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Abstract

In this paper, we propose a new general construction to reduce the public key size of McEliece
cryptosystems constructed from automorphism-induced Goppa codes. In particular, we gener-
alize the ideas of automorphism-induced Goppa codes by considering nontrivial subsets of auto-
morphism groups to construct Goppa codes with a nice block structure. By considering additive
and multiplicative automorphism subgroups, we provide explicit constructions to demonstrate
our technique. We show that our technique can be applied to automorphism-induced Goppa
codes based cryptosystems to further reduce their key sizes.

1 Introduction

Since the introduction of public-key cryptography in the 1970’s, all the public-key cryptosystems
that have been proposed fall into two broad categories, namely, the classical schemes and the
quantum-resistant schemes. The former category comprises most of the schemes used today.
They are primarily built up from computational number theoretic problems including integer
factoring problem and discrete logarithm problem in different groups. While such schemes are
generally believed to be secure against classical computers, their security has been shown to be
vulnerable to quantum algorithms such as the Shor algorithm [34].

On the other hand, the class of quantum-resistant schemes, as the name implies, includes
schemes whose security is not threatened by existing quantum algorithms. Such schemes are
further classified by their underlying mathematical problems into various classes including code-
based cryptosystems, lattice-based cryptosystems, hash-based cryptosystems, multivariate cryp-
tosystems or schemes based on elliptic curve isogenies [8]. Among these classes, the code-based
cryptography is one of the oldest, dating back to the work of McEliece in 1978 [27].

Essentially, code-based cryptography refers to the class of schemes whose security relies on
hard problems in coding theory, such as the general decoding problem. Concretely, the classical
code-based encryption scheme works as follows. Let M be a generator matrix of an [n, k, 2t+1]-
linear code C with a fast decoder. Let S be a k × k invertible matrix and let P be an n × n
permutation matrix. Let M ′ = SMP . Then, the public key is M ′ while the secret key comprises
the matrices S,M and P . To encrypt a message x, one chooses an error e with Hamming weight
t and computes c = xM ′ + e. To recover x, one first computes c′ = cP−1. Use the decoder
with respect to M to decode c′ to obtain c′′ ∈ C. Since c′′ = xS, one can recover x using S−1.
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An alternative but equivalent code-based encryption scheme was proposed by Niederreiter
in [31] in which the parity-check matrix instead of the generator matrix was used. In this
scheme, a message is converted into a vector of Hamming weight t and encryption is performed
by multiplying this vector with the parity check matrix. Once again, decryption is accomplished
via a fast decoder while the security is based on the difficulty of the syndrome decoding problem.

The above descriptions only outline the essential ideas of code-based schemes. Variants
of these schemes have been proposed to achieve different forms of security such as the CCA2
security [20]. The main advantage of code-based cryptosystems lies in its efficient operations
leading to very efficient encryption and decryption. As such, it continues to draw much in-
terest to design new code-based cryptographic primitives. For instance, in the recent NIST
submissions, several proposals on code-based key encapsulation mechanisms were proposed [1],
including [3, 2]. Essentially, any code C used in the schemes must satisfy the main property,
namely, it has an efficient decoder using a particular matrix M but multiplying this matrix
with a random matrix transforms the corresponding code into a random code. In addition,
the code used should not exhibit any structural weakness to recover the private key. The first
family of codes suggested by McEliece in [27] is the family of Goppa codes. Subsequently, other
families of codes are proposed, including algebraic geometric codes [19], Reed-Muller codes [35],
Reed Solomon codes [31], and more recently, MDPC codes [30]. While all these codes have an
efficient decoding algorithm, the structures exhibited by some of the codes make them vulnera-
ble to other attacks. Ideally, one hopes to construct public keys with reasonably short lengths
such that the underlying structures are properly concealed. Quasi-cyclic MDPC codes are more
recent designs that seem promising to achieve these two goals simultaneously. On the other
hand, codes such as Reed-Muller codes and Reed Solomon codes, while providing short public
keys, have all been broken [28, 23]. In terms of security, Goppa codes seem to be the strongest
as they have withstood structural attacks since they were first proposed by McEliece. However,
they suffer from the disadvantage of having large public key sizes.

As such, it is an interesting problem to consider sub-classes of Goppa codes to better balance
the security and public key size requirements. One common approach adopted is to employ
quasi-cyclic or quasi-dyadic Goppa codes [29, 7] or more generally, codes with a nontrivial
automorphism group [6]. Indeed, in [14], the authors showed that existing quasi-cyclic and
quasi-dyadic constructions are induced from nontrivial automorphism subgroups of the rational
function field. The main advantage to use a code with a nontrivial automorphism group G is that
there exists a subset of basis codewords such that this subset together with their permutations
induced by G form the whole basis of the code. As such, this allows one to use the subset of
codewords as the public key instead of the entire basis, thereby reducing the size of the public
key. Nonetheless, the size reduction leads to a trade-off with respect to its resistance to structural
attacks. In particular, it was shown in [15, 14, 4] that the public/private key pair of such codes
is equivalent to a public/private key pair of another code with smaller parameters. Algebraic
cryptanalysis can then be performed on the corresponding codes with smaller parameters and
successful attacks following this approach were carried out in [16, 17]. As such, one must select
the parameters carefully in order to balance the trade-off and to achieve the desired security
level [3].

