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Abstract. A white-box cryptographic implementation is to defend against
white-box attacks that allow access and modification of memory or inter-
nal resources in the computing device. In particular, linear and non-linear
transformations applied to this table-based cryptographic implementa-
tion are used to prevent key-dependent intermediate values from being
seen by white-box attackers. However, it has been shown that there is a
correlation before and after the linear and non-linear transformations so
that even a gray-box attacker can reveal secret keys hidden in a white-box
cryptographic implementation. In this paper, we focus on the problem
of linear transformations including the characteristics of block invertible
binary matrices and the distribution of intermediate values. Based on
our observation, we find out that a random byte insertion in the inter-
mediate values before linear transformations can eliminate a problematic
correlation to the key, and propose our white-box AES implementation
using this principle. Our proposed implementations reduce the memory
requirement by at most 33 percent compared to the masked implemen-
tations and also slightly reduce the number of table lookups. In addition,
our method is a non-masking technique and does not require a static or
dynamic random source, unlike the existing gray-box (power analysis)
countermeasures.

Keywords: White-box cryptography, power analysis, differential computation
analysis, linear transformations, countermeasure.

1 Introduction

From a secret key point of view, a block cipher can be seen as a secret bijective
function between a plaintext set and a ciphertext set. One possible implementa-
tion of this function is a lookup table of the ciphertext for each of its correspond-
ing plaintext. Since implementing a cipher as one lookup table is impractical be-
cause of its huge size, it is usually implemented as a series of lookup tables. This
table-based implementation is also used in the white-box cryptographic imple-
mentation so that a secret key is not revealed by a white-box attacker observing
internal memory and computing resources. The important thing to remember
over here is that the white-box cryptography generates key-instantiated lookup



2

tables and protects each table with linear and non-linear transformations in or-
der to prevent a key leakage from lookup values. Due to these transformations,
a white-box attacker has been supposed to be unable to recognize a secret key
via static or dynamic analysis.

So far, this white-box cryptography has been exploited by highly skilled
attacks except for code lifting attacks [20] that steal the entire lookup table.
For example, after the first two white-box DES (WB-DES) [6] and AES (WB-
AES) [5] implementations were published, a number of practical cryptanaly-
sis techniques [7][21] [1][12][15] have been introduced to extract the secret key
from the white-box lookup tables. Many variants of WB-DES and WB-AES
implementations [4][23] [8][11][13] were proposed and many were known to be
practically broken [16][17]. Recently, Differential Fault Analysis (DFA) [18] was
introduced, where an attacker is able to inject a fault at a desired location in
memory. What they have in common is that those white-box attacks rely on
an in-depth understanding of a target implementation so that an attacker is
able to gain read/write access to precise internal states during the execution.
Thus commercial white-box cryptography focuses on making a barrier to the
full control of an attacker and is often combined with additional software-based
protection methods including control flow obfuscation, tamper resistance, device
binding and anti-debug protections. An explanation of these protections, primar-
ily taking into account an untrusted environment, could be that the white-box
implementation was considered to be able to defend against gray-box attacks,
also known as side-channel attacks.

In contrast to white-box attacks, gray-box attacks are dependent on non-
invasive information such as timing and power consumption obtained while a
target device performs cryptographic operations. Simple Power Analysis (SPA) is
a timing-based attack that visually interprets power traces over time. For exam-
ple, SPA can analyze exponentiation algorithms by distinguishing the square and
multiply operations. On the other hand, Differential Power Analysis (DPA) [9] is
based on power consumption and this is one of the most well-known techniques
to reveal the secret key imbedded in IC cards. Specifically, DPA is generally
based on the fact that power consumption of a device is proportional or in-
versely proportional to the Hamming weight (HW) of data it processes. Thus a
power analysis attacker collects a number of power traces with random plaintexts
and finds a correct key that computes hypothetical values most highly correlated
to the collected traces at a particular point. Currently, one critical issue for the
white-box implementation is that it is successfully attacked by power analysis.
This means linear and non-linear transformations applied to lookup tables have
no effect on hiding key-sensitive intermediate values. This fact violates the rea-
son for the white-box cryptography which is initially said to be secure even in
the white-box attack model, where an attacker has full control over everything.

In light of this vulnerability, finding software countermeasures to counteract
power analysis has become essential for the further growth of white-box cryp-
tography. Here are some examples. First, control flow obfuscation shuffles the
order of table lookup only if it does not make any difference in the final re-
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sult. The use of run-time random source for the large enough disarrangement
and the re-ordering overhead are costly. Second, table location randomization is
used to counteract address-based DPA, named Differential Computation Analy-
sis (DCA) [2]. Among many variants of DPA including Correlation Power Anal-
ysis (CPA) [3], DCA is a more skilled attack that uses software execution traces
containing both sensitive data and memory address accesses; for this reason,
DCA shows better analysis performance, but is often considered a white-box
attack. In this sense, one may try to disperse the tables at random locations.
Of course, it is useless if value-based DCA is mounted. Third, adding an arbi-
trary number of dummy lookups can be one of the disarrangement methods to
randomize the time instance at which the target intermediate value is computed
for each execution. However, all these run-time randomization methods are ex-
pensive and can always be compromised by a white-box attacker. Last but not
least, there is a masked white-box implementation [10] for protecting against
DCA and other DPA-like attacks. The key idea behind is to apply masking to
sensitive intermediate values before encoding them during the table generation.
However, this method did not address the fundamental reason for the imbalance
pertaining to the encoding but applied the existing masking to eliminate the
vulnerability at a high cost.

1.1 Our contribution

– We find out that the key leakage after linear transformations is largely due
to the balanced distribution of intermediate values.

– We also find out that a random byte insertion in the intermediate value
before linear transformations prevents the key leakage. Furthermore, our
experimental results show that inserting position does not make difference
and inserting more than one byte provides no additional effect.

– We provide a non-masking design of WB-AES based the above principle
without the need for static or dynamic random sources. The memory re-
quirement and the number of lookups are decreased compared to masked
WB-AES implementations.

1.2 Organization of the Paper

The rest of this paper is organized as follows. Section 2 reviews some basic
concepts including power analysis, the principle of a white-box cryptographic
implementation, and the key leakage issue. In Section 3, we analyze the in-
vertible linear transforms used in the white-box cryptography to see why the
key-dependent intermediate values are still correlated to the key even after lin-
ear transformations. Based on this analysis, we propose our solution resistant to
DCA and DPA-like attacks in Section 4. Specifically, a WB-AES implementation
is newly implemented for concrete demonstration. We then evaluate its security
and performance in Section 5. Finally, Section 6 concludes this paper.
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2 Background

In this section, we introduce the basic concept of power analysis and a WB-AES
implementation first appeared in [5], and then investigate key leakage points
with the Walsh transforms.

