
CertLedger: A New PKI Model with Certificate
Transparency Based on Blockchain

Murat Yasin Kubilay and Mehmet Sabir Kiraz and Haci Ali Mantar
TÜBİTAK BİLGEM

muratkubilay@gtu.edu.tr, m.kiraz@gmail.com, hamantar@gtu.edu.tr

Abstract. In conventional PKI, CAs are assumed to be fully trusted.
However, in practice, CAs’ absolute responsibility for providing trustwor-
thiness caused major security and privacy issues. To prevent such issues,
Google introduced the concept of Certificate Transparency (CT) in 2013.
Later, several new PKI models (e.g., AKI, ARPKI, and DTKI) are pro-
posed to reduce the level of trust to the CAs. However, all of these propos-
als are still vulnerable to split-world attacks if the adversary is capable of
showing different views of the log to the targeted victims. In this paper,
we propose a new PKI architecture with certificate transparency based
on blockchain, what we called CertLedger, to eliminate the split-world
attacks and to provide certificate/revocation transparency. All TLS cer-
tificates’ validation, storage, and entire revocation process are conducted
in CertLedger as well as Trusted CA certificate management. During a
TLS connection, TLS clients get an efficient proof of existence of the
certificate directly from its domain owners. Hence, privacy is now per-
fectly preserved by eliminating the traceability issue of OCSP servers.
It also provides a unique, efficient, and trustworthy certificate validation
process eliminating the conventional inadequate and incompatible cer-
tificate validation processes implemented by different software vendors.
TLS clients in CertLedger also do not require to make certificate vali-
dation and store the trusted CA certificates anymore. We analyze the
security and performance of CertLedger and provide a comparison with
the previous proposals.

Keywords: PKI, SSL/TLS, Certificate Transparency, Certificate vali-
dation, Privacy, Blockchain.

1 Introduction

Web based applications such as internet banking, mailing, e-commerce
are playing a major role for facilitating our life and became an indispens-
able part of it. As a de facto standard, SSL/TLS certificates are used to
provide authenticity, integrity, and confidentiality services to these ap-
plications. These certificates are issued by CAs which are assumed to be
trusted organizations in the conventional PKI systems. In particular, CAs
are expected to operate according to some rules which are announced as

2

Certificate Policy (CP) and Certificate Practice Statement (CPS) docu-
ments. In the current trust model, CAs have the absolute responsibility
to issue correct certificates for the designated subject. However, CAs can
still be compromised and fake but valid certificates can be issued due to
inadequate security practices or non-compliance with the CP and CPS.
During the last decade, there have been the following serious incidents.

– The Stuxnet [1] malware is signed by the private keys of two com-
promised Taiwanese CAs which targets to control a specific industrial
system likely in Iran, such as a gas pipeline or a power plant.

– Comodo CA, which has a big share in SSL/TLS market is hacked in
March 2011 [2]. One of its Registration Authority (RA) is attacked
to issue 9 fraudulent certificates where the attacker is traced back to
Iran.

– A Dutch CA DigiNotar is pawned in July 2011 [3]. 531 fraudulent cer-
tificates are issued for valuable domains such as *.google.com, *.win-
dowsupdate.com and *.mozilla.com. These certificates could easily be
used to distribute malicious Windows updates or Firefox plugins with-
out taking attention. At least 300.000 unique IPs are detected using
Google services through these certificates, which 99% of the traffic is
from Iran.

– Trustwave CA has sold a subCA certificate for one of its subordinates.
This subCA has issued fraudulent TLS certificates which are used to
introspect TLS traffic [4].

– A Turkish CA Turktrust has mistakenly issued subCA certificates
instead of TLS certificates in December 2012 [5]. These certificates
are used to generate TLS certificates for traffic introspection. Google
identified the fraudulent Google certificate via Chrome.

– A subCA of the Chinese CA CNNIC, which is located in Egypt, issued
fraudulent TLS certificates for traffic introspection in March 2015 [6].
Later on, it is identified that CNNIC is operated without documented
CPS.

– Lenova Superfish has deployed local CA in its products in 2015 [7].
This CA is used to inject ads into the TLS protected web sites. Since
the CA private keys are in the computer RAM, they may be easily
used to introspect traffic.

– Symantec issued unauthorized certificates for Google domains in Septem-
ber 2015 [8]. Later on Symantec claimed that these certificates are
produced for test purposes.

3

– Symantec purchased Blue Coat in May 2016 [9]. Blue Coat has devices
to snoop encrypted internet traffic. Blue Coat became a SubCA under
Symantec. This unification increased the skepticism.

These fatal incidents lead to many researches to distribute the abso-
lute trust on CAs to multiple authorities. To detect fake but valid TLS
certificates, key pinning [10,11], crowd sourcing [12,13,14,15,16,17], and
pushing revocation information to browsers [18,19] are the initial solu-
tions which are partly implemented but failed due to scalability problems.
There are also other recent proposals where we briefly described them in
Section 6. In order to depict the state of the art in the conventional PKI,
we describe one of these proposals (Certificate Transparency) which is
proposed by Google in the following section.

1.1 Certificate Transparency (CT)

CT aims to detect fake but valid certificates by providing append-only,
publicly auditable logs for all issued TLS certificates, and shorten their
lifetime [20]. CT uses append-only Merkle Hash Trees (MHT) for ap-
pending and efficiently verifying TLS certificates [21]. In this respect, CT
introduces Certificate Logs (CL), Monitors, and Auditors as new enti-
ties. CAs submit the new TLS (pre)certificates to several CLs and each of
them generate a cryptographic proof called Signed Certificate Timestamp
(SCT). After appending the new certificates to the log, CL computes the
Signed Tree Head (STH) and generates Consistency Proof for proving
whether the new log is an extension of the old one. Merkle Audit Proof
shows the existence of a certificate in the log. SCT can be delivered to
the TLS clients either as a certificate extension, or in a TLS extension
during TLS handshake, or in the OCSP response. If the TLS clients do
not receive SCT by aforementioned-means or cannot verify them using
CL’s public key, they may refuse to connect to the service. Domain owners
or private companies can act as Monitors and continually inspect certifi-
cates of their interest in CL whether there exist illegitimate certificates.
Browsers, or in general TLS clients, act as Auditors. They verify if a CL
is behaving properly and cryptographically consistent.

However, the authors in [22] show that if an adversary can get a fake
but valid TLS certificate and can control the CL then he can perform
an impersonation/MITM attack to the targeted victims by providing a
fraudulent view of the log that contains the fake certificate. This attack is
later referred to as split-world attack [23] which is elaborated as follows.

4

1. The adversary gets a fake but valid TLS certificate for a domain from
the CA.

2. The adversary or the CA submits this certificate to the log which is
appended to the fraudulent hash tree.

3. The adversary obtains a bogus SCT for the fake TLS certificate from
the log. SCT is fake, since the log maintains more than one hash trees.
It shows different views of the tree to different sets of clients. Merkle
Audit Proof and Consistency Proof are generated from different hash
trees and the victim clients cannot understand that the proofs are not
generated from the genuine hash tree.

4. When a targeted victim client tries to connect to a domain, the ad-
versary controlling the traffic sends the fake certificate and the bogus
SCT to the client.

5. Upon validation of the fake certificate and the SCT, client connects
to either the fake domain or the real domain through a proxy.

Monitors cannot detect this attack since they get and verify the Con-
sistency Proof s only from the genuine view of the log. Auditors (victim
TLS Clients) cannot detect the attack, since they can verify the existence
of the fake TLS certificate in the log with the fake STH and the Merkle
Audit Proof generated from the fraudulent view of the log. The other
Auditors also cannot detect either, since they get STH and the proofs
from only the genuine view of the log.

As pointed out in RFC 6962 for CT [20], to detect the attack in the
existing CT architecture, there must be sufficiently large number of clients
and servers gossiping their view of STHs with each other. Moreover, some
of the clients should also act as Auditors for checking the consistency
of the log. Some of these gossiping Auditors should be able to receive
both the genuine and the fake proofs belonging to a log to figure out the
inconsistency. If an Auditor has two STHs with the same tree size but
with different values, this will be an evidence for the misbehavior of the
log. If an Auditor has two different STHs with unequal tree sizes then
it can request the Consistency Proof from the log. Since the log cannot
provide this proof it should be investigated for malicious behavior.

1.2 Ongoing Security Issues

In the existing public log based proposals (described in Section 6), a
strong adversary who has the ability to control the trusted entities (e.g.,
CA, Log Operator) can apply split-world attacks by providing different

5

views of the logs to the targeted victims [22]. While some of these pro-
posals cannot detect this attack, others propose to use gossip protocols
to identify it by ensuring a consistent view of the log for the TLS clients
[23,24,25,26]. Still, this attack can only be identified if 1) there are suf-
ficient numbers of gossiping TLS clients and servers, 2) at least some of
them are able to view the genuine log and request the consistency proof
from the log. Moreover, implementing gossiping clients in a vast amount
of applications is not straightforward.

As also described in [27], certificate revocation and validation pro-
cesses have major problems in today’s PKI. Namely, for the revocation
process, certificate owners have to rely on CAs which have the full re-
sponsibility to revoke the certificates and give proper revocation services.
However, a compromised or malfunctioning CA may not behave as ex-
pected. Browsers would then accept revoked certificates since they rarely
check whether the certificates are revoked [27]. More importantly, check-
ing the revocation status of a certificate using OCSP also causes privacy
concerns [27]. Moreover, incompatible and inadequate implementations
of certificate validation and revocation behavior within browsers are also
error prone [27].

Another major security issue is the necessity of trusted key manage-
ment in TLS clients. TLS clients have to trust CA certificates or some
other trusted entities’ public keys to make a successful TLS certificate val-
idation. In case of a compromise, removal of root certificates/keys from
all the clients’ trusted key stores brings burden (e.g., due to IT policy
restrictions, OS configuration, network communication) and causes vul-
nerability (e.g., outdated OS or apps). Moreover, if an adversary can
inject a fake CA certificate to the trusted certificate store of a client, he
can easily perform MITM attack without being detected [7,28].

1.3 Our Contributions

In this paper, we propose a new and efficient PKI architecture, what
we called CertLedger, to make TLS certificates and their revocation sta-
tus transparent while eliminating the above-mentioned issues. CertLedger
uses a blockchain based public log to validate, store, and revoke TLS cer-
tificates. In summary, we make the following contributions in CertLedger :

– Resistance to split-world attacks
– More transparent revocation process rather than relying on CAs
– Unique, efficient, and trustworthy certificate validation process
– Trusted key store elimination in the TLS clients

6

– Preserving the privacy of the TLS clients during TLS handshake
– No external auditing requirement due to inherent public log architec-

ture
– Efficient and prompt monitoring to minimize the attack duration
– Transparency in trusted CA management

We also provide a detailed security and performance analysis of Cer-
tLedger, and compare it with the most recent works.