In this paper, we generalize the approach of automorphism-induced code constructions to
seek for Goppa codes with compact public key sizes. Instead of finding codes with nontrivial
automorphism groups, we will construct Goppa codes that are a union of different subcodes and
their permutations. Specifically, we solve the following problem.

Problem 1: Construct Goppa codes C that contain a subset S of linearly independent
codewords satisfying the following properties:

• For each c ∈ S, there exists a set of permutations Pc such that σ(c) ∈ C for all σ ∈ Pc;

• B =
⋃

c∈S
(⋃

σ∈Pc
σ(c)

)
is a basis of C.
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By finding such codes C, one can then use the set S as its public key. Observe that the
automorphism-induced codes including the quasi-cyclic and quasi-dyadic codes are examples
of the codes we seek. In these cases, all the Pc are identical and equal to the automorphism
group of the code. While this construction allows one to use the set S as the public key, the
automorphism group can be exploited to reduce the security of the scheme with respect to
algebraic attacks.

This paper seeks to provide other classes of Goppa codes that satisfy the conditions of
Problem 1. In our constructions, the sets Pc are no longer automorphism groups of the codes.
Instead, we consider only subsets of permutations of each codeword. In this way, our codes
become resistant to the algebraic attacks of [15, 14, 4] as the folding operation does not lead to
an invariant subcode (see 2.3 for the relevant definitions). Moreover, our construction is generic
in the sense that it can be applied to reduce the key size of existing code-based schemes from
Goppa codes.

In this paper, we first provide conditions for permutations of codewords to lie in the code.
We then construct codes with a partial quasi-cyclic and quasi-dyadic structure. We demonstrate
that the codes we construct are not vulnerable to the algebraic attacks of [16, 17, 14]. Finally,
we apply our technique to automorphism-induced Goppa codes to obtain compact and secure
Goppa codes. We show with concrete examples that our technique can reduce the public key
sizes in BigQuake [3] by at least half.

The subsequent sections are structured as follows. First, we recall Goppa codes and their
permutations. We also review automorphism-induced Goppa codes and the associated algebraic
attacks. We then present our new construction that exploits subsets of automorphism groups
to yield codes with a nice permutation structure. In Section 4, we provide a security discussion
of our construction. Finally, we present an algorithm that combines our technique with existing
quasi-cyclic constructions to obtain Goppa codes with reduced public key sizes.

2 Preliminaries

In this paper, we always assume that q = 2m for an integer m ≥ 2. Let Fq denote the finite field
with q elements.

2.1 Goppa codes

We first review the definition of Goppa codes [27]. In the following, we present a construction
that is relevant for this work.

Definition 2.1 (Goppa code). Let t and n be positive integers with t < n ≤ q. Let g(x) ∈ Fq[x]
be a polynomial of degree t and let L = {γ1, · · · , γn} be an ordered set containing n distinct
elements of Fq such that g(γi) 6= 0 for 1 ≤ i ≤ n. The Goppa code Γ(L, g) is defined as

Γ(L, g) =

{
c = (c1, · · · , cn) ∈ Fn2 :

n∑
i=1

ci
x− γi

≡ 0 (mod g(x))

}
.

The polynomial g(x) is called the Goppa polynomial. When g(x) is irreducible, Γ(L, g) is called
an irreducible Goppa code. In this paper, we call the ordered set L the Goppa support.

Some of the main properties of Goppa codes are summarized below.

Remark 2.2. (i) The Goppa code Γ(L, g) is a subfield subcode of generalized Reed-Solomon
codes. In fact, the class of Goppa codes is a special case of alternant codes.

(ii) The Goppa code Γ(L, g) is a binary linear code and has dimension at least n −mt, and
minimum distance at least t+ 1.
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(iii) If g(x) has no multiple roots, then Γ(L, g) has minimum distance at least 2t + 1. In
particular, an irreducible Goppa code Γ(L, g) has minimum distance at least 2t+ 1.

Given a Goppa support L and a Goppa polynomial g(x), a parity-check matrix of Γ(L, g) is
given by H = V D, where

V =


1 1 . . . 1
γ1 γ2 . . . γn
γ21 γ22 . . . γ2n
. . . . . . . . . . . .
γt−11 γt−12 . . . γt−1n

 (1)

and
D = diag(1/g(γ1), 1/g(γ2), . . . , 1/g(γn)). (2)

One of the nice properties of Goppa codes lies in its efficient decodability. In particular, there
exists a polynomial-time decoding algorithm for Goppa codes [24] that can decode up to t errors.

Fix a ∈ F∗q , b ∈ Fq, c ∈ F∗q . For a Goppa support L ⊂ Fq, let L′ = {a−1x − b : x ∈ L}.
Then, for any g ∈ Fq[x], it is easy to check that the Goppa codes Γ(L, g) and Γ(L′, cg(ax+ b))
are equal. Consequently, for any Goppa code, one can find at least q(q − 1) different Goppa
supports and monic Goppa polynomials that define the given code.

The following result follows directly from the definition of Goppa codes [24].

Lemma 2.3. Fix L ⊂ Fq. For any two polynomials g1(x) and g2(x), one has:

Γ(L, g1(x)) ∩ Γ(L, g2(x)) = Γ(L, lcm(g1(x), g2(x))).