2.1 Power Analysis

Gray-box attacks, which recently attacked white-box cryptography, are precisely
power analysis such as DPA and CPA. DCA attacks can not be classified into
gray-box attacks in the correct sense because of the direct access to memory
in the process of collecting software execution traces. Of course, DPA and CPA
attack efficiency is greatly increased when combined with DCA since there is no
measurement noise in the software execution traces, unlike the power consump-
tion traces.

After collecting the traces with random plaintexts, DPA and CPA perform
statistical analysis in different ways. DPA uses the selection function D to split
the collected traces into two sets based on the attacker’s hypothetical values.
If the attacker’s hypothetical key is correct (the hypothetical value is correct),
then the separation of the traces by D is also accurate and there will be a peak
in the differential trace.

In contrast, CPA uses a leakage model including the Hamming weight (HW)
and the Hamming distance instead of the selection function D. When attacking
a white-box implementation, the bit (mono-bit) model is appropriate because
HW-based CPA attacks are unlikely to be successful due to the disturbed HW
by linear and non-linear transformations. Given N power traces V1..N [1..κ] con-
taining κ samples each, CPA will estimate the power consumption at each point
of each trace using attacker’s hypothetical intermediate value. For K different
key candidates, let En,k∗ (1≤n≤N , 0≤k∗< K) denote the power estimate in
the nth trace with the hypothetical key k∗. To measure a correlation between
hypothetical power consumption and measured power traces, the estimator r is
defined as follows [14]:

rk∗,j =

∑N
n=1(En,k∗ − E∗k ) · (Vn[j]− V [j])√∑N

n=1(En,k∗ − E∗k )2 ·
∑N
n=1(Vn[j]− V [j])2

,

where E∗k and V [j] are sample means of E∗k and V [j], respectively. If there exists
a correlation, a noticeable peak will be found in the correlation plot for the
correct key. An explanation of successful CPA on the white-box cryptographic
implementation could be that attacker’s correct hypothetical value will correlate
to the target table lookup value.

2.2 WB-AES Implementation

In this section, we briefly explain the initial WB-AES implementation [5]. For
the WB-AES implementation with a 128-bit key, the AES algorithm is re-written
as follows:



5

state ← plaintext
for r = 1 to 9 do

ShiftRows(state)
AddRoundKey(state, kr−1)
SubBytes(state)
MixColumns(state)

ShiftRows(state)
AddRoundKey (state, k9)
SubBytes(state)
AddRoundKey(state, k10)
ciphertext ← state,

where kr means the 4×4 round key matrix for round r, and kri,j indicates that
the ShiftRows is applied to kri,j . A WB-AES implementation is currently based
on the table-based implementation which combines the above operations except
for ShiftRows into a set of lookup tables and applies linear and non-linear trans-
formations. Linear transformations use two types of invertible matrices. One is
multiplied to partial MixColumns outputs and the other is multiplied to each
round input byte. Non-linear transformations consist of two 4-bit concatenated
random bijections to reduce the total table size. More specifically, if 8-bit ran-
dom bijections are used in non-linear transformations, the XOR lookup table size
will increase significantly because an XOR table has to take two 8-bit inputs in-
stead of two 4-bit ones. An encoding throughout the paper means the linear and
non-linear transformations. On the condition that there is no external encoding
(done by TypeI ) for better comparability with non-WB-AES implementations,
we need four types of the lookup tables: TypeII, TypeIII, TypeIV and TypeV.
From now on, we explain how to generate them.

TypeII. The lookup values of Type IIri,j provide the encoded result of Ad-
dRoundKey, SubBytes and decomposed multiplications of MixColumns, where
0 ≤ r ≤ 9, and 0 ≤ i, j ≤ 3. The first step of generating TypeII is to combine
AddRoundKey and SubBytes into T-boxes, 160 8×8 lookup tables, as follows:

T ri,j(p) = S(p⊕ kr−1i,j ), 0 ≤ i, j ≤ 3, 1 ≤ r ≤ 9,

T 10
i,j (p) = S(p⊕ k9

i,j)⊕ k10i,j , 0 ≤ i, j ≤ 3.

Note that TypeII uses T 1 - T 9 and TypeV uses T 10 later. What is important
over here is that we must decode the input of TypeII from round 2 based on
the index change due to ShiftRows since it is encoded output of the previous
round. On the other hand, the input to TypeII in the first round is not required
to be decoded because we do not use the external encoding. Let Lri,j denote 144
(=9×4×4) 8 × 8 binary invertible matrices used to linearly transform each byte
of the round out, where r ∈ [1, 9], 0 ≤ i, j ≤ 3. In round r ≥ 2, the inverse linear
transformation (after inverse non-linear transformation) on the encoded TypeII
input p′ at the index {i, j} is performed as follows:
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1. Adjust the proper index after ShiftRows to find the corresponding inverse
matrix of the linear transformation; {i, j′} ← {i, (j + i) mod 4 }

2. p ← (Lr−1i,j′ )−1 · p′ .

Then we know that T ri,j(p) gives us an input x to the MixColumns step except

for T 10
i,j (p) because there is no MixColumns in the final round. Let’s decompose

the matrix multiplication with a column vector in MixColumns as follows:
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3

 =

x0

 02
01
01
03

⊕ x1
 03

02
01
01

⊕ x2
 01

03
02
01

⊕ x3
 01

01
03
02

 .

For four terms y0, y1, y2, y3 at the right-hand side, we define Tyi tables:

Ty0(x) = x · [02 01 01 03]T

Ty1(x) = x · [03 02 01 01]T

Ty2(x) = x · [01 03 02 01]T

Ty3(x) = x · [01 01 03 02]T .

The next step is to perform linear transformations on Tyi∈{0,1,2,3}(x) with a
given invertible 32×32 matrix M , conduct non-linear transformations and store
them in TypeII as illustrated in Fig 1. During the execution of WB-AES, its
lookup values will contain 4-byte outputs and thus the intermediate values after
visiting TypeII will be store in a 4×4×4 matrix. Of course, this dimensional
structure can be different depending on the programmer’s choice.

N(in)

N(in) …

4

L-1 !",$% !&" M

N(out)

N(out)
4

Fig. 1: A schematic diagram of TypeII generation. N: non-linear transformations.

TypeIII. During the TypeIII generation (Fig. 2), we perform the inverse linear
transformation with M−1 and apply the linear transformation with L. These
two linear transformations result in one byte size of the Type II input in the
next round. After combining intermediate values by looking up TypeIV III, the
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linear transformation by M is canceled out and the linear transformation by L
protects the round output in the state matrix. In turn, this will be canceled out
in TypeII input decoding. After visiting TypeIII, we have the intermediate values
in a 4×4×4 matrix.

