
Decentralized Evaluation of Quadratic Polynomials
on Encrypted Data

Chloé Hébant1,2, Duong Hieu Phan3, and David Pointcheval1,2

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
2 INRIA, Paris, France

3 Université de Limoges, France

Abstract Machine learning and group testing are quite useful methods for many different fields
such as finance, banks, biology, medicine, etc. These application domains use quite sensitive data,
and huge amounts of data. As a consequence, one would like to be able to both privately and
efficiently compute on big data. While fully homomorphic encryption can be seen as a very pow-
erful tool for such a task, it might not be efficient enough, and namely because of the very large
ciphertexts. In addition, the result being encrypted, efficient distributed decryption is important
to control who can get the information.
For our applications, we first remark that 2-DNF formulae evaluation is enough, but efficient multi-
party decryption is still required to guarantee privacy. Boneh-Goh-Nissim proposed a nice encryp-
tion scheme that supports additions, one multiplication layer, and additions, by using a bilinear
map on a composite-order group: this is perfectly suited for 2-DNF formulae evaluation. However,
computations on such elliptic curves with composite order turned out to be quite inefficient, and
namely when multi-party decryption is required. Fortunately, Freeman proposed a generalization,
based on prime-order groups, with the same properties, but better efficiency.
Whereas the BGN cryptosystem relies on integer factoring for the trapdoor in the composite-order
group, and thus possesses one public/secret key only, our first contribution is to show how the
Freeman cryptosystem can handle multiple users with one general setup that just needs to define a
pairing-based algebraic structure. Users’ keys are efficient to generate and can also support efficient
multi-party decryption, without a trusted server, hence in a fully decentralized setting. Fortunately,
it helps to efficiently address some machine learning models and the group testing on encrypted
data, without central authority.

1 Introduction

Decentralized Cryptography is one of the main directions of research in cryptography, espe-
cially in a concurrent environment of multi-user applications, where there is no need to trust
any authority. Recently, the rise of blockchain’s applications also witnessed the importance of
decentralized applications. However, the blockchain mainly addresses the decentralized valida-
tion of transactions, but it does not help to decentralize the computations, which is the main
goal of cryptographic protocols. For the computational purpose, though general solutions can
be achieved via multi-party computation, reasonably efficient solutions only exist for a limited
number of protocols, as decentralization usually adds constraints to the design of protocols: in
broadcast encryption [FN94], the decentralized protocol in [PPS12] is much less efficient than the
underlying original protocol [NNL01]; in attribute-based encryption [SW05], the decentralized
scheme [LW11] requires bilinear groups of composite order; etc.

Decentralized Computing over Encrypted Data. In the last decade, the most active research di-
rection carries on computing over encrypted data, with the seminal papers on Fully Homomor-
phic Encryption (FHE) [Gen09, BGN05] and on Functional Encryption (FE) [SW05, BSW11,
GKP+13, GGH+13]. FE was generalized to the case of multi-user setting via the notion of multi-
input/multi-client FE[GGG+14, GGJS13, GKL+13]. In this setting, it was a natural problem to
consider the decentralization, which was recently addressed by Chotard et al. [CDG+17], where
each client encrypts his own input, all the clients agree and contribute to generate the functional
decryption keys, there is no need of central authority anymore. Remark that, in functional en-
cryption, there are efficient solutions for quadratic functions [Gay16, BCFG17, DGP18] but
actually, only linear function evaluations can be decentralized. As far as we know, this is actually

2

pkn

rkn

pkn−1

rkn−1

. . .

rk1

pk0

Figure 1. Distributed decryption

the only work done on decentralizing the computation over encrypted data. We consider in this
paper the practical case of decentralized FHE in multi-user setting. Because the general solution
for FHE is still not yet practical, we consider the real-life applications which only require the
evaluation of quadratic polynomials.

1.1 Technical Contribution

We design an efficient distributed evaluation for quadratic polynomials, with decentralized gen-
eration of the keys. Boneh-Goh-Nissim [BGN05] proposed a nice solution for quadratic poly-
nomials evaluation. However, their solution relies on a composite-order elliptic curve and thus
on the hardness of the integer factoring. This possibly leads to a distributed solution, but that
is highly inefficient. In fact, no efficient multi-party generation of distributed RSA modulus is
known, except to 2 parties. But even the recent construction [FLOP18], the most efficient up to
now, is still quite inefficient as it relies on oblivious transfer in the semi-honest setting, and on an
IND-CPA encryption scheme, coin-tossing, zero-knowledge and secure two-party computation
protocols in the malicious setting. Catalano and Fiore [CF15] introduced an efficient technique
to transform a linearly-homomorphic encryption into a scheme able to evaluate quadratic op-
erations on ciphertexts. However, they only consider a subclass of degree-2 polynomials where
the number of additions of degree-2 terms is bounded by a constant. This is not enough for our
applications and we do not try to decentralize this protocol.

Our Approach. Freeman [Fre10] proposed a conversion from composite-order groups to prime-
order groups for the purpose of improving the efficiency. Interestingly, we show that the Free-
man’s conversion is well-suited for decentralized evaluation of 2-DNF formulae. In fact, by work-
ing in prime-order groups, we can avoid the difficulty of a distributed generation of RSA moduli.
However, this is not enough to achieve a distributed scheme, with distributed decryption.

The idea behind our technique is that, from a k-somewhat homomorphic encryption (that
allows k multiplicative-depth) and with the possibility of realizing a kind of proxy re-encryption,
one can construct an efficient distributed evaluation for k-DNF formula. More precisely, thanks
to the k-somewhat homomorphism, the k-DNF formula can be evaluated over ciphertexts. How-
ever, this should be done with an encryption scheme that allows distributed decryption, under
keys that can be generated without any trusted party. This is where proxy re-encryption helps:
each user i owns a “share” rki that is a proxy re-encryption key for a ciphertext under some
public key pki into a ciphertext under the public key pki−1. Hence, if the computations are
performed under pkn, the users n to 1 can successively re-encrypt under pkn−1, . . . , until pk0,
for which the secret key is publicly known, as shown in Figure 1.1. With a FHE scheme, one
can perform this kind of proxy re-encryption, using an encryption of skn under pkn−1, and thus
obtain a distributed evaluation for any DNF formula. However, the current implementations
of FHE are still far from efficient. While the BGN scheme does not seem to efficiently sup-
port the proxy re-encryption, we show that its variant via Freeman’s conversion supports proxy
re-encryption and thus leads to an efficient distributed evaluation for 2-DNF formula.

An open problem remains to construct an efficient distributed evaluation for k-DNF for-
mulae. At first glance, one might think that a k-somewhat homomorphic encryption scheme

3

can be transformed into a decentralized scheme by just adding a secret sharing on the top of
the key generation. However, the current methods of secret sharing require a dealer during the
setup, which is not compatible with our decentralized setting. In the particular case of BGN,
no efficient distributed key generation is known. And so, an interesting direction is to follow
our approach to consider an efficient k-somewhat homomorphic encryption scheme and add a
proxy re-encryption technique.

1.2 Applications

Boneh, Goh, and Nissim proposed two main applications to secure evaluation of quadratic
polynomials: private information retrieval schemes (PIR) and electronic voting protocols. We
propose two more applications that are related to the group testing and the consistency model in
machine learning. Our applications are particularly useful in practice in a decentralized setting,
as they deal with sensitive data. Interestingly, the use of distributed evaluation for quadratic
polynomials in this application is highly non-trivial and will be explained in the section on
applications.

2 Generalities

2.1 Notations

We denote by x $← X the process of selecting x uniformly at random in the set X. The vectors
x = (xi)i and matrices M = (mi,j)ij are in bold and the vectors are written as row vectors,
with sometimes components separated by commas for clarity: if x $← Xn, x = (x1 x2 · · · xn) =
(x1, x2, · · · , xn).

Let Zp = Z/pZ be the ring of integers modulo p, we denote byMm,n(Zp) the set of matrices
on Zp, of size m× n, and thus m row-vectors of length n. (Mm,n(Zp),+) is an Abelian group.
When A ∈Mm,n(Zp) and B ∈Mn,n′(Zp), the matrix product is denoted A×B ∈Mm,n′(Zp),
or just AB if there is no ambiguity. (Mn,n(Zp),+,×) is a ring, and we denote by GLn(Zp) ⊂
Mn,n(Zp) = Mn(Zp) the subset of the invertible matrices of size n (for the above matrix
product ×), which is also called the general linear group. We denote by SLn(Zp) ⊂ GLn(Zp) the
subset of the invertible matrices of determinant 1, which is also called the special linear group.

We will use the tensor product: for two vectors a = (a1, a2, · · · , an) ∈ Znp and b =
(b1, b2, · · · , bm) ∈ Zmp , the tensor product a⊗ b is the vector (a1b, · · · , anb) = (a1b1, · · · , a1bm,
a2b1, · · · , a2bm, · · · , anbm) ∈ Zmnp ; and for two matrices A ∈Mm,n(Zp) and B ∈Mm′,n′(Zp),

A =

a1
...

am

 B =

 b1
...

bm′

 A⊗B =


a1 ⊗ b1
a1 ⊗ b2

...
am ⊗ bm′

 ∈Mmm′,nn′(Zp).

Because of the bi-linearity of the tensor product, we have, for A,A′ ∈ Mm,n(Zp) and B,B′ ∈
Mm′,n′(Zp),

(A + A′)⊗ (B + B′) = (A⊗B) + (A⊗B′) + (A⊗B′) + (A′ ⊗B′)

We will also use the following important relation between matrix product and tensor product: for
A ∈Mm,k(Zp), A′ ∈Mk,n(Zp), B ∈Mm′,k′(Zp), and B′ ∈Mk′,n′(Zp), (A×A′)⊗ (B×B′) =
(A⊗B)× (A′ ⊗B′).

For any group G, we denote by 〈g〉 the space generated by g ∈ G. For a generator g of a
cyclic group G = 〈g〉, we use the implicit representation [a] of any element h = ga ∈ G and by
extension we will use the “bracket” notations, which makes use of the above matrix properties
over the exponents, that are scalars in Zp when G is a cyclic group of order p. See Figure 2 for
more notations with “brackets”.