2.2 Permutations of Goppa codes

In this subsection, we take a look at permutations of Goppa codes.
For a positive integer n, let Sn denote the symmetric group on n symbols. We let Sn act on

the vector space Fn2 via

σ(c) = σ(c1, · · · , cn) = (cσ(1), · · · , cσ(n))

for σ ∈ Sn and c = (c1, · · · , cn) ∈ Fn2 . Then, σ(C) = {σ(c) : c ∈ C} is also a code with the
same parameters as the code C.

Definition 2.4. The automorphism group of a code C ⊆ Fn2 is defined as

Aut(C) = {σ ∈ Sn : σ(c) ∈ C for all c ∈ C}.

In particular, σ ∈ Aut(C) if and only if σ(C) = C.

We next show that there exist permutations σ ∈ Sn such that σ(C) is itself a Goppa code.
Let F = Fq(x) denote the rational function field over Fq. We denote by Aut(F/Fq) the

automorphism group of F over Fq, i.e.,

Aut(F/Fq) = {σ : F → F, where σ is an Fq-automorphism of F}. (3)

It is clear that an automorphism σ ∈ Aut(F/Fq) is uniquely determined by σ(x). It is well
known that every automorphism σ ∈ Aut(F/Fq) is given by

σ(x) =
ax+ b

cx+ d
(4)

for some constants a, b, c, d ∈ Fq with ad−bc 6= 0 (see [11]). Denote by GL2(q) the general linear

group of 2×2 invertible matrices over Fq. Thus, every matrix A =

(
a b
c d

)
∈ GL2(q) induces
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an automorphism of F given by (4). Two matrices of GL2(q) induce the same automorphism of
F if and only if they belong to the same coset of Z(GL2(q)), where Z(GL2(q)) stands for the
center {aI2 : a ∈ F∗q} of GL2(q). This implies that Aut(F/Fq) is isomorphic to the projective
linear group PGL2(q) := GL2(q)/Z(GL2(q)). Thus, we can identify Aut(F/Fq) with PGL2(q).

Consider the subgroup of PGL2(q),

AGL2(q) :=

{(
a b
0 1

)
: a ∈ F∗q , b ∈ Fq

}
. (5)

AGL2(q) is called the affine linear group. Every element A =

(
a b
0 1

)
∈ AGL2(q) defines an

affine automorphism σa,b(x) = ax+ b.
The following lemma is straightforward to verify.

Lemma 2.5. Let b ∈ Fq. Then,

ord(σa,b) =

{
ord(a) if a 6= 1,
2 otherwise

We recall the definition of a group action on a set and some of its basic properties.

Definition 2.6 ([22]). A group G action on a set S is a mapping from G ×S to S to satisfying
the following properties:

(i) g1 · (g2 · s) = (g1g2) · s for all g1, g2 ∈ G, s ∈ S,

(ii) 1 · s = s for all s ∈ S.

Definition 2.7. Let G be a group acting on a set S. The equivalence class {g · s : g ∈ G} is
called the orbit of G containing s.

Remark 2.8. (i) The orbits of two different elements in S are either equal or disjoint. In
particular, S is partitioned into a disjoint union of orbits.

(ii) For s ∈ S, let Gs denote the stabilizer subgroup of G that fixes s under the group action,
that is Gs = {g : g ∈ G|g · s = s}. Then, the orbit containing s has |G|/|Gs| different
elements.

For any element g ∈ G, the action of g induces a permutation on the set S. In fact, g
restricted to any orbit O is a permutation of O. In particular, let L = {γ1, . . . , γn} be a disjoint
union of G-orbits. Then, for any σ ∈ G and 1 ≤ i ≤ n, there exists j such that σ · γi = γj . In
this case, we will simply denote the corresponding permutation in Sn as σ(i) = j.

Definition 2.9. Let L be a subset of Fq containing n distinct elements. For any σ ∈ Sn, we
say that L is invariant under σ if σ(L) = L. If L is invariant under every σ in a subgroup
G of Sn, we say that L is G-invariant. In particular, if L is a disjoint union of G-orbits, L is
G-invariant.

Remark 2.10. Consider a group action of AGL2(q) on Fq defined by σa,b ·γ = a−1(γ−b). One
easily checks that this is a group action. Then, one has σa,b(x− γ) = a(x− σa,b · γ).

Proposition 2.11. Let G be a subgroup of AGL2(q) and let L ⊂ Fq be a disjoint union of
G-orbits. Let g ∈ Fq[x]. For any σ ∈ G, one has

σ(Γ(L, g)) = Γ(L, g(σ−1(x))).

Proof. Write L = {γ1, . . . , γn}. Here, it suffices to show that σ(Γ(L, g)) ⊂ Γ(L, g(σ−1(x))). Let
c = (c1, c2, . . . , cn) ∈ Γ(L, g). By definition, we have:

n∑
i=1

ci
x− γi

≡ 0 mod g(x).
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Applying σ−1 to both sides of the equivalence relation Remark 2.10 yields

n∑
i=1

ci
x− σ−1 · γi

≡ 0 mod g(σ−1(x)).

Since L is a union of G-orbits, for each i = 1, . . . , n, there exists some j such that γj ∈ L and
σ(γj) = γi. Rearranging the equation then gives:

n∑
i=1

cσ(i)

x− γi
≡ 0 mod g(σ−1(x)),

and this proves our desired result.

