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Abstract. This paper investigates the construction of lightweight MDS matrices with
generalized Feistel structures (GFS). The approach developed by this paper consists
in deriving MDS matrices from the product of several sparser ones. This can be seen
as a generalization to several matrices of the recursive construction which derives
MDS matrices as the powers of a single companion matrix. The first part of this
paper gives some theoretical results on the iteration of GFS and the second part gives
concrete instantiations. The results match the best known lightweight 4 × 4 MDS
matrix and improve the best known 6 × 6 and 8 × 8 MDS matrices.
Based on GFS structure, we propose some types of sparse matrices that are called
EGFS matrices. Then, by applying binary linear functions to several round of EGFS
matrices, we propose lightweight 4 × 4, 6 × 6 and 8 × 8 MDS matrices which are
implemented with 67, 158 and 272 XOR for 8-bit input, respectively. The major work
of this paper is the design of an 8 × 8 MDS matrix with 272 XOR for 8-bit input,
since the best known result is 392 XOR.
Keywords: Lightweight cryptography · MDS matrix · Generalized Feistel Structures

1 Introduction
There are several approaches to construct MDS matrices which can be applied as diffusion
layers for block ciphers and hash functions. The first method is based on the algebraic
structures such as Cauchy matrix [You97, Gup13]. The next efficient method to be used
in construction of MDS matrices is based on the recursive matrices [Guo11, Saj12, Aug14,
Ber13]. The first two approaches are called local optimization, since these methods focus
on the implementation cost of entries of an MDS matrix [Sar16, Sim15].

Recently, two new approaches are proposed that are called global optimization [Kra17,
Bei16, Duv18]. The proposed method in [Kra17] is an application of heuristics algorithms
to obtain a suitable implementation of previously known MDS matrices. The introduced
technique in [Bei16, Duv18] is a type of search over formal matrices independently of
binary linear functions (L) and to instantiate L later. In fact, the work of [Bei16, Duv18]
is not an application of heuristics algorithms to obtain an efficient implementation of
previously known MDS matrices, but a search for new lightweight MDS matrices starting
from the implementation.

The space of matrix explored in this paper is a subspace of the space explored in [Duv18].
Although, the presented technique in this paper is exactly the same as [Duv18], the class
of construction considered is different. In fact, the advantage of this work compared to
[Duv18] is that the smaller search space can be used with larger dimensions.

In recursive or LFSR-based approach, we consider an n× n companion matrix A such
that the entries of the last row of A are no-zero elements over a field F. Then we check
whether the nthe power of A, denoted with An, is an MDS matrix over F. The limitation
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to the recursive approach is that all entries of the last row of A must be non-zero. In
other words, the number of non-zero entries of A must be at least 2n− 1. Applying sparse
matrices based on the Feistel structures is one of the best solutions for the mentioned
limitation [Shi11, Wu12]. Actually, by applying Feistel structures, we can construct an
n×n sparse matrix B so that Bn is an MDS matrix and also the number of non-zero entries
of B is less than 2n− 1. The next limitation of construction an n× n MDS matrix based
on the recursive approach or Feistel structures is that the nth power of a matrix is used as
an MDS matrix. In fact, it is not possible to select an n× n companion matrix A such
that all entries of Ak are non-zero provided that k < n. In addition, all known lightweight
n× n MDS matrices which are derived from the Feistel structure are constructed from the
nth power of n× n sparse matrices [Toh18].

In this paper, using binary linear functions (L) and applying generalized Feistel
structures we select n× n sparse matrices Ai with 1 ≤ i ≤ k such that Ai’s satisfy the
following conditions. First Ai’s have the same structure with respect to the location
of their zero entries. Then Ai’s are non-singular matrices over F2[L]. Moreover, the
multiplication of Ai’s is an MDS matrix over F2[L]. The last and the main condition is
that Ai’s can be implemented with the low cost by terminology of XOR counts. Table 1
are provided for comparison our results with the best known results.

Contribution of this work This paper follows a list of recent papers to design new
MDS matrices with low implementation costs. In particular, this paper presented several
new matrices having lower XOR cost than previous results. While for 4× 4 matrices, the
results match the best known lightweight 4× 4 MDS matrix [Duv18] the results for 6× 6
are slightly better and for 8× 8 are substantially better. Recently, 8× 8 MDS matrices
are applied in some block ciphers and hash functions such as LED, versions of PHOTON
with 256 block length and Grøstl.

One of the Feistel-based structures that is used in this paper is GFS structure. Actually,
using binary linear functions over GFS structure we propose two new results on lightweight
MDS matrices. First, we propose an 6× 6 MDS matrix which is implemented with 158
XOR for 8-bit input such that the proposed matrix is constructed from seven binary linear
functions. The second new result is the implementation of an 8 × 8 MDS matrix with
272 XOR for 8-bit input. Moreover, the proposed 8× 8 MDS matrix is constructed from
the multiplication of seven matrices Ai with 1 ≤ i ≤ 7 such that Ai’s are derived from
GFS structure. In addition, the number of binary linear functions that are applied in
construction of Ai’s is 16. In other words, the proposed 8 × 8 MDS matrix is not only
has low implementation cost by hardware terminology, but also is suitable from software
perspective. Furthermore, the depth of the proposed 8× 8 MDS matrix is 9.