N(in)

N(in) …

4

32	×	8

N(out)

N(out)
4

Fig. 2: A schematic diagram of TypeIII generation.

TypeIV. This performs XOR operations in order to combine intermediate val-
ues. Thus TypeIV depicted in Fig. 3 is visited after TypeII or TypeIII lookups;
we call them TypeIV II and TypeIV III which are used to XOR the lookup
values of TypeII and TypeIII, respectively. TypeIV II and TypeIV III combine
4×4×4 intermediate values into a 4×4 state matrix.
All two 4-bit inputs to be XORed must be linearly transformed at the same
offset of the same invertible matrix so that we do not need to linearly transform
the input when generating TypeIV because it satisfies the distributive property
of multiplication over addition. Fig. 4 and Fig. 5 simplify the lookup flows of
TypeIV following TypeII and TypeIII.

N(in)
4

N(in)
XOR

4
N(out)

Fig. 3: A schematic diagram of TypeIV generation.

TypeV. This includes T 10 and is looked up in the final round. Because there
is no MixColumns TypeIV is not followed. Also, the lookup values of TypeV
depicted in Fig. 6 are not encoded because they are the ciphertext, and as
stated previously we assume that there is no external encoding. Then, an AES
encryption can be performed by only ShiftRows and table lookups of these four
types of lookup tables.
This WB-AES implementation has three key leakage points that could be suc-
cessfully analyzed by gray-box attacks. First, an attacker can perform a DPA
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeII TypeII

TypeIV_II

8

32

TypeII TypeII

32

Fig. 4: TypeII and TypeIV II lookups.

TypeIII TypeIII

TypeIV_III

8

32

TypeIII TypeIII

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeIV_II

32

8

Fig. 5: TypeIII and TypeIV III lookups.

N(in)

N(in)
4

L-1 !",$%&
8

Fig. 6: A schematic diagram of TypeV generation.
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or CPA attack on the SubBytes output, that is the TypeII output, in the first
round. Then it requires to test 28 candidates for each subkey of the first round
key provided that there is no protection for key leakage. Second, as explained
in [10], the final round input (or the ninth round output) can be attacked with
216 candidates for each subkey of the final round key due to the absence of
MixColumns. Lastly, it is not impossible to attack the first round output by
searching 232 candidates for each 4-byte column vector of the first round key
matrix. Then attacker’s target values will be TypeIV II or TypeIV III outputs
in the first round. In the next section, we explain the use of the Walsh trans-
forms to detect key leakages and demonstrate the key leakages in this WB-AES
implementation.

2.3 Detecting Key Leakage by the Walsh Transforms

In addition to common power analysis techniques such as DPA and CPA (or
DCA) we can quantify or visualize a correlation using the Walsh transforms if
a target lookup table is given. To understand how the Walsh transform can be
used to quantify a correlation between the input and output of a target lookup
table, we use the following definitions from [19].

Definition 1. Let x = 〈x1, . . ., xn〉, ω = 〈ω1, . . ., ωn〉 be elements of {0, 1}n
and x ·ω = x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function of n variables. Then
the Walsh transform of the function f(x) is a real valued function over {0, 1}n
that can be defined as Wf (ω) = Σx∈{0,1}n(−1)f(x)⊕x·ω.

Definition 2. Iff the Walsh transform Wf of a Boolean function f(x1, . . . , xn)
satisfies Wf (ω) = 0, for 0 ≤ HW (ω) ≤ m, it is called a balanced mth order
correlation immune function or an m-resilient function.

Then we know that Wf (ω) quantifies the imbalances in the encoding, and the
large absolute value of Wf (ω) means the strong correlation between f(x) and
x · ω. Using this property of the Walsh transforms, we calculate the correlation
between the table lookup values and hypothetical values.
Let’s demonstrate the key leakage from the TypeII lookup value in the first
round. Given a subkey k00,2 = 0x88, and for every input value p ∈ GF(28), we
know that

x = S(p⊕ k00,j)
y0(x) =

[
2 · x x x 3 · x

]T
where S represents the AES SubBytes and the multiplication by 2 is implemented
as a 1-bit left shift followed by a conditional (⊕ 0x1B) if the MSB of the operand
was 1. Then f(x) here denotes TypeII lookup values which are computed by
linear and non-linear transformations on y(x), and we have 32 Boolean functions
fi∈{1,...,32}(x): {0, 1}8 → {0, 1}. To find a correct key, we calculate the Walsh
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transforms Wfi and sum all the imbalances for each key candidate and ω such
that HW(ω) = 1 as follows:

∆f
k∈{0,1}8 =

∑
ω=1,2,4,...,128

∑
i=1,...,32

|Wfi(ω)|.

The reason why we only select ω of HW(ω) = 1 is that the HW-based key
leakage model is not effective to detect the correlation between the in/output of
the encoding.
The Walsh transforms and their sum of all imbalances are given in Fig. 7. As we
can see in Fig. 7a, the Walsh transforms with ω = 4 of the correct key (0x88)
produce 0 except two points; the Wf14 and Wf16 of the correct key are -128, and
their absolute value (128) is the most highest value. In contrast the maximum
and the average values of |Wfi(ω)| of wrong key candidates are 56 and about
13.13 (the standard deviation is about 9.35), respectively. This gives us that
f14(·) and f16(·) cause key leakages and thus power analysis using the 3rd bit
(when the LSB is the 1st bit) of attacker’s hypothetical SubBytes outputs is able

to recover this subkey. ∆f
k=0x88 is 256 (= |−128| + |−128| ) which is obviously

distinguishable from that of other key candidates as shown in Fig. 7b while
∆f
k 6=0x88 are about 2900-3700. This simply shows us how to use the sum of all

imbalances for recovering the correct key.
In the similar way, we can detect a key leakage at the final round input. In
this scenario, we give the first subkey of the ninth round key (0x54) and let the
attacker guess the first subkey (0x13) of the final round. Given a subbyte of
the ciphertext, x becomes the attacker’s hypothetical input value and 8 Boolean
functions fi∈{1,...,8}(x): {0, 1}8 → {0, 1} indicate the encoded input to TypeV.
On the condition that there is no external encoding on the ciphertext and the
attacker knows the first subkey of the ninth and final round keys, ∆f

k=0x13 in the

final round is 4096; this is much smaller than ∆f
k 6=0x13 in the range 25900 - 26500

as shown in Fig. 8. In the following section, we analyze the linear transformations
used in the white-box lookup table generation, and provide a clue for a secure
implementation.

