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Abstract

The hardness of decoding random linear codes with errors is a complexity-theoretic assumption
with broad applications to cryptography. In contrast, Reed-Solomon codes permit efficient decoding
in many representations. Despite this, a result of Peikert (TCC 2006) proves that in groups where
discrete log is hard it is difficult to perform Reed-Solomon error correction if each symbol is written
in the exponent. We bring these two lines of work together, examining hardness of decoding random
linear codes in the exponent.

Our main result is a pair of theorems that show hardness of decoding random linear codes in both
the generic group model and the standard model. In the generic group model our analysis can be carried
out for a quite general family of distributions for (the support of) the error terms. We show hardness
of decoding as long as every subset of group elements (of size at least the dimension of the code) has
an overwhelming probability of at least one random error. This family includes error distributions
whose symbols are correlated. Our results in the standard model show hardness of decoding random
linear codes with a uniform input point. These results improve on a result of Peikert (TCC 2006) who
considered the problem for Reed-Solomon codes.

We explore two applications of these results. First, we construct a reusable fuzzy extractor with
storage independent of the number of errors to be corrected. This construction unifies the strengths
of two prior constructions (Fuller, Meng, and Reyzin, Asiacrypt 2013) and (Canetti et al., Eurocrypt
2016). Second, we show how to build virtual black-box obfuscation for a class of functionality known
as pattern matching. Recently, Bishop et al. (Crypto 2018) constructed a scheme based on codes in
the exponent and showed security for uniform inputs. We show the same construction is secure for
more distributions. The security arguments of both applications rely on distributions drawn from some
physical process which are best modeled by distributions with correlated bits.

Keywords Learning with errors; error-correction; generic group model; fuzzy extractors; pattern-
matching obfuscation

1 Introduction

We study the problem of decoding random linear codes “in the exponent,” and explore direct applications
to constructing fuzzy extractors [DORS08] and pattern matching obfuscation [BKM+18] (we review these
applications in detail in Section 1.2 after introducing our technical results). One notable conclusion of our
study is that such decoding remains hard for quite general error distributions; in particular, we obtain

∗Email: luke.johnson@uconn.edu. University of Connecticut.
†Email: benjamin.fuller@uconn.edu. University of Connecticut.
‡Email: acr@uconn.edu University of Connecticut.

1



results for error distributions for which standard learning with errors (LWE) is not known to be difficult.
This generality is critical for our applications.

Our approach has two direct motivations: (i.) the flexibility and broad applicability of LWE to
cryptography and (ii.) the striking fact that decoding Reed-Solomon codes is difficult in the exponent even
though efficient algorithms exist when symbols are in the clear [Pei06]. This suggests that the problem of
decoding random linear codes in the exponent might provide a cryptographic tool with superior flexibility.
One might expect moving a random code to the exponent to similarly impart augmented intractability.
We discuss these two motivations in more detail below.

Hardness of Decoding Random Linear Codes. In the last twenty years, the hardness of decoding
error correcting codes has become a core cryptographic assumption. Indeed, hardness of decoding random
linear codes can serve as the underlying assumption for almost every cryptographic primitive [BMvT78,
Reg05, BV14, GVW15, WZ17]. The relevant cryptographic assumption is called LWE [Reg10]. The
decision version asks an adversary to distinguish an encoded codeword with errors Ax+e from a uniformly
selected vector, where x describes a message, A is a random (public) matrix, and e is an error term. Here
all operations to be performed in the finite field Fq. While this problem is easy in the continuous setting
(using linear regression), it appears hard in finite fields. In fact, for particular distributions of e it
is possible to show that any adversary that solves LWE implies an adversary that can approximately
solve worst case lattice problems (GapSVP [BLP+13] or SIVP [Reg05]). While there is some flexibility in
the distribution of e (e.g., a discretized Gaussian [Reg05], a uniform interval [DMQ13], or a binomial
distribution [MP13]), known reductions require each symbol of e to be independently distributed.

Structured Codes in the Exponent. Structured codes also have far-reaching applications in cryp-
tography. Throughout this work we consider codes of length n that encode k message symbols and are
designed to correct t errors. An example is the Reed-Solomon code which treats a message m1, ...,mk as
coefficients of a degree k polynomial p(·). The associated codeword is the polynomial evaluated at points
1, ..., n: p(1), . . . , p(n). Using Lagrangian interpolation it is possible to reconstruct the polynomial from
any k points.

An example of how structured codes can augment schemes is threshold public key encryption [Des92].
Recall El Gamal encryption [ElG85]: with the secret key x, encryptions have the form (gy,m · gxy). We
suppose now that n users have evaluations of a polynomial p(·) with intercept x and other coefficients
randomly chosen. Lagrangian interpolation asserts that for any set I of size at least k there exists λ1, ..., λk
such that x =

∑k
i=1 λ1xi1 . Since this operation is entirely linear users can decrypt without revealing their

shares by announcing gλixiy and computing:

m · gxy∏n
i=1 g

λixiy
=

m · gxy

g
∑n
i=1 λixiy

= m.

This scheme is private against adversaries that know less than k shares and is correct against adver-
saries that keep at most n − k parties from participating in reconstruction. However, it is also possible
to correct errors for Reed-Solomon codes: indeed, the Berlekamp-Welch [WB86] algorithm can efficiently
correct up to t = (n− k+ 1)/2 errors. Suppose there is an adversary that intentionally submits incorrect
shares zi 6= gλixiy during reconstruction. A natural question is whether Reed-Solomon error-correction
can be applied to ensure correctness against this adversary. As it happens, the Berlekamp-Welch decoding
algorithm critically relies on nonlinear operations, so its not clear how to execute this algorithm “in the
exponent.” Peikert showed this is, in some sense, unavoidable with two results [Pei06]:
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1. If balls of radius t around codewords (the set of all degree k polynomials) cover a noticeable fraction
of the metric space, an algorithm that corrects t errors implies a solver for the discrete logarithm
problem. Importantly, this algorithm only has to find some codeword within distance t (and not,
necessarily, the closest codeword). This is known as bounded distance decoding [CW07] in contrast
to the more traditional unique decoding. In order for balls around codewords to cover a noticeable
fraction of the space, one needs to consider an algorithm that corrects almost t = n − k errors.
Note that for a polynomial of degree k performing bounded distance decoding in the exponent for
distance n− k is easy: One picks k points and interpolates the rest of the points which can be done
linearly and in the exponent. We stress this result does not rule out algorithms which correct fewer
errors.

2. In the generic group model [Sho97], adversaries are limited to linear combinations of group elements.
In particular, the adversary’s algorithm must work for an arbitrary representation of the group. In
this model, Peikert showed that given gc+e, where c is a codeword and e is a random vector with
t nonzero values, it is hard to find gc. In this model, no assumption is necessary about the density
of codewords in the metric space. The main requirements for this theorem are (i.) that t errors
are uniformly distributed and (ii.) that the product of the dimension and number of errors is large
enough (namely, that tk = ω(n log n)).

Peikert’s work presented the above as negative results. However, these results can be seen as introducing
a new type of hardness assumption. The goal of this work is to combine the above two lines of work and
ask:

Does placing a random linear code in the exponent of a group amplify the hardness of decoding?

1.1 Our Contribution: Hardness of Decoding Random Linear Codes in the Exponent

We consider error distributions e that are the product of two components: e′i, a vector of independently
random group elements, and s, a binary selection vector that determines the location of the errors. That
is, ei = e′i · si. Our goal is to support as many distributions S over the binary vector s as possible. In
Subsection 1.2, we describe two applications which make particular demands on the error distribution.
Importantly, we make no assumption about the bits of the selection vector being independent, and thus
the positions i where ei = 0 are potentially correlated.

A Necessary and Sufficient Condition. Peikert’s result in the generic group model only holds if the
product of errors and the size of the message is big enough (when tk = ω(n log n)). This is because an
adversary can repeatedly try to find subsets of size k without any errors and perform a linear operation
to recover the original codeword. This algorithm was formalized by Canetti and Goldwasser [CG99] and
succeeds when tk = Θ(n log n). In the setting where nonzero errors are uniform, a necessary condition
for security is that each subset of size k has an overwhelming probability of including a nonzero error.
That is, for each subset I of size at least k, the min-entropy of S restricted to I is at least some α that is
superlogarithmic in the security parameter: H∞(SI) ≥ α. We say that a distribution with this property
has (α, k)-entropy subsets (see Definition 1).

Our main result is in the generic group model. We show that the (α, k)-entropy subset condition is a
sufficient condition for hardness of decoding a random linear code (Theorem 1).