Moreover, we propose an 8 × 8 MDS matrix B for 8-bit input such that B and its
inverse are implemented with 280 XOR over finite field. In addition, by applying binary
linear functions, the proposed matrix B is implemented with 28× 2k + 60 XOR for 2k-bit
input with k > 3.

Outline of this paper The rest of paper is organized as follows. Definitions and
notations are given in Section 2. In Section 3, it is motivated why primitive matrices are
used in this paper. Definition of primitive GFS matrices is provided in Section 4. Moreover,
by using primitive GFS matrices a probabilistic algorithm for construction lightweight
MDS matrices are proposed in Section 4. In Section 5, by applying binary linear functions
over primitive GFS matrices, 4 × 4 and 8 × 8 lightweight MDS matrices are proposed.
Moreover in Section 5, the proposed MDS matrices and their inverse are implemented with
68 and 280 XOR. An extension of primitive GFS matrices, called EGFS matrices, is given
in Section 6. Furthermore, the best result of this paper by applying binary linear functions
over EGFS matrices are provided in Section 6. Finally, a conclusion is given in Section 7.
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Table 1: Comparison our results with the best known results.

Type Input Size Cost Method Depth Reference
4× 4 Matrices

F2[L] 4-bit 41 Lightweight Cir. 3 [Duv18]
F2[L] 4-bit 37 GFS St. 4 [Duv18]
F24 4-bit 36 Heuristics Al. — [Kra17]
F2[L] 4-bit 36 GFS St. 6 Subsection 5.1
F2[L] 4-bit 35 GFS St. 5 [Duv18]
F2[L] 4-bit 35 GFS St. 5 Subsection 6.1
F2[L] 8-bit 77 Lightweight Cir. 3 [Duv18]
F28 8-bit 72 Subfield — [Kra17]
F28 8-bit 70 GFS St. 5 Subsection 6.1
F2[L] 8-bit 69 GFS St. 4 [Duv18]
F2[L] 8-bit 68 GFS St. 6 Subsection 5.1
F2[L] 8-bit 67 GFS St. 5 [Duv18]
F2[L] 8-bit 67 GFS St. 5 Subsection 6.1

6× 6 Matrices
F28/0x1C3 8-bit 186 DSI St. — [Toh18]

F28 8-bit 158 GFS St. 8 Subsection 6.2
F2[L] 8-bit 158 GFS St. 8 Subsection 6.2

8× 8 Matrices
F28 8-bit 392 Subfield — [Kra17]

F28/0x1A3 8-bit 280 GFS St. 11 Subsubsection 5.2
F2[L] 8-bit 280 GFS St. 11 Subsubsection 5.2
F2[L] 8-bit 272 GFS St. 9 Subsection 6.3

2 Definitions and Notations
Let A be an n × n matrix over a field Fq, the finite field with q elements. A is called
MDS over Fq if any square submatrix of A is nonsingular over Fq [Bla99]. Moreover, a
finite field with characteristic 2 is denoted with F2q for some q. Furthermore, we present a
finite field F2q by hexadecimal representation. For instance, F28/0x18D is the finite field
F28 which is constructed from the primitive polynomial f = x8 + x7 + x3 + x2 + 1. For
simplicity, we use non-zero positions in each row of a binary matrix as a representation of

the matrix. As an example, [[1, 2, 4], [1, 3], [2, 4], [3, 4]] is applied for A =
( 1 1 0 1

1 0 1 0
0 1 0 1
0 0 1 1

)
.

We denote a matrix with (ai,j) where ai,j is the (i, j)th entry of the matrix. Consider
an n× n matrix A = (ai,j) with 1 ≤ i, j ≤ n over R, the field of real numbers. Then A is
called a positive matrix over R provided that ai,j > 0 for any 1 ≤ i, j ≤ n.

Definition 1 ([Hor13]). Consider an n× n non-negative matrix A over R. The matrix A
is called a primitive matrix over R if Ak is a positive matrix, denoted Ak > 0, for some
integer k ≥ 1. The primitive order A is the minimum number k which satisfies Ak > 0
and the matrix A is called an k-primitive matrix over R.

Moreover, an n× n non-negative matrix A is called an ∞-primitive matrix over R if
there is no an integer number k ≥ 1 such that Ak > 0.

In this paper, the symbol F2[L] is considered as a set of all finite polynomials in the
following form

∑n
i=1 bi Lti where bi ∈ F2 and ti’s are integer numbers. Consider an n× n

matrix A over F2[L]. Then A = (ai,j) is called a positive matrix over F2[L] if ai,j 6= 0 for
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any 1 ≤ i, j ≤ n. Moreover, A is called an MDS matrix over F2[L] if determinant of all
square submatrices of A are non-zero over F2[L].

Assume that r is a set over F2[L]. Then the set of all prime factors of r is called the base
set of r. For instance, consider the set r = {L,L2,L+ 1,L2 + 1, (L2 +L+ 1)2,L6 +L2 + 1}.
Then the base set of r is r̃ = {L,L+1,L2+L+1,L3+L+1}, since we have L2+1 = (L+1)2

and L6 + L2 + 1 = (L3 + L + 1)2 over F2[L]. Now consider an n× n non-singular matrix
A over F2. If A, A + In, A2 + A + In and A3 + A + In are non-singular matrices over F2,
then we say the elements of r̃ are non-singular matrices over F2 by applying A. Notice that
if by using an n× n matrix A the elements of r̃ are non-singular matrices over F2, then it
can be verified that the elements of r are non-singular matrices over F2 by applying A.
The last concept used in this paper is the depth of a circuit that determines the maximum
number of gates in each path from any source to the sink [Duv18].