1.4 Roadmap

In Section 2, we describe how the afore-mentioned problems of PKI can
be solved by using a public blockchain. In Section 3, we describe our pro-
posal CertLedger which is a new PKI model with certificate transparency
based on blockchain. We analyse CertLedger in terms of security and per-
formance in Section 4 and 5 respectively. In Section 6 and 7, we describe
the existing proposals and compare CertLedger with them. Finally, we
conclude the paper with describing the future work in Section 8.

2 How Public Blockchain Solves PKI Problems?

Blockchain is a shared, immutable, decentralized public ledger comprising
an ever growing list of blocks. A block is a data structure which consists of
a header and a list of transactions. Each transaction is generally formed as
trx := (M,Signature) where M := (PKSender, receiver, data). PKSender
denotes the public key of a sender (address of the sender is derived from
the PKSender) and receiver is the address of a receiver. Signature :=
SignSKSender(H(M))) where SKSender is the private key of the sender
and H(·) is a secure hash function. Each block is linked to the previous
one with a cryptographic hash, therefore blocks are inherently secured
from tampering and revision. A Blockchain network is a decentralized
peer-to-peer (P2P) network composed of full nodes and light nodes. Full
nodes store a copy of the blockchain, validate, and propagate new trans-
actions and blocks across the network while light nodes store only the
block headers. All nodes can create transactions to change the state of
the blockchain. New blocks of the transactions are collectively validated
and appended to the existing chain according to a distributed consensus
mechanism. There are several consensus mechanisms used in blockchain
networks, e.g., Practical Byzantine Fault Tolerance algorithm (Practical
BFT) [29] (which is utilized in HyperLedger Fabric [30]), Delegated BFT
[31] (which is utilized in Neo [32], and an improved version VBFT is

7

utilized in Ontology [33]), Proof-of-Work (PoW) (which is utilized in Bit-
coin [34], Ethereum [35]), Ripple [36] (which is utilized in Ripple [37]),
and Proof-of-Stake (PoS) [38] (which is utilized in Cardano [39], PeerCoin
[40]). From now on, for simplicity, we refer to “blockchain” as blockchain
network. In general there are also three types of Blockchain: 1) Permis-
sionless (e.g., Bitcoin [34], Ethereum [35], ZCash [41]), 2) Public Permis-
sioned Blockchain (e.g., Ripple [36]), 3) Private Permissioned Blockchain.
While any peer can join and leave the network any time in permission-
less blockchains, permissioned blockchains require authorization for the
membership of the peers. In the permissioned blockchains, if public ver-
ifiability is required, then the transactions of the blockchain must also
be public. However, private permissioned blockchains may be used for
corporate networks which have sensitive data.

In the following, we describe why blockchain solves 1) Split-world
attack, 2) Certificate revocation and validation problems, and 3) Trusted
certificate/key store management problems.

First, as described in Section 6, existing proposals try to solve the
transparency issue in PKI by introducing (one or more) public logs [20,42,43,44].
However, they are still subject to split-world attack due to the trust to
a log operator. In order to prevent such an attack, the trust should be
distributed in such a way that a single log operator could not be able
to control the log itself. Therefore, a decentralized public log mechanism
is required which is synchronously updated only upon a consensus of its
clients. Once the consensus is achieved, the log should be updated and
could not be reverted anymore. We would also like to highlight that, in
order to prevent the split-world attack, RFC 6962 for CT states [20], “All
clients should gossip with each other, exchanging STHs at least; this is all
that is required to ensure that they all have a consistent view. The exact
mechanism for gossip will be described in a separate document, but it is
expected there will be a variety”. Therefore, as also directly implied by “all
clients gossiping to each other”, blockchain is an architecture fulfilling all
these required features.

Second, certificate validation is a required process for each TLS con-
nection, and comprises trusted path construction and revocation check-
ing phases. Currently, certificate validation burden is entirely on TLS
clients (e.g., internet browsers). However, if TLS certificates are stored
on a blockchain, trusted path construction can be done only once while
they are being appended to the blockchain. Consequently, browsers can
trust the TLS certificates on the blockchain without requiring further val-
idation once they obtain the required Merkle proofs. As also described

8

in [27], browsers have different implementations for revocation checking
which are error prone. By managing the revocation status of TLS cer-
tificates on the blockchain, revocation checking process can be simplified
and unified. Namely, revocation checking burden using CRL and OCSP
services can be eliminated which will also preserve the privacy of the
TLS clients [27] Furthermore, while certificates can be revoked only by
CAs in the existing system, they can also be revoked by their owners on
the blockchain. When the revocation process is conducted through the
blockchain it becomes more transparent.

Finally, validation of certificates while appending to the blockchain
also requires trusted CA certificates to exist on the blockchain. Therefore,
these certificates have to be stored and managed on the blockchain as well.
Hence, TLS clients do not need to store trusted CA certificates anymore
since the blockchain ensures to append the TLS certificates issued only
from the trusted CAs.

2.1 Blockchain Characteristics for PKI

Using the decision-sequence of Wüst and Gervais [45], we below identify
the type of blockchain to manage the certificate log. Note that a writer
is an entity who is able to accumulate new transactions into a new block
and append it to the blockchain.

1. Do you need to store state? TLS certificates are being updated con-
tinually due to expiration or revocation. The state of the certificates
have to be stored and updated whenever necessary.

2. Are there multiple writers? TLS certificates generated by the trusted
CAs are appended to the log. A manipulated single writer can append
fake but valid certificates to the log, delay or ignore appending the
genuine ones. Therefore, increasing decentralization while writing to
the log will reduce the risk of manipulation due to the fact that broad
participation of writers will lead to a more reliable and robust log.

3. Can you use an always online Trusted Third Party (TTP)? As de-
scribed in Section 1, a strong adversary is assumed to control a TTP
which may lead to a single point of failure. Therefore, an online TTP
assumption is the main source of vulnerability.

4. Are all writers known? The writers may be known or unknown. How-
ever, if they are known, they should be selected and dispersed all
over the world in such a way that their malicious cooperation and
manipulation could not be possible.

9

5. Are all writers trusted? Even though, all the writers are seemingly
trusted, some of them can be controlled by a strong adversary.

6. Is public verifiability required? The existence and validity status of all
TLS certificates must be verifiable by public for ultimate transparency.

Thus, the decision flowchart results in either a permissionless or a
public permissioned blockchain for managing the certificate logs. How-
ever, the following five additional features are required in the underlying
blockchain. First, it must comprise smart contract infrastructure to imple-
ment the required rules for validating the state transitions [46]. Second,
the underlying consensus mechanism should avoid possibility of forks,
since some of the TLS clients can verify an incorrect state of a TLS certifi-
cate before the blocks have been fully confirmed. Third, the required time
for the confirmation of a new block in the consensus mechanism should
not be high, so that the transactions can change the state of the TLS
certificates in an acceptable time frame. Fourth, blockchain architecture
should enable TLS clients to verify the final state of the TLS certificates
efficiently1. Fifth, TLS clients should be able to identify whether a block
(or only its header) is genuine or not. Since we expect that most of the
TLS clients will be light nodes of the blockchain, and it should not be very
expensive for them to verify the genuineness of a block header. In this re-
spect, any consensus mechanism, which does not lead to temporary forks,
can be used in the underlying blockchain architecture of CertLedger (e.g.,
PBFT [29], DBFT/VBFT [31,33])2. Neo [32] and Ontology [33] are the
candidate blockchain architectures fulfilling these requirements so far. For
more efficiency, their underlying consensus algorithm can be modified in
such a way that a block can only be confirmed only upon a sufficient num-
ber of nodes sign it via a threshold signature mechanism, e.g., (n+ 1, 3n)
[48,49] (a consensus outcome (i.e., new block) can now be verified by
anyone without requiring an additional consensus algorithm).

3 CertLedger

CertLedger is a PKI architecture to validate, store, and revoke TLS cer-
tificates and manage Trusted CA certificates on a public blockchain. It

1 State Merkle Patricia Trees are generally maintained to generate proofs and track
the final states of the assets efficiently. The Merkle root of this tree is stored in the
block headers, so that the integrity of the tree, and the state proofs generated out
of it can be verified. [47]

2 To the best of our knowledge, the above-mentioned requirements are currently ful-
filled by only permissioned blockchains.

10

aims to make certificate issuance and revocation life cycle more transpar-
ent and to eliminate any kinds of MITM attacks. Moreover, it also aims to
unify certificate validation process for all TLS clients due to its inconsis-
tent and inadequate implementations throughout different TLS clients.
More concretely, CertLedger manages the PKI functionalities through
state objects. A state object is a digital document which is comprised of
data and an immutable smart contract code to manage it. Each state
object has a unique address in the blockchain. State changes of the as-
sets are triggered by transactions and tracked through the state objects.
CertLedger comprises the following state objects:

Trusted CAs State Object stores the set of the trusted CA certificates
and smart contract code for adding new CA certificates as “trusted” or
changing the status of the existing ones as “untrusted”. The smart con-
tract code makes all the necessary controls on the certificate and checks
whether it is complaint to international standard certificate profiles (e.g.
RFC 5280 [50]) for being a CA certificate.

Domain State Object stores and manages the states of all TLS certificates
and their revocation status. This state object comprises the necessary
code for validating the TLS certificate according to international stan-
dards such as RFC 5280 [50]. It calls the Trusted CAs State Object while
building a trusted path for the TLS certificate. Moreover, it also com-
prises the necessary code for changing the status of the TLS certificate
as “revoked”.

An Account State Object stores CertLedger token balance of a CertLedger
entity and is controlled by the account’s private key. This state object is
used to create and trigger any transaction within CertLedger.

CertLedger Token State Object is the source of the initial token supply. It
comprises the smart contract code to determine the initial owner of the
token supply, to transfer token between different Account State Objects
and to give permission to a state object for transfering a certain amount
of token from a given Account State Object.

Fraud Report State Object stores fraud reports about the CAs which are
in the Trusted CAs State Object. The reports comprise proofs for the
fraudulency of the CAs which possibly issued a valid but fake certificate.
However, the accused CAs can also add proofs about their trustworthi-
ness.

11

3.1 Entities

We have three types of entities in our model: 1) CertLedger Entities (Cer-
tLedger Board, CertLedger Foundation, CertLedger Clients (TLS Clients))
2) External Entities (Certificate Authorities (CA), Domain Owners) 3)
Underlying Blockchain Entities (Miners and Full Nodes).