Standard Model Results. We also provide hardness results in the standard model, however these
results require S to have independent symbols, with S possessing t randomly chosen nonzero positions.
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We show this result for both random linear codes (Theorem 6) and Reed-Solomon codes (Theorem 7). Both
results improve parameters of Peikert’s result [Pei06, Theorem 3.1]. As stated, these arguments require
that a random point lies close to a codeword with noticeable probability. As q increases this probability
decreases but discrete log becomes harder, creating a tension between these parameters. Peikert’s result
requires that q ≤

(
n
k+1

)
/n2. In our application to the fuzzy extractors we consider small k for which

k = ω(log λ). This means that the upper bound on q may be just superpolynomial. Our results allow q
to grow more quickly, improving the bound by a modest factor of n2 (requiring that q ≤

(
n
k+1

)
).

Theorems 6 and 7 consider an adversary that performs error correction: given gy it returns gz where
the distance between dis(y, z) ≤ t and gz is a codeword. Recently, Fuchsbauer et al. [FKL18] introduced
the algebraic group model which is weaker than the generic group model. From an input gy, an algebraic

adversary produces a solution gz along with a matrix ~Λ such that gz = g
~Λy. The model is weaker than the

generic group model as the adversary is allowed to see the elements gy before creating ~Λ. Any standard
model adversary that decodes a linear code implies an algebraic adversary. One can find k indices where
gzi = gyi . One then uses the linear decoding (from these indices) and encoding procedures of the code
to find the coefficients such that gz = gΛy.

1.2 Applications

Fuzzy Extractors. A fuzzy extractor derives stables keys from a noisy source of entropy [DORS08].
Formally, a fuzzy extractor is a pair of algorithms:

• Gen(w) (generate), which takes an initial reading of a noisy source w and outputs a cryptographic
key key and a public value pub.

• Rep(w′, pub) (reproduce), which takes a subsequent reading w′ and outputs key if w and w′ are
within distance t. The security guarantee is that key should be pseudorandom conditioned on pub.

Fuzzy extractors secure distributions from nature such as biometric and physical uncloneable functions,
so it is prudent to minimize assumptions about these distributions. For example, the Iriscode transform
is estimated to have 249 bits of entropy out of a 2048 bit string [Dau04] (see discussion in [FRS16]).
Importantly bits of w are correlated.

Fuller et al. [FMR13] proposed a fuzzy extractor where the reading w served as the error vector for
an LWE instance, that is pub = Ax + w.1 The Rep algorithm performs “guess and check” on subsets
I ⊆ {1, ..., |w|} decoded as

x = A−1
I pubI −w′I = xA−1

I (w −w′)I .

This decoding succeeds if wI = w′I . To achieve error tolerance, multiple independent sets I are sampled
and checked. Importantly, this decoding algorithm selects a subset and is then entirely linear. To ensure
hardness of the underlying lattice problem, the construction required: (i.) the dimension of x to be a
constant fraction the length of w and (ii.) for w to be uniformly distributed.2 This limited error tolerance
to at most t = O(log |w|).

Canetti et al. [CFP+16] presented a fuzzy extractor that explicitly placed specific subsets in a digital
locker [CD08]. Digital lockers can be constructed using exponentiation in a Diffie-Hellman group [BC10].

1The cryptographic key key is part of the x vector. Akavia, Goldwasser, and Vaikuntanathan showed when LWE is
sufficiently hard parts of x are hardcore [AGV09].

2This distribution was shown to be hard for LWE decoding by Döttling and Müller–Quade [DMQ13]. More generally, the
construction is secure for any error distribution where LWE is hard.
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This construction sampled multiple subsets wIj and locked the same key in a digital locker secured with
wIj . Roughly,

pub = {r, rwIj · key, Ij}j .

Decoding consisted of trying to open each digital locker. Digital lockers improved allowable error tolerance
to t = o(|w|). However, this construction explicitly writes each subset to be tested. To achieve meaningful
error tolerance for an actual biometric millions of these lockers are required [SSF18]. Canetti et al.’s
construction is also reusable, allow a correlated versions of w to be used to derive multiple keys.

We introduce a new fuzzy extractor that places a random linear code in the exponent:

pub =

{
pubi =

{
gAix wi = 0

gri , ri ← Z∗p wi = 1

}|w|−1

i=0

.

Decoding proceeds as in the previous constructions, randomly selecting subsets Ij and hoping they have
no errors. This construction is secure for all distributions where it is hard to decode a random linear
code in the exponent with random errors placed according to the 1s of w. (Errors are actually placed
according to when the bits of w match a uniform random string.) If the construction is instantiated with
a random linear code of small dimension |x| = ω(log λ) error tolerance of t = o(|w|) is possible (as in
Canetti et al. [CFP+16]). If independent generators are used each time that Gen is run, this construction
is also reusable, allowing multiple enrollments of a single physical source.

Pattern Matching Obfuscation. In a recent work, Bishop et al. [BKM+18] show how to obfuscate a
pattern v where each vi ∈ {0, 1,⊥} indicating that the bit vi should match 0, 1 or either value. The goal
is to allow a user to check for input string y, if y and v are the same on all non-wildcard positions. Their
construction was stated for Reed-Solomon codes but works for any linear code. We state the construction
for a random linear code: Let |v| = n and assume A ∈ (Zp)2n×n. Then for a random x the construction
outputs the following obfuscation:3

Ow =

oi =


(gA2ix, gr2i+1), r2i+1 ← Z∗p vi = 1

(gr2i , gA2i+1x), r2i ← Z∗p vi = 0

(gA2ix, gA2i+1x) vi =⊥


|v|−1

i=0

.

Bishop et al. prove security of the scheme in the generic group model. Intuitively, their argument rests on
two facts: (i.) its hard to isolate wildcard positions where both values can be used to find x and (ii.) for
nonwildcard positions its hard to pick a set without including errors. Their analysis focuses on allowing a
large number of randomly placed wildcards with the uniform distribution for nonwildcard bits of v. Most
applications of string matching are on nonuniform and correlated values such as human language. We
show the same construction is secure for more distributions over v. First, we define an auxiliary variable
s of length 2n that describes the placement of errors as follows:

si =


10 if vi = 1,

01 if vi = 0,

00 if vi =⊥.

3Bishop et al. state their construction where x0 = 0 to allow the user to check whether they matched the pattern. In this
description, we allow the user to get out a key contained in gx0 when they are correct.
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We show it is sufficient for the string S to have (α, n)-entropy subsets for a superlogarithmic α. (Note
this condition is also necessary for security using the algorithm of Canetti and Goldwasser.) This class of
distributions only requires each subset of bits to be unpredictable. In human language, subsets of bits do
have this property [Sha51, BPM+92, MZ11].

Concurrent Work. In concurrent work Bartusek, Lepoint, Ma, and Zhandry [BLMZ18] present two
contributions of interest to this work. They consider the pattern matching obfuscation application. Their
first contribution raises the upper bound on the number of wildcards in [BKM+18] from w < 0.774n to
w < n−ω(log n) using a new dual form of analysis. Their analysis still considers the uniform distribution
over nonwildcard positions. Thus, our analysis expands the provably secure distributions over v. Their
second contribution considers random linear codes not in the exponent, they use a modified version of
the Random Linear Code (RLC) assumption defined in [IPS09]. They prove for some structured error
distributions hardness of both search and decision problems. Constructions that are secure outside the
group (their construction being one) are immediately hard in the generic group model as well. Importantly,
their analysis relies on the adversary receiving only 2n dimensions of the code and would not apply for
our fuzzy extractor application.

Organization. The remainder of the paper is organized as follows, Section 2 covers definitions and
preliminaries, Section 3 presents our main theorem on hardness of decoding random linear codes in the
generic group model. Sections 4 and 5 describe our applications to fuzzy extractors and pattern matching
obfuscation respectively. Finally Section 6 shows hardness of decoding high entropy errors in the standard
model.

2 Definitions

For random variables Xi over some alphabet Z we denote the tuple by X = (X1, ..., Xn). For a set of
indices J , XJ denotes the restriction of X to the indices in J . For a vector v we denote the ith entry vi.
The min-entropy of X is H∞(X) = − log(maxx Pr[X = x]). The average (conditional) min-entropy of X
given Y is H̃∞(X | Y ) = − log(Ey∈Y maxx Pr[X = x | Y = y]) [DORS08, Section 2.4].

The statistical distance between random variables X and Y with the same domain is

∆(X,Y ) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|.

For a distinguisher D we define the computational distance between X and Y as

δD(X,Y ) = |E[D(X)]− E[D(Y )]|

and extend this notion to a class of distinguishers D by taking the maximum over all distinguishers D ∈ D.
We denote by Ds the class of randomized circuits which output a single bit and have size at most s.