3 Relation between Primitive Matrices and Search Space
In this section, the role of primitive matrices for construction of proposed lightweight MDS
matrices are explained. Consider A is an n × n non-negative matrix over R. It is easy
to see that if A is an ∞-primitive matrix over R then A can not be a primitive matrix
over F2[L]. Next, we show that if A is an k-primitive matrix over R, then A can be an
∞-primitive over F2[L] or A be an k′-primitive matrix over F2[L] such that k′ ≥ k. In
other words, the characteristic 2 in F2[L], puts limitation on order of primitive matrices.

Example 1. Consider the following three matrices

A1 =

( L 1 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)
, A2 =

( L 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
, A3 =

( L 1 0 0
0 0 1 0
0 0 1 1
L 0 0 0

)
(1)

Assume that L is a positive integer in R. Then it can be checked that A1, A2 and A3
are 4-primitive matrices over R. For instance, A4

1 over R is in the following form.

A4
1 =

 L4 + 1 L3 3 L2 2 L
2 L 1 L3 L2

3 L2 2 L L4 + 1 L3

L3 L2 2 L 1

 .

In addition, there is no integer number 1 ≤ k ≤ 3 such that Ak
1 be a positive matrix over

R. Now consider A1, A2 and A3 over F2[L].
First of all, we prove A1 is an ∞-primitive matrix over F2[L]. The characteristic

polynomial of A1 over F2[L] is x4 + L2x2 + 1. Consider the equation xk = (x4 + L2x2 +
1)h(x)+r(x) where r(x) is a polynomial of degree less than 4 over F2[L]. Therefore, we get
Ak

1 = r(A1), since A1 satisfies its own characteristic equation [Hor13]. It can be verified
that r(x) = a1 + a2x

2 when k is an even number and r(x) = b1x+ b2x
3 when k is an odd

number where ai and bi with 1 ≤ i ≤ 2, are in F2[L]. Hence, Ak
1 is a linear combination of

(I4 and A2
1) or (A1 and A3

1) where I4 is the identity matrix of order 4. Moreover, A1, A2
1

and A3
1 are not positive matrices over F2[L]. Furthermore, it can be checked that (I4 and

A2
1) and (A1 and A3

1) have zero entries in the same positions. Therefore, for any positive
integer k, Ak

1 has at least one zero entry which results in A1 is an ∞-primitive matrix
over F2[L]. In addition, A2 and A3 are 7-primitive and 4-primitive matrices over F2[L].

Suppose that A = (ai,j) and B = (bi,j) with 1 ≤ i, j ≤ n are two n× n sparse matrices
over R. In this paper, A and B are called with the same structure provided that ai,j = 0 if
and only if bi,j = 0. For instance, 4× 4 sparse matrices A1, A2 and A3, given in Example
1, are with the same structure.

Assume that Ai with 1 ≤ i ≤ k are n× n sparse matrices over R. Now based on the
primitivity and structures of Ai’s the following five cases are considered.
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Case 1: Ai’s are ∞-primitive matrices over R and are with the same structure.

Case 2: Ai’s are ∞-primitive matrices over R and are not with the same structure.

Case 3: Ai’s are primitive matrices over R and are with the same structure.

Case 4: Ai’s are primitive matrices over R and are not with the same structure.

Case 5: Let I = {j1, j2, · · · , jm} with 1 ≤ m < k be a subset of the set {1, 2, · · · , k}.
Consider Ajt with 1 ≤ t ≤ m are primitive matrices over R and Ai for i 6∈ I are not
primitive matrices over R (the structures of Ai’s can be chosen arbitrarily).

By considering the given five cases, suppose B is the multiplication of Ai’s, denoted
with B =

∏k
i=1 Ai. It follows from graph theory concepts that by assuming the case 1 the

matrix B is not a primitive matrix over F2[L]. Moreover, B is possibly a primitive matrix
over F2[L] by considering the assumptions of 2,3,4 and 5 cases and hence the matrix B
possibly can be an MDS matrix over F2[L]. Therefore, to construct MDS matrices over
F2[L], by applying search on sparse matrices, 2,3,4 and 5 cases can be used.

Performing a search using the third case has less complexity than 2,4 and 5 cases, since
Ai’s are with the same structure. In fact, firstly we obtain an n× n k-primitive matrix C
over R. Then we choose matrices Ai with 1 ≤ i ≤ k′ over F2[L] provided that k′ ≥ k and
Ai’s are with the same structure as C. Next, we check whether B =

∏k′

i=1 Ai is an MDS
matrix over F2[L]. Therefore, the main reason for using primitive matrices with the same
structure is the issue of reducing the search space.
Example 2. Consider the following 4× 4 sparse matrices over F2[L].

Ã1 =

( 1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
, Ã2 =

( 0 1 0 0
0 0 1 1
0 0 0 1
1 L 0 0

)
, Ã3 =

( 0 1 0 0
0 0 1 L
0 0 0 1
L L 0 0

)
, Ã4 =

( 0 1 0 0
0 0 1 1
0 0 0 1
1 1 0 0

)
.