CAs have basically four different tasks: 1) Check the identity of the Do-
main Owner for his TLS certificate request. 2) Issue a TLS certificate
upon successful identity verification. 3) Optionally, create a transaction to
append the issued certificate to CertLedger. 4) Optionally, create a trans-
action to change the revocation status of the certificate in CertLedger.
Therefore, in our model, CAs do not issue Certificate Revocation List
(CRL) and give OCSP services anymore.

CertLedger Board is a trusted organization who manages Trusted CAs
State Object for a better trust distribution among multiple entities. This
board basically defines the standards and procedures to manage this state
object. CertLedger Board members manage the Trusted CAs State Object
by employing a t-out-of-` threshold mechanism (which is fault tolerant
against arbitrary behavior of up to t malicious and colluding authorities)
[48,49]. More concretely, let (PKBoard, (SKBoard1, · · · , SKBoard`))
be the public and private key pair for the Account State Object of Cer-
tLedger Board where PKBoard denotes the public key of the board mem-
bers and SKBoardi denotes the private key share of the i-th member.

SKBoard := Construct(SKBoard1, · · · , SKBoard`)) (1)

is not known by anybody. PKBoard is embedded in the smart contract
code of the Trusted CAs State Object and is used to verify the transactions
which are targeted to this object. When the CertLedger Board changes
due to introducing new members, or quitting membership, PKBoard and
the SKBoard also changes. Therefore, Trusted CAs State Object have to
be migrated, so that it can comprise the new PKBoard.

In order to provide transparency, the requirements of being a board
member should be defined as an international standard by the organi-
zations such as IEEE [51], ISO [52] and IETF [53]. To decentralize the
trust, the standards should enforce the selection of members from polit-
ically and geographically disparate entities (e.g., certificate authorities,
browsers and O/S development companies/foundations, research insti-
tutes, universities, and international standardization organizations like
ETSI [54], ISO [52], and IETF [53]) can be CertLedger Board members,

12

but any organization in the world fulling the requirements can be in prin-
ciple a board member.

CertLedger Foundation promotes, supports and develops CertLedger plat-
form and does research activities. They are also the owner of the initial
CertLedger token supply.

CertLedger Clients are TLS clients which are also part of the blockchain
network and communicate with their peers for the following purposes.
Using the light client protocol of the blockchain network, they fetch, val-
idate, and store the block headers. They also download a Merkle state
proof to validate the final state of a state object from a Full node. These
proofs are later used to verify the TLS certificates of the domains.

Miners are writers, full nodes which select pending transactions from
the pool, validate them, and then create new blocks according to the
consensus protocol. They generate blocks for all the transactions of the
underlying blockchain and propagate them to the P2P network.

Full Nodes store, validate, and propagate all the blocks and generate
(Merkle) proofs for the CertLedger Clients to verify the final state of the
state objects.

Domain Owners offer secure services to the CertLedger Clients through
protocols such as https, imaps, and sips. They have the following tasks: 1)
Make TLS certificate request to CAs for their domain. 2) Optionally, cre-
ate a transaction to append the received TLS certificate to CertLedger. 3)
Monitor their up-to-date TLS certificate in CertLedger (e.g., using event
listeners on Ontology). 4) In case of compromise detection, immediately
create a transaction to revoke their TLS certificate and create another
transaction to report the fraud.

3.2 Trust and Threat Model

CAs are assumed to be malicious which can behave arbitrarily, e.g., fake
but valid certificates can be issued by the CAs which may be either cor-
rupted or operated with inadequate security policies. We also assume
that the underlying blockchain network of CertLedger is insecure where
a certain number of Miners are honest with respect to the underlying
consensus algorithm for the agreement on the upto date state of the
blockchain. Similarly, full nodes are also assumed to be malicious which

13

are allowed to generate fake blocks and proofs. Also, CertLedger Clients
are also assumed to be malicious. Finally, at most t out of ` CertLedger
Board Members are assumed to be corrupted. Trivially, we assume also
that the underlying cryptographic primitives of the blockchain architec-
ture of CertLedger are secure.

Fig. 1: Functionalities of CertLedger

Algorithm 1 Generating a Transaction for adding a Trusted CA Cer-
tificate through Board Members
Input: M := (AddrBoard, AddrTrustedCASO, certCA), PKBoard, SKBoardti
/* AddrBoard is the AccountStateObject address of CertLedgerBoard,

AddrTrustedCASO is the address of the TrustedCAsStateObject, certCA
is the trusted CA certificate, PKBoard is the public key of the

board, Boardti ∈ BoardList involve in a threshold signing protocol to

generate a transaction signature where 1 ≤ ti ≤ `, i = 1, · · · , t, SKBoardti
is the private key share of the ti-th board member */

Output: trx := (M,SignSKBoard(M))
PSignti :=SignSKBoardti

(M) ∀ i := 1, · · · , ` // Boardti computes and publishes

its partial signature

SignSKBoard(M) := Construct(PSignt1 , · · · , PSigntt) // Any party can collect

the partial signatures and construct the final transaction signature.

if verify(SignSKBoard(M), PKBoard)= true then
trx := (M,SignSKBoard(M)) // Construct the transaction if the

signature is valid.

end

3.3 PKI Functionalities of CertLedger

In this section, we describe the functionalities of CertLedger. The respon-
sibility of the entities in the following stages are illustrated in Figure 1.

14

Algorithm 2 Adding a Trusted CA Certificate Transaction through
Trusted CAs State Object
Input: trx, certCAList := {(SKIj , certCAj , tsj) : 1 ≤ j ≤ m}, PKBoard
// SKI denotes for the subjectKeyIdentifier field, certCAj the j-th CA

certificate, and ts its trustStatus (‘‘trusted’’ or ‘‘untrusted’’).

Output: ⊥ OR (certCA[SKI], certCA,′′ trusted′′) ∈ certCAList
if trx.M.receiver = addrTrustedCASO then

if verify(trx.signature, PKBoard) = true then
if certCA /∈ certCAList s.t. certCA[SKI] = certCAList[SKIj] for some j

AND
certCA[basicConstraints.CA] = true AND
certCA[subject] = certCA[issuer] AND
certCA[validity.notAfter] > tnow AND
certCA[keyUsage] = ′′CertificateSigning′′ AND
verify (certCA[signature], certCA[PK]) = true // certCA :=
trx.M.data, certCA[PK] denotes the public key of certCA

then
add (certCA[SKI], certCA, ′′trusted′′) to certCAList

end

end

end

Adding a new Trusted CA Certificate. CertLedger Board adds a
CA certificate to the Trusted CAs State Object as follows (Algorithm 1
and 2): 1) To apply for an audit, a CA creates a transaction and trig-
gers CertLedger Token State Object to give allowance to Trusted CAs
State Object for transfering token from its Account State Object to the
CertLedger Board ’s Account State Object. 2) Upon application of the CA,
CertLedger Board audits the CA and verifies whether it complies with the
Trusted CA standards. 3) Upon a successful audit, it generates a transac-
tion comprising the CA certificate to add the CA certificate to the Trusted
CAs State Object, which is signed in a threshold fashion [48,49]. 4) Smart
contract code in the Trusted CAs State Object verifies the signature of
the transaction, and makes all the necessary checks on the CA Certifi-
cate. 5) Upon successful validation of the CA certificate it is added to the
Trusted CAs State Object as a trusted certificate. 6) Trusted CAs State
Object triggers CertLedger Token State Object to transfer the operation
fee from CA’s Account State Object to the CertLedger Board ’s Account
State Object.

Changing Trust Status of a CA Certificate. If a trusted CA fails
to comply to Trusted CA standards in further audits or its misbehavior
is proved through a fraud report, then the status of its certificate is set

15

as “untrusted” in the Trusted CAs State Object as follows: 1) CertLedger
Board Members generate a transaction which is signed in a threshold
fashion to change the status of the CA certificate in the Trusted CAs State
Object. 2) Smart contract code in the Trusted CAs State Object verifies
the signature of the transaction, and checks whether the CA certificate
is unexpired and exists in the Trusted CAs State Object. 3) The state of
the CA certificate is set as “untrusted” in the Trusted CAs State Object.
4) Trusted CAs State Object triggers Domain State Object to change the
state of all TLS certificates issued from this CA as “revoked”.

Adding a New TLS Certificate. As in the conventional PKI archi-
tecture, upon application of a Domain Owner, CA performs the relevant
verifications according to its policy and issues the TLS certificate. Note
that a Domain Owner can have more than one valid TLS certificate of
a domain. In practice, before the expiration of his TLS certificate, the
Domain Owner receives a new TLS certificate from the CA with overlap-
ping dates, so that the latter becomes active before the expiration of the
former.

Upon generation of a new TLS certificate, Domain Owner or CA
adds it to the Domain State Object as follows (Algorithm 3): 1) Domain
Owner/CA creates a new transaction comprising the new TLS certificate
and signs it using the private key of his own Account State Object. 2)
Smart contract code in the Domain State Object validates the certificate
and whether the Domain Owner/CA’s balance is sufficient for invoking
the transaction. Upon a successful validation, the new TLS certificate is
added to the Domain State Object. 3) Domain State Object triggers Cer-
tLedger Token State Object to transfer the operation fee from Domain
Owner/CA’s Account State Object to the CertLedger Foundation’s Ac-
count State Object. 4) Domain State Object triggers an event notification
after addition of the new certificate.

Revocation of a TLS Certificate. A TLS certificate is revoked in Cer-
tLedger as follows (Algorithm 4): 1) A valid revocation request can only
be generated for non-expired and valid TLS certificates. In our model,
Domain Owners and CAs are assumed to be the only parties creating a
valid revocation request. The revocation request of a certificate comprises
a signature generated by either itself or by its issuing CA’s certificate. The
transaction comprising the revocation request is signed by the private key
of the related entity’s Account State Object. More concretely, the data in
a transaction trx is formed as

trx.M.data := (revocationMessage, SignSKCertTLS(H(revocationMessage)))

16

Algorithm 3 Adding a TLS Certificate through DomainStateObject
Input: trx, certCAList, certListURI := {(urii, < certTLSi,j , rsi,j >) : 1 ≤ i ≤

α, 1 ≤ j ≤ β}, certListHash := {(hashk, certTLSk, rsk) : 1 ≤ k ≤ γ}
; // urii is the i-th certificate subject alternative name,

certTLSi,j and rsi,j is the j-th certificate and revocation status

of the i-th uri resp., and rsk is the revocation status of the k-th
certificate certTLSk.