For a metric space (M, dis), the (closed) ball of radius t around x is the set of all points within radius
t, that is, Bt(x) = {y | dis(x, y) ≤ t}. If the size of a ball in a metric space does not depend on x, we
denote by Vol(t) the size of a ball of radius t. We consider the Hamming metric. Let Z be a finite set and
consider vectors in Zn, then dis(x, y) = |{i | xi 6= yi}|. For this metric, we denote volume as Vol(n, t, |Z|)
and Vol(n, t,Z) =

∑t
i=0

(
n
i

)
(|Z| − 1)i. Un denotes the uniformly distributed random variable on {0, 1}n.

Unless otherwise noted logarithms are base 2. Usually, we use capitalized letters for random variables
and corresponding lowercase letters for their samples.

6



Error Selection Distribution Our core technical result considers a distribution e where each compo-
nent is the product of a random value and a binary value si where s is drawn from some distribution in
“nature.” Our security guarantees will require that any subset of positions I is likely to have a nonzero
value of sI with high probability. Formally, we call such a distribution S a source with (α, k)-entropy
subsets:

Definition 1. Let a source S = S1, . . . , Sn consist of n-bit binary strings. For some parameters k, α we
say that the source S is has (α, k)-entropy subsets if H∞(Sj1 , . . . , Sjk) ≥ α for any 1 ≤ j1, . . . , jk ≤ n.

3 Hardness of Decoding in the Generic Group Model

Our first technical result concerns the hardness of decoding a random linear code when symbols are given in
the exponent. We adopt the generic group model [Sho97] which reflects computation with (typically cyclic)
groups in an idealized setting where the representation of group elements permits efficient computation
of the group law, but leaks no other useful information. Equivalently, the model captures the power
of adversaries whose strategy for a cryptographic game does not depend on the representation of group
elements. The model calls for a function which assigns to each group element gi a random bitstring (of a
sufficient length to prevent collisions). We assume this mapping is one-to-one throughout and denote it
by σ. In a typical security game, the adversary is initially given access to some starting “handles” σ(gi)
(for example, a generator for the group along with some further handles representing group elements with
particular cryptographic relevance). The adversary is allowed to ask an oracle O “group law” queries of
the form σ(gi) ± σ(gj) for any two previously observed handles σ(gi) and σ(gj). In this case, the oracle
responds with the unique handle corresponding to gi ± gj . It follows that any query of the adversary can
be expressed as a linear combination of the initial handles given to the adversary. As with the random
oracle model [BR93], the group oracle can be computed on demand (for the purposes of simulation) in
polynomial space and time (if the adversary makes a polynomial number of queries) using a table lookup.

As a reminder we consider error distributions e′ given by the coordinatewise product of a uniform
vector e ∈ Znq and a “selection vector” s ∈ {0, 1}n: that is, e′i = ei · si. The condition we require on s is
subset entropy (see Definition 1). With this background, we can state our main theorem:

Theorem 1. Let λ be a security parameter. Let q = q(λ) be a prime and n = n(λ), k = k(λ) be integers
with k ≤ n ≤ q. Let A ∈ (Zq)n×k, e′ ∈ (Zq)n,x ∈ (Zq)k be uniformly distributed. Let ` ∈ Z+ be a
free parameter. Let W ∈ {0, 1}n be a distribution with (α, k − (`− 1))-entropy subsets. Define the vector
e = s ·c e′, where s ← S and ·c is componentwise multiplication. Lastly, let U ∈ (Zq)n be uniformly
distributed. Then for all generic adversaries D making at most m queries

Pr[D(A,Ax + e) = 1]− Pr[D(A,U) = 1] < 2

(
m(m+ 1)

2

(
1

2α
+

2

q

)
+

(
n
k

)
q`

)
.

In particular, if α = ω(log λ), q = ω(poly(λ)), n = poly(λ), m = poly(λ) and
(
n
k

)
/q` = ngl(λ), then the

statistical distance between the two cases is ngl(λ).

Proof of Theorem 1. Most generic group proofs follow the same basic structure showing that an adversary
D cannot distinguish between two cases except when some unlikely event happens, typically associated
with a linear degeneracy. This notion was formalized by Bishop et al. [BKM+18] in what they called
the simultaneous oracle indistinguishability game. The core of our proof demonstrates oracle indistin-
guishability of the two distributions A,Ax + e and A,U (Lemma 1). Before introducing the oracle
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indistinguishability setting, we adapt the standard generic group setting in a way that simplifies the
analysis and gives the adversary more power.

We will denote handles σa(g) given by an oracle Oa as outputs of a function σa which—for a particular
group G—maps to a sufficiently large output space {0, 1}∗ so handles are independently random for each
group element and hence unique with overwhelming probability. Importantly, no structure of the group
is admitted through the representation. It is easy to show that an adversary in this model cannot query
a group handle that was not, in fact, provided in response to a previous query (except with negligible
probability). It follows that an adversary is provided a list of encodings every future query has an
immediate, operational interpretation as a linear combination of the original encodings (with coefficients
known to the adversary).

For our analysis, it is convenient to strengthen the ability of an algorithm interacting with the group
oracle by explicitly permitting linear combination queries of elements of a noisy codeword. Specifically,
we allow the adversary to make queries that represent linear combinations of n+1 encodings representing
the group identity and the noisy codeword elements (σa(g0 = 0), σa(g1), . . . , σa(gn)) via a vector ~χ =
(χ0, χ1, . . . , χn) of n + 1 elements of Zq. The oracle responds to such a query with the handle for the
element σ(

∑n
i=0 χi · gi). We call an adversary with this query structure generic. This is an increase in

power; however, such an arbitrary linear combination query can be simulated by a standard adversary
(permitted queries with two known handles at a time) with polynomial overhead using repeated squaring.

The Two Oracle Distinguishability Game. As stated above the basic structure of a generic proof
is showing that responses between two oracles O1 and O2 (in our case a noisy random linear code and
a truly uniform value) cannot be distinguished unless some bad event happens. Bishop et al. [BKM+18,
Section 4] introduce the simultaneous oracle game as a technical tool for showing indistinguishability. In
this model, the adversary is given two oracles O1 and a second oracle O∗ that is either O1 or O2 with
probability 1/2. Since both oracles are generating handles uniformly at random, the adversary’s only
distinguishing ability can come from detection of repetition in handles.

Specifically, the adversary D builds a table ζ and two functions Ψ and Ψ−1 where ζ has two columns
to store handles for each oracle. This table naturally induces Ψ,Ψ−1 where Ψ is a function from handles
for the O1 to the handles for O2, Ψ−1 takes handles from O2 to the handles from O1. The table and
the two functions are constructed on the fly as D makes queries. Ψ and Ψ−1 are one-to-one functions up
until a collision, in which case D stops and is treated as succeeding in distinguishing. We treat them as
one-to-one functions for our analysis.

We say a handle is known if the adversary has received that handle for the same oracle and stored it
in ζ. A handle is new when it is the first time the adversary has been given that handle by that oracle.

When receiving handles h1, h2 for O1 and O2 respectively, the adversary looks up each handle in the
appropriate column of ζ and categorizes the two handles as known or new based on the definitions above.

1. If one handle is new and the other is known, then we say the handles are inconsistent and the
adversary stops.

2. If both handles are known, the adversary checks that Ψ(h1) = h2 and Ψ−1(h2) = h1. If both
are true, then the handle are said to be consistent. If either is not the case, the handles are also
inconsistent and the adversary stops.

3. If both handles are new, the adversary adds both to the appropriate column of ζ, sets Ψ(h1) = h2

and Ψ−1(h2) = h1.
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To summarize, we say a query response (a pair of handles) from two oracles is consistent when the
responses are either both new, or both are known. The adversary can only distinguish the oracles apart
when it receives inconsistent handles in response to a query.

In our analysis, the security game keeps track of the linear combinations of the queries that the
adversary makes to the oracles. Our reduction uses two oracles, one of which uses Ax + e to generate the
noisy codeword. We call this oracle the code oracle or Oc. The other oracle responds with new handles for
each new query. We call this oracle the random oracle or Or. We stress that in both cases the adversary
and both oracles are given access to the actual generating matrix A. Notably, the adversary can use the
generating matrix to create its queries.

Code Oracle. We define a code oracle that responds to queries faithfully. We denote this oracle Oc.
This oracle picks a message x, uses the generating matrix A, samples an error selection vector s ∈

{0, 1}n according to the distribution S with (α, k− (l− 1))-entropy subsets, and a random vector e ∈ Znq .

With probability
(
n
k

)
/ql, there will exist a k × k minor of A will not have rank k − l. As we will see

this means that the adversary may create a query in the null space of the code that depends on at most
k − l − 1 positions. This means that there is no guarantee on the entropy of the adversarially selected
subset. This leads to an additional failure probability

(
n
k

)
/ql. We count this probability of degeneracy in

our lemma later. We note this probability is entirely dependent on the sampling of A.
The oracle begins by calculating the noisy codeword b as follows:

b = Ax + e′ ·c s.