2.3 Automorphism-induced Goppa codes

In Proposition 2.11, suppose further that there exists some α ∈ F∗q such that g(σ−1) = αg.
Then, it follows that σ(Γ(L, g)) = Γ(L, g), that is, σ is in the automorphism group of Γ(L, g).
In other words, for any c ∈ Γ(L, g), the permuted codeword σi(c) lies in the code as well for
i = 1, 2, . . .. This property enables one to construct generator matrices of the code exhibiting a
nice structure, thereby reducing the public key size of schemes built from these codes.

As such, a common approach to construct McEliece-based schemes with shorter keys is
to employ Goppa codes induced by subgroups of AGL2(q) (or more generally, subgroups of
projective semi-linear groups of Aut(F/Fq)). For instance, in [6], the author described alternant
codes that can be constructed from prescribed automorphism subgroups of which, Goppa codes
form a special case. These codes resulted in quasi-cyclic, quasi-dyadic and monoidic alternant
codes which were subsequently employed to construct McEliece-based schemes with compact
keys [29, 7, 3, 2].

We review the main ideas of this approach below. Here, we are presenting the ideas in a
more general manner to facilitate the discussion in the remainder of the paper.

Let G be a subgroup of AGL2(q) of size r. Suppose that there are at least s G-orbits of size
r. Let L be a union of s of these orbits and let n = rs. Let t = dr for some positive integer
d and let g(x) be a polynomial of degree t that is invariant under the G-action, i.e., for every
σ ∈ G, there exists α ∈ F∗q such that g(σ(x)) = αg(x). From Proposition 2.11, it follows that
for every σ ∈ G, σ(Γ(L, g)) = Γ(L, g). Hence, Γ(L, g) is a Goppa code with G as a subgroup of
Aut(Γ(L, g)).

One common way to construct the G-invariant polynomial g(x) is as follows. Pick an irre-
ducible polynomial f(x) of degree d. Define

g(x) = f(
∏
σ∈G

σ(x)).

Then, g(x) is invariant under any σ ∈ G. In [6, 14], the authors classified polynomials invariant
under some particular subgroups of AGL2(q).

Denote the orbits in L by Oi, i = 1, 2, . . . , s. For each orbit Oi, fix a representative βi. Fix an
order in G, that is G = {σ1, σ2, . . . , σr}. With this order, write Oi = {σ1 · βi, σ2 · βi, . . . , σr · βi}.
It is clear that for any σ ∈ G, σ induces the same permutation for each orbit. We denote this
permutation by σ̃.

Order the elements in L as L = O1||O2|| . . . ||Os = {(σ1 · β1 . . . σr · β1), . . . , (σ1 · βs . . . σr ·
βs)}. Let c = (c1, . . . , cn) ∈ Γ(L, g). We partition c as c = (cO1 || . . . ||cOs), where each cOi

corresponds to the entries indexed by elements in Oi with i ∈ {1, . . . , s}. Then for each σ ∈ G,
cσ = (cσ̃(O1)|| . . . ||cσ̃(Os)) ∈ Γ(L, g).

Next, we seek to construct a generator matrix for Γ(L, g) having a nice form. Let k denote
the dimension of Γ(L, g). Suppose further that k = n−mt. Let k0 = k/r = (s−md).
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Consider a generator matrix M of Γ(L, g). Without any loss of generality, suppose that M
can be put in systematic form (for otherwise, choose other βi’s), that is, M = (I,B), where B is
a k×(n−k) matrix. Label the rows of M by Mi. Define P (L, g) := {M1,Mr+1, . . . ,M(k0−1)r+1}.
For each c ∈ P (L, g), form the matrix

c(G) =

σ1(c)
...

σr(c)

 .

Finally, form the generator matrix

M(L, g) =

 c1(G)
...

ck0(G)

 ,

for ci = M(i−1)r+1. Note that since M is in systematic form, each ci = M(i−1)r+1 is such
that the i-th block is of the form (1, 0, . . . , 0) while the other blocks in the first k0 blocks are
(0, 0, . . . , 0).

Theorem 2.12. The matrix M(L, g) constructed above is a generator matrix of Γ(L, g).

Proof. First, it is clear that for each c ∈ P (L, g) and for each σ ∈ G, σ(c) ∈ Γ(L, g). It thus
remains to show that M(L, g) has rank k. Observe that for each c ∈ P (L, g), c(G) is an r × n
matrix. Further, c(G) can be viewed as a concatenation of s r × r square matrices where each
square matrix is in fact cO(G) for an orbit O contained in L. Consider the first k0 blocks of
ci(G). By our choice of ci, we see that the i-th block of ci(G) is a permutation matrix while all
other blocks are 0. Hence, the first k columns of M(L, g) have the form

A 0 . . . 0
0 A . . . 0
. . . . . . . . . . . .
0 0 . . . A

 ,

where A = x(G) and x = (1, 0, . . . , 0). Since the rank of A is r, the desired result follows.

Two particular subgroups of AGL2(q) of interest are the multiplicative cyclic subgroup of
order r|(q − 1) and the additive subgroup of order 2v for 1 ≤ v ≤ m. Concretely, the former
comprises automorphisms of the form σa(x) = ax for a ∈ F∗q of order r and gives rise to quasi-
cyclic Goppa codes [7, 3]. In this case, the orbits in the Goppa support L are cosets of the
subgroup of F∗q of order r and the Goppa polynomial is of the form g(x) = f(xr) for some
irreducible polynomial f(x) ∈ Fq[x].