4

a ∈ Zp, [a] = ga

A ∈Mm,n(Zp), [A] = gA = (gaij)ij

x ∈ Zp,A ∈Mm,n(Zp), x · [A] = gxA = ((gaij)x)ij

X ∈Mn,m′ (Zp),A ∈Mm,n(Zp), [A] ·X = gAX =

(
m∏

k=1

(gaik)xkj

)
ij

X ∈Mn′,m(Zp),A ∈Mm,n(Zp), X · [A] = gXA =

(
m∏

k=1

(gakj)xik

)
ij

A ∈Mm,n(Zp),B ∈Mm,n(Zp), [A] [B]
=

[A + B]

= gA+B =
(
gaij · gbij

)
ij

Figure 2. Bracket notations

2.2 Projections

In order to continue with matrix properties and linear applications, a projection π is a linear
function such that π ◦ π = π. When the image is of dimension one, any projection can be
represented by the matrix

Un =


0 . . . 0 0
0 . . . 0 0
0 . . . 0 0
0 . . . 0 1


which is the canonical projection onto the 1-dimension image 〈(0, 0, . . . , 0, 1)〉 along the ker-
nel 〈(1, 0, . . . , 0, 0), (0, 1, . . . , 0, 0), . . . , (0, 0, . . . , 1, 0)〉, in an appropriate basis B. Indeed, the
projection along the subspace K = 〈p1, . . . ,pn−1〉 onto 〈b〉 is represented by the matrix
P = B−1UnB where B is the change of basis matrix, from the canonical basis to the basis
B = {b1, . . . ,bn−1,p}. This is actually

B =


p1
...

pn−1
b

 .
And for any projection π, with representation matrix P, there exists a unique change of basis
matrix B ∈ SLn(Zp). We will call it the change of basis matrix associated to P. From this
matrix B, we can parse as above with vectors p1, . . . , pn−1 and b, the set {p1, . . . ,pn−1} is a
basis of the kernel K and 〈b〉 is the image.

Given two projections π1 and π2 in Z2
p, they are represented by P1 = B−1

1 UnB1 and P2 =
B−1

2 UnB2, respectively, the tensor product π = π1⊗ π2 is represented by P = P1⊗P2, that is
equal to

(B−1
1 UnB1)⊗ (B−1

2 UnB2) = (B−1
1 ⊗B−1

2)× (Un ⊗Un)× (B1 ⊗B2)
= (B1 ⊗B2)−1 ×Un2 × (B1 ⊗B2).

This is thus also a projection in Z4
p with image of dimension 1, and the associated change of

basis matrix is B = B1 ⊗B2. In the particular case of dimension 2,

B1 =
(

p1
b1

)
and B2 =

(
p2
b2

)
, then B = B1 ⊗B2 =


p1 ⊗ p2
p1 ⊗ b2
b1 ⊗ p2
b1 ⊗ b2

 .

5

Hence, the image of π = π1 ⊗ π2 is spanned by b = b1 ⊗ b2, while {p1 ⊗ p2,p1 ⊗ b2,b1 ⊗ p2}
is a basis of the kernel:

ker(π) = 〈p1 ⊗ p2,p1 ⊗ b2,b1 ⊗ p2〉
= {x · p1 ⊗ p2 + y2 · p1 ⊗ b2 + y1 · b1 ⊗ p2, x, y1, y2 ∈ Zp}
= {(x1 + x2) · p1 ⊗ p2 + y2 · p1 ⊗ b2 + y1 · b1 ⊗ p2, x1, x2, y1, y2 ∈ Zp}
= {p1 ⊗ (x2 · p2 + y2 · b2) + (x1 · p1 + y1 · b1)⊗ p2, x1, x2, y1, y2 ∈ Zp}

As a consequence, p1 ⊗ r2 + r1 ⊗ p2, for r1, r2
$← Z2

p, provides a uniform sampling in ker(π).

2.3 Bilinear Group Generator

A bilinear group generator G is an algorithm that takes as input a security parameter λ and
outputs a tuple (G1,G2,GT , p, g1, g2, e) such that G1 = 〈g1〉 and G2 = 〈g2〉 are cyclic groups of
prime order p (a λ-bit prime integer), and e : G1 ×G2 → GT is an admissible pairing:

– e is bilinear: for all a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)ab;
– e is efficiently computable (in polynomial-time in λ);
– e is non-degenerate: e(g1, g2) 6= 1.

Furthermore, the bilinear setting (G1,G2,GT , p, g1, g2, e) is said asymmetric when G1 6= G2.
In such a case, we have different groups Gs, for s = 1, 2, T , so we will use [·]s to specify

to which group the “bracket” representation refers. Since we now have another law with the
pairing operation, we will use the notation [a]1 • [b]2 = [a · b]T for [a]1 ∈ G1, [b]2 ∈ G2. We also
define, for A ∈Mm,n(Zp) and B ∈Mm′,n′(Zp), [A]1 • [B]2 = [A⊗B]T , which can be evaluated
with pairing operations between G1 and G2 group elements.

3 Encryption for Evaluation of 2-DNF Formulae

3.1 BGN and Freeman Cryptosystems

To evaluate 2-DNF formulae on encrypted data, Boneh-Goh-Nissim described a cryptosys-
tem [BGN05] that supports additions, one multiplication layer, and additions. They used a
bilinear map on a composite-order group and the secret key is the factorization of the order of
the group. We recall it bellow:

Keygen(λ): Given a security parameter λ ∈ Z+, it generates a symmetric bilinear setting, with
two groups G,GT , of composite order n = pq, and a pairing e : G × G → GT . Let G1 be
the subgroup of G of order p. It picks two random generators g, u $← G and sets h = uq

(a generator of G1). The public key is pk = ((G,GT , n, g, e),G1, h) and the private key is
sk = p.

Encrypt(pk,m): To encrypt a message m using public key pk, it picks a random r $← Zn and
outputs the ciphertext C = gmhr ∈ G.

Decrypt(sk, C): To decrypt a ciphertext C using the private key sk, one outputsm← loggsk(Csk).

The intuition behind this construction is the random noise hr in G1, that hides gm during
the encryption, and that can be canceled during the decryption using the private order p. This
encryption scheme is clearly additively homomorphic in Zq, which allows additions. By applying
the pairing operation between two ciphertexts, one gets a new ciphertext of the product of the
plaintexts (still in Zq), but now under a new similar encryption scheme in GT . Additions are
again possible, hence the evaluation of 2-DNF formulae. Unfortunately, composite-order groups
require huge orders, since the factorization must me difficult, with costly pairing evaluations.

6

In addition, one has to compute a discrete logarithm for the decryption process, which limits
to small plaintexts.

In order to improve on the efficiency, and address the first above issue, Freeman in [Fre10,
Section 5] proposed a system on prime-order groups, using a similar property of noise that
can be removed, with the general definition of subgroup decision problem. Let us recall the
Freeman’s cryptosystem:
Keygen(λ): Given a security parameter λ ∈ Z+, it generates a description of three Abelian

groups G,H,GT and a pairing e : G × H → GT . It also generates a description of two
subgroups G1 ⊂ G,H1 ⊂ H and two homomorphisms π1, π2 such that G1, H1 are contained
in the kernels of π1, π2 respectively. It picks g $← G and h $← H, and outputs the public key
pk = (G,H, g, h,G1, H1) and the private key sk = (π1, π2).

Encrypt(pk,m): To encrypt a message m using public key pk, one picks g1
$← G1 and h1

$← H1,
and outputs the ciphertext (CA, CB) = (gm · g1, h

m · h1) ∈ G×H.
Decrypt(sk, C): Given C = (CA, CB), output m← logπ1(g)(π1(CA)) (which should be the same

as logπ2(h)(π2(CB))).

The Freeman’s scheme is also additively homomorphic. Moroever, if an homomorphism πT exists
such that, for all g ∈ G, h ∈ H, e(π1(g), π2(h)) = πT (e(g, h)), we can get, as above, a ciphertext
in GT of the product of the two plaintexts, when multiplying the ciphertexts in G and H. The
new encryption scheme in GT is still additively homomorphic, and allows evaluations of 2-DNF
formulae.

Remark 1. We note that in the Freeman’s cryptosystem, ciphertexts contain encryptions of m
in both G and H to allow any kind of additions and multiplication. But one could focus on just
one ciphertext when one knows the formula to be evaluated.

3.2 Our Cryptosystem

The main goal of Freeman’s approach was to generalize the BGN cryptosystem to any hard-
subgroup problems, which allows applications to prime-order groups under the classical Deci-
sional Diffie-Hellman or Decisional Linear assumptions, with high gain in efficiency. But we insist
in this paper on a quite interesting property: while the bilinear setting in the BGN construction
is specific for one user, because of the private decryption key that contains the factorization,
the Freeman’s approach can apply to multi-user settings.

To this aim, we show that we can split the Freeman’s Keygen algorithm into separate Setup
and Keygen algorithms. Indeed, for concrete instantiation under the Decisional Diffie-Hellman
problem, the private key is a projection. And one can generate many independent projections
for different users.

We now present our variant of the Freeman’s cryptosystem supporting multiple users, with
our above notations and without the twin ciphertexts (in G and H). Since we will work in
groups G1, G2, and GT , the algorithms Keygen,Encrypt and Decrypt will take a sub-script s to
precise the group Gs in which they operate.

Setup(λ): Given a security parameter λ ∈ N, run and output

param = (G1,G2,GT , p, g1, g2, e)← G(λ).

Keygens(param): For s ∈ {1, 2}. Choose Bs
$← SL2(Zp). Let Ps = B−1

s U2Bs and ps ∈ ker(Ps)\
{0}. Output the public key pks = [ps]s and the private key sks = Ps. In the following, we
always implicitly assume that the public keys contain the public parameters param, and the
private keys contain the public keys.
From (pk1, sk1) ← Keygen1(param) and (pk2, sk2) ← Keygen2(param), one can consider
pkT = (pk1, pk2) and skT = (sk1, sk2), which are associated public and private keys in GT ,
as we explain below.

7

Encrypts(pks,m,As): For s ∈ {1, 2}, to encrypt a message m using public key pks and As =
[a]s ∈ G2

s, choose r
$← Zp and output the ciphertext Cs = (m · [a]s r · [ps]s, [a]s) ∈ G2

s×G2
s.

For s = T , with As = ([a1]1, [a2]2), set [a]T = [a1]1 • [a2]2 ∈ G4
T , choose [r1]1 $← G2

1, [r2]2 $←
G2

2, and output CT = (m · [a]T [p1]1 • [r2]2 [r1]1 • [p2]2, [a]T) ∈ G4
T ×G4

T .
Decrypts(sks, Cs): For s ∈ {1, 2}, given Cs = ([cs,1]s, [cs,2]s) and sks = Ps, let C ′s = ([cs,1]s ·

Ps, [cs,2]s ·Ps). For s = T , compute C ′T = ([cT,1]T · (P1 ⊗P2), [cT,2]T · (P1 ⊗P2)). In both
cases, output the logarithm of the first component of c′s,1 in base the first component of
c′s,2.