3 Analysis of Linear Transformations

3.1 Key Leakage Statistics after Linear Transformations

In this section, we begin with an experimental result of a key leakage at the
linear transformation demonstrated by the sum of imbalance depicted in Fig. 9,
where the Walsh transforms use

f(x) = M · yi∈{0,1,2,3}(x),

for x of each yi computed from four subkeys, the 9th to 12th subkeys (0x88,
0x99, 0xAA, 0xBB) of the first round in this experiment, and a 32×32 binary
invertible matrix M . Unlike in the case of Fig. 7b of a key leakage from the linear
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(a) Walsh transforms for fi∈{1,··· ,32}(·) with ω = 4 for all key
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(b) Sum of all imbalances for all key candidates.

Fig. 7: Key leakage detection using the Walsh transforms.

and non-linear transformations, this shows a key leakage from linear transforma-
tions without non-linear transformations. We can see that linear transformations
with M can hide three subkeys 0x88, 0xAA, and 0xBB, but expose one subkey
0x99 from y1(x). This gives us two facts. First, as we will show later in this sec-
tion, linear transformations produce well-balanced output with an overwhelming
probability, but this is not always guarantee a reliable protection on secret keys.
Second, the correct key can be recovered by the Walsh transforms even if its
sum of imbalances is 0 indicating no correlation when it is distinguishable.

TABLE 1 and Fig. 10 show our experimental results of linear transformations
on yi∈{0,1,2,3}(x) using 1000 randomly generated invertible matrices. For HW(ω)
= 1, Wfi(ω) = 0 with approximately 99.7% and 0.3 % of Wfi(ω) = 256; the
average of |Wfi(ω)| is approximately 0.7. We will show later there is no other
Wfi(ω) values. Here, both cases (0 and 256) will lead to two different types of
key leakages due to the distinguishable Walsh transform value and the noticeably
high correlation coefficient, as pointed out previously. Recall that there are 8
values of ω ∈ GF(28) such that HW(ω) = 1 and y0 - y3 output 32-bit values
for x, and thus 1024 Wfi will be tested to see if there exists a key leakage from
the linear transformation using a matrix M . Consequently, there probably exist
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Fig. 8: Sum of the imbalance for all key candidates in the final round input.

Table 1: Experimental results of linear transformations with 1000 randomly gen-
erated block invertible matrices. kc: correct key.

Vectors to be transformed

Number of y0 y1 y2 y3

Wfi(ω) = 0 255,206 255,205 255,309 255,203

Wfi(ω) = 256 794 795 691 797

∆f
kc = 0 475 489 520 464

∆f
kc = 256 333 307 316 343

∆f
kc = 512 132 144 122 146

∆f
kc > 512 60 60 42 47

about 3 peaks of the correct key distinguishable from wrong key candidates.
Each of y0, y1, y2, and y3 shows around 1/2 probability of ∆f

kc = 0, and only
about 5% of matrices do not leak any subkeys after linear transformations, where
kc means the correct key. In most cases, 1-to-3 out of four subkeys are shown to
be exposed.
From now on, we are going to analyze this problematic characteristic of the
linear transformations that produce extreme Wfi values of 0 or 256. The first
thing we want to investigate is whether the invertible matrix is responsible for
this matter.

3.2 Analysis of Block Invertible Square Matrix

In [5], the authors choose M as a non-singular matrix with submatrices of full
rank with a reference to [22] for maximizing information diffusion. To begin with,
we briefly review the definition of a block invertible square matrix.

Definition 3. If all the blocks Bi,j in a block matrix n
mM [pB] are invertible,

matrix M is called an (m, n, p) block invertible matrix. Furthermore, if m = n,
and M is invertible then M is called an (m, p) block invertible square matrix,



13

0

1000

2000

3000

4000

0 50 100 150 200 250

∆

k

(a) On M · y0(x)

0

1000

2000

3000

4000

0 50 100 150 200 250

∆

k

(b) On M · y1(x)

0

1000

2000

3000

4000

0 50 100 150 200 250

∆

k

(c) On M · y2(x)

0

1000

2000

3000

4000

0 50 100 150 200 250

∆

k

(d) On M · y3(x)

Fig. 9: Sum of the imbalance of Wfi(ω) for all key candidates on each
yi∈{0,1,2,3}(x) with only linear transformations.

where n
mM [pB] denotes an n ×m matrix M with nm/p2 blocks (submatrices),
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Fig. 10: The number of block invertible matrices (y-axis) vs. the number of key-
leakage yi∈{0,1,2,3} given a block invertible matrix (x-axis).

and Bi,j denotes the block in row i and column j of blocks [22].

Generating (n, 2) block invertible square matrices begins with a (2, 2) block
invertible square matrix and extends by (4, 2), (6, 2), . . ., and repeats it (n−2)/2
times. The important point over here is that every 2×2 submatrix in a (n, 2)
block invertible square matrix should be invertible by the definition and all 2×2
invertible matrices in GF(2) are as follows:∣∣∣∣1 0

0 1

∣∣∣∣ ∣∣∣∣1 1
1 0

∣∣∣∣ ∣∣∣∣0 1
1 1

∣∣∣∣ ∣∣∣∣0 1
1 0

∣∣∣∣ ∣∣∣∣1 1
0 1

∣∣∣∣ ∣∣∣∣1 0
1 1

∣∣∣∣
At a glance, the number of 1s in the 4 out of 6 matrices is greater than 0s. By
the principle of constructing a block invertible square matrix, the HW of each
row and column in an (n, 2) block invertible matrix will be greater than n/2.
For example, let’s assume that a (4, 2) matrix is initialized with∣∣∣∣1 0

0 1

∣∣∣∣ ,
then its resulting matrix will be ∣∣∣∣∣∣∣∣

1 0 1 0
0 1 0 1
1 0 1 1
0 1 1 0

∣∣∣∣∣∣∣∣ .
In the case of an initialization with ∣∣∣∣0 1

1 0

∣∣∣∣ ,
we will have ∣∣∣∣∣∣∣∣

0 1 0 1
1 0 1 0
0 1 1 0
1 0 1 1

∣∣∣∣∣∣∣∣ .
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During the generation of a (32, 2) matrix through this process, 1s appear more
frequently. We have performed the following experiment to check if this over-
weight HW of the invertible block square matrix is the main reason for key
leakage. We randomly generated a balanced non-invertible 32×32 matrix M b,
such that f(x) = M b · yi∈{0,1,2,3}(x), where M b has the HW of 16 for each row
and column, and used it to compute the sum of imbalances. As shown in Fig. 11.
there still exist key leakages from y1 and y2 with ∆f

kc = 256. For this reason,
we can conclude that the matrix HW itself is not the cause of key leakages from
linear transformations.

3.3 Analysis of Key-dependent Intermediate Values

The next key-leakage point to be analyzed is y. From Definition 1 and 2, we
know that a balanced correlation immune function is strongly dependent on the
distribution of fi(x)⊕ x · ω . Since a matrix characteristic is not responsible for
the key leakage as we analyzed previously, the distribution of y is convinced
to mainly decide the distribution of fi(x)⊕ x · ω. Here recall that given a key-
dependent value x ∈ GF(28) and 1000 randomly generated invertible matrices
M , Wfi(ω) = 0 with approximately 99.7% while only 0.3% of Wfi(ω) = 256,
where HW(ω) = 1. The following lemma explains the reason behind.