Output: ⊥ OR ((certTLS[subjectAlternativeName], certTLS,”valid”) ∈
certListURI AND (H(certTLS), certTLS,”valid”) ∈ certListHash)

if trx.M.receiver = addrDomainStateObject then
if verify(trx.signature, trx.M.PKSender) = true then

if (certTLS[validity.notBefore] < certTLS[validity.notAfter]) AND
certTLS[validity.notAfter] < tnow AND
certTLS[basicConstraints.CA] = false AND
certTLS[keyUsage] =′′ digitalSignature′′ AND
certTLS[extendedKeyUsage] =′′ serverAuthentication′′ AND
certTLS[subjectAlternativeName] is a valid URI AND
∃ certCAj ∈ CAList s.t. certTLS[AKI] = certCAj [SKI] for some j AND
certTLS[issuer] = certCAj [subject] AND
certTLS[validityPeriod] ∈ certCAj [validityPeriod] AND
verify(certTLS[signature], certCAj [publicKey]) = true // certTLS :=
trx.M.data

then
add (certTLS[subjectAlternativeName], certTLS,′′ valid′′) to
certListURI
add (H(certTLS), certTLS,′′ valid′′) to certListHash

end

end

end

17

where revocationMessage := (certTLS,′′revoked′′). 2) Smart contract
code in the Domain State Object validates the transaction if the user’s
balance is sufficient for invoking the transaction. If the revocation code
succeeds, then the state of the certificate is changed as “revoked” in the
Domain State Object. 3) Domain State Object triggers CertLedger Token
State Object to transfer the operation fee from Domain Owner/CA’s Ac-
count State Object to the CertLedger Foundation’s Account State Object.
4) Domain State Object triggers an event notification after revocation of
the certificate.

Algorithm 4 Revoking a TLS Certificate through DomainStateObject

Input: trx, certCAList, certListURI, certListHash // trx.M.data:=
(certTLSToBeRevoked, revocationMsg, signature)
where revocationMsg :=′′revoked′′ and signature :=
SignSKCertTLS(H(certTLSToBeRevoked, revocationMsg))

Output: ⊥ OR ((certTLS[subjectAlternativeName], certTLS,′′revoked′′) ∈
certListURI AND (H(certTLS), certTLS,′′revoked′′”) ∈ certListHash)

// certTLS:=trx.M.data.revocationMsg.certTLSToBeRevoked

if trx.M.receiver = addrDomainStateObject then
if verify(trx.signature, trx.M.PKSender) = true then

if verify(trx.M.data.signature, certTLS[PK]) = true AND
trx.M.data.revocationMsg =′′revoked′′ // the domain owner is

requesting the revocation

then
Change rs of certTLS in certListURI & certListHash as ′′revoked′′

else if ∃ certCAj ∈ CAList s.t. certTLS[AKI] = certCAj [SKI]
for some j AND verify(trx.M.data.signature, certCAj [PK]) = true
AND trx.M.data.revocationMsg =′′revoked′′ // the issuing CA is

requesting the revocation

then
Change rs of certTLS in certListURI & certListHash as ′′revoked′′

end

end

end

Transferring Token. Any entity having an Account State Object can
transfer token ownership. While entities transfer token to be able to trig-
ger some of the functionalities of CertLedger, they can also transfer token
for only trading purposes. Token ownership is transferred as follows: 1)
An entity creates a transaction comprising the amount of the token to be
transferred and the destination Account State Object address. 2) He signs
the transaction with the private key of his Account State Object. 3) The

18

transaction triggers the CertLedger Token State Object. 4) Smart contract
verifies the signature of the transaction, and whether the balance of the
entity is sufficient to make the transfer, and transfers the token from the
sender’s account to the recipient’s account.

Secure Communication through TLS. During a TLS handshake,
a CertLedger Client and the TLS server of a domain agree upon the
latest block number. The server sends the TLS certificate with its proof
(generated out of the State Tree3 for the agreed block) to the CertLedger
Client through a TLS extension. The CertLedger Client checks whether
the TLS certificate is issued for the domain, and is in its validity period.
It verifies the proof using the state tree hash which exists in the agreed
block header. It also checks whether the proof is indeed generated for the
certificate and the state of the certificate is “valid”. We highlight here
that CertLedger Clients do not require to make further validation of the
TLS certificate, since this process is already completed while appending
certificate to the blockchain.

Fig. 2: TLS Connection through CertLedger

3 It is a Modified Merkle Patricia Tree as in Ethereum where insertion, update and
lookup operations have the complexity O(logn) where n can denote the number of
state objects or TLS certificates [55].

19

Fraud Management

Fraud Detection. CertLedger does not prevent issuance of fake but valid
TLS certificates and require monitoring. However, CertLedger provides
infrastructure in order to detect fake TLS certificates and fraudulent revo-
cations instantly. Mechanisms such as event watchers can be implemented
which listen CertLedger events and inform a Domain Owner through sev-
eral means (e.g., e-mail, SMS) upon a change on the state of his TLS
certificates. The events in smart contract based blockchain architectures
can easily be watched through APIs such as web3 [56] for Ethereum.
Therefore, in CertLedger, monitoring process is effortless and the attack
duration can be minimized due to promptness.

Reporting a Fraud. The fraud reports must also be transparent, and
should not be submitted and processed in conventional mechanisms (e.g.,
email or personal applications). If the Domain Owner detects a fake but
valid TLS certificate for his domain in CertLedger, he reports the fraud
in CertLedger as follows: 1) Domain Owner generates a transaction com-
prising the fake but valid TLS certificate and a signature generated with
his genuine TLS certificate of the domain for proving his ownership to the
domain. 2) He signs the transaction with the private key of his Account
State Object and triggers the smart contract code of the Fraud Report
State Object. 3) In the smart contract code, the existence of the fake but
valid TLS certificate in CertLedger is verified, subject alternative names
in the genuine and the fake TLS certificates are cross-checked, and the
genuinity of the TLS certificate used for generating the signature in the
transaction is verified. 4) If the contract code succeeds, the fraud report
is added to the Fraud Report State Object. 5) The Fraud Report State
Object triggers the CertLedger Token State Object to transfer the oper-
ation fee from Domain Owner ’s Account State Object to the CertLedger
Board ’s Account State Object. 6) Fraud Report State Object triggers an
event notification after adding the new fraud report.

Pleading against a Fraud. CertLedger Board and the Trusted CAs contin-
ually monitor the Fraud Report State Object through event watchers. A
CA can plead in CertLedger, when it catches a notification triggered from
the Fraud Report State Object which comprises a fraud charge against it
as follows: 1) Upon emergence of a new fraud report, it immediately puts
all the necessary documents for the issuance of the TLS certificate to a
portal of the CertLedger Board. 2) Generates a transaction comprising
the hash of these documents signed with its CA certificate. 3) Signs the

20

transaction with the private key of his Account State Object and triggers
the smart contract code of the Fraud Report State Object. 4) Smart con-
tract code verifies whether the plea is signed by the issuer of the fake
TLS certificate and the CA certificate exists in the Trusted CAs State
Object. 5) The Fraud Report State Object triggers the CertLedger Token
State Object to transfer the operation fee from CA’s Account State Object
to the CertLedger Board ’s Account State Object. 6) Fraud Report State
Object triggers an event notification after adding the new fraud report.

Upon generation of the new block comprising this transaction, Cer-
tLedger Board makes a decision whether there exists a fraud. If the Cer-
tLedger Board is not convinced by the plead, then it creates a transaction
to change the status of this CA certificate as “untrusted”.

4 Security Analysis

In this section, we analyse the security of CertLedger. We start by proving
that it is resistant to split-world attacks and provides certificate trans-
parency simultaneously. Second, we analyse the security of the TLS hand-
shake by considering trusted CA certificate management, certificate revo-
cation and validation processes. The comparison of CertLedger with the
existing proposals from both security and privacy perspectives are given
in Table 1.

Table 1: Security comparison of Log Based Approaches to Certificate
Management

CT [20] AKI [42] ARPKI [43] DTKI [44] [57] CertLedger

Resilient to split-world/MITM attack No No No No No Yes

Provides revocation transparency No Yes Yes Yes Partlya Yes

Eliminates client certificate validation process No No No No Partlyb Yes

Eliminates trusted key management No No No No No Yes

Preserves client privacy No Yes Yes No Yes Yes

Require external auditing Yes Yes Yes Yes No No

Monitoring promptness No No No No c No d Yes

a Relies on CAs and the revocation process is not transparent
b Root certificate validation is still necessary
c Do not make monitoring due to assuming all master certificates are genuine
d Blockchain architecture is inadequate

Theorem 1. Assume that CertLedger is deployed on a blockchain which
utilizes PBFT as the consensus algorithm (i.e., at most n of out of 3n+1
consensus nodes are assumed to be corrupted). Then, CertLedger elimi-
nates the split-world attacks if the underlying blockchain securely realizes
the consensus.

21

Proof. Split-world attacks are only applicable if an attacker can present
different views of the logs to the targeted victims. A blockchain node (ei-
ther full or light node) has to query at least 2n+ 1 consensus nodes to be
confident for the genuineness of a block. Split-world attacks are only ap-
plicable to CertLedger, if at least n+1 consensus nodes are corrupted and
they all cooperate with each other to generate fake blocks and construct
a fake and hidden blockchain. These nodes can then convince targeted
victims and propagate the fake blocks. For a successful split-world at-
tack, they will also provide fake proofs to these victims. However, this
assumption contradicts with the underlying consensus algorithm (i.e., at
most n consensus nodes are corrupted).

If it is possible to identify the genuineness of a single block by a
(t, `)-threshold signature scheme between consensus nodes where at most
t nodes are assumed to be corrupted, then a fake block can be generated
either by at least t + 1 corrupted consensus nodes or by a vulnerability
in the underlying threshold signature scheme [48,49]. In either case, it
contradicts with the threshold assumption or the security of the underly-
ing signature scheme. Note that if less than t nodes are corrupted, fake
blocks (or block headers) cannot be generated and propagated due to the
underlying threshold signature scheme.

Theorem 2. Untrusted CA certificates can only be added to CertLedger
if either at least t+1 out of ` board members or n+1 consensus nodes out
of 3n (due to the underlying PBFT consensus algorithm) are corrupted.
Similarly, the status of a trusted CA certificate can be unfairly changed
as “untrusted” if either at least t + 1 out of ` board members or n + 1
consensus nodes are corrupted.