As already explained above, the encryption process mask the message by an element in the
kernel of a certain projection. The secret key is the corresponding projection Ps which later
remove the mask by diving it into the kernel. In the Decrypt algorithm, C ′s is a Diffie-Hellman
tuple (whatever the group under consideration), the discrete logarithm of one component is
sufficient to decrypt, since the plaintext is the common exponent.

One can note that matrices B1 and B2 are drawn independently, so the keys in G1 and G2
are independent. For any pair of keys (pk1 = [p1]1, pk2 = [p2]2), one can implicitly define a
public key for the target group. To decrypt in the target group, both private keys sk1 = P1
and sk2 = P2 are needed. Actually, one just needs P1 ⊗ P2 to decrypt: C ′T = ([cT,1]T · (P1 ⊗
P2), [cT,2]T · (P1⊗P2)), but P1⊗P2 and (P1,P2) contain the same information and the latter
is more compact.

With the algorithms defined above, we have three encryption schemes Es : (Setup,Keygens,
Encrypts,Decrypts) for s = 1, 2 or T , with a common Setup. Let us study their correctness and
their security properties.

Proposition 2. For s ∈ {1, 2, T}, Es is correct.

Proof. For s = 1, 2:

[cs,2]s ·Ps = [a]s ·Ps = [aPs]s
[cs,1]s ·Ps = (m · [a]s r · [ps]s) ·Ps = m · [a]s ·Ps r · [ps]s ·Ps

= m · [aPs]s r · [psPs]s = m · [aPs]s r · [0]s = m · [aPs]s

For s = T :

[cT,2]T · (P1 ⊗P2) = [a]T · (P1 ⊗P2) = [a(P1 ⊗P2)]T
[cT,1]T · (P1 ⊗P2) = (m · [a]T [p1]1 • [r2]2 [r1]1 • [p2]2) · (P1 ⊗P2)
= m · [a(P1 ⊗P2)]T ([p1]1 • [r2]2) · (P1 ⊗P2) ([r1]1 • [p2]2) · (P1 ⊗P2)
= m · [a(P1 ⊗P2)]T [p1 ⊗ r2]T · (P1 ⊗P2) [r1 ⊗ p2]T · (P1 ⊗P2)
= m · [a(P1 ⊗P2)]T [p1P1 ⊗ r2P2]T [r1P1 ⊗ p2P2]T
= m · [a(P1 ⊗P2)]T [0⊗ r2P2]T [r1P1 ⊗ 0]T = m · [a(P1 ⊗P2)]T

In both cases, C ′s,1 = [c′s,1]s = m · [c′s,2]s = m ·C ′s,2. Whatever the size of the vectors, one discrete
logarithm computation is enough to extract m.

3.3 Security Properties

In this section, we first recall the definition notion for encryption and the computational as-
sumption we will rely on, and then we will state and prove the security results.

8

Expind-cpa-b
E (A) : param← Setup(λ); (sk, pk)← Keygen(param);m0,m1 ← A(, pk)

C ← Encrypts(pk,mb); b′ ← A(pk, C)
return b′

Figure 3. Experiment of IND-CPA

Definitions. We first recall the semantic security, a.k.a. indistinguishability (or IND-CPA), for
a public-key encryption scheme, according to the experiment presented in Figure 3.

Definition 3. Let E = (Setup,Keygen,Encrypt,Decrypt) be an encryption scheme. Let us de-
note Expind-cpa-b

E (A) the experiment defined in Figure 3. The advantage Advind-cpa
E (A) of an

adversary A against indistinguishability under chosen plaintext attacks (IND-CPA) is defined
by:

Pr
[
Expind-cpa-1

E (A) = 1
]
− Pr

[
Expind-cpa-0

E (A) = 1
]
.

We say that an encryption scheme E is (t, ε)− IND-CPA if for any adversary A running within
time t, its advantage Advind-cpa

E (A) is bounded by ε.

We denote by Advind-cpa
E (t) the best advantage any adversary A can get within time t. Our

security results will rely on the standard Decisional Diffie-Hellman assumption:

Definition 4. Let G = 〈g〉 be a cyclic group of prime order p. The advantage Advddh
G (A) of an

adversary A against the Decisional Diffie-Hellman (DDH) problem in G is defined by:

Pr
[
A(g, gx, gy, gxy) = 1|x, y $← Zp

]
− Pr

[
A(g, gx, gy, gz) = 1|x, y, z $← Zp

]
.

We say that the DDH problem in G is (t, ε)-hard if for any advantage A running within time t,
its advantage Advddh

G (A) is bounded by ε.

We denote by Advddh
G (t) the best advantage any adversary A can get within time t.

Theorem 5. For s ∈ {1, 2}, Es is IND-CPA under the DDH assumption in Gs. More precisely,
for any adversary A running within time t,

Advind-cpa
Es

(A) ≤ 2×Advddh
Gs

(t).

Proof. We denote by Advind-cpa
s (A) the advantage of A against Es. We assume the running time

of A is bounded by t.

Game G0: In this first game, the simulator plays the role of the challenger in the experiment
Expind-cpa-0

Es
(A), where b = 0:

S(λ):
– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sks, pks)← Keygens(param)
– m0,m1, [a]s ← A(param, pks)
– Cs = (m0 · [a]s r · [ps]s, [a]s)← Encrypts(pks,m0, [a]s)
– b′ ← A(param, pks, Cs)

We are interested in the event E: b′ = 1. By definition,

Pr
G0

[E] = Pr
[
Expind-cpa-0

E (A) = 1
]
.

9

Game G1: Now the simulator takes as input a Diffie-Hellman tuple ([p]s, [r]s), with r =
r · p for some scalar r, and emulates Keygens and Encrypts by defining pks ← [p]s and
Cs ← (m0 · [a]s [r]s, [a]s). Thanks to the Diffie-Hellman tuple, this game is perfectly
indistinguishable from the previous one: PrG1 [E] = PrG0 [E].

Game G2: The simulator now receives a random tuple ([p]s, [r]s): PrG2 [E] − PrG1 [E] ≤
Advddh

Gs
(t).

Game G3: The simulator still receives a random tuple ([p]s, [r]s), but generates Cs ← (m1 ·
[a]s [r]s, [a]s). Thanks to the random mask [r]s, this game is perfectly indistinguishable
from the previous one: PrG3 [E] = PrG2 [E].

Game G4: The simulator now receives a Diffie-Hellman tuple ([p]s, [r]s), with r = r · p for
some scalar r: PrG4 [E]− PrG3 [E] ≤ Advddh

Gs
(t).

Game G5: In this game, the simulator can perfectly emulate the challenger in the experiment
Expind-cpa-1

Es
(A), where b = 1: This game is perfectly indistinguishable from the previous

one: PrG5 [E] = PrG4 [E].

One can note, that in this last game, we have PrG5 [E] = Pr
[
Expind-cpa-1

Es
(A) = 1

]
, hence

Pr
[
Expind-cpa-1

Es
(A) = 1

]
− Pr

[
Expind-cpa-0

Es
(A) = 1

]
= Pr

G5
(E)− Pr

G0
(E)

≤ 2×Advddh
Gs

(t),

which concludes the proof.

Corollary 6. ET is IND-CPA under the DDH assumption in either G1 or G2. More precisely,
for any adversary A running within time t,

Advind-cpa
ET

(A) ≤ 2×min{Advddh
G1 (t+ tm + te),Advddh

G2 (t+ tm + te)},

where tm is the time for one multiplication and te the time for one encryption.

Proof. The semantic security for ciphertexts in GT comes from the fact that:

EncryptT (pkT ,m, ([a1]1, [a2]2))
= Multiply(Encrypt1(pk1,m, [a1]1),Encrypt2(pk2, 1, [a2]2))
= Multiply(Encrypt1(pk1, 1, [a1]1),Encrypt2(pk2,m, [a2]2))

Indeed, with this relation, each ciphertext in G1 can be transformed into a ciphertext in GT

(idem with a ciphertext in G2). Let A be an adversary against IND-CPA of ET , in GT .

Game G0: In the first game, the simulator plays the role of the challenger in the experiment
Expind-cpa-0

ET
(A), where b = 0:

S(λ):
– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sk1, pk1)← Keygen1(param),(sk2, pk2)← Keygen2(param)
– m0,m1, [a]1, [a]2 ← A(param, (pk1, pk2))
– CT = EncryptT ((pk1, pk2),m0, ([a]1, [a]2))
– β ← A(param, (pk1, pk2), CT)

We are interested in the event E: b′ = 1. By definition,

Pr
G0

[E] = Pr
[
Expind-cpa-0

ET
(A) = 1

]
.

Game G1: The simulator interacts with a challenger in the experiment Expind-cpa-0
E1

(A), where
b = 0. It thus first receives param, pk1 from that challenger, generates pk2 by himself to
provide (pkT = (pk1, pk2)) to the adversary. The latter sends back (m0,m1, [a]1, [a]2), from
which it sends (m0,m1, [a]1) to the challenger. It gets back C1 = Encrypt1(pk1,m0, [a]1).
It can compute CT = Multiply(C1,Encrypt2(pk2, 1, [a2]2)), to be sent to the adversary. This
game is perfectly indistinguishable from the previous one: PrG1 [E] = PrG0 [E].

10

Game G2: The simulator interacts with a challenger in the experiment Expind-cpa-1
E1

(A), where
b = 1:

Pr
G2

[E]− Pr
G1

[E] ≤ Advind-cpa
E1

(t+ tm + te),

where tm is the time for one multiplication and te the time for one encryption.
Game G3: In this final game, the simulator plays the role of the challenger in the experiment

Expind-cpa-1
ET

(A), where b = 1. This game is perfectly indistinguishable from the previous
one: PrG3 [E] = PrG2 [E].

One can note, that in this last game, we have PrG3 [E] = Pr
[
Expind-cpa-1

ET
(A) = 1

]
, hence

Pr
[
Expind-cpa-1

ET
(A) = 1

]
− Pr

[
Expind-cpa-0

ET
(A) = 1

]
= Pr

G3
(E)− Pr

G0
(E)

≤ Advind-cpa
ET

(t+ tm + te),

which concludes the proof, since it works exactly the same way for G2.