The matrices Ãi with 1 ≤ i ≤ 4 are extracted from Appendix C.2, Figure 8 in [Duv18].
It is shown in [Duv18] the multiplication of Ãi’s, denoted with B̃ =

∏4
i=1 Ãi, is an MDS

matrix over F2[L]. Moreover, it can be checked that B̃ is obtained from the Case 5, since
Ã2, Ã3 and Ã4 are primitive matrices over R and Ã1 is an ∞-primitive matrix over R.

Consider the matrix A1 in Example 1. It is observed that A1 is an 4-primitive matrix
over R. Now we select matrices Âi with 1 ≤ i ≤ 4 provided that Âi’s are with the same
structure as A1. In addition, the multiplication of Âi’s, denoted with B̂ =

∏4
i=1 Âi, be

an MDS matrix over F2[L]. The following matrices are derived from a simple search.

Â1 =

( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
, Â2 =

( 1 1 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)
, Â3 =

( L L 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)
, Â4 =

( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
.

Furthermore, by similar structural properties of Ãi and Âi with 1 ≤ i ≤ 4 we conclude
that B̃ and B̂ can be implemented with the same XOR from hardware perspective.

In the next section, according to the technique given in [Duv18] and applying primitive
matrices, a probabilistic algorithm for construction of lightweight MDS matrices are
proposed. The output of the proposed algorithm are n × n sparse matrices Ai with
1 ≤ i ≤ u over F2[L] with the following conditions. First, u ≤ n and Ai’s are with the
same structure. Second, Ai’s are k-primitive matrices over R such that k ≤ u. Third, the
multiplication of Ai’s is an MDS matrix over F2[L]. The last and foremost condition is
that using binary linear functions the implementation cost of Ai’s is minimal.

In other words, the proposed randomized algorithm is an algorithm for decomposition
of an MDS matrix into sparse matrices provided that these sparse matrices first have
the same and simple structures, then are non-singular matrices over the base field, and
eventually are implemented with minimal XOR.
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4 Primitive GFS Matrices
There are two reasons why GFS structure is used in this paper. The first and most
important reason is this fact the inverse of GFS structure is easy to compute as well. The
second one is that combining primitive matrices and GFS structure reduces search space.

In this section, based on the concept of GFS structure a type of primitive sparse matrix
is proposed which is called primitive GFS matrix. In Section 5 by applying primitive GFS
matrices, 4× 4 and 8× 8 MDS matrices are proposed such that the implementation cost of
these matrices are 68 and 280 XOR for 8-bit input , respectively. Consider the following
2× 2 block-matrices.

c(m)
1 =

(
L 1
0 0

)
, c(m)

2 =
(

0 0
1 0

)
, z(m) =

(
0 0
0 0

)
. (2)

where L is an m×m non-singular matrix over F2. In addition, 1 and 0 are m×m identity
and zero matrices, receptively. In Definition (2), by applying c(m)

1 , c(m)
2 and z(m) we

propose primitive GFS matrices.

Definition 2 (Primitive GFS Matrices). Consider p1 = {a1, a2, · · · , an} and p2 =
{b1, b2, · · · , bn} are two permutations of integer numbers from 1 to n provided that ai 6= bi

for any 1 ≤ i ≤ n. Consider 2× 2 block-matrices c(m)
1 , c(m)

2 and z(m) that are given in (2).
Suppose that the ith row of an n× n block-matrix S = (si,j) with 1 ≤ i, j ≤ n, based

on the two permutations p1 and p2, is filled in the following form.

si,j =


c(m)

1 j = ai,

c(m)
2 j = bi,

z(m) j 6∈ {ai, bi}.

The block-matrix S is called primitive GFS matrix if S be a primitive matrix over R.

First of all notice that in Definition 2 to check whether S is a primitive matrix over
R, we assume that c(m)

1 , c(m)
2 and z(m) are 2 × 2 matrices over R and L is a positive

integer. Moreover, for simplicity the block-matrix S is denoted with S(n,L(m), [p1,p2]).
Furthermore, it follows from Definition 2 that a primitive GFS matrix can be an ∞-
primitive matrix over F2[L]. In addition, primitive GFS matrices are non-singular over
F2[L], since it is easy to prove det(S) = 1 over F2[L]. In Example 3, it is observed that
why the block-matrix S in Definition 2 should be a primitive matrix over R and not ask
for S to be primitive over F2[L].

Example 3. Suppose that in Definition 2, we assumed S be a primitive matrix over F2[L].
Consider the following n × n block-matrix that is constructed from two permutations
p1 = {1, 2, · · · , n} and p2 = {2, 3, · · · , n, 1}.

S(n, 1(m), [p1, p2]) =


1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0

 .

For simplicity in representation set A = S(n,1(m), [p1,p2]). In the rest, we prove A is an
∞-primitive matrix over F2[L]. Suppose A is a primitive matrix over F2[L] which implies
that there is a positive integer k such that Ak > 0 over F2[L]. Hence, all entries of Ak

are equal to 1. But it is in contradiction to this fact that A is a non-singular matrix over
F2[L] but Ak is a singular matrix over F2[L], since Ak has two equal rows. Therefore, S in
Definition 2 should be asked to be a primitive matrix over R until we can apply lightweight
block-matrices such as A in the proposed constructions.
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It follows from Appendix A that the order of a primitive GFS matrix S(n,L(m), [p1,p2])
depends on two permutations p1 and p2. Moreover, the implementation cost of proposed
MDS matrices in Section 5, is directly related to the number of iterations required to reach
full diffusion. Therefore, for construction of lightweight MDS matrices, the primitive GFS
matrices with minimum order should be used. In Example 4, some types of primitive GFS
matrices are made, which are used in Section 5 to construct lightweight 4× 4 and 8× 8
MDS matrices with the implementation cost 68 and 280 XOR for 8-bit input , respectively.
Example 4. For n = 2, the following primitive GFS matrix is used.

