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Abstract. PBKDF2 [27] is a well-known password-based key derivation
function. In order to slow attackers down, PBKDF2 introduces CPU-
intensive operations based on an iterated pseudorandom function (in our
case HMAC-SHA-1). If we are able to speed up a SHA-1 or an HMAC
implementation, we are able to speed up PBKDF2-HMAC-SHA-1. This
means that a performance improvement might be exploited by regular
users and attackers. Interestingly, FIPS 198-1 [31] suggests that it is
possible to precompute �rst message block of a keyed hash function only
once, store such a value and use it each time is needed [43]. Therefore
the computation of �rst message block does not contribute to slowing
attackers down, thus making the computation of second message block
crucial. In this paper we focus on the latter, investigating the possibil-
ity to avoid part of the HMAC-SHA-1 operations. We show that some
CPU-intensive operations may be replaced with a set of equivalent, but
less onerous, instructions. We identify useless XOR operations exploiting
and extending Intel optimizations [26], and applying the Boyar-Peralta
heuristic [12]. In addition, we provide an alternative method to compute
the SHA-1 message scheduling function and explain why attackers might
exploit these �ndings to speed up a brute force attack.

Keywords: HMAC-SHA-1, Password-Based Key Derivation Function 2, PKCS#5,
Intel optimizations, Boyar-Peralta heuristic

1 Introduction

When faced with the problem of accessing a protected resource, many applica-
tions ultimately rely on the knowledge of one or more secrets. Such secrets are
commonly passwords or passphrases that can lead to a number of security is-
sues. Firstly, giving the user the choice of selecting the secret to be used, usually
results in a very �humanly predictable� secret being chosen. The user will most
likely choose a short, and easy to remember, passphrase which might undermine
the security of the system to be protected [14], [39], [7], [19]. Secondly, password-
based authentication can often be e�ectively attacked by employing techniques
such as exhaustive search and dictionary attacks.
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In order to avoid the use of user-chosen passwords as a key to cryptographic
systems, a number of approaches have been developed. In particular, we are in-
terested in password-based Key Derivation Functions, a set of algorithms which
input a user-chosen password and provide a stream of pseudorandom bits pre-
senting enough entropy and an adequate length to be used as key in real-world
applications.

Password-based KDFs introduce CPU/memory intensive operations which
avoid, or make dictionary and brute force attacks less feasible. At the same
time, such operations are not so expensive to become a burden for a regular
user.

In 2013, a Password Hashing Competition (PHC) [1] was held to develop
a number of resistant password-based key derivation functions. PHC selected a
winner (Argon2 [6]) and gave a special recognition to four algorithms (Catena
[18], Lyra2 [40], yescrypt [34] and Makwa [35]). Although Argon2 is expected
to be the password-based KDF of the next years, currently one of the most
widely used functions is PBKDF2 [37]. Described by RSA Labs in PKCS#5
[37], PBKDF2 has been implemented in several real-world applications such
as WPA/WPA2 [25], 1Password [2], Keeper [28], LUKS [20] [9], LassPass [30],
Codebook [16], GRUB2[24], RAR archive format [36], FileVault Mac OS X [3],
[15], Android's full disk encryption (since version 3.0 Honeycomb to 4.3 Jelly
Bean), and many others. PBKDF2 uses a salt to prevent the construction of
universal dictionaries and an iteration count to accurately tune the tradeo�
between user perceived slowness of the key derivation process and bruteforce
attack resistance [42].

Most of the PBKDF2 computations are performed by a pseudorandom func-
tion, and in this paper we focus on HMAC-SHA-1. Notice that not all the appli-
cations previously mentioned use PBKDF2-HMAC-SHA1 by default. For exam-
ple, 1Password (Agile Keychain format) [23]) does, while 1Password (OPVault
format) [22] does not. Cryptsetup version 1.6.8 (and above) does, while versions
1.7.0�1.7.5 do not and the hash function used is SHA-256 [13]. RAR (previous
to version 5) does, while versions 5.00�5.50 do not and the pseudorandom func-
tion is HMAC-SHA-256 [36]. GRUB2 [24] implements PBKDF2-HMAC-SHA512
while Codebook [16] uses PBKDF2-HMAC-SHA-1.