On the other hand, the additive subgroup construction results in quasi-dyadic Goppa codes
[29, 2]. Let V be any F2-subspace of Fq with dimension v. The additive automorphism group
consists of automorphisms of the form σb(x) = x+ b for all b ∈ V . Thus, the orbits in L are all
cosets of V in Fq, each of size 2v and the Goppa polynomial is of the form f(L(x)), where f(x)
is an irreducible polynomial and L(x) =

∏
b∈V (x+ b).

Observe from Theorem 2.12 that it suffices to provide the set P (L, g) in order to construct the
generator matrix of Γ(L, g), that is, these codes are examples of the codes we seek in Problem
1. In other words, when using this code in McEliece-based schemes, the public key size can
be reduced. However, matrices with such nice structure also reduce the number of unknowns
to mount algebraic attacks, thereby weakening the security with respect to structural attacks.
One way to perform algebraic cryptanalysis is to consider the parity-check equations using the
parity-check matrix H = V D where V and D are defined in Equations 1 and 2, respectively,
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and treating the γi’s and 1/g(γi)’s as unknowns. One then tries to solve the system of equations
using algebraic solving tools such as Gröbner basis algorithms. In the case of automorphism-
induced Goppa codes, the unknowns for the Goppa support are reduced to the elements of the
subgroup as well as the orbit representatives. At the same time, since g(a) is identical for all
a in the same orbit of L, the number of unknowns of the diagonal matrix in Equation 2 is
reduced to the number of orbits. Essentially, it was shown in [14, 4] that one can construct
Goppa codes with much smaller parameters from these automorphism-induced codes, namely,
via folded codes and invariant codes defined as follows.

Definition 2.13. Let C = Γ(L, g) be a Goppa code induced by an automorphism subgroup G so
that L is a disjoint union of G-orbits. For c ∈ C, define Punc(c) as the codeword obtained from
c by puncturing on a set of representatives for the orbits in L.

• The folded code φ(C) is the subcode of C defined as:

φ(C) = {Punc(
∑
σ∈G

σ(c)) : c ∈ C}.

• The invariant code CG is the subcode of C defined by:

CG = {Punc(c) : c ∈ C|σ(c) = c for all σ ∈ G}.

Clearly, the folded code is a subcode of the invariant code. In [14, 4], it was shown that for
the quasi-cyclic case, these two subcodes are identical and equal to Γ(L′, f(x)), where L′ is a set
of representatives of orbits in L and g(x) = f(xr) with r being the order of the cyclic subgroup
of F∗q .

3 Partial quasi-cyclic and partial quasi-dyadic Goppa codes

In this section, we present a more general construction for codes satisfying the properties in
Problem 1, namely, we do not restrict to nontrivial automorphism subgroups of the code. In
other words, our codes may have trivial automorphism groups but contain subsets of codewords
and sets of permutations where these codewords and their corresponding permutations generate
the whole code. These constructions will prevent an attacker from finding folded and invariant
subcodes of the code.

First, we give a sufficient condition for a permuted codeword of a code to remain in the code.

Lemma 3.1. Given a linear code C and a permutation σ ∈ Sn, C ′ = C ∩ σ(C) is also a linear
code. Suppose that C ′ is nontrivial. For any codeword c ∈ C ′, one has σ−1(c) ∈ C. Further, if
σ−1(c) ∈ σ(C), then σi(c) ∈ C ′ for i ∈ Z.

Proof. Since c ∈ C ′ ⊆ σ(C), it follows that σ−1(c) ∈ C. In the case where σ−1(c) ∈ σ(C), then
σ−1(c) ∈ C ′. Based on the fact that c, σ−1(c) ∈ C ′ and σ is a permutation, one can continue
to apply σ−1 many times and the result is still a codeword of C ′.

Remark 3.2. Suppose that σ has order 2. Then σ(c) ∈ σ(C) ∩ σ(σ(C)) = σ(C) ∩ C.

More generally, let σ0 be the identity permutation and let σ1, . . . , σl be l distinct permuta-
tions in Sn. Suppose that for a linear code C, the code C ′ =

⋂l
i=0 σi(C) is nontrivial. Then for

c ∈ C ′ and for all i = 1, 2, . . . , l, σ−1i (c) ∈ C.
In terms of Goppa codes, one has the following result.
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Lemma 3.3. Let L be a subset of n distinct elements from Fq. Let σ1, . . . , σl be l distinct
automorphisms from AGL2(q) such that L is invariant under each σi, i = 1, 2, . . . , l. Let
g(x) ∈ Fq[x] be such that g(x), g(σ1(x)), . . . , g(σl(x)) are pairwise co-prime. Define G(x) =∏l
i=0 g(σi(x)). If Γ(L,G(x)) is nontrivial, then for every codeword c ∈ Γ(L,G(x)), the permuted

codeword σi(c) lies in Γ(L, g(x)). Moreover, if σ0 = id, σ1, . . . , σl form a subgroup of AGL2(q),
then each σi(c) lies in Γ(L,G(x)).

Proof. From Lemma 2.3 and Proposition 2.11, one has

Γ(L,G(x)) =

l⋂
i=0

Γ(L, g(σi(x))

=

l⋂
i=0

σ−1i (Γ(L, g)).