p1 = {1, 2}, p2 = {2, 1}, S(2,L(m), [p1,p2]) =
( L 1 0 0

0 0 1 0
0 0 L 1
1 0 0 0

)
. (3)

In Example 1, it is observed that S(2,L(m), [p1,p2]) is an 4-primitive matrix over R.
For n = 3, there are 12 permutations such as p1 = {a1, a2, a3} and p2 = {b1, b2, b3}

from 1 to 3 so that ai 6= bi for any 1 ≤ i ≤ 3. Consider the following case

p1 = {1, 3, 2}, p2 = {2, 1, 3}, S(3,L(m), [p1,p2]) =


L 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 L 1
1 0 0 0 0 0
0 0 L 1 0 0
0 0 0 0 1 0

 (4)

The primitive GFS matrix S(3,L(m), [p1,p2]), is an 5-primitive matrix over R.
For n = 4, there are 216 permutations p1 = {a1, a2, a3, a4} and p2 = {b1, b2, b3, b4}

from 1 to 4 such that ai 6= bi for 1 ≤ i ≤ 4. These 216 permutations are divided into four
cases, which are listed in Appendix A. It follows from Appendix A that the minimum
order of a primitive GFS matrix such as S(4,L(m), [p1,p2]) is 6. Therefore, we select two
permutations p1 and p2 provided that S(4,L(m), [p1,p2]) is an 6-primitive matrix over R.

p1 = {4, 3, 2, 1}, p2 = {3, 2, 1, 4}, S(4, L(m), [p1, p2]) =


0 0 0 0 0 0 L 1
0 0 0 0 1 0 0 0
0 0 0 0 L 1 0 0
0 0 1 0 0 0 0 0
0 0 L 1 0 0 0 0
1 0 0 0 0 0 0 0
L 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

 , (5)

p̂1 = {1, 3, 2, 4}, p̂2 = {2, 1, 4, 3}, S(4, L(m), [p̂1, p̂2]) =


L 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 L 1 0 0
1 0 0 0 0 0 0 0
0 0 L 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 L 1
0 0 0 0 1 0 0 0

 . (6)

Two primitive GFS matrices such as A1 and A2 are considered with the same structure
if A1 and A2 are constructed with the same permutations. In the rest, we propose a
probabilistic algorithm for construction of lightweight MDS matrices based on the primitive
GFS matrices with the same structure. Actually, Algorithm 1 is a randomized algorithm,
since with the proposed approach there is an extensive search space to construct lightweight
MDS matrices for large dimensions. For m = 4, 8 in Algorithm 1, the following forms are
applied as L in Step 8 where bi,j with 1 ≤ i, j ≤ 4 and ci,j with 1 ≤ i, j ≤ 8 are binary
numbers.

(
b1,1 b1,2 b1,3 1

1 b2,2 b2,3 b2,4
0 1 b3,3 b3,4
0 0 1 b4,4

)
,


c1,1 c1,2 c1,3 c1,4 c1,5 c1,6 c1,7 1

1 c2,2 c2,3 c2,4 c2,5 c2,6 c2,7 c2,8
0 1 c3,3 c3,4 c3,5 c3,6 c3,7 c3,8
0 0 1 c4,4 c4,5 c4,6 c4,7 c4,8
0 0 0 1 c5,5 c5,6 c5,7 c5,8
0 0 0 0 1 c6,6 c6,7 c6,8
0 0 0 0 0 1 c7,7 c7,8
0 0 0 0 0 0 1 c8,8

 .
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Algorithm 1: Construction of Lightweight MDS Matrices based on the Primitive
GFS Matrices with the same Structure
Input :Three positive integer n, m and r.
Output :An 2n× 2n lightweight MDS matrix over m-bit input with ≤ r XOR.

1 Select two permutations p1 and p2 such that the order of primitive GFS matrix
C = S(n,1(m), [p1,p2]) is minimal over R.

2 Consider C is an k-primitive matrix over R and set u = k.
3 Select primitive GFS matrices Ai = S(n, f (i)

(m), [p1,p2]) with 1 ≤ i ≤ u such that
f (i) ∈ {L−2,L−1,1,L,L−2} and Ai’s are constructed of minimal number of L.

4 Construct B =
∏u

i=1 Ai over F2[L].
5 If B is an MDS matrix over F2[L] then go in Step 8 end.
6 If all cases in Step 3 are considered then set u = u+ 1.
7 If B is not an MDS matrix over F2[L] then go in Step 3 end.
8 Get the base set of subdeterminants of B over F2[L].
9 Obtain an m×m non-singular binary matrix L with the minimal implementation

cost provided that elements of the base set are non-singular matrices over F2 by L.
10 If Step 9 fails to obtain a binary matrix L then go in Step 3 end.
11 Obtain the implementation cost of Ai’s, denoted x, with respect to the cost of L.
12 If x ≤ r then go in Step 14 end.
13 If u ≤ 2n then go in Step 3 else go in Step 1 end.
14 Return B , Ai’s and the non-singular binary matrix L.