3.4 Homomorphic Properties
As BGN and Freeman cryptosystems, ours also supports additions, one multiplication layer,
and additions. For our scheme, we detail the homomorphic functions below:
Add(Cs, C ′s): Given two ciphertexts Cs = ([cs,1]s, [cs,2]s), C ′ = ([c′s,1]s, [c′s,2]s) in one of G2

1 ×
G2

1,G2
2 × G2

2,G4
T × G4

T , if [cs,2]s = [c′s,2]s, it outputs ([cs,1]s [c′s,1]s, [cs,2]s), otherwise it
outputs ⊥.

Multiply(C1, C2): Given two ciphertexts C1 = ([c1,1]1, [c1,2]1) ∈ G2
1 × G2

1 and C2 = ([c2,1]2,
[c2,2]2) ∈ G2

2 ×G2
2, it outputs CT = ([c1,2]1 • [c2,1]2, [c1,2]1 • [c2,2]2) ∈ G4

T ×G4
T .

Randomizes(pks, Cs): Given a ciphertext Cs = ([cs,1]s, [cs,2]s), for s ∈ {1, 2} and a public key
pks = [ps]s, it chooses α, r $← Zp and outputs (α · ([cs,1]s r · [ps]s), α · [cs,2]s); while for
s = T and a public key pkT = ([p1]1, [p2]2), it chooses α $← Zp, [r1]1 $← G2

1 and [r2]2 $← G2
2,

and outputs (α · ([cT,1]T [p1]1 • [r2]2 [r1]1 • [p2]2), α · [cT,2]T).
Instead of performing a systematic randomisation of ciphertexts as proposed by Freeman each
time an Add or a Multiply is computed, we create a specific function Randomize usable at any
time. Thus, if it is never applied, all the operations are easily verifiable. On the contrary, if it
is performed at least once just before Decrypt, it masks all the operations. According to the
privacy and verifiability requirements, one can apply it or not. Let us check the correctness of
the three homomorphic functions:

Proposition 7. Add and Multiply are correct.

Proof. Let us first consider the addition operations:
– For s = 1, 2:

Add(Encrypts(pks,m, [a]s; r),Encrypts(pks,m′, [a]s; r′))
= ([ma + rps]s · [m′a + r′ps]s, [a]s) = ([(m+m′)a + (r + r′)ps]s, [a]s)
= Encrypts(pks,m+m′, [a]s; r + r′)

– For s = T :

Add(EncryptT (pkT ,m, ([a1]1, [a2]2); r1, r2),
EncryptT (pkT ,m′, ([a1]1, [a2]2); r′1, r′2))

= ([m([a1]1 • [a2]2) + r1 ⊗ p2 + p1 ⊗ r2]T ·
[m′([a1]1 • [a2]2) + r′1 ⊗ p2 + p1 ⊗ r′2]T , [a]1 • [a2]2)

= ([(m+m′)([a1]1 • [a2]2) + (r1 + r′1)⊗ p2 + p1 ⊗ (r2 + r′2)]T , [a]1 • [a2]2)
= EncryptT (pkT ,m+m′, ([a1]1, [a2]2); r1 + r′1, r2 + r′2)

11

About multiplication, we can see that

Multiply(Encrypt1(pk1,m1, [a1]1; r1),Encrypt2(pk2,m2, [a2]2; r2))
= ([m1a1 + r1p1]1 · [m2a2 + r2p2]2, [a]1 • [a2]2)
= ([(m1a1 + r1p1)⊗ (m2a2 + r2p2)]T , [a]1 • [a2]2)
= ([m1a1 ⊗m2a2 +m1a1 ⊗ r2p2 + r1p1 ⊗m2a2 + r1p1 ⊗ r2p2]T , [a]1 • [a2]2)
= ([m1a1 ⊗m2a2 +m1a1 ⊗ r2p2 + r1p1 ⊗ (m2a2 + r2p2)]T , [a]1 • [a2]2)
= ([m1m2(a1 ⊗ a2) + p1 ⊗ (r1m2a2 + r1r2p2) + (r2m1a1)⊗ p2]T , [a]1 • [a2]2)
= EncryptT (pkT ,m1m2, ([a1]1, [a2]2);m1r2a1,m2r1a2 + r1r2p2)

Proposition 8. For s ∈ {1, 2, T}, Randomizes is correct, with α = 1.

Proof. For s ∈ {1, 2}:

Randomizes(pks,Encrypts(pks,m, [a]s; r), α, r′)
= ([α(ma + rps + r′ps)]s, [αa]s) = ([m(αa) + α(r + r′)ps]s, [αa]s)
= Encrypts(pks,m, [αa]s;α(r + r′))

Since r′ is uniformly distributed, the mask of the first component of the ciphertext is uniformly
distributed, as in a fresh ciphertext, while with α = 1, the basis in the second component
remains unchanged. In addition, the random α also randomizes the basis [αa]s, in the second
component of the ciphertext, but computationally only, under the DDH assumption in Gs.

For s = T :

RandomizeT (pkT ,EncryptT (pkT ,m, ([a1]1, [a2]2); r), α, r′1, r′2)
= (α · (m · [a]T [p1]1 • [r2]2 [r1]1 • [p2]2 [p1]1 • [r′2]2 [r′1]1 • [p2]2, [a]T),
([αa1]1, [αa2]2))
= (α · (m · [a]T [p1]1 • [r2 + r′2]2 [r1 + r′1]1 • [p2]2), ([αa1]1 • [αa2]2))
= EncryptT (pkT ,m, ([αa1]1, [αa2]2);α(r2 + r′1), α(r2 + r′2))

Again, since r′1 and r′2 are uniformly distributed, the mask of the first component of the cipher-
text is uniformly distributed, as in a fresh ciphertext. In addition, the random α randomizes
the basis in the second component of the ciphertext, but computationally only, under the DDH
assumption in both G1 and G2.

3.5 Re-Encryption

Now we have three efficient encryption schemes able to compute homomorphic operations and
supporting multiple users. However, it is not enough to fully address our target use cases:
we additionally need proxy-reencryption, in order to transform a ciphertext for Alice into a
ciphertext to Bob. With the Freeman approach, and our formalism, this is just a change of
basis in the exponents: we can re-encrypt a message encrypted under a private key pka onto
another encryption for a private key pkb by using a special secret key called re-encryption key
rka→b. Below we describe REKeygens that creates the re-encryption key from the secret keys
and Re-encrypts the function to re-encrypt a ciphertext, but under a different basis.

REKeygens(skas , skbs): For s = 1, 2, from two different secret keys skas = Ps and skbs = P′s
associated respectively to the two public keys pkas and pkbs, compute Bs,B′s ∈ SL2(Zp)2

such that Ps = B−1
s UBs and P′s = B′s

−1UB′s and output rka→bs = B−1
s B′s the secret

re-encryption key. From the re-encryption keys rka→b1 ← REKeygen1(ska1, skb1) and rka→b2 ←
REKeygen2(ska2, skb2), we will consider rka→bT = (rka→b1 , rka→b2).

12

Re-encrypts(rka→bs , Cs): To re-encrypt a ciphertext C = ([cs,1]s, [cs,2]s):
– for s = 1, 2, output ([cs,1]s · rka→bs , [cs,2]s · rka→bs);
– for s = T , output ([cT,1]T · (rka→b1 ⊗ rka→b2), [cT,2]T · (rka→b1 ⊗ rka→b2)).

Proposition 9. Re-encrypts is correct.

Proof. The correctness of the re-encryption is based on a change of basis that transforms an
element in the kernel of Ps in an element in the kernel of P′s: let p ∈ ker(Ps) and p′ ∈ ker(P′s)
because ker(Ps) and ker(P′s) are of dimension 1 in Z2

p, there exist a, b, k ∈ Zp, such that
p = k · (a, b) and a′, b′, k′ ∈ Zp, such that p′ = k′ · (a′, b′). We have:

p · rk = p ·B−1B′ = k(1, 0)B′ = k(a′, b′)⇒ p · rk = kk′
−1p′ = r′p′

for some r′ ∈ Zp and with that, the correctness follows, where rka→bs is denoted Rs: for s ∈ {1, 2},

Re-encrypts(rka→bs ,Encrypts(pkas ,m,a, r)) = ([cs,1]s · rka→bs , [cs,2]s · rka→bs)
= ([maRs + rpsRs]s, [aRs]s) = ([maRs + rr′p′s]s, [aRs]s)
= Encrypts(pkbs,m,aRs; rr′)

For s = T ,

Re-encryptT (rka→bT ,EncryptT (pkaT ,m,a; r1, r2))
= ([cT,1]T · (rka→b1 ⊗ rka→b2), [cT,2]T · (rka→b1 ⊗ rka→b2))
= ([(ma + p1 ⊗ r2 + r1 ⊗ p2) · (R1 ⊗R2)]T , [a · (R1 ⊗R2)]T)
= ([ma(R1 ⊗R2) + p1R1 ⊗ r2R2 + r1R1 ⊗ p2R2]T , [a · (R1 ⊗R2)]T)
= ([ma(R1 ⊗R2) + r′1p′1 ⊗ r2R2 + r1R1 ⊗ r′2p′2]T , [a · (R1 ⊗R2)]T)
= ([ma(R1 ⊗R2) + p′1 ⊗ r′1r2R2 + r′2r1R1 ⊗ p′2]T , [a · (R1 ⊗R2)]T)
= EncryptT (pkbT ,m,a(R1 ⊗R2); r′2r1R1, r′1r2R2)

We stress that the basis a is modified with the re-encryption process, into aRs or a(R1 ⊗R2),
which could leak some information about the re-encryption key. But as explained above, the
randomization process can provide a new ciphertext that computationally hides it, under DDH
assumptions.

3.6 Verifiability
When a ciphertext is randomized or re-encrypted by a third party, one may want to be sure the
content is kept unchanged. Verifiability is thus an important property we can efficiently achieve,
with classical zero-knowledge proofs of discrete logarithm relations à la Schnorr. Such linear
proofs of existence of k scalars that satisfy linear relations generally consist of a commitment c,
a challenge e ∈ Zp and the response r ∈ Zkp (details on the example below). The non-interactive
variant just contains e and r, and thus k + 1 scalars.