Fig. 1. A graphical representation of HMAC-SHA-1
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If we are able to speed up SHA-1 or HMAC-SHA-1, we are able to speed
up PBKDF2. Interestingly, when the HMAC function is implemented without
following the performance improvement described in [29] and [31], it is possible to
avoid 50% of PBKDF2's CPU intensive operations involved in the key derivation
process. Moreover, as described in [41], [43] and [38], other critical �aws might
be exploited, thus reducing the total number of CPU-intensive operations to
be performed for computing a key. Therefore, the only requirement to maintain
security is to increase the number of computations through the iteration count
parameter of PBKDF2.

In this paper, we describe an HMAC-SHA-1 optimization which can be used
to speed up PBKDF2. Focusing on the computation of second message block of
HMAC-SHA-1, we investigate the possibility to avoid part of the CPU-intensive
operations by executing a set of equivalent, but less onerous, instructions. By
doing so, we identify useless XOR operations exploiting and extending Intel
optimizations [26] and applying the Boyar-Peralta heuristic [12]. In addition,
we provide an alternative method to compute the SHA-1 message scheduling
function and explain why attackers might exploit these �ndings to speed up a
brute force attack against PBKDF2-HMAC-SHA-1.

The remainder of this paper is organized as follows. In Section 2 we brie�y
introduce the Hash-based Message Authentication Code (HMAC) algorithm, re-
ferring in particular to HMAC-SHA-1. Password-based Key Derivation Function
version 2 (PKBDF2) is described in Section 3. In Section 4 we present the origi-
nal contribution of this paper, showing how performance improvements of SHA-1
and HMAC-SHA-1 might be exploited to speed up PBKDF2-HMAC-SHA-1. Fi-
nally, discussion and concluding remarks are drawn in Section 5.

2 HMAC-SHA-1

A Hash-based Message Authentication Code is an algorithm for computing a
message authentication code based on any iterated cryptographic hash function.
The de�nition of HMAC [29] requires

� H: a cryptographic hash function;
� K: the secret key;
� text: the message to be authenticated.

As described in RFC 2104 [29], an HMAC can be de�ned as follows:

HMAC = H(K ⊕ opad || H(K ⊕ ipad || text)) (1)

where H is the chosen hash function, K is the secret key, ⊕ is the exclusive
OR symbol, || is the concatenation symbol and ipad, opad are constant values
� respectively, the byte 0x36 and 0x5C repeated 64 times. In order to better
understand Equation 1, we can expand it in the form:

h = H(K ⊕ ipad || text)
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HMAC = H(K ⊕ opad || h)

In this paper we will refer to HMAC-SHA-1 which is the default as per [37].
Therefore Equation 1 can be graphically represented as in Figure 1.

Readers who are not familiar with SHA-1 may �nd a detailed description of
the cryptographic algorithm in [32] and [17]. However, it is worth recalling some
basic concepts:

� SHA-1 [32] processes blocks of the size of 512 bits � i.e., sixteen 32-bit words
W0, . . . ,W15,

� it iterates for 80 rounds in order to produce a 160-bit message digest,
� the original message is padded with one bit 1 �rst then, zero or more bits 0
so that its length is congruent to 448, modulo 512, and

� the last 64 bits of the last 512-bit block represent the message length L.

In addition, the SHA-1 algorithm uses the following message scheduling function
to expand W0, . . . ,W15 into eighty words:

W [i] = ROTL1(W [i− 3]⊕W [i− 8]⊕W [i− 14]⊕W [i− 16]) i ∈ [16 . . . 79]

(2)

This function requires to store eighty 32-bit words, therefore if memory is lim-
ited an alternative method should be adopted. In [32], NIST suggests to regard
W0, . . . ,W15 as a circular queue and substitute the Equation 2 with the following:

s← i ∧MASK i ∈ [16 . . . 79]

W [s]← ROTL1(W [s]⊕W [(s+ 2) ∧MASK]⊕W [(s+ 8) ∧MASK]⊕W [(s+ 13) ∧MASK])

(3)

where MASK is set to the value 0000000f (in hex), thus performing arithmetic
modulo 16. This new equation requires only sixteen words, thus saving sixty-four
32-bit words of storage.