Example 5. The best implementation of lightweight 6×6 MDS matrices for 8-bit input is
186 XOR [Toh18]. Set n = 3, m = 8 and r = 186 as input into Algorithm 1. It follows from
(4) that C = S(3,1(8), [p1,p2]) is an 5-primitive matrices over R for two permutations
p1 = {1, 3, 2} and p2 = {2, 1, 3}. Using complete search, it can be verified that there are
no primitive GFS matrices Ai = S(3, f (i)

(m), [p1,p2]) with 1 ≤ i ≤ 5 such that
∏5

i=1 Ai be
an MDS matrix over F2[L] provided that f (i) ∈ {L−2,L−1,1,L,L−2}. Now consider the
following primitive GFS matrices Ai with 1 ≤ i ≤ 6.

A1 = R(3, 1(m), [p1, p2]), A2 = R(3, L(m), [p1, p2]), A3 = R(3, 1(m), [p1, p2]),

A4 = R(3, 1(m), [p1, p2]), A5 = R(3, L2
(m), [p1, p2]), A6 = R(3, 1(m), [p1, p2]).

It can be checked that B =
∏6

i=1 Ai is an MDS matrix over F2[L]. Moreover, using a
complete search, matrix B is an optimal result with respect to the number of binary linear
functions (Ai’s are constructed from nine L).

B =


L3 + 1 L3 + 1 L3 + L2 + L + 1 L3 + L2 + 1 1 L

L3 + L + 1 L3 + 1 L2 L2 + L L3 + 1 L3

1 L L3 + 1 L3 + 1 L3 + L2 + L + 1 L3 + L2 + 1
L3 + 1 L3 L3 + L + 1 L3 + 1 L2 L2 + L

L3 + L2 + L + 1 L3 + L2 + 1 1 L L3 + 1 L3 + 1
L2 L2 + L L3 + 1 L3 L3 + L + 1 L3 + 1

 .

It is easy to verify that the number of subdeterminants of an n×n matrix is
∑n

i=1
(

n
i

)(
n
i

)
=(2n

n

)
−1. Therefore, B has

(12
6
)
−1 = 923 subdeterminants. The base set of subdeterminants

of B is given in (7).
{L, L + 1, L2 + L + 1, L3 + L + 1, L3 + L2 + 1, L4 + L + 1, L4 + L3 + 1, L4 + L3 + L2 + L + 1,
L5 + L2 + 1, L5 + L3 + 1, L5 + L3 + L2 + L + 1, L5 + L4 + L2 + L + 1, L5 + L4 + L3 + L + 1,
L5 + L4 + L3 + L2 + 1, L6 + L + 1, L6 + L3 + 1, L6 + L4 + L2 + L + 1, L6 + L4 + L3 + L + 1,
L6 + L5 + 1, L6 + L5 + L2 + L + 1, L6 + L5 + L3 + L2 + 1, L6 + L5 + L4 + L + 1, L6 + L5 + L4 + L2 + 1,
L7 + L3 + L2 + L + 1, L7 + L5 + L3 + L + 1, L7 + L6 + 1, L7 + L6 + L4 + L2 + 1, L7 + L6 + L5 + L4 + 1,
L8 + L6 + L5 + L3 + 1, L8 + L7 + L3 + L + 1, L8 + L7 + L6 + L3 + L2 + L + 1}.

(7)
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Assume that #L is the symbol for XOR cost of L . Therefore, the implementation cost of
B for m-bit input is computed as follows

#B1︷︸︸︷
(3m) +

#B2︷ ︸︸ ︷
(3m + 3(#L) +

#B3︷︸︸︷
(3m) +

#B4︷︸︸︷
(3m) +

#B5︷ ︸︸ ︷
(3m + 3(#L2) +

#B6︷︸︸︷
(3m) = 18m + 3(#L) + 3(#L2). (8)

In the rest, we get 8×8 non-singular matrices L over F2 such that the given elements in (7)
are non-singular matrices over F2 by applying L. For instance, the following non-singular
binary matrices Li with 1 ≤ i ≤ 10, are obtained.

L1 = [[1, 8], [1], [2, 7], [3], [4], [5], [6], [7]], L2 = [[1, 8], [1], [2], [3], [4, 7], [5], [6], [7]],
L3 = [[3, 8], [1], [2], [3], [4], [5, 6], [6], [7]], L4 = [[5, 8], [1], [2], [3], [4], [5], [6, 7], [7]],
L5 = [[8], [1, 2], [2], [3, 8], [4], [5], [6], [7]], L6 = [[8], [1, 2], [2], [3], [4], [5, 8], [6], [7]],
L7 = [[8], [1, 4], [2], [3], [4], [5], [6, 7], [7]], L8 = [[8], [1, 6], [2], [3], [4], [5], [6], [7, 8]],
L9 = [[8], [1], [2, 3], [3], [4], [5, 8], [6], [7]], L10 = [[8], [1], [2, 5], [3], [4], [5], [6], [7, 8]].

(9)

The implementation cost of Li’s, given in (9), is two XOR. In addition L2
i with 1 ≤ i ≤ 10,

can be implemented with four XOR. Therefore, it follows from (8) that the implementation
cost of B is 18× 8 + 3× 2 + 3× 4 = 162 XOR. Moreover, B−1 is implemented with 162
XOR, since B−1 =

∏6
i=1 A−1

7−i. Furthermore, consider an irreducible polynomial of degree
8 over F2 provided that this polynomial is not an element of (7) such as 0x11B. Assume
that α is a root of 0x11B. Then by substitution α instead of L, the matrix B is an MDS
matrix over F28/0x11B.