Hence, it follows from the above argument that for i ∈ {1 . . . l} and c ∈ Γ(L,G(x)) lies
in the code Γ(L, g) as well. For the latter part, if G = {σ0, σ1, . . . , σl} is a group, then
Γ(L, g(x)g(σ1(x)) . . . g(σl(x))) is a code with G as its automorphism subgroup.

There are different ways one can apply Lemma 3.3 to construct Goppa codes with more
permuted codewords. Here, we provide two different constructions.

In the following, we assume that n = lmt for some positive integer l.

Proposition 3.4 (Partial quasi-dyadic construction). Let l = 2v, i.e., n = 2vmt for some
positive integer v ≤ m/2. Let V be a v-dimensional subspace of Fq. Write V as V =
{b0, b1, b2, . . . , b2v−1} with b0 = 0. Let L contain mt different cosets of V under some or-
dering. Let g(x) be an irreducible polynomial of degree t such that the Goppa code Γ(L, g) has
dimension k = n −mt = (2v − 1)mt. For i = 0, 1, . . . , 2v − 1, define σi as the automorphism

where σi(x) = x+ bi. Define h(x) =
∏2v−1
i=0 g(σi(x)). Suppose that the code Γ(L, h) is the trivial

code. Then, one can construct a subset P (L, g) of Γ(L, g) satisfying the conditions of Problem
1.

Proof. Fix a σi with i 6= 0 and let hi(x) = h(x)
g(σi(x))

. Let C = Γ(L, hi(x)). Clearly, C is a

subcode of Γ(L, g(x)). For each codeword c ∈ C, one has σj(c) ∈ Γ(L, g(x)) for j 6= i. In
particular, σj(C) is a subcode of Γ(L, g(x)) for all j 6= i (since the order of σj is 2). We claim
that for j1, j2 such that i, j1, j2 are all distinct, one has σj1(C) ∩ σj2(C) is the trivial code.
Indeed, σj(Γ(L, hi)) = Γ(L,

∏
e 6=i g(σeσj(x))). Thus, by the assumption that the g(σi(x))’s

are coprime and Lemma 2.3, σj1(Γ(L, hi(x))) ∩ σj2(Γ(L, hi(x))) = Γ(L, h(x)) which is trivial
by our assumption. In addition, since dim(σj(C)) ≥ n − (2v − 1)mt = mt, it follows that
dim(σj(C)) = mt for all j 6= i. Let P (L, g) be a basis of C. Then, P (L, g) satisfies the
conditions of Problem 1 by letting the set of permutations to be {σj : j 6= i}.

Proposition 3.5 (Partial quasi-cyclic construction). Let r be a positive integer with r|(q − 1).
Let n = rmt. Let H be a subgroup of F∗q of order r. Let L be a disjoint union of mt cosets of H
in some order. Fix an irreducible polynomial g(x) of degree t such that the Goppa code Γ(L, g)
has dimension (r − 1)mt. For each a ∈ H, let σa be the automorphism such that σa(x) = ax.
Define h(x) =

∏
a∈H g(ax). Suppose that the code Γ(L, h) is trivial. Then, one can find a set

P (L, g) of mt linearly independent vectors that satisfies the conditions of Problem 1.

Proof. Fix a generator a of H. Define ga(x) =
∏r−2
i=0 g(aix). Let C be the code C = Γ(L, ga). By

Proposition 3.3, for all i = 1, . . . , r− 2, we have σai(c) ∈ Γ(L, g) for all c ∈ C, that is, σai(C) ⊂
Γ(L, g) for i = 2, 3, . . . , r. We claim that Γ(L, g) is a disjoint union of C, σa2(C), . . . , σar−1(C).
First, we show that for i 6= j, σai(C)∩σaj (C) is trivial. Now, we have σai(C) = Γ(L, ha(σa−i(x))) =

9



Γ(L,
∏
w 6=r−1−i g(σaw(x))). Similarly, σaj (C) = Γ(L,

∏
w 6=r−1−j g(σaw(x))). From Lemma 2.3,

σai(C) ∩ σaj (C) = Γ(L, h) which is trivial. Since dim(C) ≥ n − (r − 1)mt = mt, the claim
follows. Consequently, one may choose P (L, g) as a basis of C.

Remark 3.6. • In both Propositions 3.4 and 3.5, we have dim(Γ(L, h)) ≥ n−deg(h)m = 0.
In practice, this code is trivial for most cases.

• In fact, one can generalize the results to non-irreducible polynomials g. In this case,
one needs to check that the polynomials g(σ(x))’s are all pairwise coprime for all the
automorphisms σ involved.

Remark 3.7. Just as in Theorem 2.12, one may transform P (L, g) such that P (L, g) takes the
following form. Let

P (L, g) = (S1||S2|| . . . Smt−1||Smt),

where each Si is an mt× r matrix and for i = 1, 2, . . . ,mt− 1, Si is 0 everywhere except at the
(i, 1)-position. Thus, one may use Smt as the public key.

From Propositions 3.4 and 3.5, we see that one can generalize the construction to any sub-
group of AGL2(q). More precisely, we give the general construction in the next theorem and
the proof is similar to the proofs of Propositions 3.4 and 3.5.