3 PBKDF version 2

Password Based Key Derivation Function version 2, PBKDF2 for short, is a key
derivation function published by RSA Laboratories in PKCS #5 [37]. In order
to face brute force attacks based on weak user passwords, PBKDF2 introduces
CPU-intensive operations. Such operations are based on an iterated pseudoran-
dom function which maps input values to a derived key. PBKDF2 is fully de�ned
by the following parameters:

� a pseudorandom function (PRF) � e.g. a hash function, cipher, or HMAC;
� an iteration count c;
� a password p;
� a salt s;
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� a desired output length dkLen.

and outputs a derived key DK.
PBKDF2 can derive keys of arbitrary length. More precisely, PBKDF2 gen-

erates as many blocks Ti as needed to cover the desired key length. Each block Ti

is computed iterating the PRF as many times as speci�ed by an iteration count
c. NIST suggests to select the iteration count as large as possible, however a min-
imum of 1,000 iterations is recommended for general purpose applications while
10,000,000 may be appropriate for protecting very critical keys [42]. The length
of each block Ti is bounded by hLen, which is the length of the underlying PRF
output. This PRF can be a hash function [32], cipher, or HMAC [4], [5], [29].
Since the optimizations described in this paper only applies to HMAC-SHA-1,
we use this HMAC as PRF.

PBKDF2 inputs a user password/passphrase p, a random salt s, an iteration
counter c, and derived key length dkLen. It outputs a derived key DK.

DK = PBKDF2(p, s, c, dkLen)

The derived key is de�ned as the concatenation of ddkLen/hLene-blocks:

DK = T1||T2|| . . . ||TddkLen/hLene

where
T1 = Function(p, s, c, 1)

T2 = Function(p, s, c, 2)

...

Ti = Function(p, s, c, i)

...

TddkLen/hLene = Function(p, s, c, ddkLen/hLene).

Each single block Ti � i.e., Ti = Function(p, s, c, i) � is computed as

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc

where (see Figure 2)
U1 = PRF (p, s||i)

U2 = PRF (p, U1)

...

Uc = PRF (p, Uc−1)
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Fig. 2. A real-world implementation [19][20] of PBKDF2 based on HMAC-SHA-1

4 Avoiding useless XOR operations

As shown in [41], [43] and [38], several performance improvements can be ex-
ploited to speed up the computation of PBKDF2 � e.g., precomputing the �rst
message block of a keyed hash function, avoiding constant additions modulo 232

in the �rst three rounds, avoiding SHA-1 length checks of input parameters,
avoiding SHA-1 chunk splitting operations during the computation of U2,. . . ,Uc,
and so on. In this section we present a new improvement. In particular, we show
how useless operations, computed by HMAC-SHA-1 and repeated c times by
PBKDF2, might be exploited by users (regular or malicious).

When the HMAC function is computed in a standard mode � i.e., without
following the performance improvements described in the implementation note
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of RFC 2104 [29] and FIPS 198-1 [31] � attackers can precompute �rst message
block of a keyed hash function only once (green and orange rectangles in Figure
2), store such a value and use it each time is needed. This suggests that com-
putation of the �rst message block does not contribute to slowing down a brute
force attack, thus the computation of second message block is crucial.

Therefore we focus on the second message block with the aim to show how
users might avoid part of CPU-intensive operations involved in the key derivation
process. Doing so, we will exploit and extend Intel optimizations [26] and the
Boyar-Peralta heuristic [12].

4.1 Exploiting Intel optimizations

As shown in [8], the SHA-1 algorithm is a vastly parallel algorithm in terms of
instruction level parallelism allowing it to fully employ several ALU pipelines
but it seems like it is not well suited to work with Single Instruction Multiple
Data (SIMD) instructions.

One of the most interesting optimizations to SHA-1 has been described by
Max Locktyukhin in [26]. Improving an idea by Dean Gaudet [21], the Intel
researcher [26] shows how the SHA-1 hash algorithm can be implemented in
order to take full advantage of SIMD instructions, providing a new equation
to expand the sixteen 32-bit words W [0], . . . ,W [15] into eighty words. More
precisely, he suggests to replace the well-known Equation 2 with the following:

W [i] =

{
ROTL1(W [i− 3]⊕W [i− 8]⊕W [i− 14]⊕W [i− 16]) i ∈ [16 . . . 31]

ROTL2(W [i− 6]⊕W [i− 16]⊕W [i− 28]⊕W [i− 32]) i ∈ [32 . . . 79]

(4)
As discussed in [43], the second message block of a keyed hash function has a run
of several consecutive zeros (red rectangle in Figure 2) � i.e., 287 zeros in the
padding scheme and other 54 zeros in 64-bit message length � hence nine (out
of sixteen) 32-bit words W [i] are set to zero � W [6] = W [7] = · · · = W [14] = 0.
Therefore, 27 out of 192 XOR operations in Equation 2 are involved in zero
based operations and can be easily omitted.