When queried with a vector ~χ = (χ0, χ1, . . . , χn) ∈ Znq the oracle answers with an encoded group element
σc(
∑n

i=0 χi · bi).

Random Oracle. We also define an oracle Or that creates n random initial encodings and responds
to all requests for linear combinations with distinct random elements. For a sequence of indeterminates
y = (y0, y1, . . . , yn), this oracle can be described as a table where the left side is a vector representing a
linear combination of the indeterminates and the right side is a handle associated with each vector.

When presented a query, if the vector is in the oracles table, it responds with the handle on the
right side of the table. When the query is a new linear combination, it generates a distinct handle. The
adversary then stores the vector and the handle in the table and sends the handle to D. We denote the
handles τi to distinguish them from the encoded group elements of the code oracle.

Lemma 1. In the simultaneous oracle model, the probability that some adversary D, when interacting
with two group oracles Oc and O∗ (which is either Oc or Or with probability 1/2) differs after m queries
by at most ∣∣∣Pr[DOc(·) = 1]− Pr[DO∗(·) = 1]

∣∣∣ ≤ m(m+ 1)

2

(
1

2α
+

1

q

)
+

(
n
k

)
ql
.

Proof. We examine the simultaneous oracle game that the adversary plays between Oc and O∗. The
adversary builds its table ζ and functions Ψ and Ψ−1 as described above. We present a table for after the
adversary queries the generator and the noisy codeword elements to illustrate the functionality of ζ,Ψ,
and Ψ−1. For clarity we denote handles returned by the first oracle using σc,1. We also provide the query
for each set of handles. In the case where O∗ = Oc we denote the second encoding function σc,2 and the
second oracle Oc,2. Similarly, we refer to the first code oracle as Oc,1. The only common randomness
between these encodings is A which is also known by D.
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Linear Combination Oc,1 handle Oc,2 handle -OR- Or handle

(1, 0, . . . , 0) σc,1(0) σc,2(0) τ0

(0, 1, . . . , 0) σc,1(b1) σc,2(b′1) τ1
...

...
...

...
(0, 0, . . . , 1) σc,1(bn) σc,2(b′n) τn

In addition to this information we also analyze the underlying structure of Oc,1 (noting that Oc,2 retains
the same underlying structure). We do this by noticing that the group element bi is σ(Aix + ei · si) (we
use Ai to denote the ith row of a matrix A). We denote the Diagonal matrix induced by a vector y as
Diag(y).

n∑
i=0

χibi =
n∑
i=0

χi(Ai · x) +
n∑
i=0

χi(Diag(s)i · e)

=

n∑
i=0

χi ·




1 0 . . . 0 s1 0 . . . 0
0 1 . . . 0 0 s2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . sn


i

·



c1
...
cn
e1
...
en




(where cj is Aj · x)

=

n∑
i=0

χi ·




A0,0 A0,1 . . . A0,k s1 0 . . . 0
A1,0 A1,1 . . . A1,k 0 s2 . . . 0

...
...

. . .
...

...
...

. . .
...

An,0 An,1 . . . An,k 0 0 . . . sn


i

·



x1
...
xk
e1
...
en





Using this latter representation, note that linear combinations of the query vectors χ also apply to the
error selection vector s meaning that if the query vector has Hamming weight greater than k there will be
k error selection components wi in the resulting group element’s handle. Similarly, if two queries ~χi and
~χj differ in at least k positions then the induced error selection vector ~χ′ = (~χi − ~χj) contains at least k
nonzero components.

Alternatively, Or responds to each distinct query with a new handle. This means that there is exactly
one occasion to distinguish when O∗ = Oc,2 or O∗ = Or. This is when the handle returned by Oc,1 is
known and τi is new. We separate the analysis into two cases: group collisions due to noise and null space
query differences.

Group Collisions Due to Error. Oc carries out calculations with actual group elements. Thus, when
a group element is generated, there is a small probability that the linear combination produces a group
element whose handle is known to the adversary. This happens for each query with probability equal
to the number of known handles over the size of the group because errors are uniform in the field; in
particular, linear operations of any non-zero number of error terms will also be uniformly distributed.
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Since each query can generate at most one new handle we upper bound the probability by summing the
probability at each step over m queries as

∑m
i=1(i/q) = (1/q) · (m(m+ 1)/2).

Null Space Query Differences. Conditioned on every k × k minor of the generating matrix of the
code having rank at least k − l (as mentioned above this happens with probability at least 1 −

(
n
k

)
/ql),

when the difference ~χ′ = ~χi−~χj between two queries is in the null space of the code, that is when ~χ′A = 0
then the number of nonzero components in ~χ′ is at least k − l. This means that there are at least k − l
error components in the subsets of s induced by ~χ′. By assumption on the distribution E, then probability
that this product ~χ′ ·c s is equal to any particular value is at most 2−α. If the induced value ~χ′ ·c s is a
previously known group element then there is a collision. This probability for each query is the number of
known handles at the time of the query over the size of the field. After m queries, we take the sum of the
probability for each query and offer an upper bound

∑M
i=1(i/q) · 2−α = (m(m+ 1)/2) · (1/2α). Otherwise,

the query has an error term and collides with probability given in the first case. We take a union bound
over the two cases after m queries for the lemma’s result.

This lemma gives us the distinguishing power of an adversary interacting with our code oracle and
our random oracle. Our random oracle never has collisions because it creates fresh handles every time.
To create an oracle analogous to a uniform distribution as claimed in Theorem 1 we introduce another
term for random failure with the same probability as group collisions due to error. We call this last oracle
the uniform oracle and use it in our analysis with the added probability of failure.

Taking the result of this technical lemma, we can prove Theorem 1 using the contrapositive of
[BKM+18, Lemma 7] given here for completeness.

Lemma 2 ([BKM+18] Lemma 7). Suppose there exists an algorithm A such that

|Pr[AGM(OGM) = 1]− Pr[AGS (OGS ) = 1]| > δ.

Then an adversary can win the simultaneous oracle game with probability at least 1
2 + δ

2 for any pair of
oracles (GM,G∗ = GM/GS).

In our scheme, we use the contrapositive and use our result from Lemma 1 (and the modification to the
uniform oracle) where

δ/2 =
m(m+ 1)

2

(
1

2α
+

2

q

)
+

(
n
k

)
ql
.

Since the probability of an adversary winning the simultaneous oracle game is bounded above by

1/2 +
m(m+ 1)

2

(
1

2α
+

2

q

)
+

(
n
k

)
ql

then

Pr[A(Oc) = 1]− Pr[A(Or) = 1] < 2

(
m(m+ 1)

2

(
1

2α
+

2

q

)
+

(
n
k

)
q`

)
.

Because Or represents the oracle for uniform randomness and Oc is the oracle for Ax + e, this gives us
the result for generic adversaries.
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4 Application to Fuzzy Extractors - Code Offset in the Exponent

Our primary application is a new fuzzy extractor that performs error correction “in the exponent.” A
fuzzy extractor is a pair of algorithms designed to extract stable keys from a physical randomness source
that has entropy but is noisy. If repeated readings are taken from the source one expects these readings
to be close according to a distance metric but not identical. Before introducing the construction we
review the definition. We consider a generic group version of security (computational security is defined
in [FMR13], information-theoretic security in [DORS08]).

Definition 2. Let W be a family of probability distributions over M. A pair of procedures (Gen :M→
{0, 1}κ × {0, 1}∗,Rep : M× {0, 1}∗ → {0, 1}κ) is an (M,W, κ, t)-computational fuzzy extractor that is
(εsec,m)-hard with error δ if Gen and Rep satisfy the following properties:

• Correctness: if dis(w,w′) ≤ t and (key, pub)← Gen(w), then Pr[Rep(w′, pub) = r] ≥ 1− δ.

• Security: for any distribution W ∈ W, the string key is close to random conditioned on pub for all
generic A making at most m queries to the group oracle O, that is

Pr[AO(Key, P ) = 1]− Pr[AO(U,P ) = 1] ≤ εsec.

In the above definition, the errors are chosen before P : if the error pattern between w and w′ depends
on the output of Gen, then there is no guarantee about the probability of correctness.

4.1 Construction

The code-offset construction is a conceptually simple fuzzy extractor [DORS08]. The idea is for p to be
a one time pad of w.4 That is, p = c ⊕ w. The Rep algorithm has p and w′ as inputs and computes
c′ = p⊕w′. Importantly, if dis(w,w′) ≤ t then dis(c, c′) ≤ t. If c is chosen from a suitable error correcting
code, then it is possible to decode to c and recover w.