5 Construction of Lightweight MDS Matrices by Applying
Primitive GFS Matrices

In this section, by applying primitive GFS matrices, we propose lightweight 4 × 4 and
8 × 8 MDS matrices for 8 bit input. The proposed 4 × 4 and 8 × 8 MDS matrices are
implemented with 68 and 280 XOR. Moreover, the given results in this section are optimal
according to the terminology of XOR cost and the number of binary linear functions. In
other words, it is not possible to achieve better results by using the proposed approach in
Section 4. In fact, in order to obtain the results of this section, an exhaustive search has
been applied to Algorithm 1. The point of the proposed 4× 4 and 8× 8 MDS matrices is
the inverse of these matrices which can be implemented with 68 and 280 XOR, respectively.

5.1 Lightweight 4 × 4 MDS Matrices from Primitive GFS Matrices
Consider the primitive GFS matrix C = R(2,1(m), [p1,p2]), over two permutations
p1 = {1, 2} and p2 = {2, 1}. It follows from (3) that C is an 4-primitive matrix over R.
In the rest, based on the matrix structure C, the following primitive GFS matrices are
used to construct a lightweight 4× 4 MDS matrix for m-bit input.

A1 = R(2, 1(m), [p1, p2]), A2 = R(2, L(m), [p1, p2]),

A3 = R(2, L(m), [p1, p2]), A4 = R(2, 1(m), [p1, p2]).

It can be checked that B = A1A2A3A4, given in (10), is an MDS matrix over F2[L].

B =
( 1 1 0 0

0 0 1 0
0 0 1 1
1 0 0 0

)( L 1 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)( L 1 0 0
0 0 1 0
0 0 L 1
1 0 0 0

)( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)

=

 L2 + 1 L2 1 L + 1
L + 1 1 L2 L2

1 L + 1 L2 + 1 L2

L2 L2 L + 1 1

 .

(10)
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Then the implementation cost of the matrix B for m-bit input is equal to

#A1︷ ︸︸ ︷
(2m) +

#A2︷ ︸︸ ︷
(2m+ 2(#L)) +

#A3︷ ︸︸ ︷
(2m+ 2(#L)) +

#A4︷ ︸︸ ︷
(2m) = 8m+ 4(#L). (11)

There are
(8

4
)
− 1 = 69 subdeterminants in B. The base set of these subdeterminants is:

{L,L + 1,L2 + L + 1,L3 + L + 1,L3 + L2 + 1,L4 + L + 1} (12)

For m = 4, consider the following 4× 4 non-singular matrices over F2. It can be verified
that by applying Li with 1 ≤ i ≤ 4 , the given elements in (12) are non-singular matrices
over F2. Moreover, the implementation cost of Li’s is one XOR.

L1 = [[1, 4], [1], [2], [3]], L2 = [[4], [1, 2], [2], [3]], L3 = [[4], [1], [2, 3], [3]], L4 = [[4], [1], [2], [3, 4]].

Hence, by applying Li’s and relation (11), B is implemented with 8× 4 + 4× 1 = 36 XOR
for 4-bit input. Moreover, L4 + L3 + 1 is not an element of (12). Therefore, B can be
implemented with 36 XOR over F24/0x19. Actually, L4 is the binary matrix representation
of the root of 0x19. Furthermore, by using Li with 1 ≤ i ≤ 4, the implementation cost of
B−1 is 36 XOR, since we have

B−1 =

( 0 0 0 1
1 0 0 1
0 1 0 0
0 1 1 0

)( 0 0 0 1
1 0 0 L
0 1 0 0
0 L 1 0

)( 0 0 0 1
1 0 0 L
0 1 0 0
0 L 1 0

)( 0 0 0 1
1 0 0 1
0 1 0 0
0 1 1 0

)
(13)

For m = 8, consider 8 × 8 non-singular matrices Lj with 1 ≤ j ≤ 7 in (14). It can be
verified that by using Lj ’s the given elements in (12) are non-singular matrices over F2.

L1 = [[2, 8], [1], [2], [3], [4], [5], [6], [7]], L2 = [[8], [1, 3], [2], [3], [4], [5], [6], [7]],
L3 = [[8], [1], [2, 4], [3], [4], [5], [6], [7]], L4 = [[8], [1], [2], [3, 5], [4], [5], [6], [7]],
L5 = [[8], [1], [2], [3], [4, 6], [5], [6], [7]], L6 = [[8], [1], [2], [3], [4], [5, 7], [6], [7]]
L7 = [[8], [1], [2], [3], [4], [5], [6, 8], [7]].

(14)

The implementation cost of Lj ’s is one XOR. Therefore, by using Lj ’s and relation (11),
B is implemented with 8× 8 + 4× 1 = 68 XOR for 8-bit input. Moreover, it follows from
(13) that the implementation cost of B−1 is 68 XOR for 8-bit input. Furthermore, B
can be implemented with at least 8× 8 + 4× 2 = 72 XOR over F28 , since some roots of
irreducible polynomials of degree 8 require only two XOR [Bei16].