Proof. A fraudulent CA certificate can be added to CertLedger or the
status of a Trusted CA certificate can be unfairly changed as ’untrusted’,
if more than t board members are corrupted4. This contradicts with the
underlying (t, `) threshold signature scheme [48,49]. Similarly, if n + 1
consensus nodes are corrupted and cooperate with each other then they
could arbitrarily behave (e.g., generate fake blocks, fake board members).
However, this assumption also contradicts with the underlying consensus
algorithm where at most n consensus nodes are assumed to be corrupted.

4 In CertLedger, the requirements of being a Trusted CA will be defined in open
standards. Only the certificates of the CAs complying these standards is assumed
to be accepted as a Trusted CA certificate upon inspection of the CertLedger Board
Members.

22

Fraudulence and plea reports about the Trusted CAs are also man-
aged in CertLedger. Any Domain Owner who has detected a fake but
valid TLS certificate, can put all the fraudulence proofs to CertLedger.
The accused Trusted CA can also put his plead transactions to CertLedger
as well. Upon inspection of the proofs, CertLedger Board Members can
change the status of the Trusted CA as “untrusted”. In this respect, these
kinds of CertLedger operations can also be publicly verified which makes
it more transparent and reliable.

Property 1: The revocation process is completely conducted on Cer-
tLedger. CAs are only involved in revocation process if Domain Owners
cannot use the private keys of their certificates. Hence, it reduces depen-
dency to CAs and revocation status of all TLS certificates can be tracked
and verified transparently.

To change the status of a TLS certificate as “revoked”, a revocation
transaction comprising this certificate has to be included in a new block.
The security of the revocation process in CertLedger is analysed under
the following three scenarios:

The private key is not compromised. If a Domain Owner cannot use
the private key of his TLS certificate (e.g, forgotten password, malformed
private key), then he will not be able to use this certificate to secure his
service. Therefore, he has to use a new one for his domain. Since it has not
been compromised, the revocation of an unusable TLS certificate would
not also be necessary. To avoid unforeseen future incidents, the Domain
Owner may simply destroy the hard/soft token of the private key.

The private key is compromised and the Domain Owner is aware
of the compromise. If the Domain Owner can still use the private key
of his TLS certificate, he immediately creates a revocation transaction
without requiring the consent of the CA. On the other hand, if the Do-
main Owner cannot use his private key, then he would not be able to
create a revocation transaction. In this case, he will immediately request
it from the CA using conventional methods 5.

5 As mentioned in [27], it is difficult to measure revocation reasons, since Domain
Owners prefer to keep this information private. However, we foresee that this sce-
nario would rarely happen due to the difficulty of compromising private keys in
the hard tokens. Also, private keys in the soft tokens are backed up for recovery
purposes.

23

The private key is compromised but the Domain Owner is un-
aware of the compromise. In this case, an adversary can have the
following motivations: 1. To make impersonation/eavesdropping attack,
2. To interrupt the service of the domain. If the adversary has the first
motivation without being detected, he should not create a revocation
transaction. If his motivation is the latter, then he should create a revo-
cation transaction. However, the revocation of the compromised certifi-
cate would also be appreciated by the Domain Owner, since he would be
aware of the compromise, and immediately obtains a new certificate.

Property 2: Certificate validation is comprised of trusted path construc-
tion, validity checking, and privacy-preserving revocation status check-
ing phases. CertLedger Clients securely verify the certificates during TLS
handshake by eliminating the risks in these phases. Furthermore, privacy
of CertLedger Clients are completely preserved.

Trusted Path Construction. In the existing systems, TLS clients have
to store trusted CA certificates for trusted path construction. A TLS
client has its Certificate/Key Store(s) which can be multiple with different
contents depending on the applications and internet browsers. However,
management of Trusted CA certificates is a burden and one of the main
source of security compromise [58,59]. CertLedger Clients do not need
local Certificate/Key Stores anymore, since Trusted CA certificates are
also managed in CertLedger. The trustworthiness of these certificates are
analysed in Theorem 2.

Validity Checking. Improper implementations of TLS certificate val-
idation by software vendors is one of the top ten OWASP security vul-
nerabilities in 2017 [60]. Namely, it is a common issue with one internet
browser to be able to connect to a TLS protected domain while encoun-
tering connection problems with another browser due to differences in
certificate validation implementation. CertLedger eliminates this issue by
validating TLS certificates prior to appending to the ledger according to
the international standards stated in Section 3. A CertLedger Client re-
ceives the certificate with its Merkle state proof from the domain during
the TLS handshake. It verifies the proof using the state tree hash which
exists in the block headers, and checks whether the proof belongs to the
certificate and the certificate is in its validity period.

Privacy-Preserving Revocation Status Checking. CertLedger stores
and manages the revocation status of the TLS certificates, therefore it

24

eliminates the revocation services offered by CAs (CRL and OCSP), and
avoids certificate revocation checking problems due to non-existent, im-
proper or corrupted revocation services. A CertLedger Client receives the
revocation status of the certificate during the TLS handshake and verifies
it using the block headers. As the authenticity and the revocation status
of a certificate is verified without requiring any further network connec-
tion during the TLS handshake, privacy of CertLedger Clients are fully
preserved.

5 Performance of CertLedger

5.1 Storage

According to Verisign domain name industry brief, there are about 3.3×
108 registered domain names at the end of 2017 [61], and approximately
half of them are using TLS certificates [62]. For calculations, we use the
following facts. First, all TLS certificates will be based on elliptic curve
cryptography (ECC). These certificates are expected to be dominantly
used across the internet due to smaller key sizes, higher performance,
and increased security. Second, the size of a TLS certificate which uses
256 bits of EC public key, signed with ECDSA signature algorithm, is
approximately 29 bytes. Third, the maximum life time period of TLS
certificates is specified as two years (825 days) in a recent CAB Forum
Ballot [63].

The size of the underlying blockchain of CertLedger depends on its
block size and the frequency of adding new blocks. Block size increases
with respect to the number of comprised transactions and the target
block time depends on the selected consensus algorithm of the underlying
blockchain (e.g., the target block time in Bitcoin PoW consensus algo-
rithm is a trade-off between the propagation time of the new blocks and
the amount of work wasted due to chain splits, and the target block time
in the Ouroboros algorithm is a simple parameter that can be changed
at any time according to the network efficiency [64,38]). While making
the calculations, for illustration purposes we select the target block time
as 1 minute because 1) the required storage capacity of the CertLedger
Clients will increase with shorter block times where some of them have
storage constraints and cannot be upgraded easily. 2) Selected block time
should be short enough to discourage an adversary to make an attack.

25

Majority of transactions are expected to be about adding new cer-
tificates, therefore we ignore other transactions within CertLedger6. In
this respect, storage space requirements of a Full Node and a CertLedger
Client are detailed as follows:

Full Nodes. The number of transactions in a block is

BlockTotalTrx := TotalCert/AnnualGenBlock

where TotalCert and AnnualGenBlock denote the total number of TLS
certificates and annually generated blocks, respectively. Similarly, the size
of a block is

|Block| := |Header|+ |trx| ×BlockTotalTrx.

The size of a typical transaction for adding a TLS certificate is

|trx| := |Msg|+ |Sgn|

where |Msg| := |PKSender| + |Receiver| + |Data|.
If we assume that the creation of TLS certificates with 1 year average

lifetime is dispersed homogeneously through out the year and the block
time is 1 min, then the number of blocks generated in a year would be
5 256 000 (AnnualGenBlock := 60× 24× 365).

The blockchain size is then calculated as

|Blockchain| := AnnualGenBlock × |Block|

Using the EC certificates, the average size of trx is

660bytes(≈ 64byte + 20byte + 29byte + 64byte),

and the average size of Block is

128KB(≈ 5087byte + 660byte× (1.65× 108/5 256 000).

Consequently, the annual average size of Blockchain is 512 GB (5 256 000×
128KB). Considering the fact that the price of a 1 GB disk storage is
approximately 0.02 USD [65], the cost of storing CertLedger transactions
for a full node is only about $10,24.

6 Revocations are necessary in case of key loss or compromise, and the expected
number of these transactions are very few. Moreover, unnecessary revocation trans-
actions are not expected due to the cost of adding new TLS certificates. Therefore,
revocation transactions are ignored in the calculations.

7 Block header size of Ethereum[35].

26

CertLedger Clients. They do not store the blocks but only the headers,
and their required disk space is directly proportional with the stored
number of blocks. As Satoshi describes in [34], the required disk space to
store block headers in Bitcoin for 10 minutes block interval time is 4.2
MB (6× 24× 365× 80 byte) per year. A similar calculation for Ethereum
with the 1 minute block internal time results in 128 MB (60× 24× 365×
508) of disk space per year. We expect the header size of the underlying
blockchain of CertLedger will be similar to Ethereum. In this respect, for
a two years of period, CertLedger Clients will require approximately 256
MB of disk space for all TLS protected domains8. However, this is the
maximum amount of data to be stored by the CertLedger Clients, we
expect that it is sufficient to store the block headers for a much shorter
period of time according to their security requirements.

5.2 TLS Communication

We assume that most of the CertLedger Clients are integrated into the
internet browsers (or other applications using TLS) and run as a daemon.
They receive only the block headers from the blockchain network when
the browsers are up and running. During a TLS handshake, a CertLedger
Client and a domain (the TLS server) first agree upon the latest block
number. The clients and the TLS server might have different upto date
blocks due to network latency. Therefore, a client needs to tolerate upto
certain number of old block and accept it as valid. More concretely, as-
sume that the client has nth and the TLS server has (n− i)th blocks. If
the client tolerates upto j blocks then we must have j > i for a successful
handshake. CertLedger Client users can configure the level of j accord-
ing to their security requirements. After a successful agreement, domain
sends the Domain State Object of the TLS certificate, and its Merkle
proofs generated out of the state tree to the CertLedger Client in a TLS
extension. If the domain does not have a Merkle state proof for its TLS
certificate for the agreed block then the TLS handshake aborts.

The size of the data stored in this extension is log n× state object size
+ log m × TLS certificate size where n is the number of state objects

8 There are also other studies proposed for efficient light node clients in recent studies
such as NIPoPoWs by IOHK [66] and FlyClient by Luu et al. [67]. For instance,
FlyClient proposes, not only storing previous blocks hash in block headers, but also
the root of a Merkle tree which commits to all blocks. Therefore, a logarithmic sized
proof will be enough to verify whether a specific block is a part of the blockchain.
Consequently, it is sufficient for the light nodes to store the head of the chain. They
only require another Merkle proof to verify whether a transaction is included in the
block.

27

in the state tree and m is the number of certificates in the data storage
tree9. We assume that there is a single Account State Object for each TLS
protected domain, and therefore, the number of state objects is equal to
the TLS protected domains [62]. Consequently, the total communication
overhead of a TLS handshake is (log2 1.65 ×108) × 16 byte10+ (log2 1.65
×108) × 29 byte ≈ 8 KB.