Example 10. Let M ∈ M2(Zp) and ([x]s, [y]s), ([x′]s, [y′]s) ∈ G2
s. We will make the zero-

knowledge proof of existence of M such that both [y]s = [x]s ·M and [y′]s = [x′]s ·M, where
[x]s, [y]s, [x′]s and [y′]s are public, but the prover knows M. This is the classical zero-knowledge
proof of equality of discrete logarithms with matrices.

The prover chooses M′ $←M2(Zp) and sends the commitments [c]s = [x]s ·M′ and [c′]s =
[x′]s ·M′ to the verifier that answers a challenge e ∈ Zp. The prover constructs its response
R = M′ − eM in M2(Zp) and the verifier checks whether both [c]s = [x]s · R e[y]s and
[c′]s = [x′]s ·R e[y′]s, in G2

s. To make the proof non-interactive, one can use the Fiat-Shamir
heuristic with e generated by a hash function (modeled as a random oracle) on the statement
([x]s, [y]s), ([x′]s, [y′]s) and commitments ([c]s, [c′]s). The proof eventually consists of (e,R).
From this proof, one can compute the candidates for ([c]s, [c′]s), and check whether the hash
value gives back e.

13

Before entering into the details of the relations to be proven, for each function of our en-
cryption scheme, we rewrite the Keygens and REKeygens algorithms to prepare the verifiability
of Decrypts and Re-encrypts. These new Keygens and REKeygens algorithms consist of the orig-
inal Keygens and REKeygens but with more elements in the output: they both output a public
version of the produced secret key plus a zero-knowledge proof of the correctness of the keys.
This significantly simplifies the relations to be proven afterwards for Decrypts and Re-encrypts.
At the end of this section, we prove that adding those elements do not compromise the security
of the encryption scheme.

Keygens for Verifiability. While the secret key is the projection Ps, the verification key vsks
consists of [Ps]s:

Keygens(param): For s ∈ {1, 2}. Choose Bs
$← SL2(Zp). Let Ps = B−1

s U2Bs and ps ∈ ker(Ps)\
{0}. Output the public key pks = [ps]s, the private key sks = Ps and vsks = [Ps]s a
verifiable public version of the secret key with the proof πs:

{∃sks ∈M2(Zp), vsks 6= [0]s ∧ vsks = [1]s · sks ∧ pks · sks = [0]s}.

The proof πs guarantees that all the keys are well-formed: vsks is the exponentiation of a 2× 2-
matrix sks, for which the discrete logarithm of pks is in the kernel. Hence, sks is not full rank,
and vsks 6= [0]s proves that sks is of dimension 1: a projection. As a consequence, πs consists of
5 scalars of Zp, using the above non-interactive zero-knowledge technique à la Schnorr.

From (vsk1, vsk2), we consider vskT = vsk1•vsk2. It satisfies vskT = [P1⊗P2]T if (vsk1, vsk2) =
([P1]1, [P2]2).

REKeygens for Verifiability. As above, while the secret re-encryption key is an invertible
change of basis matrix rka→bs , the verification key vrka→bs consists of [rka→bs]s. But in order to
prove the matrix rka→bs is invertible, one can show it is non-zero, and not of rank 1, which would
mean that vrka→bs would consist of a Diffie-Hellman tuple:

REKeygens(skas , skbs): For s = 1, 2, from two different secret keys skas = Ps and skbs = P′s
associated respectively to the two public keys pkas and pkbs, compute Bs,B′s ∈ M2(Zp)2

such that Ps = B−1
s UBs and P′s = B′s

−1UB′s. Let rka→bs = Ra→b
s = B−1

s B′s be the secret
re-encryption key, vrka→bs = [rka→bs]s be a verifiable public version of the re-encryption key
and [r′]s = λ · [r12]s where λ is such that r21 = λ · r11 (with r11, r12, r21, r22 the components
of rka→bs , and πa→bs :

{∃rka→bs ∈M2(Zp),∃λ ∈ Zp,
vrks 6= [0]s ∧ vrka→bs = [1]s · rka→bs ∧ pkbs = pkas · rka→bs

∧ [r′]s = λ · [r12]s ∧ [r21]s = λ · [r11]s ∧ [r′]s 6= [r22]s}

Output (rka→bs , vrka→bs , [r′]s, πa→bs).

The proof πa→bs guarantees that vrka→bs is well-formed and, since in M2(Zp), the matrices are
0, or of rank 1 as a projection, or invertible: πa→bs first checks it is not 0, and then not of rank
1 either, as vrka→bs is not a Diffie-Hellman tuple.

Remark 11. In Keygens, Bs is taken from SL2(Zp). This implies that in REKeygens, rka→bs also
belongs to SL2(Zp). But in the verifiability, the proof, πa→bs just checks whether rka→bs is in
GL2(Zp). Actually it is enough because the only reason we take Bs ∈ SL2(Zp) is to obtain
uniqueness of Bs from a projection Ps. If Bs ∈ GL2(Zp) instead of SL2(Zp), Ps = B−1

s U2Bs is
unchanged.

14

The two checks vrka→bs 6= [0]s and [r′]s 6= [r22]s are just simple verifications, thus πa→bs needs 6
scalars of Zp as a proof à la Schnorr.

Similarly as for vsks, from (vrk1, vrk2), we consider vrkT = vrk1 • vrk2. So that, vrkT =
[R1 ⊗R2]T if (vrk1, vrk2) = ([R1]1, [R2]2).

Now, we explain for each function, the relations to be proven:

The function Randomizes. It takes a ciphertext Cs = ([cs,1]s, [cs,2]s) encrypted with a public
key pks and produces a ciphertext C ′s = ([c′s,1]s, [c′s,2]s) such that:

– for s ∈ {1, 2} and pks = [ps]s, it exists α, r ∈ Zp such that:

[c′s,1]s = α · ([cs,1]s r · [ps]s) ∧ [c′s,2]s = α · [cs,2]s

– for s = T and pkT = ([p1]1, [p2]2), it exists α ∈ Zp, r1, r2 ∈ Z2
p such that:

[c′T,1]T = α · ([cT,1]T [p1]1 • [r2]2 [r1]1 • [p2]2) ∧ [c′T,2]T = α · [cT,2]T

These relations are equivalent to the linear relations:

– for s ∈ {1, 2}, it exists α, r ∈ Zp such that:

[c′s,1]s = α · [cs,1]s r · [ps]s ∧ [c′s,2]s = α · [cs,2]s

– for s = T , it exists α ∈ Zp, r1, r2 ∈ Z2
p such that:

[c′T,1]T = α · [cT,1]T [p1]T · r2 r1 · [p2]T ∧ [c′T,2]T = α · [cT,2]T

These proofs consist of 3 scalars of Zp for s ∈ {1, 2}, and 6 scalars of Zp for s = T .

The functions Add and Multiply. They are public and deterministic thus everyone can check
the operations.

The function Decrypts. It takes a ciphertext Cs = ([cs,1]s, [cs,2]s) encrypted with a public
key pks and produces its decryption m such that:

– for s ∈ {1, 2} and pks = [ps]s, it exists sks = Ps ∈M2(Zp) such that:

[ps]s ·Ps = [0]s ∧Ps 6= 0 ∧ [cs,1]s ·Ps = m · [cs,2]s ·Ps

– for s = T and pkT = ([p1]1, [p2]2), it exists skT = (P1,P2) ∈M2(Zp)2 such that:

[p1]1 ·P1 = [0]1 ∧ [p2]2 ·P2 = [0]2 ∧P1 6= 0 ∧P2 6= 0
∧ [cT,1]T · (P1 ⊗P2) = m · [cT,2]T · (P1 ⊗P2)

Instead of proving these relations, the prover will use vsks for s ∈ {1, 2, T} produced by Keygens
for verifiability and will make the proof of the relations:

– for s ∈ {1, 2}, it exists sks = Ps ∈M2(Zp) such that:

[vsks]s = [1]s ·Ps ∧ ([cs,1]s m · [cs,2]s) ·Ps = [0]s

– for s = T , it exists skT = (P1,P2) ∈M2(Zp)2 such that:

[vskT]T = [1]T · (P1 ⊗P2) ∧ ([cT,1]T m · [cT,2]T) · (P1 ⊗P2) = [0]T

The linear proofs consist of 5 scalars of Zp for s ∈ {1, 2} and 17 scalars of Zp for s = T .

15

The function Re-encrypts. It takes a ciphertext Cs = ([cs,1]s, [cs,2]s) encrypted with a public
key pkas and produces a ciphertext C ′s = ([c′s,1]s, [c′s,2]s) encrypted with a public key pkbs such
that:

– for s ∈ {1, 2}, it knows rka→bs = Rs ∈ SL2(Zp) such that:

([c′s,1]s, [c′s,2]s) = ([cs,1]s ·Rs, [cs,2]s ·Rs) ∧ pkbs = pkas ·Rs

– for s = T , pkaT = (pka1, pka2), pkbT = (pkb1, pkb2) and vrkT = ([R1]1 • [R2]2), it knows rka→bT =
(R1,R2) ∈ SL2(Zp)2 such that:

([c′T,1]T , [c′T,2]T) = ([cT,1]T · (R1 ⊗R2), [cT,2]T · (R1 ⊗R2))
∧ pkbT = (pkb1, pkb2) = (pka1 ·R1, pka2 ·R2)

Instead of proving these relations, the prover will use vrks for s ∈ {1, 2, T} produced by
REKeygens for verifiability and will make the proof of the relations below:

– for s ∈ {1, 2}, it knows rka→bs = Rs ∈M2(Zp) such that:

([c′s,1]s, [c′s,2]s) = ([cs,1]s ·Rs, [cs,2]s ·Rs) ∧ vrka→bs = [1]s ·Rs

– for s = T , it knows rka→bT = (R1 ⊗R2) ∈M4(Zp) such that:

([c′T,1]T , [c′T,2]T) = ([cT,1]T · (R1 ⊗R2), [cT,2]T · (R1 ⊗R2))
∧ vrka→bT = [1]T · (R1 ⊗R2)

This proof needs 5 scalars of Zp for s ∈ {1, 2} and 17 scalars of Zp for s = T .

Proposition 12. For s ∈ {1, 2}, Es with verifiability is still secure. More precisely, for any
adversary A running within time t,

Advind-cpa
Es

(A) ≤ 4×Advddh
Gs

(t).