Lemma 1. Assume that a 256×8 binary matrix H is defined as

H =

 h1,1 h1,2 . . .
...

. . .

h256,1 h256,8


where i-th row vector hi,∗ = 〈hi,1, hi,2, . . . , hi,8〉 is an element of {0, 1}8 and
hi,∗ 6= hj,∗ for all i 6= j. Then the Hamming Weight (HW) of exclusive-OR of
arbitrary chosen column vectors from H is 0 or 128. In other words, HW (h∗,j1⊕
h∗,j2 ⊕ · · · ⊕ h∗,jn) = 0 or 128, where n is a random positive integer and ji ∈
{1, 2, . . . , 8}.

Proof : Let J be a set of randomly chosen indices from {1, 2, . . . , 8}. Note that
for any duplicated indices α and α′ in J , i.e. α = α′, removing the duplicated
indices from J makes no change to the result HW.

⊕j∈Jh∗,j =
(
⊕j∈J−{α,α′} h∗,j

)
⊕ h∗,α ⊕ h∗,α′

=
(
⊕j∈J−{α,α′} h∗,j

)
⊕ 0 = ⊕j∈J−{α,α′}h∗,j .

Therefore without loss of generality we can assume that J contains no duplicated
indices and moreover

∣∣J ∣∣ = n ≤ 8.
Now we can define following partitions of indices:

Ib1,b2,...,bn = {` ∈ I|h`,ji = bi for all ji ∈ J },
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Fig. 11: Sum of the imbalance for all key candidates on each yi∈{0,1,2,3}(x) mul-
tiplied with a balanced matrix.

where I = {1, 2, . . . , 256}. Here all Ib1,b2,...,bn are disjoint to the others and
∪Ib1,b2,...,bn = I.
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To complete the proof, we need that for any choice of bi’s,
∣∣Ib1,b2,...,bn ∣∣ =

256/2n = 28−n. This can be shown easily as followings. Suppose that
∣∣Ib1,b2,...,bn ∣∣ =

t > 28−n. It means that there are t row vectors in H satisfying the condition
ji-th bit of the vector equals to bi. In other words, n bits are determined by
choice of bi’s and only 8 − n bits are remained free. From the condition of t is
larger than 28−n and the pigeon hole principle in mathematics, there must exist
at least two indices ` and `′ in Ib1,b2,...,bn where all bits of h`,∗ is completely
same to the bits of h`′,∗. It contradict to the assumption hi,∗ 6= hj,∗ for any
i 6= j.
From the definition of HW, we can deduce HW (⊕j∈Jh∗,j) is summation of∣∣Ib1,b2,...,bn ∣∣ where ⊕i=1,...,nbi = 1.

HW (⊕j∈Jh∗,j) = Σ⊕i=1,...,nbi=1

∣∣Ib1,b2,...,bn∣∣
= Σ⊕i=1,...,nbi=128−n = Σ2n−128−n

= 2n−1 · 28−n = 27 = 128.

Note that if J is empty after de-duplication then the final HW becomes 0. It
concludes the proof of lemma.

Note thatWfi(w) is defined as
∑
x∈{0,1}8(−1)fi(x)⊕w·x =

∑
x∈{0,1}8(−1)Mi,∗·y(x)⊕w·x,

where Mi,∗ is i-th row of the matrix M and y(x) is one of y0(x) - y3(x) depend-
ing on the target subkey. For convenience, let y(x) = y0(x), a 32 × 1 matrix
[2 ·x x x 3 ·x]T . If we define Y(x) as a 32×256 matrix with [2 ·H H H 3 ·H]T ,
where the H is the matrix defined at the lemma 1. Then the above equation can
be re-written as ∑

j={1,2,...256}

(−1)Bj(Mi,∗·Y(x)⊕(w·HT )),

where Bj(v) means the j-th bit of the vector v. Since the exponents of the
equation can have only two values 0 or 1, the summation over {1, 2, . . . , 256}
can be re-written with the number of exponents which are 1.

Wfi(w) = 256−HW (Mi,∗ ·Y(x)⊕ (w ·HT ))

Note that all row vectors of the matrix Y(x) is represented as summation of
row vectors of H. Therefore Mi,∗ ·Y(x) ⊕ (w ·HT ) can be also represented as
summation of row vectors of H. From the lemma 1, it deduces that the HW
of Mi,∗ · Y(x) ⊕ (w · HT ) is 0 or 128. Finally, Wfi(w) = 256 − HW (Mi,∗ ·
Y(x) ⊕ (w · HT )) becomes 256 or 0. What is remarkable point over here is
that the probability of Wfi(w) = 256 is very small but not zero. Specifically, it
happens when all row indices of H are canceled each other when the summation
is computed with the randomly chosen matrix M .
As mentioned already, our experiment showed that Wfi(w) = 256 with 0.3%
in the calculation with the correct key, while the wrong key candidates pro-
duced |Wfi(ω)| = 56 at maximum and 13.13 in average. For this reason, 1024
tests of Wfi(w) for a subkey recovery have been successful with overwhelming
probability.
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4 Proposed Method

Our analysis in the previous section shows that well-balanced distribution of
the intermediate values are the main reason behind the key leakage. In order to
make it unbalanced, our key idea is to insert random bytes in the intermediate
values before linear transformations. From now on, we answer to the following
questions.

– Where is the appropriate position for random bytes to be inserted?
– How many random bytes must be inserted?
– How to apply this key idea to a new WB-AES implementation?

We begin with an analysis of the inserting position and the required number of
random bytes to be inserted.

4.1 Inserting A Random Byte in the Intermediate Values

First, we will insert a random byte at a particular position in the 4-byte in-
termediate value yi∈{0,1,2,3}(x) and then perform a linear transformation with
a 40×40 binary block invertible matrix M∗ to check if any key leakage occurs.
Among the five inserting positions ρ1 - ρ5 of y0, for example,[

ρ1 2 · x ρ2 x ρ3 x ρ4 3 · x ρ5
]T

we select ρi, where i ∈ [1, 5], and then insert different γ ∈R GF(28) at ρi for
each x ∈ GF(28). Let y∗0(x) denote y0(x) after the random byte insertion, and
f∗(x) denote y∗0(x) ·M∗. Then we can define the Walsh transforms with respect
to f∗:

Wf∗i
(ω) = Σx∈{0,1}8(−1)f

∗
i (x)⊕x·ω

for 40 Boolean functions

f∗i∈{1,...,40}(x) : {0, 1}8 → {0, 1}.