5.3 Scalability of the Blockchain

According to [68], in the Bitcoin network, the mean time for a node to
see a block is 12.6 secs, and 95% of the nodes see the block within 40
secs. Moreover, it also states that for the blocks whose size is larger than
20 KB, the propagation duration increases 80 ms for each additional KB.
While bitcoin block size is 1 MB, CertLedger has only 128 KB in case of 1
min block time. Therefore, the block propagation duration will be strictly
less than 12.6 seconds in the underlying blockchain network of CertLedger.
Hence, most of the peers of the blockchain network of CertLedger receive
the new block header within block time. Consequently, CertLedger Clients
can also reach the most upto-date state of CertLedger blockchain within
block time.

6 Related Work

In this section, we briefly describe the previous attempts for solving the
issues described in Section 1 in a chronological order, and point out their
potential weaknesses.

6.1 Sovereign Key (SK) Cryptography

SK has been proposed by Eckersley in order to prevent MITM and server
impersonation attacks against domains protected by TLS certificates [69].
In SK, domains generate a sovereign asymmetric key pair for a set of
selected services such as https, smtps, and imaps and publish public part
of the key in a TimeLine Server (T S) along with their domain name. T S
stores entries in read and append only data structures. During the TLS
handshake, domains generate a fake certificate by their sovereign key and
append to the certificate chain. If the clients cannot verify the signature

9 The key/value pairs stored in a state object is maintained in this Merkle tree. There
is a separate storage tree for each state object. The root of this tree is inserted into
the state objects maintained in the state tree.

10 Approximate size of an Account State Object in Ethereum.

28

on this fake certificate with the associated public key in T S, they refuse
to make the connection to the service. However, T S does not return any
verifiable proof to domains whether the sovereign key is appended to the
log [44]. Furthermore, another strong assumption of SK is that clients
have to trust not only the T S but also their Mirrors [44].

6.2 Certificate Issuance and Revocation Transparency
(CIRT)

CIRT focuses on extending CT to provide additional proofs so that
CAs can show their honest behavior [70]. Therefore, CIRT maintains
two Merkle trees as public logs which are ordered chronologically and
lexicographically. In addition to CT ’s proofs, CIRT provides proofs for
whether a certificate is marked as revoked in the log, whether a certificate
is current(not replaced and not revoked) and finally whether a certificate
is absent(has never been issued). However, CIRT is also vulnerable to the
split-world attacks [23] as CT.

6.3 Accountable Key Infrastructure (AKI)

AKI proposes a new PKI architecture for reducing the level of trust to the
CAs where all the operations defined in a conventional PKI are performed
with participation of more than one entity [42]. All entities either monitor
or report the operations performed by other entities in order to distribute
the accountability among the participating entities. Certification Agency
(CA), Integrity Log Server (ILS) Operators (ILSO), and Validators are
the new entities introduced by AKI. CAs still issue certificates to domains
but they are not the absolute authority for certificate management any-
more. ILSOs store not only the certificates, but also their registration,
update, and revocation information lexicographically according to do-
main names. Validators monitor ILS operations and check whether they
operate as expected. Domain owners can select the CAs and the ILSOs
they trust, define the minimum number of recommended CA signatures
on a certificate and the rules for certificate management. They register
the certificate to one or more ILS s. Domains send their certificates and
the verification information received from the ILS s to the clients. Clients
verify the certificates using preinstalled trusted CA certificates and the
ILS public keys.

AKI makes a strong assumption that the trusted entities (CAs, ILS s,
and Validators) do not collude with each other which is unlikely in case of
a strong adversary who is willing to intercept the traffic. A compromised

29

CA and an ILS is sufficient to generate a fake certificate in AKI. The
adversary gets proofs from the compromised entities in order to send to
the TLS client. Taking this fact into consideration, it is also possible to
make a split-world attack to the AKI. Unfortunately, there is no way of
detecting this attack in AKI. Secondly, certificate revocation is a weak
point in AKI since the domain owner can request the certificate revo-
cation from an ILS without requiring confirmation of any other parties.
Namely, an adversary, which has compromised the domain private key,
can request the revocation of the corresponding certificate without fur-
ther verification. Finally, clients have to trust not only the CAs and the
ILS s but also the Validators in AKI which is a burden for them in terms
of trusted entity management.

6.4 Attack Resilient PKI (ARPKI)

ARPKI is an improvement of AKI, which offers a security guarantee
against adversaries which can compromise even n − 1 trusted entities
[43]. For generating an ARPKI certificate (called ARCert), at least two
CAs and one ILS are required. For the initial registration process, a do-
main owner selects the trusted entities, at minimum two CAs and one
ILS (i.e., CA1, CA2, and ILS 1). The domain owner designates one of the
CAs (e.g., CA1) for validating CA2 and ILS 1 operations and serving as
a messenger between these entities and himself. ILS 1 takes the respon-
sibility for ensuring synchronization of ARCert among majority of ILS s.
Domains send the cryptographic proof signed by three trusted entities
along with the ARCert to the clients. Upon verification of the proofs,
clients connect to the domain.

We highlight that ARPKI is also subject to split-world attack if the
entities (which are required to generate an ARPKI certificate) collude
together. We also note that there is also no detection mechanism for
this attack in ARPKI as AKI. Finally, designating an ILS for making
synchronization with other ILS s may lead to a single point of failure in
ARPKI.

6.5 NameCoin and CertCoin

NameCoin, which is a cryptocurrency forked from Bitcoin [34], is designed
to act as a decentralized DNS for “.bit” adresses [71]. In NameCoin, self-
signed TLS certificate of a domain can be added to DNS addresses as
auxiliary information. TLS clients can then authenticate the domains
during TLS handshake using this certificate.

30

Decentralized Public Key Infrastructure with Identity Retention (called
Certcoin proposes a decentralized PKI architecture based on NameCoin
where no CA exists [72]. In Certcoin, the basic PKI operations are defined
as registering an identity with a public key, looking up, verifying, and re-
voking a public key for a given identity. Identities register an online and an
offline key pair to themselves. Online key is used for domain authentica-
tion whereas offline key is used to revoke old online keys and to sign new
online keys. However, in both proposals (i.e., Namecoin and Certcoin),
there is no identity verification. Namely, whoever first claims the owner-
ship of an identity owns it. Consequently, in the real world, identities (in
particular TLS clients) can easily be deceived. Secondly, they have also no
adequate solution in case both online and offline keys are compromised.
Hence, the identity owners cannot reclaim their identities securely which
can lead to unusable identities. Thirdly, since both proposals are using
the Bitcoin blockchain architecture, verifying the owner of a public key,
and looking up the public key of an identity is extremely inefficient. In
order to solve these issues, Certcoin proposes extra entities which are also
maintained in the blockchain such as accumulators and distributed hash
tables. Since these entities are not a part of the blockchain architecture,
they can cause new complexities in terms of maintenance, authentication,
and verification.

6.6 Distributed Transparent Key Infrastructure (DTKI)

DTKI proposes a public log based certificate management architecture
which minimizes oligopoly, prevents use of fake certificates, and claims
being secure even if all service providers collude all together [44]. Certifi-
cate Log Maintainer (CLM) and Mapping Log Maintainer (MLM) are
the two new entities introduced by DTKI. CLMs keep all valid, revoked
and expired certificates for a set of domains and provide proofs for exis-
tence or absence of them.MLM maintains the association between a set
of domain names and the CLMs which are maintaining the logs for them.
Mirrors maintain a full copy of the data stored by both the CLMs and
theMLM. CAs make identity checks and issue certificates, but they are
not the sole entity for providing trust to connect to a domain. Inspiring
“sovereign key” concept in SK, a domain owns two types of certificates,
TLS certificate and a master certificate which is used for requesting a
new TLS certificate from the CA, and registering it to the CLM. Users
or in particular browsers first query the MLM in order to find the cor-
rect CLM for a specific domain. To make a connection decision, first the

31

proofs received from theMLM is verified, then CLM is queried in order
to retrieve proofs for the domain’s TLS certificate.

DTKI assumes all master certificates are genuine, and fake master cer-
tificate issuance does not likely occur since CAs are running businesses
which cannot afford loss of reputation. However, this is not a valid ar-
gument since most of the fake certificates are generated due to lack of
adequate security controls or processes. Namely, if the CA and the CLM
are both compromised, DTKI would not be able to prevent fake Master
and TLS certificate issuance. From this perspective, the adversary who
is controlling CLM and capable of generating fake but valid Master and
TLS certificates can make split-world attack to the targeted victims. This
attack unfortunately cannot be detected because there is no monitoring
process in DTKI due to the assumption of genuine master certificates.

6.7 Blockchain-based Certificate and Revocation
Transparency

Very recently in FC’18, Wang et al. proposed a blockchain-based certifi-
cate and revocation transparency to store the TLS certificates and their
revocation status (i.e., CRL and OCSP) [57]. Briefly in this scheme, web
servers publish their TLS certificates to the blockchain using their pub-
lishing key pairs which are used to sign the transactions. Note that these
publishing key pairs are different from the key pair in the certificate and
are initially certified by a certain set of web servers which already exist
in the blockchain. In this scheme, the transactions have a validity period,
therefore TLS certificates and their revocation status are added to the
blockchain periodically during their lifetime. During a TLS handshake, a
web server sends a certificate transaction and its Merkle audit path to a
TLS client which verifies its validity through its locally stored synchro-
nized block headers.

This proposal has also the following drawbacks. 1) It has an unreliable
basis for providing the trustworthiness of publishing key pairs. Namely, a
strong adversary, who can get fake but valid TLS certificates from cor-
rupted CAs, can create some bogus domains (i.e., web servers) in advance
and can use them to generate a valid signature of a publishing key pair
transaction. This problem occurs due to the trust to the web servers.
The authors propose to solve this issue by having more publicly-trusted
CAs to invalidate the interfering transactions. However, this introduces
a trust level issue which is not explicitly clarified. 2) For the revocation
transparency, it relies on the CAs to publish the revocation data of the

32

TLS certificates on the blockchain. However, the compromised or mal-
functioning CAs may not issue CRL or give OCSP response to the client
in the specified time. 3) It is subject to MITM attacks where an adver-
sary can convince a client with an unexpired transaction of a revoked TLS
certificate. More concretely, during a TLS handshake, web servers send a
certificate transaction to a TLS client to validate the TLS certificate. The
TLS client accepts this transaction if it is not expired and is added to a
confirmed block. However, a revoked or updated TLS certificate can also
have an unexpired certificate transaction in the blockchain. Therefore,
once an adversary sends this unexpired certificate transaction with its
Merkle proofs to a TLS client, it is accepted during the TLS handshake.
The TLS clients cannot detect the final state of the certificate since the
clients only check the existence of the transaction in the corresponding
block. 4) The proposal is also inefficient in terms of storage costs due
to following design considerations. a) A TLS certificate is added to the
blockchain periodically during its lifetime, b) A CRL can be added to the
blockchain for each revoked certificate (i.e., the number of CRL insertion
to the blockchain is equal to the number of revoked certificates), c) Pub-
lishing key pairs are added to the blockchain periodically d) It has large
size headers which comprise DNS names existing in the transactions of
the block.