Importantly, if c is chosen from a error correcting code, it cannot be a uniform point and thus the
one-time pad analysis does not apply. However, the conditional entropy of W given P or H̃∞(W | P )
reduces by at most the gap between the size of the uniform distribution and the error correction code.
That is, for code C ∈ {0, 1}n:

H̃∞(W | P ) ≥ H∞(W )− (n− log |C|).

The major problem with the code offset construction is the limited applicability to physical distribu-
tions W . In particular, for many distributions W this analysis provides no guarantee on the strength of
the derived key (see discussion in [CFP+16]). To address this problem, Fuller et al. [FMR13] proposed
to replace a structured code with a random linear code and rely on the hardness of LWE. Subsequent
work adapted the construction to a binary field [HRvD+16] and showed how to make the construction a
reusable fuzzy extractor [ACEK17].

These constructions are a code-offset construction with a random code: pub = (A,Ax + w) where A
and x are random. For a suitable w the value pub is pseudorandom. The associated decoding procedure
is a simple guess and check, finding subsets I and then computing x = A−1

I pubI −w′I = xA−1
I (w−w′)I .

To achieve a hard LWE instance their correction capability was only t = Θ(log |w|) which is inadequate

4The cryptographic key is produced by applying a randomness extractor on w. [NZ93].
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for most physical sources. Achieving a higher error tolerance could be achieved by reducing the dimension
of the code |x| but this has a direct effect on the hardness of the underlying lattice problem.

To address this issue we move the LWE code-offset to the exponent. The construction is:

Construction 1. Let λ be a security parameter and let k = k(λ) be some parameter where k = ω(log λ).
Let α be a free parameter. Let p = p(λ) be an ensemble of primes. Let Zp be the field with p elements.
Let W ∈ {0, 1}n be a metric space and let k = ω(log λ) be a parameter. Let τ = max(0.01, t/n). Define
(Gen,Rep) as follows:

Gen

1. Input: w = w1, ..., wn

2. Sample random generator r of Z∗p.

3. Sample A← (Zp)n×(k+α),x← (Zp)k+α.

4. Sample y
$← {0, 1}n.

5. For i = 1, ..., n:

(i) If wi = yi, set ci = rAi·x.

(ii) Else set ci
$← Z∗p.

6. Set key = rx0...α−1.

7. Output (key, p),
p = (r,y,A, {ci}ni=1).

Rep

1. Input: (w′, p = (r,y,A, c1 . . . c`))

2. Let I = {i|w′i = yi}.
3. For i = 1, ..., `:

(i) Choose random Ji ⊆ I where |J | = k.

(ii) If A−1
Ji

does not exist go to 4.

(iii) Compute c′ = r
A(A−1

Ji
cJi ).

(iv) If dis(cI , c
′
I) ≤ |cI |(1− 2τ), output

key = r
A−1
Ji

cJi
0...α−1 .

4. Output ⊥.

Theorem 2. Let all parameters be as in Construction 1. Let ` ∈ Z+ be a free parameter. Let W ∈ {0, 1}n
be a distribution with (α, k − (`− 1))-entropy subsets. define the random variable

E
def
=

{
UZ∗p if Yi 6= Wi,

0 if Yi = Wi.

Then for all generic adversaries D making at most m queries to O then

Pr[D(Key, R, Y,A,Ax + E) = 1]− Pr[D(UαZ∗p , R, Y,A,Ax + E) = 1]

≤ 2

(
m(m+ 1)

2

(
1

2α
+

2

q

)
+

(
n
k

)
q`

)
.

That is for generic adversaries making m queries, Construction 1 is a secure fuzzy extractor if α =
ω(log λ), q = ω(poly(λ)),m = poly(λ),

(
n
k

)
/q` = ngl(λ) for some εsec = ngl(λ).

Proof. The main technical content of our proof is in Theorem 1 which shows hardness of the decisional
version of LWE for error distributions with subset entropy for generic adversaries. To achieve the above
theorem we need two additional notes:

1. A lemma by Akavia, Goldwasser, and Vaikuntanathan [AGV09, Lemma 2] which states that if the
decision version of LWE is hard for k dimensions than any additional α dimensions are hardcore.
To apply this Lemma in our setting we simply have to note that the reduction works for a generic
adversary, it only needs to sample random group elements and compute linear functions.
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2. Instead of directly using W as an error selection vector we use when Yi 6= Wi as the error selection
vector. This change is made only for simplifying correctness analysis. In particular, since W and

Y are independent, define the random variable S where Si = (Yi
?
= Wi). Then since Y is uniformly

distributed when W has (α, k − (` − 1))-entropy subsets so does S. The error selection vector is
defined by S.

This completes the proof of Theorem 2.

Correctness and Efficiency We now show the construction is also correct and efficient. Our correct-
ness argument considers constant k = Θ(n) and t = Θ(n). For the fuzzy extractor application, one would
consider a smaller k and t. In particular, for t = o(n) the theorem applies with overwhelming probability

as long as k ≤ (1−Θ(1))
3 ∗ n. We use the q-ary entropy function which is a generalization of the binary

entropy function to larger fields. Hq(x) is the q-ary entropy function defined as

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

Theorem 3. Let parameters be as in Construction 1. Define τ = t/n. Let 0 < δ < 1 − Hq(4τ) and
suppose that k ≤ (1/3) ·d1−Hq(4τ)−δen. If Rep outputs a value other than ⊥ it is correct with probability
at least 1− e−Θ(n).

of Theorem 3. We assume a fixed number of iterations in Rep denoted by `. Recall we assume that
dis(w,w′) ≤ t and that the value y is independent of both values (by Def 2, w′ does not depend on the
public value). We first consider the final check of whether dis(cI , c

′
I) ≤ |cI |(1− 2τ) will return correctly

if and only rx = r
A−1
Ji

cJi . We stress that this is property is independent of the chosen subset and only
depends on A,x, w, w′ and y. To simplify notation we refer to the values in the exponent, but our
argument directly applies to the generated group elements.

Define the matrix AI defined by the set I. By Chernoff bound,

Pr

[
|I| ≤

(
1− 1

3

)
E |I|

]
= Pr

[
|I| ≤

(
2

3

)
n

2

]
≤ e−

n
36 ≤ e−Θ(n).

Without loss of generality we assume that the size of I = n/3.
Consider some fixed w,w′ such that dis(w,w′) ≤ t and define the random variable Z of length n where

a bit i of z that indicates when wi = w′i and when w′i = yi. We consider the setting when t = Θ(n), if
t = o(n) then τ = .01 and the condition holds with high probability.

We can lower bound of weight of S by a binomial distribution with n − t flips and probability 1/2.
That is, E[S] = |I| ∗ (1− τ) ≥ (n/3)(1− τ). By an additive Chernoff bound,

Pr [S − E[S] ≥ t] = Pr [S − E[S] ≥ τn] ≤ 2e−2τ2n ≤ e−Θ(n).

To show correctness it remains to show that x is unique. We again assume that I = n/3, all arguments
proceed similarly when I > n/3. To show uniqueness of x suppose that there exists two x1,x2 such that
dis(AIx1, cI) ≤ |cI |(1− 2τ) and dis(AIx2, cI) ≤ |cI |(1− 2τ). This means that AI(x1 − x2) contains at
most 4t/3 nonzero components. To complete the proof we use the following standard theorem:

Lemma 3. [Gur10, Theorem 8] For prime q, δ ∈ [0, 1 − 1/q), 0 < ε < 1 − Hq(δ) and sufficiently large
n, the following holds for k = d(1−Hq(δ)− ε)ne . If A ∈ Zn×kq is drawn uniformly at random, then the
linear code with A as a generator matrix has rate at least (1−Hq(δ)− ε) and relative distance at least δ
with probability at least 1− e−Ω(n).

Application of Lemma 3 completes the proof of Theorem 3.
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Recovery Our analysis of running time is similar in spirit to that of Canetti et al. [CFP+16]. For any
given i, the probability that w′Ji = wJi is at least(

1− 2t

n− k

)k
.

Therefore, the probability that no iteration matches is at most(
1−

(
1− 2t

n− k

)k)`
.

We can use the approximation ex ≈ 1 + x to get(
1−

(
1− 2t

n− k

)k)`
≈ (1− e−

2tk
n−k )` ≈ exp(−`e−

2tk
n−k ).

Suppose that correctness 1− δ ≥ 1− (δ′ + e−Θ(n)) is desired. (Here, the e−Θ(n) term is due to sampling
of a bad matrix A and failures of Chernoff bounds above.) Then if k = o(n) with tk = cn lnn for some
constant c, setting ` ≈ n2c+Θ(1) log 1

δ′ suffices as:

exp
(
−`e−

tk
n−k
)

= exp

(
−n2c log

1

δ′
e−

2tk
n−k

)
≤ exp

(
−n2c+Θ(1) ∗ log

1

δ′
∗ e−(2c+o(1)) lnn

)
= exp

(
−n2c+Θ(1) ∗ log

1

δ′
∗ n−(2c+o(1))

)
≤ δ′

In particular, in the generic group model for k that is only slightly larger than ω(lnn) one can support
error rates t = o(n) only slightly smaller than constant rates.