With 1000 randomly generated M∗, we computed Wf∗i
(ω) with respect to y0

- y3(x) for each position ρi. As a result, TABLE 2 gives us that the correct
key results in Wf∗i

(ω) = 0 with approximately 5% and the average |Wf∗i
(ω)| is

about 12.7. Recall that, without the random byte insertion, Wfi(ω) = 0 with
approximately 99.7% and the average of |Wfi(ω)| is approximately 0.7.
To see the effect of the random byte insertion, we conducted the additional
experiment as follows.

1. Let yγ(x) = [γ1 γ2 γ3 γ4 γ5]T for each x ∈ GF(28). In other words, replace
all the key-dependent intermediate values with random bytes.

2. fγ(x) = M∗ · yγ(x) .
3. Repeat step (1) - (2) with 1000 random M∗ matrices, and accumulate the

number of occurrences of each value of Wfγi
(ω).

4. Compute % of Wfγi
(ω) = 0 and the average |Wfγi

(ω)|.
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ρ1 ρ2 ρ3 ρ4 ρ5

% of Wf∗i
(ω) = 0

5.05
(0.03)

5.06
(0.07)

4.93
(0.05)

5.0
(0.05)

5.04
(0.04)

Average of |Wf∗i
(ω)| 12.73

(0.02)
12.75
(0.01)

12.76
(0.01)

12.73
(0.01)

12.76
(0.01)

Similarity with Wf
γ
i

> 0.999

Table 2: Wf∗i
after inserting a random byte at each inserting position (the stan-

dard deviation in parenthesis), and the cosine similarity of the distributions
between Wf∗i

and Wfγi
.

5. Compute the cosine similarity between the distributions of Wfγi
(ω) and

Wf∗i
(ω) for each of y0 - y3 and for each ρi.

As a result, we have Wfγi
(ω) = 0 with approximately 5%, the average |Wfγi

(ω)|
is approximately 12.74, and the cosine similarity between their distributions
is always larger than 0.999. The cosine similarity larger than 0.99 means they
show very similar distribution. We note that the cosine similarity between the
distributions of Wfγi

(ω) and Wfi(ω) is about 0.25.
In order to visualize this effect of inserting a random byte, we select ρ5 and
calcalculate the sum of the imbalances of Wf∗i

(ω) for each key candidate with ω
such that HW(ω) = 1, as follows:

∆f∗

k∈{0,1}8 =
∑

ω=1,2,...,128

∑
i=1,...,40

|Wf∗i
(ω)|,

Fig. 12 shows ∆f∗

k∈{0,1}8 and we can see that the correct subkeys 0x88 - 0xBB

are no longer distinguishable from other candidates.
In addition, it is noticeable that inserting more than two random bytes in the
intermediate values does not increase the imbalance; they show a similar level of
the imbalance of the one-byte insertion. Thus, we can conclude that inserting a
random byte into anywhere among ρ1-ρ5 can effectively prevent the key leakage
of the linear transformation. Based on all the analysis, we explain how to imple-
ment a key leakage preventive WB-AES algorithm with 128-bit key size in the
following.

4.2 Secure WB-AES Implementation

In this section, we explain how to apply the random byte insertion before linear
transformations in order to protect the first and final rounds of WB-AES. Note
that any attack on the inner rounds which require large complexity of 2128 key
candidates is not practical. Our WB-AES uses the table name (number) used in
previous studies to minimize confusion but only mark ∗ in its superscript at the
beginning of the name if we modify its structure or size. Then, a set of lookup
tables in our proposed WB-AES is basically composed of four types: ∗TypeII,
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Fig. 12: Sum of the imbalance of Wf∗i
(ω) for all key candidates. Red arrow: the

correct key.

∗TypeIII, ∗TypeIV and TypeV.

∗TypeII. We begin by the connection with x and y used in the previous sections.
In the non-protected WB-AES implementation (Section 2), the linear transfor-
mation is applied to Tyi during the TypeII generation. In our WB-AES, we pick
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γ ∈R GF(28) for each x ∈ GF(28), and define Ty∗(x):

Ty∗0(x) = [2x x x 3x γ ∈R GF (28)]T

Ty∗1(x) = [3x 2x x x γ ∈R GF (28)]T

Ty∗2(x) = [x 3x 2x x γ ∈R GF (28)]T

Ty∗3(x) = [x x 3x 2x γ ∈R GF (28)]T .

The next step is to perform linear transformations on Ty∗i (x) with M∗ and ap-
ply non-linear transformations as illustrated in Fig 13 and Algorithm 1. Note
that the input decoding from round 2 takes into account the index change due
to ShiftRows. During the execution of WB-AES, its lookup values will contain
5-byte outputs including an encoded random byte and thus the intermediate
values after visiting ∗TypeII will be store in a 5×4×4 matrix.

N(in)

N(in) …

4

L-1 !",$% !&"∗ M*

N(out)

N(out)
4

Fig. 13: A schematic diagram of ∗TypeII generation.

∗TypeIII. During the ∗TypeIII generation shown in Fig. 14, we perform the
inverse linear transformation with (M∗)−1 and apply the linear transformation
with L. Now we need 180 (=9×5×4) 8 × 8 binary invertible matrices Lri,j , where
r ∈ [1, 9], 0 ≤ i ≤ 4, and 0 ≤ j ≤ 3 because ∗TypeIII gives an additional byte in
the intermediate values. Algorithm 2 describes the generation of ∗TypeIII. After
visiting ∗TypeIII, we have the intermediate values in a 5×4×5 matrix.

N(in)

N(in) …

4

40	×	8

N(out)

N(out)
4

Fig. 14: A schematic diagram of ∗TypeIII generation.

∗TypeIV. ∗TypeIV II and ∗Type IV III are used to XOR the lookup values of
∗TypeII and ∗TypeIII, respectively. ∗TypeIV II combines 5×4×4 intermediate



22

for r = 0 to 8 do
for i = 0 to 3 do

for j = 0 to 3 do
for p’ = 0 to 255 do

if r == 0 then
p = p′;

else
{i, j′} = {i, (j + i) mod 4 }
p′ = inverse-non-linear-transform(p′)
p = (Lr−1

i,j′ )−1 · p′

end
x = T r

i,j(p)
y = Tyi(x)
y∗ = y || γ ∈R GF(28)
f∗ = M∗ · y∗
for k = 0 to 4 do

f∗[k] = non-linear-transform(f∗[k])
∗TypeIIri,j,p′,k = f∗[k]

end

end

end

end

end
Algorithm 1: ∗TypeII Generation.

for r = 0 to 8 do
for i = 0 to 4 do

for j = 0 to 3 do
for p’ = 0 to 255 do

p = inverse-non-linear-transform(p′)
g∗[5] = {0, 0, 0, 0, 0}
g∗[i] = p
g∗ = (M∗)−1 · g∗
for k = 0 to 4 do

g∗ = Lr
k,j · g∗

g∗[k] = non-linear-transform(g∗[k])
∗TypeIIIri,j,p′,k = g∗[k]

end

end

end

end

end
Algorithm 2: ∗TypeIII Generation.
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values into a 5×4 state matrix and ∗TypeIV III combines 5×4×5 intermediate
values into a 5×4 state matrix. We extract the first four rows of this resulting
5×4 intermediate matrix into a 4×4 state matrix and use it as the next round
input. Fig. 15 and Fig. 16 simplify the lookup flows of ∗TypeIV following ∗TypeII
and ∗TypeIII.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

*TypeII *TypeII

*TypeIV_II

8

40

*TypeII *TypeII

40

Fig. 15: ∗TypeII and ∗TypeIV II lookups.