Making the expansion of Equation 4, it is easy to observe that wordsW [6], . . . ,W [14]
are presented in a greater number of times than in Equation 2. By simply replac-
ing the original SHA-1 message scheduling function with Equation 4, we increase
the number of useless XOR operations from 27 to 45.

4.2 Extending Intel optimizations

To improve the performance of the message scheduling W [i], we extend the idea
suggested by Max Locktyukhin [26] as follows:
Firstly, de�ne W [i] as a generic function

W [i] = ROTLE(W [i−A]⊕W [i−B]⊕W [i− C]⊕W [i−D]) (5)
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Secondly, set i = i−A and compute W [i−A]:

W [i−A] = ROTLE(W [(i−A)−A]⊕W [(i−A)−B]⊕W [(i−A)− C]⊕W [(i−A)−D])

= ROTLE(W [i− 2A]⊕W [i−A−B]⊕W [i−A− C]⊕W [i−A−D])
(6)

Then repeat the same to i = i−B, i = i− C, and i = i−D getting:

W [i−B] = ROTLE(W [(i−B)−A]⊕W [i− 2B]⊕W [(i−B)− C]⊕W [(i−B)−D])

(7)

W [i− C] = ROTLE(W [(i− C)−A]⊕W [(i− C)−B]⊕W [i− 2C]⊕W [(i− C)−D])

(8)

W [i−D] = ROTLE(W [(i−D)−A]⊕W [(i−D)−B]⊕W [(i−D)− C]⊕W [i− 2D])

(9)

Thirdly, substitute Equations 6, 7, 8, 9, in 5 obtaining:

W [i] = ROTLE(ROTLE(W [i− 2A]⊕W [i−A−B]⊕W [i−A− C]⊕W [i−A−D])

⊕ROTLE(W [i−B −A]⊕W [i− 2B]⊕W [i−B − C]⊕W [i−B −D])

⊕ROTLE(W [i− C −A]⊕W [i− C −B]⊕W [i− 2C]⊕W [i− C −D])

⊕ROTLE(W [i−D −A]⊕W [i−D −B]⊕W [i−D − C]⊕W [i− 2D]))

(10)

Recalling that

ROTLX(Y ⊕ Z) = ROTLX(Y )⊕ROTLX(Z) (11)

and
ROTLX(ROTLX(Y )) = ROTL2X(Y ) (12)

apply Equation 11 to 10, then remove the values XORed twice and �nally, apply
Equation 12 getting:

W [i] = ROTL2E(W [i− 2A])⊕ROTL2E(W [i− 2B])⊕ROTL2E(W [i− 2C])⊕ROTL2E(W [i− 2D])

(13)

Equation 13 can be applied to 32-bit words W [i] with i > 63 of the Equation 4,
generating a new SHA-1 message scheduling function:

W [i] =


ROTL1(W [i− 3]⊕W [i− 8]⊕W [i− 14]⊕W [i− 16]) i ∈ [16 . . . 31]

ROTL2(W [i− 6]⊕W [i− 16]⊕W [i− 28]⊕W [i− 32]) i ∈ [32 . . . 63]

ROTL4(W [i− 12]⊕W [i− 32]⊕W [i− 56]⊕W [i− 64]) i ∈ [64 . . . 79]
(14)

Again, in Equation 14 words W [6], . . . ,W [14] are presented a greater number of
times than Equations 2 and 4, thus using the new message scheduling function,
the number of useless XOR operations is further increased from 45 to 61 (out of
192).
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4.3 Exploiting Boyar-Peralta heuristic

In Sections 4.1 and 4.2 we described how to speed up the computation of the
SHA-1 message scheduling function. The approach adopted iteratively computes
32-bit words W [i], 16 ≤ i ≤ 79, as a function of the previous thirty-two words
(see Equation 4) or sixty-four words (see Equation 14), but none of them compute
suchW [i] by using only wordsW [0], . . . ,W [15]. In this section, we (a) provide an
alternative method to compute the SHA-1 message scheduling function that may
be adopted in systems with strong memory constraints and then, exploiting this
alternative method, (b) investigate the possibility to further reduce the number
of XORs used in Equation 14. More precisely, we:

1. de�ne W [16],. . . ,W [79] as a function of W [0], . . . ,W [15];

2. write 32-bit wordsW [i] as a linear system of sixty four equations over GF (2);

3. reduce the size of such a linear system;

4. apply heuristics for minimizing the total number of XORs of a given function;

5. identify a subset of 32-bit wordsW [i] that are computed with a small number
of XORs.