4.2 Reusability

Reusability is the ability to support multiple independent enrollments of the same value, allowing users to
reuse the same biometric or PUF, for example, with multiple noncooperating providers. More precisely,
the algorithm Gen may be run multiple times on correlated readings w1, ..., wρ of a given source. Each
time, Gen will produce a different pair of values (r1, p1), ..., (rρ, pρ). Security for each extracted string
ri should hold even in the presence of all the helper strings p1, . . . , pρ (the reproduction procedure Rep
at the ith provider still obtains only a single w′ close to wi and uses a single helper string pi). Because
providers may not trust each other each ri should be secure even when all rj for j 6= i are also given to
the adversary.

Definition 3 (Reusable Fuzzy Extractor [CFP+16]). Let W be a family of distributions over M. Let
(Gen,Rep) be a (M,W, κ, t)-computational fuzzy extractor that is (εsec,m)-hard with error δ. Let
(W 1,W 2, . . . ,W ρ) be ρ correlated random variables such that each W j ∈ W. Let D be an adversary.
Define the following game for all j = 1, ..., ρ:
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• Sampling The challenger samples wj ←W j and u← {0, 1}κ.

• Generation The challenger computes (rj , pj)← Gen(wj).

• Distinguishing The advantage of D is

Adv(D)
def
= Pr[D(r1, ..., rj−1, rj , rj+1, ..., rρ, p1, ..., pρ) = 1]

−Pr[D(r1, ..., rj−1, u, rj+1, ..., rρ, p1, ..., pρ) = 1].

(Gen,Rep) is (ρ, εsec,m)-reusable if for all generic D making at most m queries and all j = 1, ..., ρ, the
advantage is at most εsec.

As mentioned in the introduction, Construction 1 is also a reusable fuzzy extractor against generic
adversaries.

Theorem 4. Let all parameters be as in Construction 1. Let ` ∈ Z+ be a free parameter. Let W ∈ {0, 1}n
be a distribution with (α, k − (`− 1))-entropy subsets. define the random variable

E
def
=

{
UZ∗p if Yi 6= Wi,

0 if Yi = Wi.

Then (Gen,Rep) is a (ρ, εsec,m) reusable fuzzy for all generic adversaries making at most m queries where

εsec = 2ρ

(
m(m+ 1)

2

(
1

2α
+

2

q

)
+

(
n
k

)
q`

)
.

For generic adversaries making m queries, Construction 1 is a reusable secure fuzzy extractor if α =
ω(log λ), q = ω(poly(λ)),m = poly(λ), ρ = poly(λ),

(
n
k

)
/q` = ngl(λ) for some εsec = ngl(λ).

Proof. This argument requires a little understanding of the generic group proof from Section 3. This
argument showed that an adversary knowing A was unable to distinguish between Ax + e ·c s from U
except with negligible probability. Without loss of generality, we assume that the adversary is trying to
learn information about the first key. For the construction to be reusable for all distinguishers, it must
be true that:

|Pr[D(U, r1,y1,A1,A1x1 + e1 ·c s1, {keyi, pi}ni=2) = 1]

−Pr[D(rx0..α−1 , r1,y1,A1,A1x1 + e1 ·c s1, {keyi, pi}ni=2) = 1| ≤ εsec.

Crucially, in Theorem 1, we assume that handles are in a sufficient sparse space such that handles
from one oracle never represent a valid handle for oracle. Rather than initializing a joint oracle to answer
all queries, one can separately initialize oracles for each application of the fuzzy extractor. This is because
each application of the fuzzy extractor works for a different group generator. Crucially, one this conceptual
change is made one exclude queries from the adversary with handles that involve more than one oracle.
Then the n − 1 oracles corresponding to other enrollments wi are the same in both settings. Using a
simple hybrid argument on Theorem 1 we can replace these oracles with uniform values. Once replaced
by uniform values these oracles provide no information to the adversary. The theorem follows by a final
application of Theorem 1.

16



4.3 Comparison with sample-then-lock

As mentioned in the introduction, Canetti et al. [CFP+16] proposed a reusable fuzzy extractor based on
digital lockers called sample-then-lock. Intuitively, a digital locker is a symmetric encryption that is seman-
tically secure even when instantiated with keys that are correlated and only have entropy [CKVW10]. At
a high level, their construction took multiple samples wIj from the input biometric and use these as keys
for different digital lockers, all of which contained the same key. The main drawback of this construction
is that it required the construction to write down each subset to be tested. Alternatively, Construction 1
allows testing of any subset. This change is significant for two reasons:

1. Only running time grows with the number of errors, storage grows only with the size of |w|.

2. Many physical sources are sampled along with correlated side information that is called confidence.
Confidence information is a secondary probability distribution Z (correlated with the reading W )
that can predict the error rate in a bit Wi. When Z is large this means a bit of W is less likely to
differ. Examples include the magnitude of a convolution in the iris [SSF18] and the magnitude of
the difference between two circuit delays in ring oscillator PUFs [HRvD+16]. Herder et al. report
that by considering bits with high confidence it is possible to reduce the effective error rate from
τ = .10 to τ = 3 × 10−6. This confidence information could not be used in Canetti et al’s work
to guide subset selection as it is correlated with W . On the other hand, Construction 1 only uses
this information at reproduction time so it is stored public information is not correlated with the
confidence information.

On the other hand the fact that all subsets are available to an adversary does provide them with additional
power. Canetti et al. were able to show security for all distributions where sampling produced entropy:

Definition 4 ([CFP+16] Sources with High Entropy Samples). Let the source W = W1, . . . ,Wn consist
of strings of length n over some arbitrary alphabet Z. For some parameters k, α we say that the source W
is a source with a (α, k)-entropy-samples if H̃∞(Wj1 , . . . ,Wjk | j1, . . . , jk) ≥ α for uniformly random
1 ≤ j1, . . . , jk ≤ n.

Our modification to this definition in Definition 1 is the natural one. Instead of j1, . . . , jk being a
uniform subset, it can be any subset of n.

5 Application to Pattern Matching Obfuscation

In this section we introduce a second application for our main theorem. This application is known as
pattern matching obfuscation. The goal is to obfuscate a string v of length n which consists of 0, 1,⊥
where ⊥ is a wildcard. The obfuscated program on input x ∈ {0, 1}n should output 1 if and only
if ∀i, xi = vi ∨ vi =⊥. Roughly, the wildcard positions are matched automatically. We directly use
definitions and the construction from the recent work of Bishop et al. [BKM+18]. Our improvement is in
analysis, showing security for more distributions V . We start by introducing a definition of security:

Definition 5. Let C = Cn be a family of circuits where Cn takes inputs of length n and let O be a PPT
algorithm taking n ∈ N and C ∈ C outputting a new circuit C ′. Let D = Dn be an ensemble of distribution
families where each D ∈ Dn is a distribution over circuits in Cn. O is a distributional VBB obfuscator
for D over C if:
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1. Functionality: For each n,C ∈ Cn and x ∈ {0, 1}n,

Pr
O,C′

[C ′(x) = C(x)] ≥ 1− ngl(n).

2. Slowdown: For each n,C ∈ Cn, the resulting C ′ can be evaluated in time poly(|C|, n).

3. Security: For each generic adversary A making at most m queries, there is a polynomial time
simulator S such that ∀n ∈ N, and each D ∈ Dn and each predicate P∣∣∣∣∣∣∣ Pr

C←Dn,
OG ,A

[AG(OG(C, 1n)) = P (C)]− Pr
C←Dn,S

[SC(1|C|, 1n) = P (C)]

∣∣∣∣∣∣∣ ≤ ngl(n).

Construction 2. We now reiterate the construction from Bishop et al. adapted to use a random linear
code for some prime q = q(n).

O:

1. Input v ∈ {0, 1,⊥}n, q, g where g is a generator of the group Z∗q.

2. Sample A ∈ (Zq)2n×n, x0 = 0, x1,...,n−1 ← (Zq)n−1.

3. Sample e ∈ Z2n
q uniformly.

4. For i = 0 to n− 1:

(a) If vi = 1 set e2i = 0.

(b) If vi = 0 set e2i+1 = 0.

(c) If vi =⊥ set e2i = 0, e2i+1 = 0.