Proof. The modified Keygens also outputs vsks and a zero-knowledge proof πs. This implies that
some games need to be added before the first game in the security proof of Es for Theorem 5:

Game G0: In the first game, the simulator plays the role of the challenger in the experiment
Expind-cpa-0

Es
(A), where b = 0:

S(λ):
– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sks, pks, vsks, πs)← Keygens(param)
– m0,m1, [a]s ← A(param, pks)
– Cs = (m0 · [a]s r · [ps]s, [a]s)← Encrypts(pks,m0, [a]s)
– b′ ← A(param, pks, Cs)

We are interested in the event E: b′ = 1. By definition,

Pr
G0

[E] = Pr
[
Expind-cpa-0

E (A) = 1
]
.

Game G1: The first modification is to replace πs by its simulation, possible thanks to the
zero-knowledge property. This game is statistically indistinguishable from the previous one,
under the statistical zero-knowledge property of the proof à la Schnorr in the Random
Oracle Model.

Game G2: Now the simulator takes as input a Diffie-Hellman tuple ([a]s, [b]s), with b = r ·a
for some scalar r, and emulates Keygens by defining vsks = ([a]s, [b]s). Thanks to the Diffie-
Hellman tuple this corresponds to the matrix of a projection, and thus this game is perfectly
indistinguishable from the previous one: PrG2 [E] = PrG1 [E].

16

Game G3: The simulator now receives a random tuple ([a]s, [b]s): PrG3 [E] − PrG2 [E] ≤
Advddh

Gs
(t). In this game, there is no information in vsks anymore and the zero-knowledge

proofs are simulated. In the original proof, sks is never used, thus we can plug the games
from the original proof here. To finish the proof we need to unravel the games of vsks and
πs in order to have:

Game G4: S(λ):
– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sks, pks, vsks, πs)← Keygens(param)
– m0,m1, [a]s ← A(param, pks)
– Cs = (m1 · [a]s r · [ps]s, [a]s)← Encrypts(pks,m0, [a]s)
– b′ ← A(param, pks, Cs)

the experiment Expind-cpa-1
Es

(A).

Hence, we have:

Pr
[
Expind-cpa-1

Es
(A) = 1

]
− Pr

[
Expind-cpa-0

Es
(A) = 1

]
= Pr

G4
(E)− Pr

G0
(E)

≤ 4×Advddh
Gs

(t).

Corollary 13. ET with verifiability is still secure.

Proof. Similarly to the previous proof, the zero-knowledge proofs are replaced by their simula-
tions. Then, vsk1 and vsk2 are replaced by random matrices in M2(Zp). Thus, vskT is also a
random matrix.

4 Distributed Decryption

When a third-party performs the decryption, it is important to be able to prove the correct
decryption, as we have shown above. But this is even better if the decryption process can be
distributed among several servers, under the assumption that only a small fraction of them can
be corrupted and under the control of an adversary.

In this section, we show that not only our construction handles multiple users, contrarily
to BGN, but it additionally supports distributed decryption, which is definitely not the case of
BGN because of the quite costly distributed generation of RSA moduli. First, we use the classical
Shamir secret sharing scheme, that allows threshold decryption, but distributed generation of
the keys does not look efficient. Then, we consider the particular case of 2-party decryption,
and eventually present an n-party decryption, that does not need authority, even for the key
generation.

4.1 Shamir Secret Sharing Scheme

To decrypt a ciphertext in Gs with s ∈ {1, 2}, one needs to compute ([cs,1]s · sks, [cs,2]s · sks).
In a Shamir’s like manner [Sha79], one can perform a t-out-of-n threshold secret sharing by
distributing sks such that sks =

∑
i∈I λI,isks,i with I ⊂ {1, . . . , n} a subset of t users, and for

all i ∈ I, λI,i ∈ Zp and sks,i is the secret key of the party Pi. To decrypt, all the involved
parties compute ([x1,i]s, [x2,i]s) = ([cs,1]s · sk1,i, [cs,2]s · sk1,i). Then, the decryption is simply the
logarithm of [x1]s = i∈I

(
λI,i · [x1,i]s

)
in base [x2]s = i∈I

(
λI,i · [x2,i]s

)
.

For s = T and with just the distribution of sk1 and sk2, it is also possible to perform a
distributed decryption. In fact, because sk1⊗sk2 = (sk1⊗1)×(1⊗sk2), one can make a two round
decryption by computing distributively [x1]T = [cT,1]T · (sk1 ⊗ 1) then [y1]T = [x1]T · (1⊗ sk2).

Remark 14. Because the operations to decrypt or re-encrypt are the same, one can make dis-
tributed re-encryption in the same vein.

While verifiability could work as for simple decryption, the secret key must be a projection
matrix, which is not easy to generate at random: a central authority is required here.

17

4.2 Two-Party Decryption

Our second approach follows the remark: sk1 ⊗ sk2 = (sk1 ⊗ 1) × (1 ⊗ sk2). We assume the
special case where a user U1 knows sk1 and a user U2 knows sk2. From local or external input
ciphertext, they can come up with a final ciphertext CT = ([cT,1]T , [cT,2]T). Before operating the
decryption, since they may have introduce their own random coins in some input ciphertexts, the
final ciphertext must be refreshed to hide any leakage about combinations between messages and
random coins. Each party thus applies RandomizeT . Then, they can iteratively decrypt: party U1
begins the decryption by computing C ′T = ([c′T,1]T , [c′T,2]T) = ([cT,1]T ·(sk1⊗1), [cT,2]T ·(sk1⊗1))
and U2 can finish the decryption with its secret key (1⊗ sk2). U2 is the first to get the result.

The generation of the keys sk1 and sk2 can be performed independently, and so no authority
is needed, but we are limited to two-party decryption only.

To highlight the importance of the application of the function Randomize before starting the
decryption, we detail a specific attack on the example 15. The idea is that the first decrypting
party corresponds to a decrypting oracle for the other and thus can leak some information if
the random part is not refreshed.

Example 15. Consider the situation where a user U1 encrypts a message m1 ∈ {0, 1} with
[a1]1 and r1, and U2 encrypts a message m2 ∈ {0, 1} with [a2]2 and r2. We denote by C1 =
([c1,1]1, [c1,2]1) the first ciphertext and by C2 = ([c2,1]2, [c2,2]2) the second. Suppose U1 and U2
want to compute the multiplication of their inputs (which corresponds to an AND):

CT = ([cT,1]T , [cT,2]T) = Multiply(C1, C2)
= (m1m2 · [a1 ⊗ a2]T [r]1 • [p2]2 [p1]1 • [r′]2, [a1 ⊗ a2]T)

with r = m1r2a1 and r′ = m2r1a2 + r1r2p2. In the case where m1 = 0, U1 may want that U2
begins the decryption to learn m2, even if he knows the final result will be 0. Indeed, if m1 = 0,
CT = ([p1]1 • [m2r1a2 + r1r2p2]2, [0]T) and the partial decryption C ′T = ([p1]1 • [m2r1a2]2 · (I2⊗
P2), [0]T). The problem is that C ′T = ([0]T , [0]T) if m2 = 0 and is different to 0 otherwise: U1
learns the input of U2.

To address this issue, this is enough to randomize CT before decryption, because then the
ciphertext becomes, in the case m1 = 0,

(α · ([p1]1 • [m2r1a2 + r1r2p2]2) [r1]1 • [p2]2 [p1]1 • [r′2]2, [0]T)

which is decrypted as C ′T = ([p1]1 • [αm2r1a2 + r′2]2 · (I2 ⊗P2), [0]T) by U2: it does not depend
anymore on the value of m2. Actually, instead of performing a complete Randomize, U2 can just
randomize his random part (the part in G2). Hence, the random in CT will be refreshed. One
can note that, in case of an Add, the randoms are added and thus this concern does not arise.

4.3 Multi-Party Decryption

The third technique will exploit the proxy re-encryption process to offer an n-party decryption.
The idea is to create a ring along which each participant re-encrypts a ciphertext until they all
can decrypt the final ciphertext.

Keygens(param,P1, . . . ,Pn): For s ∈ {1, 2}, we let sk0,s = P0,s = U2 and pk0,s = ([1]s, [0]s)
the initial keys. Then, along a ring, for i = 1, . . . , n, Pi chooses rki,s $← SL2(Zp) its secret
re-encryption key and defines Pi,s = rk−1

i,s Pi−1,srki,s and pki,s = αi,s · pki−1,s · rki,s, with
αi

$← Z∗p. The public key is then pks = pkn,s. For s = T , pkT = (pk1, pk2).
Decrypts(rk1,s, . . . , rkn,s, Cs): Since the ciphertext is encrypted under the last key on the ring

pks, for s = 1, 2, Cs = ([cn,s,1]s, [cn,s,2]s), and so each user around the ring, for i = n, . . . , 1,
can re-encrypt for the previous user: ([ci−1,s,1]s, [ci−1,s,2]s) = ([ci,s,1]s · rk−1

i,s , [ci,s,2]s · rk−1
i,s),

until C ′s = ([c0,s,1]s, [c0,s,2]s), a ciphertext encrypted under pk0,s = ([1]s, [0]s), that anybody
can decrypt using sk0,s = P0,s = U2. For s = T , one does the same with rki,1 ⊗ rki,2.

18

Remark 16. For clarity, we can explicit the change of basis matrix Bi,s associated to Pi,s:
B0,s = I2 and Bi,s = Bi−1,srki,s.

Remark 17. The verifiability of the distributed decryption is obtained by applying successive
re-encryption verifiability.

Proposition 18. The public keys generated with the distributed Keygens protocol have the same
distribution as the public keys generated in the original encryption scheme.

Proof. Recall that Keygens defines keys for s ∈ {1, 2}. In the original encryption scheme, the
secret key sks = Ps is defined with a randomly chosen matrix Bs

$← SL2(Zp) as Ps = B−1
s U2Bs

and the public key pks = [ps]s is a vector in the kernel of Ps. Because of the equality Ps =
B−1
s U2Bs, ps ∈ ker(Ps) ⇔ ∃α ∈ Z∗p,ps = α · (1, 0) × Bs. For our n-party public key pks =

pkn,s = (αn,s×. . .×α1,s)·([1]s, [0]s)·(rk1,s×. . .×rkn,s). Thus pks belongs to the same distribution
as the public keys generated by Keygens with Bs = rk1,s×. . .×rkn,s a random matrix in SL2(Zp).

Proposition 19. The distributed Decrypts protocol is correct.

Proof. Each step of the decryption is actually a re-encryption under pki−1,s, until pk0,s. Hence
the correctness.

Proposition 20. The distributed Decrypts protocol is secure.