7 Comparison

We now compare CertLedger with CT and the other proposals described
in Section 6 according to following criterias which is tabulated in Table
2.

Log Proofs. CertLedger provides proof for the existence and revocation
status for all the TLS certificates as DTKI. CT provides proof only for
the existence of a certificate in the log whereas AKI and ARPKI pro-
vide proofs only for the valid TLS certificates which are not revoked and
expired. [57] provides existence proof for all of the TLS certificates, but
may not provide a revocation proof if a CA does not issue correct CRL
or gives OCSP service.

TLS Handshake Performance. In CT, the proofs are sent to the
clients during TLS handshake. However, the received proof is not enough
to make a successful TLS handshake since TLS clients have to check the
revocation status of the TLS certificate by conventional methods like CRL
or OCSP which can be cumbersome due to big CRL files and latency or

33

Table 2: Comparison of Log Based Approaches to Certificate Management
CT [20] AKI[42] ARPKI[43] DTKI[44] [57] CertLedger

External Dependency During
TLS Handshake

Yes Yes Yesa Yes No No

Factors Effecting
TLS Handshake Performance

Certificate and proof
verification,
Revocation checking,
Auditing (optional)

Certificate and proof
verification,
Occasional checks
for the ILS root
hash with the
Validators

Certificate and proof
verification

Certificate and proof
verification,
Connection to
MLM and CLM

Blockchain update,
Verification of the
transaction and
the proof

Data transmission
overhead and
verification of the
Merkle audit proof

Existence of Logs with
Different Contents

Yes Yes Yes No No No

Necessity of External
Auditing

Yes Yes Yes Yes No No

Necessity of External
Monitoring

Yes Yes Yes No b Yes Yesc

Does TLS Clients Require
to Store Trusted Keys
or Certificates of Logs ?

Yes Yes Yes Yes Yes No

TLS Clients Requires to Store
a copy of the Log

No No No No Partly (block headers)
Partly (few block

headers)

a Clients have to make standard certificate validation which may require external resources
b Makes an unrealistic assumption that fake Master certificates cannot be issued, apparently not relevant for strong adversaries
c Monitoring is efficient, it is possible to be aware of the TLS certificate state change promptly

interruption in OCSP services. Moreover, if the TLS clients make a prior
audit to the logs to check the existence of the proofs, handshake dura-
tion increases. In DTKI, TLS clients have to make network connections
to both MLM and the CLM to request the proofs. In [57], web servers
send the certificate transactions and the Merkle proofs in TLS exten-
sions to the browsers, and the browsers validate the transactions using
the block headers. In addition, browsers with high security concerns may
also spend time for revocation checking with conventional methods. Cer-
tLedger Clients receive approximately 8 KB of extra data to verify the
final state of the TLS certificate from the domain during the TLS hand-
shake. They do not to make any further network connections.

Independent Logs. In CT, AKI and ARPKI, there can be independent
logs which comprise different sets of TLS certificates. If a TLS client is
trusting to a log and the visited domain’s TLS certificate has not been
appended to the log, then the TLS connection will be unsuccessful. For
the CAs and the domain owners, it is impossible to know the TLS clients’
set of trusted logs. Hence, ideally, CAs have to append their TLS certifi-
cates to all of the independent logs to eliminate the unsuccessful TLS
connections. But the set of logs is not fixed and new logs can arise any-
time. Appending TLS certificates to a changing set of logs is a burden for
the CAs. Moreover, necessity of monitoring and auditing different logs is
another overhead which can also lead to security compromise. However, in
CertLedger, all of the TLS certificates are appended to one single log with
multiple copies, and CertLedger Clients do not need a trusted key for the
verification of the log proofs. Only this single log have to be monitored.

34

Log Availability. In CT, logs have to be audited and monitored contin-
ually for consistency and finding fake TLS certificates. In A(RP)KI, after
each ILS update or a time out period, domain owners need to download
proofs from the ILS. In DTKI, clients have to request proofs from the
MLM, CLM or their mirrors during each TLS connection. Due to these
reasons, all of these proposals require the logs to be permanently avail-
able which may lead to a single point of failure. However, CertLedger is
maintained in a P2P network, and a CertLedger Client can receive the
block headers from any node of the blockchain network. Therefore it is
not dependent to a single or a set of log server.

Auditing and Monitoring. CT requires to be audited by external au-
ditors such as TLS clients and monitored by the CAs and the domain
owners. In AKI, there are Validators which check the consistency of ILS s
and whether the TLS certificates are updated according to certificate
policies. In ARPKI, Validators are optional and their role is distributed
to other CAs or ILS s. DTKI relies on TLS clients for auditing, but do
not require monitoring due to existence of master certificates. Expira-
tion of master certificates and issuance of fake master certificates by the
compromised CAs are open issues in DTKI both related to monitoring.
[57] does not require external auditing, however it does not propose an
efficient monitoring architecture. CertLedger do not require external au-
diting for checking its cryptographic consistency and behaviour since new
blocks are verified and appended to the log only upon the consensus of
the underlying blockchain network. Moreover, it can be monitored easily
and promptly.

Key/Certificate Store Management. In CT, TLS clients have to
store Trusted CA certificates and the public keys of the logs to validate
the TLS certificates and the SCT s. Although, AKI states that installing
the trusted CAs and ILS s certificates and public keys to TLS clients will
be enough to make a successful TLS connection, TLS clients also receive
signed validator information from the domains during the TLS handshake.
In order to validate this information, clients must also trust the Valida-
tors’ public keys. In ARPKI, TLS clients have to store the trusted CAs
and ILS s certificates to validate the proofs received from the domain.
In DTKI, TLS clients require only the MLM public key to verify the
queried proofs during a TLS connection. [57] clients continue to make the
conventional trusted key/certificate store management. However, Trusted
CA certificates are stored and managed in CertLedger. While adding TLS
certificates to CertLedger, they are verified whether they are issued by

35

one of the Trusted CAs. Since CertLedger Clients do not make further
verification, but only check the revocation status of the TLS certificate
during TLS handshake, they do not require to store and manage any
trusted key or certificate.

Privacy. In CT, TLS clients audit the log to ensure its consistency by
requesting Merkle Audit Proof s for the SCT they have received from
the domains during the TLS connection. Moreover, they can use OCSP
to check the revocation status of a TLS certificate. These processes en-
ables logs and the OCSP servers, to trace the browsing history of the
TLS clients. In AKI and ARPKI, domains send the proofs to the TLS
clients, thus their privacy is preserved. In DTKI, TLS clients both query
MLM and the CLM to receive proofs for the targeted domain during
TLS handshake. It is proposed that, to preserve privacy, the domains can
act as a proxy to make these queries. However, this proposal will increase
the network latency even more in DTKI. TLS clients in [57] continue to
make conventional revocation checking, hence their browsing history can
be traced by the OCSP servers. In CertLedger, as discussed in Section 4,
privacy of the clients are fully preserved since the Merkle state proofs are
provided by Domain Owners.

8 Conclusion and Future Work

There have been serious security incidents due to corrupted CAs which
issued fake but valid TLS certificates. To make CAs more transparent
and to verify their operations, public logs are proposed in recent studies
such as CT, AKI, ARPKI and DTKI. CT is proposed by Google which
has almost half of the browser market share. Google made CT mandatory
in Chrome for all issued TLS certificates after April 2018 [73]. However,
CT and the other proposals are subject to split-world attacks. In this
paper, we propose a new PKI model with certificate transparency based
on blockchain, what we called CertLedger. In CertLedger all TLS clients
can verify the final state of the log, which makes split-world attack im-
possible. Moreover, CertLedger also provides transparency in certificate
revocation and trusted CA management processes. A future work would
be implementing CertLedger in an existing blockchain framework and
make a detailed performance and usability analysis. Moreover, in order
to eliminate the CertLedger Board Members, introducing an automated
mechanism running without human intervention will increase the trans-
parency of the trusted CA management.

36

References

1. Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White
paper, Symantec Corp., Security Response, 5(6):29, 2011.

2. Phillip. Comodo ssl affiliate the recent ra compromise, March 2011. https://

blog.comodo.com/other/the-recent-ra-compromise/.

3. Diginotar, March 2011. https://en.wikipedia.org/wiki/DigiNotar.

4. Mozilla asked to revoke trustwave CA for allowing ssl eaves-
dropping, February 2012. http://www.eweek.com/security/

mozilla-asked-to-revoke-trustwave-ca-for-allowing-ssl-eavesdropping.

5. Turktrust CA problems, January 2013. https://securelist.com/

turktrust-ca-problems-21/34893/.

6. Maintaining digital certificate security, March 2015. https://security.

googleblog.com/2015/03/maintaining-digital-certificate-security.html.

7. Superfish vulnerability, March 2015. https://support.lenovo.com/tr/en/

product_security/superfish.

8. Improved digital certificate security, September 2015. https://security.

googleblog.com/2015/09/improved-digital-certificate-security.html.

9. Symantec to acquire blue coat and define the future of cybersecurity,
June 2016. https://www.symantec.com/about/newsroom/press-releases/2016/
symantec_0612_01.

10. A. Langley. Public-key pinning. imperialviolet, May 2011.

11. M. Marlinspike and T. Perrin. Trust assertions for certificate keys (tack). internet
draft, 2012. https://tools.ietf.org/html/draft-perrin-tls-tack-00.

12. Dan Wendlandt, David G. Andersen, and Adrian Perrig. Perspectives: Improving
ssh-style host authentication with multi-path probing. In USENIX 2008 Annual
Technical Conference, ATC’08, pages 321–334, Berkeley, CA, USA, 2008. USENIX
Association.

13. M. Alicherry and A. D. Keromytis. Doublecheck: Multi-path verification against
man-in-the-middle attacks. In 2009 IEEE Symposium on Computers and Commu-
nications, pages 557–563, July 2009.

14. EFFSSL. The EFF SSL observatory. https://www.eff.org/observatory.

15. P. Eckersley and J. Burns. Is the SSLiverse a safe place? chaos communication
congress., 2010. https://www.eff.org/files/ccc2010.pdf.