5. Compute y = Ax + e.

6. Output gy,A.

Eval

1. Input gy,A, x ∈ {0, 1}n.

2. I = {i ∈ [1...2n] | xbi/2c = (i mod 2)}.

3. Compute A−1
I . If none exists output ⊥.

4. Output gA
−1
I,1·y ?

= g.

To state our security theorem we need to consider the transform from strings v over {0, 1,⊥} to binary
strings.

Bin(v) = s where


si = 10 if vi = 1,

si = 01 if vi = 0,

si = 00 if vi =⊥ .
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Theorem 5. Let ` ∈ Z+ be a free parameter. Define D as the set of all distributions V such that Bin(V )
is a distribution with α, (n− (`− 1))-entropy subsets. Then Construction 2 is VBB secure for generic D
making at most m queries with distinguishing probability at most

2

(
m(m+ 1)

2

(
1

2α
+

2

q

)
+

(
2n
n

)
q`

)
.

Proof. Like the work of Bishop et al. [BKM+18, Theorem 16] the VBB security of the theorem follows by
noting for any adversary A there exists a simulator S that initializes A, provides them with 2n random
handles (and simulates the interaction with Or) and outputs their output. By Theorem 1, the output of
this simulator differs from the adversary in the real game by at most the above probability.

6 Hardness of Decoding in the Standard Model

In this section, we consider whether decoding is hard for groups where the discrete logarithm problem
is believed to be hard. We first examine hardness of decoding random linear codes in the exponent. In
Appendix A we consider Reed-Solomon codes. Both results follow the same three part outline:

1. A theorem of Brands [Bra93] which says that if given a uniformly distributed gy one can find z
such that g〈y,z〉 = 1 or equivalently that a vector z such that 〈y, z〉 = 0 then one can solve discrete
log with the same probability. For a vector of length n and prime q, this problem is known as the
FIND− REP(n, q) problem.

2. A combinatorial lemma which shows conditions for a random gy to be within some distance param-
eter c of a codeword with noticeable probability. That is, ∃z ∈ C such that dis(gx, gz) ≤ c (for the
codeword space C).

3. Let O be an oracle for bounded distance decoding. That is, given gy, O returns some gz where
dis(gz, gy) ≤ c and z ∈ C. Recall that linear codes have known null spaces. Thus, if two vectors gz

and gy match in more positions than the dimension of the code it is possible to compute a vector ~λ
that is only nonzero in positions where gzi = gyi and 〈~λ,x〉 = 〈~λ,y〉 = 0. If O works on a random
point gy it is possible to compute a vector ~λ in the null space of y. This serves as an algorithm to
solve the FIND− REP and completes the connection to hardness of discrete log.

In this section we focus on a combinatorial lemma to establish point 2. In Appendix A, we present a
similar result for Reed-Solomon codes improving prior work of Peikert [Pei06].

An (n, k, q)- random linear code, denoted RL(n, k, q), is generated by a matrix A ∈ Zn×kq that is

independent and uniform elements of Zq. The code is the set of Ax for all vectors x ∈ Fkq . We will
consider noise vectors e ∈ Fq where the Hamming weight of e denoted wt(e) = t and the nonzero entries
of e are uniformly distributed. That is, we consider z = Ax + e.

Usually in coding theory the goal is unique decoding. That is, given some y, if there exists some z ∈ C
such that dis(y, z) ≤ t, the algorithm is guaranteed to return y and z is uniquely defined.

Our results consider algorithms that perform bounded distance decoding. Bounded distance decoding
is a relaxation of unique decoding. For a distance t and a point y ∈ Znq a bounded distance decoding
algorithm returns some z ∈ C such that dis(y, z) ≤ t. There is no guarantee that z is unique or is the
point in the code closest to y.
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Problem BDDE− RL(n, k, q, c, g), or Bounded Distance Decoding in the exponent of Random Linear
Codes codes.

Instance Known generator g of Z∗q . Define e as a random vector of weight c in Zq. Define gy = gAx+e

where A,x are uniformly distributed. Input is gy,A.

Output Any codeword gz where ∃x ∈ Zkq such that z = Ax and dis(x, z) ≤ c.

For a code C we define the distance between a point y and the code as the minimum distance between
y and any codeword c in C. Formally,

dis(y,C) = min
c∈C

dis(y, c).

Our proofs use the notion of thickness of a point with respect to a codespace and a radius. Consider
some point y in the codespace and a radius r. The thickness of a point is the number of Hamming balls
(of radius r) inflated around all codewords that cover y. Specifically, define the set of points contained in
a Hamming ball of radius r as Φ(r, z) for each codeword z in the code C. Then define random variables
ϕ(r, z,y) for each Φ(r, z) where ϕ(r, z,y) = 1 if y ∈ Φ(r, i) and 0 otherwise. Then the thickness of y is

Thick(r,C,y) =
∑
z∈C

ϕ(r, z,y).

We now present the theorem of this section and our key technical lemma (Lemma 4), then prove the
lemma and finally the theorem.

Theorem 6. For positive integers n, k, c and q where k < n ≤ q and let g be a generator of Z∗q. If
an efficient algorithm exists to solve BDDE− RL(n, k, q, n − k − c, g) with probability ε, then an efficient
randomized algorithm exists to solve the discrete log problem in the same group with probability at least

ε′ = ε

(
1−

(
qn−k

Vol(n, n− k − c, q)
+

k

qn−k

))
.

In particular, using a volume bound Vol(n, r, q) ≥
(
n
k

)
qr(1− n/q), we get

ε′ = ε

(
1−

(
qc(

n
k+c

)
(1− n

q )
+

k

qn−k

))
.

Lemma 4. Let a Code RLA(n, k, q) be defined by matrix A ∈ Zn×kq , then

Pr
y∈Fnq ,A

[dis(y,RLA(n, k, q)) > n− k − c] ≤ qn−k

Vol(n, n− k − c, q)
+

1

qn−k
.

Proof of Lemma 4. A Random Linear Code RLA(n, k, q) has qk codewords in a qn sized codespace as
long as A is full rank. The probability of A being full rank is at least 1− k/qn−k [FMR13, Lemma A.3].
The expected thickness of a code or Ey Thick(r,A,y) is the average thickness over all points in the space.
Expected thickness is the ratio of the sum of the volume of the balls and the size of the space itself. Note
that this value can be greater than 1. A Hamming ball in this space can only be defined up to radius n.
We give denote the expected thickness of the code as follows:

Ey(Thick(r,A,y)) =
Vol(n, r, q) · qk

qn
= Vol(n, r, q) · qk−n
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For r = n− k − c:
Ey(Thick(n− k − c,A,y)) ≥ Vol(n, n− k − c, q) · qk−n

For a point to be have Hamming distance from our code greater than n − k − c, its thickness must be
0. For the thickness of a point to be 0, it must deviate from the expected thickness by the expected
thickness. We use this fact to bound the probability that a point is distance at least n−k− c. We require
that each codeword is pairwise independent (that is, PrA[c ∈ A|c′ ∈ A] = PrA[c ∈ A]). In random
linear codes, only generating matrices with dimension 1 are not pairwise independent. We have already
restricted our discussion to full rank A. Define an indicator random variable that is 1 when a point c
is in the code. The pairwise independence of the code implies pairwise independence of these indicator
random variables. With pairwise independent codewords, we use Chebyshev’s Inequality to bound the
probability of a random point being remote from a random code. We upper bound the variance of Thick
by its expectation (since the random variable is nonnegative). In the below equations we only consider
A where Rank(A) = k but do not write this to simplify notation. Let t = n− k − c, then

E
A

Pr
y

[dis(y,RLA(n, k, q)) > t]

= E
A

Pr
y

[Thick(t,A,y) = 0]

≤ E
A

(
Pr
y

[|Thick(t,A,y)− E(Thick(t,A,y))| > E(Thick(t,A,y))]

)
≤ E

A

(
Vary(Thick(t,A,y))

Ey(Thick(t,A,y))2

)
≤ E

A

(
1

Ey(Thick(t,A,y))

)
=

qn−k

Vol(n, n− k − c, q)
.

Proof of Theorem 6. Suppose an algorithm F solves BDDE− RL(n, k, q, n−k−c, g) with probability ε. We
show that F can be used to construct an O that solves FIND− REP.
O works as follows:

1. Input y = (y1, . . . , yn) (where y is uniform over Znq ).

2. Generate A← Zn×kq .

3. Run z← F(y,A).

4. If dis(y, z) > n− k − c output ⊥.

5. Let I = {i|yi = zi}.

6. Construct parity check matrix of AI , denoted HI .

7. Find some nonzero row of HI , denoted B = (b1, . . . , bk+c) with associated indices I.

8. Output ~λ where ~λi = Bi′ for i ∈ I where i′ represents the location of i in a sorted list with the
same elements as I and 0 otherwise.