By using ∗TypeII, ∗TypeIV II, ∗TypeIII, and ∗TypeIV III in the first round, we
can protect against gray-box attacks using SubBytes outputs on ∗TypeII lookup
values. Next, we explain how to protect the first round output and final round
input.

4.3 More Protection and Our Variants

As explained in Section 2, there can be three key leakage points in WB-AES. It
is noticeable that the higher the security level, the higher the cost for a white-
box cryptographic implementation. In this point of view, the authors in [10]
proposed three different variants of masked WB-AES implementations, aptly
named CASE 1, 2 and 3, depending on the explained attack complexity.

– CASE 1: Protecting first round TypeII outputs
– CASE 2: CASE 1 + protecting the whole final round
– CASE 3: CASE 2 + protecting the whole first round.

So far, we have introduced our method to protect TypeII outputs in the first
round. Our WB-AES of inserting a random byte before linear transformations
protects ∗TypeII and ∗TypeIV II outputs, but does not provide any protection
on each round output since combining the intermediate values by ∗TypeIV III
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*TypeIII *TypeIII

*TypeIV_III

8

40

*TypeIII *TypeIII

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

*TypeIV_II

40

*TypeIII

8

Fig. 16: ∗TypeIII and ∗TypeIV III lookups.

cancels out the linear transformation by M∗ and apply another linear transfor-
mation by L on each byte of the round output. As a result, attacks on ∗TypeIV III
are still possible, and thus the remaining task is to protect the final round input
and the first round output.
Suppose that we apply the same technique of a random byte insertion a 16×16
invertible matrix L∗. This choice leads to the following additional costs:

– The ∗TypeIII size increases.
– The ∗TypeIV III size increases.
– A temporary storage for intermediate values increases.
– The number of table lookup increases.
– A 16-bit to 8-bit mapping table is needed to cancel out L∗ and apply L

corresponding to the ∗TypeII input decoding in the next round; the mapping
table should be protected by a secure non-linear transformation with 8-bit
to 8-bit random bijections.

Due to these additional costs, it is cost effective to partially adapt 8-bit to 8-bit
random bijections at the end of ∗TypeIV III like TypeIV IIIC used in [10], rather
than inserting a random byte in ∗TypeIII. More specifically, an XOR lookup
table using 8-bit to 8-bit random bijections based non-linear transformations
requires the same size with the 16-bit to 8-bit mapping table, but there will be
no additional costs imposed at ∗TypeIII and table lookups.
Let us have three variants of CASE 1, 2, and 3 like in the case of the masked
WB-AES variants. Then we already have the CASE 1 implementation including
∗TypeII, ∗TypeIII, and ∗TypeIV in the first round.
Next, we describe how to implement the CASE 2 implementation. We append
a postfix ‘N’ to the end of ∗TypeIV III indicating the use of 8-bit to 8-bit
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random bijections for non-linear transformations. Fig. 17 shows a diagram of
∗TypeIV IIIN, and Fig. 18 provides a simple lookup flow of ∗TypeIII, ∗TypeIV III
and ∗TypeIV IIIN to produce the final round input at the ninth round. Then
the inverse non-linear transformation used in ∗TypeVN generation must be the
corresponding inverse 8-bit to 8-bit bijections as shown in Fig. 19

N(in)
4

N(in)

XOR
8

N(out)

N(in)
4

N(in)

Fig. 17: A schematic diagram of ∗TypeIV IIIN generation.

*TypeIII *TypeIII

*TypeIV_III

8

40

*TypeIII *TypeIII

40

*TypeIV_II

40

*TypeIII

*TypeIV_IIIN

40

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. 18: ∗TypeIV III and ∗TypeIV IIIN lookups.

In the CASE 3 implementation, ∗TypeIV IIIN is used in the first round and
thus ∗TypeIIN in the second round must have the corresponding 8-bit to 8-bit
inverse bijections as shown in Fig. 20. Note that a random byte insertion is
not applied to ∗TypeIIN because this gives the inner round intermediate values
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N(in) L-1 !",$%&
88

Fig. 19: A schematic diagram of ∗TypeVN generation.

which require an attacker to completely know the first round key. Then the table
lookup sequences for each variant are given in Fig. 21.

N(in)

…8 L-1 !",$% !&" M

N(out)

N(out)
4

Fig. 20: A schematic diagram of ∗TypeIIN generation.

5 Evaluation

In this section, we evaluate the security and performance of our proposed method.
To verify the key leakage protection, we use the Walsh transform and DCA at-
tacks. The performance evaluation compares the lookup table size and the num-
ber of lookups of WB-AES with the initial WB-AES and the masked WB-AES
implementations [5][10].

5.1 Security

We demonstrate the prevention of key leakages from ∗TypeII and ∗TypeIV IIIN
in our WB-AES implementation. For the 8th subkey and attacker’s hypotheti-
cal SubBytes output x, let 40 Boolean functions f∗i∈{1,...,40}(x): {0, 1}8 → {0, 1}
denote ∗TypeII lookup values in the first round. Then we have the sum of im-
balance:

∆f∗

k∈{0,1}8 =
∑

ω=1,2,...,128

∑
i=1,...,40

|Wfi(ω)|,

where HW(ω) = 1. We can see there is no longer distinguishable peak at the right
subkey (0x88) in Fig. 23a. This gives us that power analysis such as DPA and
CPA as well as DCA attacks using the SubBytes output in the first round will
not be successful on our WB-AES implementation. In order to show the DCA
result, we collected 1,000 software execution traces by DCA techniques and then
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Round 1
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(a) CASE 1
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Round 1
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Round 10
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Round 1

*TypeIIN TypeIV_II TypeIII TypeIV_III
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*TypeII *TypeIV_II *TypeIII *TypeIV_III *TypeIV_IIIN

Round 9

*TypeII *TypeIV_II *TypeIII *TypeIV_III *TypeIV_IIIN

(c) CASE 3

Fig. 21: Table lookup sequences in the CASE 1-3 implementations.

performed a CPA attack. TABLE 3 shows DCA was not able to recover any
key from our WB-AES, and the last two rows provide the highest correlation
coefficient and the correct key’s correlation coefficient values, respectively. We
know that the coefficient value around 0.2 of the correct key means that there is
no meaningful correlation between correct hypothetical values and lookup values.