Let us explain such �ve steps in details.

Firstly, unfold Equation 14, de�ning it as a function of W [0], . . . ,W [15]



W [16] = W [0]1 ⊕W [2]1 ⊕W [8]1 ⊕W [13]1

W [17] = W [1]1 ⊕W [3]1 ⊕W [9]1 ⊕W [14]1

W [18] = W [2]1 ⊕W [4]1 ⊕W [10]1 ⊕W [15]1

W [19] = W [0]2 ⊕W [2]2 ⊕W [3]1 ⊕W [5]1 ⊕W [8]2 ⊕W [11]1 ⊕W [13]2

W [20] = W [1]2 ⊕W [3]2 ⊕W [4]1 ⊕W [6]1 ⊕W [9]2 ⊕W [12]1 ⊕W [14]2

W [21] = W [2]2 ⊕W [4]2 ⊕W [5]1 ⊕W [7]1 ⊕W [10]2 ⊕W [13]1 ⊕W [15]2

W [22] = W [0]3 ⊕W [2]3 ⊕W [3]2 ⊕W [5]2 ⊕ · · · ⊕W [8]3 ⊕W [11]2 ⊕W [13]3 ⊕W [14]1

W [23] = W [1]3 ⊕W [3]3 ⊕W [4]2 ⊕W [6]2 ⊕ · · · ⊕W [9]3 ⊕W [12]2 ⊕W [14]3 ⊕W [15]1

. . .

W [79] = W [0]8 ⊕W [0]22 ⊕W [1]7 ⊕ · · · ⊕W [15]13 ⊕W [15]14 ⊕W [15]17 ⊕W [15]18

(15)
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where ROTLX(W [i]) is denoted, for short, as W [i]X . Then, we delete 32-bit
words W [i] equal to zero � i.e, W [6]X , . . . ,W [14]X � getting:



W [16] = W [0]1 ⊕W [2]1

W [17] = W [1]1 ⊕W [3]1

W [18] = W [2]1 ⊕W [4]1 ⊕W [15]1

W [19] = W [0]2 ⊕W [2]2 ⊕W [3]1 ⊕W [5]1

W [20] = W [1]2 ⊕W [3]2 ⊕W [4]1

W [21] = W [2]2 ⊕W [4]2 ⊕W [5]1 ⊕W [15]2

W [22] = W [0]3 ⊕W [2]3 ⊕W [3]2 ⊕W [5]2

W [23] = W [1]3 ⊕W [3]3 ⊕W [4]2 ⊕W [15]1

W [24] = W [0]2 ⊕W [2]2 ⊕W [2]3 ⊕W [4]3 ⊕W [5]2 ⊕W [15]3

W [25] = W [0]4 ⊕W [1]2 ⊕W [2]4 ⊕W [3]2 ⊕W [3]3 ⊕W [5]3

. . .

W [79] = W [0]8 ⊕W [0]22 ⊕W [1]7 ⊕W [1]8 ⊕ · · · ⊕W [15]18

(16)

Secondly, we write the 64 rows of Equation 16 as a m × n matrix M over
GF (2), where m is the number of rows � i.e., 64, one for each equation W [i] �
and n is the number of columns � i.e., 224 = 7× 32, seven 32-bit words W [0],
. . . , W [5], W [15] which can be left-rotated 32 times, W [i], ROTL1(W [i]), . . . ,
ROTL31(W [i]). For the sake of simplicity, we denoteW [0] as j = 0,ROTL1(W [0])
as j = 1, . . . , W [1] as j = 32, ROTL1(W [1]) as j = 33, and so on. For each row i
of the matrix M , we place 1 in position i, j if a 32-bit word j appears in equation
W [i]. Therefore, we represent the linear system 16 with a 64 × 224 matrix M
with coe�cients over GF (2), and each row of such a matrix is interpreted as the
XOR of words (columns) containing 1. Then, we reduce the size of M deleting
the columns which do not provide any contribution � i.e., columns �lled with
zeros. We get a sparse 64× 149 matrix M.