By Lemma 4, (y,A) is a uniform instance of BDDE− RL(n, k, q, n − k − c, g) with probability at least
1− (qn−k/Vol(n, n− k − c, q) + k ∗ q−(n−k)). This means that I ≥ k + c. Note for z to be a codeword it
must be that there exists some x such that z = Ax and thus, the parity check matrix restricted to I is
defined and there is some nonzero row.
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A Decoding Reed Solomon Codes in the Exponent

The Reed-Solomon family of error correcting codes [RS60] have extensive applications in cryptography.
For the field Fq of size q, a message length k, and code length n, such that k ≤ n ≤ q, define the
Vandermonde matrix V where the ith row, Vi = [i0, i1, ...., ik]. The Reed Solomon Code RS(n, k, q) is the
set of all points Vx where x ∈ Fkq . Reed-Solomon Codes have known efficient algorithms for correcting
errors. We note that for a particular vector x the generated vector Vx is a degree k polynomial with
coefficients x evaluated at points 1, ..., n.

The Berlekamp-Welch algorithm [WB86] corrects up to (n − k + 1)/2 errors in any codeword in
the code. List decoding provides a weaker guarantee. The algorithm instead vectors a list containing
codewords within a given distance to a point, the algorithm may return 0, 1 or many codewords [Eli57].
The list decoding algorithm of Guruswami and Sudan [GS98] can find all codewords within Hamming
distance n−

√
nk of a given word. Importantly, algorithms to correct errors in Reed-Solomon codes rely

on nonlinear operations. Like with Random Linear Codes we consider hardness of constructing an oracle
that performs bounded distance decoding.

Problem BDDE− RS(n, k, q, c, g), or Bounded Distance Decoding in the exponent of Reed Solomon codes.

Instance A known generator g of Z∗q . Define e as a random vector of weight c in Z∗q . Define gy = gVx+e

where x is uniformly distributed. Input is gy.

Output Any codeword gz where z ∈ RS(n, k, q) such that dis(gy, gz) ≤ c.

Theorem 7. For any positive integers n, k, c, and q such that q ≥ n2/4, c ≤ n+k, k ≤ n and a generator
g of the group G, if an efficient algorithm exists to solve BDDE− RS(n, q, k, n− k − c, g) with probability ε
(over a uniform instance and the randomness of the algorithm), then an efficient randomized algorithm
exists to solve the discrete log problem in G with probability

ε′ ≥


ε

(
1− 2qc

( n
k+c)

)
n2

2 ≤ q

ε

(
1− cqc

( n
k+c)

)
n2

4 ≤ q <
n2

2

.

Proof. Like Theorem 6 the core of our theorem is a bound on the probability that a random point is close
to a Reed-Solomon code.

Lemma 5. For any positive integer c ≤ n− k, define α = 4q
n2 , and any Reed-Solomon Code RS(n, k, q),

Pr
y

[dis(y,RS(n, k, q)) > n− k − c] ≤ qc(
n
k+c

)α−c c∑
c′=0

αc
′

where the probability is taken over the uniform choice of y from Gn.

Proof of Lemma 5. A vector y has distance at most n− k− c from a Reed-Solomon code if there is some
subset of indices of size k+ c whose distance from a polynomial is at most k− 1. To codify this notion we
define a predicate which we call low degree. A set S consisting of ordered pairs {αi, xi}i is low degree if the
points {(αi, logg xi)}i∈S lie on a polynomial of degree at most k − 1. Define S = {S ⊆ [n] : |S| = k + c}.
For every S ∈ S, define YS to be the indicator random variable for if S satisfies the low degree condition
taken over the random choice of y. Let Y =

∑
S∈S YS .
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For all S ∈ S,Pr[YS = 1] = q−c, because any k points of {(αi, logg xi)}i∈S define a unique polynomial
of degree at most k. The remaining c points independently lie on that polynomial with probability 1/q.
The size of S is |S| =

(
n
k+c

)
. Then by linearity of expectation, E[Y ] =

(
n
k+c

)
/qc. Now we use Chebyshev’s

inequality,

Pr
y

[dis(y,RS(n, k, q)) > n− k − c] = Pr[Y = 0]

≤ Pr[|Y − E[Y ]| ≥ E[Y ]]

≤ Var(Y )

E[Y ]2
.

It remains to analyze Var(Y ) = E[Y 2]−E[Y ]2. To analyze this variance we split into cases where the
intersection of YS and YS′ is small and large. Consider two sets S and S′ and the corresponding indicator
random variables YS and YS′ . If |S ∩ S′| < k then E[YS |YS′ = E[YS ] and E[YSYS′ ] = E[YS ]E[YS′ ]. This
observation is crucial for security of Shamir’s secret sharing [Sha79]. For pairs S, S′ where |S ∩ S′| ≥ k,
we introduce a variable c′ between 0 and c to denote c′ = |S∩S′|−k. For such S, S′ instead of computing
E[Y 2] − E[Y ]2 we just compute E[Y 2] and use this as a bound. For each c′ we calculate E[YSYS′ ] where
|S ∩ S| = k + c′. The number of pairs can be counted as follows:

(
n
k+c

)
choices for S, then

(
k+c
c−c′
)

choices
for the elements of S not in S′ which determines the k + c′ elements that are in both S and S′, and
finally

(
n−k−c
c−c′

)
to pick the remaining elements of S′ that are not in S. So the total number of pairs is(

n
k+c

)(
k+c
c−c′
)(
n−k−c
c−c′

)
. Using these observations, we can upper bound the variance Var(Y ) for our random

variable Y :

Var(Y ) =
∑

S,S′∈S
(E[YSYS′ ]− E[YS ]E[YS′ ])

=

c∑
c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(E[YSYS′ ]− E[YS ]E[YS′ ])

≤
c∑

c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(E[YSYS′ ]) =
c∑

c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(
1

q2c−c′ )

Here the last line follows by observing that for both YS and YS′ to be 1 they must both define the same
polynomial. Since S and S′ share k + c′ points, there are (k + c) + (k + c)− (k + c′) = k + 2c− c′ points
that must lie on the at most k − 1 degree polynomial, and any k points determine the polynomial, and
the remaining 2c−c′ points independently lie on the polynomial with probability 1/q then the probability
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that this occurs is 1/q2c−c′ . Continuing one has that,

Var(Y ) ≤ 1

q2c

c∑
c′=0

∑
S,S′∈S

|S∩S′|=k+c′

(qc
′
)

=
1

q2c

c∑
c′=0

(qc
′
(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

)
)

=
[( n

k + c

)
1

qc

] 1

qc

c∑
c′=0

(qc
′
(

n

k + c

)(
k + c

c− c′

)(
n− k − c
c− c′

)
)

=
E[Y ]

qc

c∑
c′=0

(
qc
′
(
k + c

c− c′

)(
n− k − c
c− c′

))

We bound the size of
(
k+c
c−c′
)(
n−k−c
c−c′

)
by observing that the sum of the top terms of the choose functions

is n and the product of two values with a known sum is bounded by the product of their average, in this
case n/2. We also use the upper bound of the choose function where nk ≥

(
n
k

)
to arrive at the bound that

qc
c∑

c′=0

(qc
′
(
k + c

c− c′

)(
n− k − c
c− c′

)
) ≤

(
(n/2)2

q

)c c∑
c′=0

( q

(n/2)2

)c′
.

The proof then follows using our bound for variance by defining α = 4q/n2. This completes the proof
of Lemma 5.

The remainder of the proof is similar to the proof of Theorem 6. A works as follows: on input y where
y is uniform over Gn immediately run D(g,y). By Lemma 5, (g,v) is an instance of BDDE− RSq,E,k,n−k−c
with probability at least

1− qc(
n
k+c

)α−c c∑
c′=0

αc
′
.

Then conditioned on this event, the instance is uniform, and D (with probability ε) outputs some z where
dis(z,y) ≤ n − k − c. Take any k + 1 indices I ⊆ [n] such that yi = zi for i ∈ E. Then any k of the yi
interpolate to another one of the yi. We find the non-trivial Lagrange coefficients for the first k yi call
them λi such that

∏
i∈E

vλii = 1. Call the remaining point yk+1. let λi = 0 for i /∈ E and set λk+1 to −1.

Then (λ1, . . . , λn) is a solution to FIND− REP.
The parameters in the Theorem follow when 1 ≤ α < 2 by noting that

α−c
c∑

c′=0

αc
′ ≤ α−c(c · αc) = c.

Parameters in Theorem 7 follow in the case when α = 4q/n2 ≥ 2 by noting that:

α−c
c∑

c′=0

αc
′

= α−c
(αc+1 − 1

α− 1

)
=
(α− α−c
α− 1

)
≤ 2.

This completes the proof of Theorem 7.
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