Theorem 3.8. Let t be a positive integer. Let G be a subgroup of AGL2(q) and let L be a
disjoint union of mt G-orbits under the action of G on Fq. Let n = |L| = |G|mt. Let g(x) be an
irreducible polynomial of degree t such that the code Γ(L, g(x)) has dimension n −mt. Define
h(x) =

∏
σ∈G g(σ(x)). Assume that Γ(L, h) is trivial. Fix a σ ∈ G where σ is not the identity

automorphism and let G′ = G\{σ}. Construct C = Γ(L,
∏
σ′∈G′ g(σ′(x))). Then, we may take a

basis of C as the set P (L, g) in Problem 1 with the set of permutations to be the permutations
in G′.

4 Security discussion

In general, there are two classes of attacks on McEliece scheme, namely, information set de-
coding (ISD) attacks and structural attacks. The former attacks were proposed in [32] as a
generic decoding attack. Essentially, such attacks seek to perform the decoding directly from
the public matrix given. In its most basic form, an adversary tries to guess k positions such that
the submatrix restricted to these positions is invertible and the error vector, restricted to these
positions, has very small Hamming weight. Such properties will enable the adversary to brute
force the error entries at these positions and subsequently, discover the message. Other improve-
ments and variants were later proposed to improve the attack [21, 36, 12, 10, 18, 9, 25, 5, 26].
So far, the best attack has complexity 20.0967n [26], where n is the code length.

On the other hand, the structural attacks attempt to take advantage of the structure of
the specific code used. For random Goppa codes, one can perform a brute force search on the
Goppa polynomial and/or the elements in the Goppa support. In [33], an algorithm known
as the support splitting algorithm was proposed which can correct permutation of the support
elements once the Goppa polynomial and the set of support elements are known.

In addition, one can launch an algebraic attack on a Goppa code C with Goppa polynomial
g as follows. Consider the equations:

n∑
i=1

cix
j
iy
w
i = 0 (6)

for c = (c1, . . . , cn) ∈ C, 0 ≤ j ≤ t−1 when w = 1 and 0 ≤ j ≤ 2t−1 when w = 2, x1, x2, . . . , xn
are the unknowns for the Goppa support and yi = 1/g(xi). Recall that these equations come
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from the parity-check equations (refer to Equations 1 and 2). Hence, solving for the unknowns
will give the Goppa support and together with the knowledge of the yi’s will enable one to
recover g(x). Thus the challenge remains to solve the above system.

Observe that when j = 0 yields k linear equations in the unknowns yi’s. Thus, one way to
solve the system is to guess the remaining mt yi’s which results in a system in the xi’s. By
considering the kb2 log2 tc equations which are powers of 2, one can then solve for the unknowns

xi’s. The complexity of the approach is asymptotically O(2m
2t). Other approaches exist to

solve the system [16, 15] but the complexities of these approaches are more difficult to estimate.
As mentioned in Subsection 2.3, the automorphism-induced Goppa codes are more vulnerable

to algebraic attacks as compared to random Goppa codes. This is due to the existence of
invariant subcodes which are themselves Goppa codes with smaller supports and lower degree
Goppa polynomials. In particular, for an automorphism-induce Goppa code, particularly quasi-
cyclic code, such that it has length n, degree t Goppa polynomial and automorphism group
of order l, the invariant code has length n/l with degree t/l Goppa polynomial. A thorough
security analysis of quasi-cyclic Goppa codes can be found in [3].

For our construction, only subsets of the automorphism subgroup of AGL2(q) are used. In
particular, we typically remove an element σ from a subgroup G of AGL2(q) (see Theorem 3.8).

Thus, a similar folding operation will be of the form∑
σ′∈G,σ′ 6=σ

σ′(c)

for any c in the code. Since the coordinates of c on each orbit are unlikely to be identical, one
cannot use the same trick to puncture the code or to construct an invariant code.

However, one may attempt to mount an algebraic attack on our constructions.
In Propositions 3.4 and 3.5, suppose that V and H are known, respectively (this assumption

is valid as one can exhaustively search for them). Referring to the system of equations in 6 and
the structure of the Goppa support as a disjoint union of cosets, the unknowns for the Goppa
support are reduced to finding mt representatives in the orbits. However, since our choice of
g(x) is such that it is not invariant under any automorphism used in the construction, there
is no clear relationship between the yi’s that we can exploit. Consequently, one has to solve a
system of equations in mt unknowns in the xi’s and n unknowns in the yi’s. Once again, by
exploiting the k linear relationships among the yi’s, one way to solve the system is to perform
a brute force search on the remaining free mt yi’s. Alternatively, one can search through all
possible mt xi’s and solve the resulting linear equations in the yi’s. In either case, the time
complexity is O(2m

2t). Hence, unlike the quasi-cyclic or quasi-dyadic constructions, we see that
our constructions do not weaken the security of the codes with respect to algebraic attacks.

5 Practical implementation considerations

5.1 Practical implementation scheme

Observe that our constructions place some restrictions on the choice of the parameters. For
instance, we require n to be an integral multiple of mt. Moreover, the reduction factor is at
most (n−mt)/mt = k/(n− k). Thus, to achieve a large reduction size, we need t to be small.
However, t needs to be sufficiently large to prevent an exhaustive search on the error vector,
or more generally, to guard against the state-of-the-art information set-decoding attacks. In
addition, for fixed m and t, n cannot be too large to prevent the distinguishing attack [13]. On
the other hand, even though the automorphism-induced codes are more vulnerable to algebraic
attacks, the relatively large gap between the complexity of these attacks and the information
set-decoding attacks give some room to choose the parameters appropriately for any security
level. As such, we propose combining the two constructions to achieve a greater key reduction

11



for a desired security level. The following algorithm gives a possible construction meeting a given
security level. Here, we only consider the quasi-cyclic construction as the dyadic construction
is similar.