Thirdly, in Equation 16, we substitute all occurrences of ROTLX(W [5]) and
ROTLX(W [15]), 0 ≤ X ≤ 31, with constant values � notice that W [5] and
W [15], are set to well-known values, respectively padding and message length,
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and can be computed in advance. We call such values const[i] and substitute
them in each row i of the linear system 16, obtaining:



W [16] = W [0]1 ⊕W [2]1

W [17] = W [1]1 ⊕W [3]1

W [18] = W [2]1 ⊕W [4]1 ⊕ const[18]

W [19] = W [0]2 ⊕W [2]2 ⊕W [3]1 ⊕ const[19]

W [20] = W [1]2 ⊕W [3]2 ⊕W [4]1

W [21] = W [2]2 ⊕W [4]2 ⊕ const[21]

W [22] = W [0]3 ⊕W [2]3 ⊕W [3]2 ⊕ const[22]

W [23] = W [1]3 ⊕W [3]3 ⊕W [4]2 ⊕ const[23]

W [24] = W [0]2 ⊕W [2]2 ⊕W [2]3 ⊕W [4]3 ⊕ const[24]

W [25] = W [0]4 ⊕W [1]2 ⊕W [2]4 ⊕ · · · ⊕ const[25]

. . .

W [79] = W [0]8 ⊕W [0]22 ⊕W [1]7 ⊕ · · · ⊕ const[79]

(17)

where const[18] = ROTL1(W [15]), const[19] = const[18], const[21] = ROTL1(W [5])⊕
ROTL2(W [15]), and so on. Again, we write the 64 rows of Equation 17 as a
m× n matrix M ′ over GF (2) and delete the columns which do not provide any
contribution, thus getting a new sparse 64× 107 matrix M ′.

Fourthly, �nding the minimum number of XORs necessary to compute Equa-
tion 14 corresponds to the problem of �nding a gate-optimal Boolean circuit that
computes the linear systems 16 or 17. This problem is known to be a hard prob-
lem [10] [11], thus sub-optimal solutions can be computed applying polynomial-
or exponential-time heuristics � e.g., [33],[12], and [44]. The Paar heuristic [33]
usually performs well on large matrices but does not consider cancellation1 over
GF(2). The Visconti-Schiavo-Peralta heuristic [44] considers cancellation over
GF(2) but performs well on dense matrices. The Boyar-Peralta (BP ) heuristic
[12] considers cancellation over GF(2) and works well with sparse matrices. Since
both M and M ′ are sparse, we can apply the BP heuristic to �nd a small circuit
that implements Equations 16 and 17. Unfortunately, we are not able to solve a
large linear system due to the exponential time complexity of BP , thus applying
BP to several sub-matrices of M and M ′ with size smaller than 64 × 39 (that
is the maximum allowed by our hardware). We repeat this point many times,
choosing di�erent sub-matrices and obtaining several circuits that implement
the linear systems 16 and 17. Of course, at a cost of tripling the running time,
one can also run [33] [44] heuristics and then pick the best circuit. We did this,
but with the same or worse results.

Fifthly, since W [16],. . . ,W [79] are computed in Equation 14 using at most
three XOR operations, we try to identify a subset of 32-bit words W [i] com-
puted with less than three XORs. Exploiting the Boolean circuits provided by

1 The fact that for all x in GF(2), we have x⊕ x = 0.
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BP heuristic, we note that W [29], W [30], W [31], W [60], and W [62] de�ned in
Equation 14 as

� W [29] = ROTL1(W [26]⊕W [21]⊕W [15])
� W [30] = ROTL1(W [27]⊕W [22]⊕W [16])
� W [31] = ROTL1(W [28]⊕W [23]⊕W [17]⊕W [15])
� W [60] = ROTL2(W [54]⊕W [44]⊕W [32]⊕W [28])
� W [62] = ROTL2(W [56]⊕W [46]⊕W [34]⊕W [30])

can be replaced with the following, and less expensive, equations:

� W [29] = ROTL2(W [23])⊕ k[29]
� W [30] = ROTL2(W [24]⊕ k[16])
� W [31] = ROTL2(W [25]⊕ k[17])⊕ k[31]
� W [60] = ROTL4(W [48]⊕W [28]⊕W [0])
� W [62] = ROTL4(W [50]⊕W [30]⊕W [0])

where k[29] is set to constant value ROTL2(W (5)) ⊕ ROTL1(W (15)), k[16]
is equal to W (0) ⊕ W (2) � that is a value computed in W [16], W [16] =
ROTL1(W (0)⊕W (2)) = ROTL1(k[16])� k[17] is equal toW (1)⊕W (3) (previ-
ously computed inW [17]), and �nally k[31] is set to constant valueROTL1(W (15))⊕
ROTL2(W (15)).

The �nal SHA-1 message scheduling function will be computed using Equa-
tion 14 in which W [29], W [30], W [31], W [60], and W [62] are replaced with
those presented in this Section. Therefore, we further increase the total number
of useless XORs from 61 to 66 (out of 192).

Notice that although Equation 15 increases the total number of XOR oper-
ations, it requires to store (in the worst case) sixteen 32-bit words. This value
can be largely reduced in speci�c cases. For example, when we compute HMAC-
SHA-1, it requires to store only �ve words � i.e., W [0], . . . ,W [4] (see Equation
17). Therefore, this approach can be considered a valid alternative method for
computing the SHA-1 message scheduling function in systems with tight memory
constraints.

5 Discussion and concluding remarks

In this paper, we show how performance improvements of SHA-1 and HMAC-
SHA-1 might be exploited to speed up a PBKDF2-HMAC-SHA-1 implementa-
tion. In particular, we investigated the possibility to avoid part of the CPU-
intensive operations involved in the PBKDF2 computation by executing a set of
equivalent, but less onerous, instructions. Since the computation of �rst message
block of HMAC-SHA-1 does not provide any contribution in slowing attack-
ers down, we focused on the second message block, the only one able to slow
them down. Exploiting and extending Intel optimizations and the Boyar-Peralta
heuristic, we provide a new SHA-1 message scheduling function and showed that
66 (out of 192) XOR operations can be easily omitted. Since PBKDF2 is used in
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real-world applications to benchmark the userâ��s system and provide an ap-
propriate level of security (e.g. LUKS), users can bene�t from such performance
improvements. Therefore, it is important that these �ndings are implemented in
crypto libraries.

Moreover, there is a second way to gauge how interesting these results are.
The SHA-1 message scheduling function presented in Equation 14 (with or with-
out the improvements of W [29], W [30], W [31], W [60], and W [62] described in
Section 4.3) is e�cient from the standpoint of execution time, but it is not from
the memory usage. In the worst case scenario it requires to store eighty 32-bit
words. Adopting the idea of the circular queue [32] mentioned in Section 2, Equa-
tions 14 requires to store sixty-four words. The latter are far from the sixteen
used in Equation 3, hence they cannot be used if the memory is limited. For
this reason, we suggest to adopt the unfolded SHA-1 message scheduling func-
tion described in Equation 17 for computing HMAC-SHA-1 under tight memory
constraints � e.g. embedded systems. This approach requires to store only �ve
words � i.e., W [0], . . . ,W [4] � compared with sixteen (at least) of the other
equivalent functions described in the literature. The only drawback of this sec-
ond approach is the lengthening of the execution time of a single HMAC-SHA-1
due to the increased number of XOR operations in Equation 17.

It might seem counterintuitive, but also attackers might exploit this approach
to speed up a GPU-based brute force attack against PBKDF2. Indeed, the
lengthening of the execution time of a single HMAC-SHA-1 and the overall per-
formance of an attack are not actually at odds. Since each GPU thread has only
a small amount of fast memory available and, cache misses drastically a�ect the
performance due to data swapping and loading, the e�ciency of a GPU-based
attack strongly depends on the compact design of the HMAC-SHA-1 processing
function. Therefore, attackers might adopt Equation 17 to generate a compact
HMAC-SHA-1 function, that means saving fast GPU memory. In this way, the
drawbacks of the lengthening of the execution time of a single HMAC-SHA-1
will be o�set by the reduced number of cache misses which negatively a�ect the
performance and the overall execution time of a brute force attack might be
improved.
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