σ = 3.2 for a discrete Gaussian distribution to sample
random error polynomials. We assume that all the inputs have log p = 28 bits of precision and
set the bit length of the output ciphertext modulus as log q0 = log p+10. As discussed before,
when evaluating the gradient descent algorithm with g(x) = g7(x), a ciphertext modulus is
reduced more than g(x) = g3(x) at each iteration. So we set the number of iterations as
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IterNum = 25 (resp. IterNum = 20) when g(x) = g3(x) (resp. g(x) = g7(x)) to take an initial
ciphertext modulus of similar size. We could actually obtain the approximate bit length of
fresh ciphertext modulus (log q) around 2204 to 2406. We took the ring dimension N = 217

to ensure 80 bits of security. Since all the computation are performed on encrypted data, the
security against a semi-honest adversary follows from the semantic security of the underlying
HE scheme. For this setting, the public key and a freshly encrypted ciphertext have two ring
elements in Rq = Zq[X]/(XN + 1) so the size is 2N log q ≈ 75 MB. The key generation takes
about 56∼58 seconds and the encryption takes about 1.1∼1.3 seconds.

In Table 3, we evaluated our models performance based on average running time (en-
cryption, evaluation, decryption) and storage (encrypted dataset size) in each fold.

Table 3. Experiment results of our HE-based logistic regression algorithm

Dataset Enc deg(g) Eval Dec Storage

Edinburgh 12s
3 131min 6.3s 0.69GB

7 116min 6.0s 0.71GB

lbw 11s
3 101min 4.9s 0.67GB

7 100min 4.5s 0.70GB

nhanes3 21s
3 265min 12s 1.15GB

7 240min 13s 1.17GB

pcs 11s
3 119min 4.4s 0.68GB

7 100min 4.5s 0.70GB

uis 10s
3 109min 5.1s 0.61GB

7 94min 4.3s 0.63GB

We used a popular metric Area Under the ROC Curve (AUC) to measure the model’s
classification performance where the true positive rate (TPR) is plotted against the false
positive rate (FPR) at various thresholds. Figure 5 plots the average AUC values from 5-fold
CV for datasets. The program was implemented by MATLAB 2017a.

Fig. 5. Average AUC of encrypted logistic regression
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Table 4. Comparison of encrypted/unencrypted logistic regression

Dataset IterNum deg(g)
HE-based LR Unencrypted LR

MSE NMSE
Accuracy AUC Accuracy AUC

Edinburgh
25 3 86.03% 0.956 88.43% 0.956 0.0259 0.0261

20 7 86.19% 0.954 86.19% 0.954 0.0007 0.0012

lbw
25 3 69.30% 0.665 68.25% 0.668 0.0083 0.0698

20 7 69.29% 0.678 69.29% 0.678 0.0003 0.0049

nhanes3
25 3 79.23% 0.732 79.26% 0.751 0.0033 0.0269

20 7 79.23% 0.737 79.23% 0.737 0.0002 0.0034

pcs
25 3 68.85% 0.742 68.86% 0.750 0.0085 0.0449

20 7 69.12% 0.750 69.12% 0.752 0.0002 0.0018

uis
25 3 74.43% 0.585 74.43% 0.587 0.0074 0.0829

20 7 75.43% 0.617 74.43% 0.619 0.0004 0.0077

We can converge to the optimum within a small number of iterations (20∼25), which
makes it very promising to train a homomorphically encrypted logistic regression model and
mitigate the privacy concerns.

In Table 4, we compared the produced models using our encrypted approach and unen-
crypted logistic regression. In the unencrypted cases, we used the original sigmoid function
on the same training dataset with the same iteration numbers as the encrypted cases. For
discrimination, we calculated the accuracy (%) which is the percentage of the correct pre-
dictions on the testing dataset. For a more accurate comparison, we used the mean-squared
error (MSE) which measures the average of the squares of the errors. We could also normalize
it by dividing by the average of the squares of the (unencrypted) model parameters, called
a normalized mean-squared error (NMSE).

5 Discussion

5.1 Principal Findings

Our implementation shows that the evaluation of the gradient descent algorithm with the de-
gree 7 least squares polynomial yields better accuracy and AUC than degree 3. It is quite close
to the unencrypted result of logistic regression using the original sigmoid function with the
same number of iterations; for example, on the training model of Edinburgh dataset, we could
obtain the model parameters β as follows: β = (−1.7086, 0.0768, 0.1119, 0.3209, 1.2033, 0.3684,
0.9756, 0.2020, 0.2259,−0.1641), which can reach 86.19% accuracy and 0.954 AUC on the
testing dataset. When using the sigmoid function on the same training dataset, the model pa-
rameters β are (−1.6308, 0.0776, 0.1097, 0.3155, 1.1809, 0.3651, 0.9599, 0.2083, 0.2298,−0.1490),
which give the same accuracy and AUC. On the other hand, as shown in Table 4, the MSE
and NMSE values of degree 7 are closer to zero which inspires us that the polynomial ap-
proximation of that degree is fairly accurate for logistic regression.

One of the inherent properties of our underlying HE scheme is that the inserted errors for
security may increase after some homomorphic operations. Hence the size of error and the
precision loss should be discussed carefully to guarantee the correctness of resulting value.
On the other hand, the gradient descent method has a property of negative feedback on
computational error. Since we use the gradient at the current weight vector β to move it closer
to the optimal point of minimized cost, the effect of noise disappears after some iterations.
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Therefore, there is no need to manage the precision of messages to confirm the correctness of
resulting value because the noises are not amplified during evaluation. In our experimentation
on Edinburgh dataset, for instance, the difference between the model parameters obtained
from encrypted/unencrypted evaluations was less than 2−11. This means that we can precisely
compute at least most significant 11 bits after the radix point of the model parameters and
this approximate vector is accurate enough to achieve a good performance in testing data
samples.

5.2 Limitations

There are still a number of limitations in the application of our evaluation model to an
arbitrary dataset. First of all, the use of HE yields the overheads in computation and storage.
The size of dataset should be limited for practical evaluation, but this is not a big problem
since there have been significant improvements in the existing HE schemes. The development
of HE technology will achieve much better practical performance in our protocol. Another
issue arises from the polynomial approximation. We suggested the least squares method on a
certain interval [−8, 8], but the precision of result can increase by managing approximation
error from wider range inputs. Finally, our model is based on fixed hyper parameters that
should be decided before the starting of the evaluation. It would be highly beneficial if we
could detect convergence of the loss function in the training process and support early stop
instead.

6 Conclusions

This paper presents the first effective methodology to evaluate the learning phase of logis-
tic regression using the gradient descent method based on HE. We have demonstrated the
capability of our model across the experiments with different biological datasets. In partic-
ular, our solution can be applied to a large-scale dataset, which shows the feasibility of our
approach.
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