Proof. The goal of this proof is to show that the distributed protocol does not leak more
information than the direct decryption would do: the plaintext only. To this aim, we assume a
few players to be corrupted, and so the simulator knows the public key pks, the corrupted keys
rki,s, for i ∈ C (the set of the corrupted players), and the pair (m,Cs = ([cn,s,1]s, [cn,s,2]s)) of
a plaintext-ciphertext. From this information, it can simulate all the honest players, without
their secret keys: first, one generates a random ciphertext ([c0,s,1]s, [c0,s,2]s)) of m under pk0,s =
([1]s, [0]s); if n ∈ C, one can compute ([cn−1,s,1]s, [cn−1,s,2]s)) = [cn,s,1]s · rk−1

n,s, [cn,s,2]s · rk−1
n,s),

and so on, until ([cj,s,1]s, [cj,s,2]s) for j 6∈ C; if 1 ∈ C, one can compute ([c1,s,1]s, [c1,s,2]s) =
([c0,s,1]s · rk1,s, [c0,s,2]s · rk1,s); and so one, until ([ci,s,1]s, [ci,s,2]s) for j 6∈ C; until i+ 1 6∈ C.

If i+ 1 = j, this is the unique non-corrupted player, and so all the intermediate ciphertexts
have been generated, correctly. If i+ 1 < j, then ([ci+1,s,1]s, [ci+1,s,2]s) is chosen at random, etc
according whether rkk,s is known or not.

Essentially, when the re-encryption key is known (below or above), it is used, otherwise
the ciphertext is chosen at random. Under the DDH assumption, these random ciphertexts are
indistinguishable from the correct values. Even in case of verifiability, fake zero-knowledge proofs
can be simulated for the honest users.

5 Applications

5.1 Encryption for Quadratic Multivariate Polynomials
In some cases of application, the inputs need to belong to a small space I. Boneh et al. suggested
in [BGN05] a way to guarantee the ciphertext is an encryption of an input in I: if x needs to
belong to I, it suffices to check if x is a root of the polynomial ΠI(x) =

∏
i∈I(x− i). In the case

where I is a 2-tuple as {0, 1}, the evaluation on ΠI can be done with our scheme (or the one of
BGN or Freeman).

The example given in [BGN05] is the case of electronic voting where the result to compute
is simply the sum of the inputs. Since the vote needs to be an encryptions of either a 0 or a
1, the solution is to introduce the additional term Addj(Multiply(Cxj ,Add(Cxj , C−1)). For this
case of application, we add a quadratic term to a linear function, just for verification. Below,
we propose two cases of applications that are already quadratic, thus the verification does not
add any extra cost. Note that our scheme is more suitable for electronic voting since it offers
decentralization which is a fundamental notion for this example.

19

5.2 Encryption for Boolean Formulae

In this part, we detail the specific case of the evaluation of 2-DNF by first recalling the definition
of 2-DNF, explaining how to consider them to apply our scheme and finally by rewriting the
entire scheme with simplifications for this specific case. Especially, the ciphertexts will not be
pairs anymore, as the second term can be removed, and we will explain why.

Every Boolean formula can be expressed as a disjunction of conjunctive clauses (an OR of
ANDs). This form is called disjunctive normal form (DNF) and, more precisely, k-DNF when
each clause contains at most k literals. Thus, a 2-DNF formula over the variables x1, . . . , xn ∈
{0, 1} is of the form

m∨
i=1

(`i,1 ∧ `i,2) with `i,1, `i,2 ∈ {x1, x1, . . . , xn, xn}.

The conversion of 2-DNF formulae into multivariate polynomials of total degree 2 is simple:
given Φ(x1, . . . , xn) =

∨m
i=1(`i,1 ∧ `i,2) a 2-DNF formula, define φ(x1, . . . , xn) =

∑m
i=1(yi,1× yi,2)

where yi,j = `i,j if `i,j ∈ {x1, . . . , xn} or yi,j = (1 − `i,j) otherwise. In this conversion, a true
literal is replaced by 1, and a false literal by 0. Then, an OR is converted into an addition, and
an AND is converted into a multiplication. A NOT is just (1−x) when x ∈ {0, 1}. φ(x1, . . . , xn)
is the multivariate polynomial of degree 2 corresponding to Φ(x1, . . . , xn). As just said, this
conversion works if for the inputs, we consider 1 ∈ Zp as true and 0 ∈ Zp as false, but for the
output, 0 ∈ Zp is still considered as false whereas any other non-zero value is considered as true.

To evaluate the 2-DNF in an encrypted manner, we propose to encrypt the data and to
calculate the quadratic polynomial corresponding to the 2-DNF as seen above by performing
Adds and Multiplys. Because the result of the 2-DNF is a Boolean, when a decryption is per-
formed, if the result is equal to 0, one can consider it corresponds to the 0-bit (false) and else,
it corresponds to the 1-bit (true).

Hence, when encrypting bits, we propose two different encodings before encryption, depend-
ing on the situation: either the 0-bit (false) is encoded by 0 ∈ Zp and the 1-bit (true) is encoded
by any non-zero integer of Z∗p; or the 0-bit (false) is encoded by 0 ∈ Zp and the 1-bit (true) is
encoded by 1 ∈ Zp. With this second solution, it offers the possibility to perform one NOT on
the data before Adds and Multiplys by the operation 1 − x. However, one has to be aware of
making Randomize before decryption to mask the operations but also the input data in some
situations: for example, if an Add is performed between three 1s, the result 3 leaks information
and needs to be randomized.

Now, we will detail possible simplifications of the scheme. First, because one just wants to
know whether the result is equal to 0 or the result is different from 0, we do not need [as]s
anymore: we can decrypt by just checking whether [cs]s · sks = [0]s or not. This implies that the
second term of the ciphertext can be omitted. Moreover, we can fix [as]s = [(1, 0)]s for s ∈ {1, 2}
and [aT]T = [(1, 0, 0, 0)]s by taking care that the first line of Bs does not have 0-component in
the first line in order to be sure that as = (1, 0) is not in the kernel of Ps. The rewriting scheme
with simplifications is:

Setup(λ): Given a security parameter λ ∈ N, run and output

param = (G1,G2,GT , p, g1, g2, e)← G(λ).

Keygens(param): For s ∈ {1, 2}. Choose Bs
$← SL2(Zp) without any 0-component in the first

line. Let Ps = B−1
s U2Bs and ps ∈ ker(Ps) \ {0}. Output the public key pks = [ps]s and

the private key sks = Ps.
From (pk1, sk1) ← Keygen1(param) and (pk2, sk2) ← Keygen2(param), one can consider
pkT = (pk1, pk2) and skT = (sk1, sk2), which are associated public and private keys in GT .

20

Encrypts(pks,m): For s ∈ {1, 2}, to encrypt a message m ∈ {0, 1} using public key pks = [ps]s,
choose r $← Zp and output the ciphertext Cs = m · [(1, 0)]s r · [ps]s ∈ G2

s.
For s = T , choose [r1]1 $← G2

1, [r2]2 $← G2
2, and output

CT = m · [(1, 0, 0, 0)]T [p1]1 • [r2]2 [r1]1 • [p2]2 ∈ G4
T .

Decrypts(sks, Cs): For s ∈ {1, 2, T}, given Cs = [cs]s and sks = Ps (if s = T let PT = P1⊗P2),
let C ′s = [cs]s ·Ps and output 0 if C ′s = [0]s and 1 otherwise.

5.3 Group Testing on Encrypted Data

In this application we assume that a hospital collects some blood samples and wants to check
which samples are positive or negative to a specific test. Group testing [Dor43] is an efficient
technique to detect positive samples with fewer tests in the case the proportion of positive cases
is small. The technique consists in mixing some samples, and to perform tests on fewer mixes.
More precisely, we denote X = (xij) the matrix of the mixes: xij = 1 if the i-th sample is in
the j-th mix, otherwise xij = 0. The hospital then sends the (blood) mixes to a laboratory for
testing them: we denote yj the result of the test on the j-th mix.

If a patient (its sample) is in a mix with a negative result, he is negative (not infected). If
a patient (its sample) is in a mix with a positive result, we cannot say anything. However, for
well-chosen parameters, if a patient is not declared negative, he is likely positive. Thus, for a
patient i, the formula that we want to solve is ¬Fi(X,y) =

∨
j(xij ∧ ¬yj) which means that

it exists a mix containing the i-th sample for which the test is negative, the global formula is
negative (false). The matrix X of the samples needs to be encrypted since the patient does not
want the laboratory to know his result. Because of the sensitiveness of the data, the result of
the tests needs to be encrypted too. But the patient will need access to his own result.

In this scenario, the hospital computes for all i, j, Cxij ∈ G2
1, the encryption of xij , and

the laboratory computes for all j, Cyj , the encryption of yj in G2
2. Then, they both send the

ciphertexts to an external database. With our encryption scheme, to compute ¬Fi, we need to
use the homomorphic properties:

Ci = Randomize(Addj(Multiply(Cxij , Cyj))

An external controller can verify the computations and if it is correct, it performs a 2-party
decryption from Section 4.3 with a patient to get ¬Fi, and thus Fi. In this way, the patient
cannot decrypt the database or the result of the tests directly, but only with the help of a
(possibly distributed) controller. The goal of this controller is to limit access to the specific
users only. Under an assumption about the collusions, nobody excepted the users will have
access to the results.

5.4 Machine Learning on Encrypted Data

Another famous applications is machine learning, where we have some trainers that fill a
database and users who want to know a function of their inputs and the database. For pri-
vacy reasons, trainers do not want the users to learn the training set, and users do not want the
trainers to learn their inputs. As in the previous case, we will involve a controller, as a (possibly
distributed) third party to limit decryptions, but the controller should not learn anything either.

Suppose in a very large network of nodes in which some combinations should be avoided as
they would result to failures. When a failure happens, the combination is stored in a database.
And before applying a given combination, one can check it will likely lead to a failure, and then
change. For example, the network can be a group of people where each of them can receive data.
But, for some specific reasons, if a subgroup A of people is knowing a file a, the subgroup B

21

must not have the knowledge of a file b. This case of application can be view as a consistency
model [Sch14] which can be formally described as: the input is a vector of states (each being
either true or false), and if in the database all the j-th states are true a new input needs to
have its j-th state to be true; if all the j-th states in the database are false, the new input
needs to have its j-th state to be false; otherwise the j-th state can be either true or false. As a
consequence, if we denote the i-th element of the database as a vector xi = (xij)j and the user’s
vector by y = (yj), that vector y is said consistent with the database the following predicate is
true: ∧

j

(
(∧ixij ∧ yj) ∨ (∧ixij ∧ yj) ∨ (∨ixij ∧ ∨ixij)

)
.