In addition, we conducted the same experiment as in Sectin 2 with the attacker’s
hypothetical input value x and 8 Boolean functions fi∈{1,...,8}(x): {0, 1}8 →
{0, 1} for the encoded final round input so that we verify the key leakage pre-
vention at ∗TypeIV IIIN outputs. As a result, there is no peak at the right key
candidate (0x13) as shown in Fig. 23b.
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Fig. 22: Visualization of a software execution trace of our WB-AES implemen-
tation. Green: read memory addresses, Red: write memory address.

Table 3: DCA ranking for our WB-AES implementation when conducting mono-
bit CPA on the SubBytes output in the first round with 1000 software traces.

XXXXXXXXXTargetBit
SubKey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 211 105 33 180 126 226 93 225 251 176 67 230 129 130 150 172
2 256 150 250 13 126 20 212 25 110 200 162 71 77 159 76 192
3 11 59 28 154 232 139 86 67 171 85 205 197 106 114 96 245
4 71 161 52 4 138 249 37 19 36 189 220 121 34 25 31 101
5 219 41 249 237 172 93 112 255 199 191 15 103 140 90 94 158
6 154 246 143 53 135 159 48 229 99 5 32 98 251 149 207 179
7 165 167 237 50 238 185 156 208 127 54 56 157 145 59 70 251
8 253 199 248 173 122 208 186 208 129 56 43 110 113 202 69 92

Highest coeff. 0.33 0.29 0.29 0.28 0.29 0.30 0.31 0.28 0.29 0.30 0.30 0.35 0.30 0.31 0.33 0.30

Key’s coeff. 0.22 0.19 0.20 0.25 0.16 0.21 0.20 0.21 0.19 0.24 0.23 0.18 0.19 0.21 0.21 0.17

5.2 Performance

Our performance evaluation in this section compares the total lookup table size
and the number of table lookups with the initial WB-AES and masked WB-AES
implementations [5][10].

Table size. Before table size comparsions, we need to mention two things: 1)
Because there is no variant in the initial WB-AES implementation, we denote
it CASE 1 (without CASE 2 and CASE 3) for convenient comparison with the
masked WB-AES and our WB-AES implementations; 2) It is necessary to recal-
culate the masked WB-AES table size and table lookups for the pair comparison
because the authors calculated for the case of their masking technique applied to
both outer and inner rounds while we applied our technique to only outer rounds.
Thus, we compare with their reduced sizes of protecting only outer rounds.
The table size of CASE 1 is 544,768 bytes in total and this is calculated as
follows:

– ∗TypeII: 4×4×256×5 = 20,480
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Fig. 23: Sum of the imbalance for all key candidates in our WB-AES.

– ∗TypeIV II: 5×4×3×2×128 = 15,360
– ∗TypeIII: 5×4×256×5 = 25,600
– ∗TypeIV III: 5×4×4×2×128 = 20,480
– TypeII : 8×4×4×256×4 = 131,072
– TypeIII : 8×4×4×256×4 = 131,072
– TypeIV : 2×8×4×4×3×2×128 = 196,608
– TypeV : 4×4×256 = 4,096 bytes.

In CASE 2, the total size is 1,874,944 bytes computed by rewriting the table size
in the final round as follows:

– ∗TypeII: 4×4×256×5 = 20,480
– ∗TypeIV II: 5×4×3×2×128 = 15,360
– ∗TypeIII: 5×4×256×5 = 25,600
– TypeIV III : 5×4×3×2×128 = 15,360
– ∗TypeIV IIIN: 5×4×256×256 = 1,310,720.

Lastly, the total size of CASE 3 is 3,180,544 bytes computed by rewriting the
∗TypeIV III size in the first round as follows:

– ∗TypeIV III: 5×4×3×2×128 = 15,360
– ∗TypeIV IIIN: 5×4×256×256 = 1,310,720.

TABLE 4 shows the comparisons with the previous implementations. Our WB-
AES implementation reduces approximately 33% of the memory requirements
of masked WB-AES in CASE 2 and CASE 3.
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CASE 1 CASE 2 CASE 3

Initial WB-AES 520,192 - -
Masked WB-AES 548,864 2,774,688 4,763,648

Our WB-AES 544,768 1,874,944 3,180,544

Table 4: Table size comparison (byte) with the previous WB-AES implementa-
tions.

Table lookup. The number of table lookups of CASE 1 is 2124 in total and
this is calculated as follows:

– ∗TypeII: 4×4 = 16

– ∗TypeIV II: 5×4×3×2 = 120

– ∗TypeIII: 5×4 = 20

– ∗TypeIV III: 5×4×4×2 = 160

– TypeII : 8×4×4 = 128

– TypeIII : 8×4×4 = 128

– TypeIV : 2×8×4×4×3×2 = 1536

– TypeV : 4×4 = 16.

In addition, the numbers of lookups in CASE 2 and CASE 3 are 2196 and 2176.
Here, the use of 8-bit to 8-bit bijections in the XOR tables slightly reduces
the number of lookups. Compared to the masked implementations, our WB-
AES requires slightly less table lookups. We note that the initial WB-AES and
our WB-AES implementations require 10 ShiftRows while the masked WB-AES
implementation needs 11 ShiftRows (for the mask state matrix) in total.

CASE 1 CASE 2 CASE 3

Initial WB-AES 2,032 - -
Masked WB-AES 2,176 2,288 2,256

Our WB-AES 2,124 2,196 2,176

Table 5: Table lookup comparison with the previous WB-AES implementations.

In summary, our WB-AES implementation can prevent key leakages with at
most 33 percent less memory requirements than the masked implementations.
We remark that the white-box cryptographic applications have been limited
due to the high memory requirements that mainly determine the cost. For this
reason, the reduced table size can contribute to the widespread use of white-box
cryptography.
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6 Conclusion and Discussion

In this paper, our analysis shows the well distributed intermediate values cause
the key leakage after linear transformation in the white-box implementation.
Based on this analysis, we introduce a method of inserting a random byte into
intermediate values before linear transformations to prevent key leakages and
propose a WB-AES implementation using this principle. To protect the outer
round output, we partially apply non-linear transformations using 8-bit to 8-bit
random bijections and provide three different variants of WB-AES depending
on the security levels. In conclusion, our WB-AES, as a non-masking imple-
mentation, does not require any static or dynamic random source and decreases
the memory requirement by at most 33% with slightly reduced table lookups,
compared to the masked WB-AES.
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