1. Fix a security parameter λ.

2. Fix m such that q − 1 = 2m − 1 has small factors.

3. For any two distinct integers l1 and l2 with l1l2|(q−1) and gcd(l1, l2) = 1, do the following:

• Pick a t0 satisfying the following two conditions:

–
(
q
t0

)
≥ 2λ;

– A [l1l2mt0, (l1l2−l1)mt0, 2l1t0] Goppa code achieves the security level with respect
to the information set-decoding attacks.

4. Let t = l1t0 and n = l1l2mt0.

5. Let H be a subgroup of F∗q of order l1l2 and pick a generator a of H.

6. Let L be a disjoint union of mt0 different cosets of H and randomly choose an ordering of
the cosets.

7. Randomly pick a polynomial g0(x) of degree t0. Let g(x) = g0(xl1).

8. Let h(x) =
∏l2−2
i=0 g(ail1x) and f(x) =

∏l2−1
i=0 g(ail1x)

9. Construct the code Γ(L, g),Γ(L, h) and Γ(L, f).

10. If dim(Γ(L, f)) 6= 0 or dim(Γ(L, h)) 6= mt or dim(Γ(L, g)) 6= (l2 − 1)mt, choose another
g0(x).

11. Otherwise, return Γ(L, g).

By Proposition 3.5, for all c ∈ Γ(L, h) and for i = 0, 1, . . . , l2− 2, we have σal1i(c) ∈ Γ(L, g).
Moreover, Γ(L, h) is a quasi-cyclic code induced by a subgroup of H of order l1. Consequently,
one can find a set P (L, g) of cardinalitymt0 such that for all i = 0, 1, . . . , l2−2, j = 0, 1, . . . , l1−1,
σal1i+l2j (c) ∈ Γ(L, g) whenever c ∈ P (L, g). Similar to Theorem 2.12 and Remark 3.7, one
can construct an mt0 × mt matrix that can be extended to a generator matrix of Γ(L, g).
Consequently, the public key size of such a code is l1m

2t20.
In our construction, by our choice of t0, we ensure that it is secure against a brute force

search on all possible g0(x) and in fact, it is resistant to the existing known structural attacks
(see Section 4). In addition, we have ensured that the code Γ(L, g) is secure against message
recovery attacks.

Remark 5.1. By employing only the quasi-cyclic construction, one gets a public key size of (l2−
1)l1m

2t20. Thus, we see that our technique can be further applied to quasi-cyclic constructions
to yield more compact public keys.

5.2 Concrete parameters

We apply our constructions to the parameters in BigQuake [3] to reduce the public key size
and to keep the desired security level. We give 3 groups of parameters corresponding to 3
different security levels and each group comprises two code parameters in Table 1. The first is
the code parameters from BigQuake [3] and the second is the reduced code parameters we get
after applying our scheme to the first code. Now we explain the notations of each column of
Table 1 as follows.

• λ: security level of the parameters.

• m: extension degree of the finite field.
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• [n, k, t] denotes the resulting Goppa code parameters, n for the code length, k for the code
dimension and t for the error correcting ability.

• l1: the size of the quasi-cyclic group which acts on x.

• l2: the size of the partial quasi-cyclic group which acts on the Goppa polynomial g(x).
This column is not applicable to the BigQuake [3] code parameters.

• ωmsg: the logarithm of the work load of ISD, which is computed using the CaWoF [37]
library.

• Size(bytes): the resulting public key size.

From Table 1, we can see that our scheme reduces the public key size of BigQuake by at
least half. We remark that the parameters given in Table 1 may be vulnerable to other attacks.
Here we show the parameters solely to illustrate the power our construction which, to our best
knowledge, are secure against current known attacks. In fact, our construction can be applied
to most of the existing Goppa codes based constructions to reduce the public key size without
compromising the security level.

Table 1: More compact public key parameters by applying our construction to BigQuake
λ m [n, k, t] l1 l2 ωmsg Size (bytes)

AES128
12 [3510, 2418, 91] 13 NA 132 25389
16 [12240, 11520, 45] 5 17 143 12960

AES192
18 [7410, 4674, 152] 19 NA 195 84132
18 [8208, 5472, 152] 19 3 213 49248

AES256
18 [10070, 6650, 190] 19 NA 263 149625
18 [10260, 6840, 190] 19 3 267 76950

Remark 5.2. The public key size of the foregoing scheme does not involve the parameter l2.
Therefore one could select a bigger l2 to keep the public key size and ensure that the increased
code parameters n and k will still make the code resistant to, even by a large margin improved
and powerful ISD attacks in the future. Alternatively, one is able to exploit this property of our
scheme to minimize the public key size by selecting very small l1 and very big l2, and increasing
t0 to some reasonable value. Note that this only applies to big enough m, for otherwise it will
suffer from some algebraic attacks. In conclusion, one can vary the parameters l1, l2, t0,m, n
appropriately to get a compact public key achieving the desired security level with respect to all
known attacks.
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