16. Certificate patrol. http://patrol.psyced.org.

17. Christopher Soghoian and Sid Stamm. Certified Lies: Detecting and Defeating Gov-
ernment Interception Attacks against SSL (Short Paper), pages 250–259. Springer
Berlin Heidelberg, 2012.

18. Ronald L. Rivest. Can we eliminate certificate revocation lists?, pages 178–183.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

19. A. Langley. Revocation checking and chrome’s crl, 2012. https://www.

imperialviolet.org/2012/02/05/crlsets.html.

20. B. Laurie, A. Langley, and E. Kasper. Certificate transparency. RFC 6962 (exper-
imental)., 2013.

21. Scott A Crosby and Dan S Wallach. Efficient data structures for tamper-evident
logging. In USENIX Security Symposium, pages 317–334, 2009.

22. David Mazieres and Dennis Shasha. Building secure file systems out of byzantine
storage. In Proceedings of the twenty-first annual symposium on Principles of
distributed computing, pages 108–117. ACM, 2002.

https://blog.comodo.com/other/the-recent-ra-compromise/
https://blog.comodo.com/other/the-recent-ra-compromise/
https://en.wikipedia.org/wiki/DigiNotar
http://www.eweek.com/security/mozilla-asked-to-revoke-trustwave-ca-for-allowing- ssl-eavesdropping
http://www.eweek.com/security/mozilla-asked-to-revoke-trustwave-ca-for-allowing- ssl-eavesdropping
https://securelist.com/turktrust-ca-problems-21/34893/
https://securelist.com/turktrust-ca-problems-21/34893/
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://support.lenovo.com/tr/en/product_security/superfish
https://support.lenovo.com/tr/en/product_security/superfish
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
https://www.symantec.com/about/newsroom/press-releases/2016/symantec_0612_01
https://www.symantec.com/about/newsroom/press-releases/2016/symantec_0612_01
https://tools.ietf.org/html/draft-perrin-tls-tack-00
https://www.eff.org/observatory.
https://www.eff.org/files/ccc2010.pdf
 http://patrol.psyced.org.
https://www.imperialviolet.org/2012/02/05/crlsets.html.
https://www.imperialviolet.org/2012/02/05/crlsets.html.

37

23. Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben Laurie, and Eran Messeri.
Efficient gossip protocols for verifying the consistency of certificate logs. In Com-
munications and Network Security (CNS), 2015 IEEE Conference on, pages 415–
423. IEEE, 2015.

24. L. Nordberg, D. Gillmor, and T. Ritter. Gossiping in CT, 2018.

25. B. Hof. STH Cross Logging, 2017.

26. E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,
I. Khoffi, and B. Ford. Keeping authorities ”honest or bust” with decentralized
witness cosigning. In 2016 IEEE Symposium on Security and Privacy (SP), pages
526–545, May 2016.

27. Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
Alan Mislove, Aaron Schulman, and Christo Wilson. An end-to-end measurement
of certificate revocation in the web’s PKI. In Proceedings of the 2015 Internet
Measurement Conference, pages 183–196. ACM, 2015.

28. NSA impersonated Google in MitM attacks. https://www.helpnetsecurity.com/
2013/09/16/nsa-impersonated-google-in-mitm-attacks/.

29. Miguel Castro, Barbara Liskov, et al. Practical Byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

30. ”Hyperledger project,” 2015. [Online]. Available: https://www.hyperledger.

org/.

31. NEO white paper. https://docs.neo.org/en-us/.

32. NEO - An Open Network For Smart Economy. https://neo.org.

33. Ontology technology whitepaper. https://ont.io/wp/

Ontology-technology-white-paper-EN.pdf.

34. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

35. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1–32, 2014.

36. David Schwartz, Noah Youngs, Arthur Britto, et al. The Ripple Protocol Consen-
sus Algorithm. Ripple Labs Inc White Paper, 5, 2014.

37. Ripple. https://ripple.com.

38. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Advances
in Cryptology – CRYPTO 2017, pages 357–388. Springer International Publishing,
2017.

39. Cardano. https://www.cardano.org/en/home/.

40. Sunny King and Scott Nadal. PPCOIN: Peer-to-peer crypto-currency with proof-
of-stake. self-published paper, August, 19, 2012.

41. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. ZeroCash: Decentralized anonymous payments
from Bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on, pages
459–474. IEEE, 2014.

42. Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and Vir-
gil Gligor. Accountable Key Infrastructure (AKI): A Proposal for a Public-Key
Validation Infrastructure. In Proceedings of the 22nd international conference on
World Wide Web, pages 679–690, New York, NY, 2013. ACM.

43. David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and
Pawel Szalachowski. ARPKI: Attack resilient public-key infrastructure. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, 2014.

https://www.helpnetsecurity.com/2013/09/16/nsa-impersonated-google-in-mitm-attacks/
https://www.helpnetsecurity.com/2013/09/16/nsa-impersonated-google-in-mitm-attacks/
https://www.hyperledger.org/
https://www.hyperledger.org/
https://docs.neo.org/en-us/.
https://neo.org.
https://ont.io/wp/Ontology-technology-white-paper-EN.pdf
https://ont.io/wp/Ontology-technology-white-paper-EN.pdf
https://ripple.com
https://www.cardano.org/en/home/

38

44. Jiangshan Yu, Vincent Cheval, and Mark Ryan. DTKI: A new formalized PKI
with verifiable trusted parties. The Computer Journal, 59(11):1695–1713, 2016.

45. Karl Wüst and Arthur Gervais. Do you need a blockchain? IACR Cryptology
ePrint Archive, 2017:375, 2017.

46. Smart contracts: Building blocks for digital markets. http://www.fon.hum.uva.

nl.

47. Merkle Patricia Tree. https://github.com/ethereum/wiki/wiki/

Patricia-Tree.
48. S. Goldfeder D. Boneh, R. Gennaro. Using level-1 homomorphic encryption to

improve threshold dsa signatures for bitcoin wallet security, 2017. http://www.

cs.haifa.ac.il/~orrd/LC17/paper72.pdf[online]Available/.
49. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with

fast trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 1179–1194. ACM, 2018.

50. RFC 5280: Internet X.509 public key infrastructure: certificate and CRL profile.
51. Institute of electrical and electronics engineers-IEEE. https://www.ieee.org/

index.html.
52. International Organization for Standardization. https://www.iso.org/home.

html.
53. Internet Engineering Task Force. https://www.ietf.org.
54. European Telecommunications Standards Institute -ETSI. https://www.etsi.

org.
55. Patricia Trie. https://github.com/ethereum/wiki/wiki/Patricia-Tree.
56. web3.js - ethereum javascript api, 2006. https://github.com/ethereum/web3.js/

/.
57. Ze Wang, Jingqiang Lin, Quanwei Cai, Qiongxiao Wang, Jiwu Jing, and Daren Zha.

Blockchain-based certificate transparency and revocation transparency. In Finan-
cial Cryptography and Data Security. Springer International Publishing, 2018.

58. Patrick Wardle. Ay MaMi. https://objective-see.com/blog/blog_0x26.html.
59. Symantec. Marketscore proxyserver certificate. https://www.symantec.com/

security_response/attacksignatures/detail.jsp?asid=20804.
60. CWE-295: Improper certificate validation. https://cwe.mitre.org/data/

definitions/295.html.
61. The Verisign Domain Name Industry Brief q4 2017. https://www.verisign.com/

en_US/domain-names/dnib/index.xhtml.

62. Half the web is now encrypted. https://www.wired.com/2017/01/

half-web-now-encrypted-makes-everyone-safer/.
63. Certificate lifetimes ballot. https://cabforum.org/2017/03/17/

ballot-193-825-day-certificate-lifetimes/.

64. Bitcoin wiki. https://en.bitcoin.it/wiki/Help:FAQ#Why_do_I_have_to_wait_

10_minutes_before_I_can_spend_money_I_received.3F.
65. HDD Disk Prices. https://diskprices.com.
66. Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of

proof-of-work, 2017.
67. Zamani M. Luu L., Bunz B. Flyclient:Super Light Client For CryptoCurrencies.

https://scalingbitcoin.org/stanford2017/Day1/flyclientscalingbitcoin.

pptx.pdf.
68. Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin

network. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International
Conference on, pages 1–10. IEEE, 2013.

http://www.fon.hum.uva.nl.
http://www.fon.hum.uva.nl.
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree
http://www.cs.haifa.ac.il/~orrd/LC17/paper72.pdf [online] Available/
http://www.cs.haifa.ac.il/~orrd/LC17/paper72.pdf [online] Available/
https://www.ieee.org/index.html
https://www.ieee.org/index.html
https://www.iso.org/home.html
https://www.iso.org/home.html
https://www.ietf.org
https://www.etsi.org
https://www.etsi.org
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/web3.js//
https://github.com/ethereum/web3.js//
https://objective-see.com/blog/blog_0x26.html
https://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=20804
https://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=20804
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/295.html
 https://www.verisign.com/en_US/domain-names/dnib/index.xhtml.
 https://www.verisign.com/en_US/domain-names/dnib/index.xhtml.
 https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
 https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
 https://cabforum.org/2017/03/17/ballot-193-825-day-certificate-lifetimes/.
 https://cabforum.org/2017/03/17/ballot-193-825-day-certificate-lifetimes/.
https://en.bitcoin.it/wiki/Help:FAQ#Why_do_I_have_to_wait_10_minutes_before_I_can_spend_money_I_received.3F
https://en.bitcoin.it/wiki/Help:FAQ#Why_do_I_have_to_wait_10_minutes_before_I_can_spend_money_I_received.3F
https://diskprices.com
https://scalingbitcoin.org/stanford2017/Day1/flyclientscalingbitcoin.pptx.pdf
https://scalingbitcoin.org/stanford2017/Day1/flyclientscalingbitcoin.pptx.pdf

39

69. P. Eckersley. Sovereign key cryptography for internet domains. Internet draft.,
2012.

70. Mark D. Ryan. Enhanced certificate transparency and end-to-end encrypted mail.
In In Network and Distributed System Security Symposium (NDSS) The Internet
Society, 2014.

71. Namecoin. https://www.namecoin.org/.

72. Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. Certcoin: A name-
coin based decentralized authentication system 6.857 class project. Unpublished
class project, 2014.

73. TLS PKI History. https://www.feistyduck.com/ssl-tls-and-pki-history/.

https://www.namecoin.org/.
 https://www.feistyduck.com/ssl-tls-and-pki-history/.

	CertLedger: A New PKI Model with Certificate Transparency Based on Blockchain