Let Xj = ∧ixij , Yj = ∧ixij , and Zj = ∨ixij ∧∨ixij . We define F(x1, . . . ,xm,y) the formula that
we want to compute on the encrypted:

F(x1, . . . ,xm,y) =
∧
j

(
(Xj ∧ yj) ∨ (Yj ∧ yj) ∨ Zj

)
.

By definition, Xj , Yj , and Zj are exclusive, as Xj means the literals are all true, Yj means the
literals are all false, and Zj means there are both true and false literals. So we have: Xj∨Zj = Yj
and Yj ∨ Zj = Xj . Thus, we have

¬F(x1, . . . ,xm,y) =
∨
j

((Yj ∨ yj) ∧ (Xj ∨ yj)) .

Now, we will see how the encryption and the decryption is performed to obtain the result of an
evaluation.

First, we explain how the trainers can update the database, when adding a vector xm. The
values Xj are updated into X ′j as

X ′j =
m∧
i=1

xij =
m−1∧
i=1

xij ∧ xmj =
{
Xj =

∧m−1
i=1 xij if xmj = true

false otherwise

which is easy to compute for the trainer, since it knows xm in clear, even if Xj is encrypted:
the trainer can dynamically compute CXj the encryption of Xj , when adding a new line in the
database, by just making a Randomize if xmj is true (to keep the value Xj unchanged), or by
replacing the value by a fresh encryption of 0 otherwise. Similarly, the trainer can update CYj ,
the encryption of Yj .

On the user-side, he can compute Cyj and Cyj the encryptions of his inputs yj and yj
respectively. Then, everyone and thus the controller itself can compute:

Cj = Randomize
(
Addj

(
Multiply(Add(CYj , Cyj),Add(CXj , Cyj))

))
.

Because of the Multiply, CYj and Cyj must be ciphertexts in G1, while CXj and Cyj must be
ciphertexts in G2. To allow a control of the final decryption, a distributed controller can help
the user to decrypt, along the scenario described in Section 4.3.

6 Optimization

In this section we propose a slight improvement by using specific orthogonal projections. This
way, the projection matrix (the secret key) is defined by just one vector s that spans the image
of the projection, and the public key [p] is derived from an orthogonal vector p that will cancel
the former vector with an inner product: p spans the kernel of the projection. Before presenting
the improvement, we recall some properties of the inner product between two vectors, that is
defined as a,b = a · bT :

22

Proposition 21. For any a,b, c,d ∈ Z2
p,M ∈M2(Zp),

a ⊗ b, c⊗ d = a, c ⊗ b,d (1)
a,bM = aMT ,b (2)

Proof. Since (A⊗B)T = AT ⊗BT , we have:

a ⊗ b, c⊗ d = (a ⊗ b) · (c⊗ d)T = (a ⊗ b) · (cT ⊗ dT)
= (a · cT)⊗ (b · dT) = a, c ⊗ b,d

which proves the first relation. And the second relation comes from the definition of the inner
product: a,bM = a · (bM)T = a ·MT · bT = aMT ,b .

Two vectors a,b ∈ Z2
p are said orthogonal if a,b = 0. Then [a]s,b = [0]s for s ∈ {1, 2}.

Obviously, we have the same relation for s = T . Let us now describe our optimization. Only
the secret key is different, and so the Keygens and Decrypts algorithms:

Setup(λ): Given a security parameter λ ∈ N, run and output

param = (G1,G2,GT , p, g1, g2, e)← G(λ).

Keygens(param): For s ∈ {1, 2}. Choose ps $← Z2
p and ss ∈ Z2

p such that ps, ss = 0 and output
the public key pks = [ps]s and the private key sks = ss. From (pk1, sk1)← Keygen1(param)
and (pk2, sk2) ← Keygen2(param), one can consider pkT = (pk1, pk2) and skT = (sk1, sk2),
which are associated public and private keys in GT .

Encrypts(pks,m,As): (exactly as in the original protocol) For s ∈ {1, 2}, to encrypt a message
m using public key pks and As = [a]s ∈ G2

s, choose r
$← Zp and output the ciphertext

Cs = (m · [a]s r · [ps]s, [a]s) ∈ G2
s ×G2

s.
For s = T , with As = ([a1]1, [a2]2), set [a]T = [a1]1 • [a2]2 ∈ G4

T , choose [r1]1 $← G2
1, [r2]2 $←

G2
2, and output CT = (m · [a]T [p1]1 • [r2]2 [r1]1 • [p2]2, [a]T) ∈ G4

T ×G4
T .

Decrypts(sks, Cs): For s ∈ {1, 2}, given Cs = ([cs,1]s, [cs,2]s) and sks = ss, let C ′s = ([cs,1]s, ss ,
[cs,2]s, ss). For s = T , compute C ′T = ([cT,1]T , s1 ⊗ s2 , [cT,2]T , s1 ⊗ s2). In both cases,
output the logarithm of the first component of c′s,1 in basis the second component of c′s,2.

Proposition 22. For s ∈ {1, 2, T}, this scheme is correct.

Proof. For s ∈ {1, 2}:

[cs,2]s, ss = [as]s, ss
[cs,1]s, ss = m · [a]s r · [ps]s, ss = m · [a]s, ss r · [ps]s, ss

= m · [a]s, ss [0]s = m · [a]s, ss = m · [cs,2]s, ss

For s = T , using equation 1:

[cT,2]T , s1 ⊗ s2 = [aT]T , , s1 ⊗ s2

[cT,1]T , s1 ⊗ s2 = m · [a]T [p1]1 • [r2]2 [r1]1 • [p2]2, s1 ⊗ s2

= m · [a]T , s1 ⊗ s2 [r1]1 ⊗ [p2]2, s1 ⊗ s2 [p1]1 ⊗ [r2]2, s1 ⊗ s2

= m · [a]T , s1 ⊗ s2 [r1]1, s1 • [p2]2, s2 [p1]1, s1 • [r2]2, s2

= m · [a]T , s1 ⊗ s2 [r1]1, s1 • [0]2 [0]1 • [r2]2, s2

= m · [a]T , s1 ⊗ s2 = m · [a]T , s1 ⊗ s2 = m · [cT,2]T , s1 ⊗ s2

Since the encryption algorithm does not change, the security proof remains the same. The
re-encryption is still possible with the following re-encryption key:

23

REKeygens(skas , skbs): For s = 1, 2, from two different secret keys skas = ss and skbs = s′s associated
respectively to the two public keys pkas and pkbs, take any matrix M ∈ GL2(Zp) such
that sks = sk′s ·M and output rka→bs = MT the secret re-encryption key. From rka→b1 ←
REKeygen1(ska1, skb1) and rka→b2 ← REKeygen2(ska2, skb2), we denote rka→bT = (rka→b1 , rka→b2).

As explained in the proof of Proposition 9, using equation 2: ps ·MT , s′s = ps, s′s ·M =
ps, ss = 0, and so ps · rka→bs = r′p′s for some r′ ∈ Zp, which is enough to guarantee the
correctness. Eventually, the distributed decryption is also possible: the user i will choose rk $←
GL2(Zp) and compute pki = pki−1 · rk−1. Its implicit secret key is ski = ski−1 · rkT .

Since the decryption key is just a vector (2 scalars), instead of a matrix (4 scalars), this also
improves on the zero-knowledge proofs for the verifiability.

Acknowledgments

This work was supported in part by the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud).

References

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical func-
tional encryption for quadratic functions with applications to predicate encryption. Cryptology ePrint
Archive, Report 2017/151, 2017. http://eprint.iacr.org/2017/151.

BGN05. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe Kilian,
editor, TCC 2005, volume 3378 of LNCS, pages 325–341. Springer, Heidelberg, February 2005.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March
2011.

CDG+17. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval.
Decentralized multi-client functional encryption for inner product. Cryptology ePrint Archive, Report
2017/989, 2017. http://eprint.iacr.org/2017/989.

CF15. Dario Catalano and Dario Fiore. Using linearly-homomorphic encryption to evaluate degree-2 func-
tions on encrypted data. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS
15, pages 1518–1529. ACM Press, October 2015.

DGP18. Edouard Dufour Sans, Romain Gay, and David Pointcheval. Reading in the dark: Classifying encrypted
digits with functional encryption. Cryptology ePrint Archive, Report 2018/206, 2018. https://
eprint.iacr.org/2018/206.

Dor43. R. Dorfman. The detection of defective members of large populations. The Annals of Mathematical
Statistics, 14(4):436–440, 1943.

FLOP18. Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed RSA key
generation for semi-honest and malicious adversaries. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 331–361. Springer, Heidelberg, August
2018.

FN94. Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor, CRYPTO’93, volume
773 of LNCS, pages 480–491. Springer, Heidelberg, August 1994.

Fre10. David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
44–61. Springer, Heidelberg, May / June 2010.

Gay16. Romain Gay. Functional encryption for quadratic functions, and applications to predicate encryption.
Cryptology ePrint Archive, Report 2016/1106, 2016. http://eprint.iacr.org/2016/1106.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit
Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer,
Heidelberg, May 2014.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49.
IEEE Computer Society Press, October 2013.

GGJS13. Shafi Goldwasser, Vipul Goyal, Abhishek Jain, and Amit Sahai. Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/727, 2013. http://eprint.iacr.org/2013/727.

http://eprint.iacr.org/2017/151
http://eprint.iacr.org/2017/989
https://eprint.iacr.org/2018/206
https://eprint.iacr.org/2018/206
http://eprint.iacr.org/2016/1106
http://eprint.iacr.org/2013/727

24

GKL+13. S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. Cryptology ePrint Archive, Report 2013/774, 2013. http://eprint.iacr.org/
2013/774.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh, Tim Roughgar-
den, and Joan Feigenbaum, editors, 45th ACM STOC, pages 555–564. ACM Press, June 2013.

LW11. Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 568–588. Springer, Heidelberg,
May 2011.

NNL01. Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 41–62. Springer, Heidelberg, August
2001.

PPS12. Duong Hieu Phan, David Pointcheval, and Mario Strefler. Decentralized dynamic broadcast encryp-
tion. In Ivan Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS, pages 166–183.
Springer, Heidelberg, September 2012.

Sch14. Rob Schapire. Computer science 511 – theoretical machine learning, 2014.
Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,

22(11):612–613, November 1979.
SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EU-

ROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774