Now consider the 2k × 2k companion binary matrix L(k) = [[2k−2
, 2k], [1], [2], · · · , [2k − 1]]

with k > 1. It is easy to show that the characteristic polynomial of L(k) over F2 is(
x

4 + x
3 + 1

)2k−2
. Moreover, by applying L(k) the given elements in (12) are non-singular

matrices over F2. Furthermore, the implementation cost of L(k) is one XOR. Hence,
using L(k) and relation (11) the implementation cost of B is 8× 2k + 4 XOR for 2k-bit
input with k > 1. For instance, the implementation cost of B and B−1 by using L(6) is
8 × 64 + 4 = 516 XOR for 64-bit input. Notice that if we wanted to implement B over
finite field for 64-bit input, we need to work with the finite field F264 .

5.2 Lightweight 8 × 8 MDS Matrices from Primitive GFS Matrices
First of all, we select two permutations p̂1 = {1, 3, 2, 4} and p̂2 = {2, 1, 4, 3}. Then we
construct the primitive GFS matrix C = R(4,1(m), [p̂1, p̂2]). It follows from relation (6)
that C is an 6-primitive GFS matrix over R. In fact, based on the Appendix A, the GFS
matrix C has minimum primitive order. Moreover, it follows from complete search that
there are no primitive GFS matrices Ai = S(4, f (i)

(m), [p̂1, p̂2]) with 1 ≤ i ≤ 6 such that
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∏6
i=1 Ai be an MDS matrix over F2[L] provided that f (i) ∈ {L−2,L−1,1,L,L−2}. Now

consider the following primitive GFS matrices Ai with 1 ≤ i ≤ 7.

A1 = R(4, L(m), [p̂1, p̂2]), A2 = R(4, 1m, [p̂1, p̂2]), A3 = R(4, 1m, [p̂1, p̂2]), A4 = R(4, L2
(m), [p̂1, p̂2]),

A5 = R(4, L−1
(m), [p̂1, p̂2]), A6 = R(4, L−1

(m), [p̂1, p̂2]), A7 = R(4, 1m, [p̂1, p̂2]).

It can be verified that B =
∏7

i=1 Ai is an MDS matrix over F2[L]. Moreover, using a
complete search, B is one of the optimal results in relation to the number of binary linear
functions (L). Actually, it is not possible to construct an MDS matrix B by applying
primitive GFS matrices Ai = S(4, f (i)

(m), [p̂1, p̂2]) with 1 ≤ i ≤ 7 provided that Ai’s are
constructed from less than twenty L. The matrix structure B is as follows

B = A1 A2 A3 A4 A5 A6 A7

=


L3 + L−1 + 1 L3 + L + L−1 L2 + L + 1 L
L2 + L−2 + 1 L2 + L−2 L2 + L−1 + 1 L2 + 1

L2 + L + 1 L L−2 + 1 L2 + L + L−2 + 1
L2 + L−1 + 1 L2 + 1 L + L−1 + 1 L−1 + 1

L3 + L + 1 L3 + L−1 + 1 L3 + L−1 + 1 L3 + L + L−1

L + L−1 L−1 + 1 L2 + L−2 + 1 L2 + L−2

L−2 + 1 L2 + L + L−2 + 1 L3 + L + 1 L3 + L−1 + 1
L + L−1 + 1 L−1 + 1 L + L−1 L−1 + 1

L3 + L + 1 L3 + L−1 + 1 L−2 + 1 L2 + L + L−2 + 1
L + L−1 L−1 + 1 L + L−1 + 1 L−1 + 1

L3 + L−1 + 1 L3 + L + L−1 L3 + L + 1 L3 + L−1 + 1
L2 + L−2 + 1 L2 + L−2 L + L−1 L−1 + 1

L−2 + 1 L2 + L + L−2 + 1 L2 + L + 1 L
L + L−1 + 1 L−1 + 1 L2 + L−1 + 1 L2 + 1
L2 + L + 1 L L3 + L−1 + 1 L3 + L + L−1

L2 + L−1 + 1 L2 + 1 L2 + L−2 + 1 L2 + L−2

 .

(15)

It follows from (15) that the implementation cost of B for m-bit input is equal to

#A1︷ ︸︸ ︷
(4m + 4(#L)) +

#A2︷︸︸︷
(4m) +

#A3︷︸︸︷
(4m) +

#A4︷ ︸︸ ︷
(4m + 4(#L2)) +

#A5︷ ︸︸ ︷
(4m + 4(#L−1)) +

#A6︷ ︸︸ ︷
(4m + 4(#L−1)) +

#A7︷︸︸︷
(4m)

= 28m + 4(#L) + 4(#L2) + 8(#L−1)

(16)

The base set of subdeterminants of B has 380 elements. In this base set, there are all
irreducible polynomials of degree 4 and 8, except for the irreducible polynomial 0x1A3.
It can be checked that the elements of this base set are non-singular matrices over F2 by
applying the following non-singular 8× 8 binary matrices Li with 1 ≤ i ≤ 3.

L1 = [[1, 3, 7, 8], [1], [2], [3], [4], [5], [6], [7]], L2 = [[8], [1, 2, 4, 8], [2], [3], [4], [5], [6], [7]],
L3 = [[8], [1, 8], [2], [3], [4], [5, 8], [6], [7, 8]]

(17)
First notice that the implementation cost of Li and L−1

i with 1 ≤ i ≤ 3 is three XOR. In
addition, the implementation cost of L2

i with 1 ≤ i ≤ 3 is seven XOR. But L2
i ’s can be

implemented with five XOR. For instance, consider x = [x1, x2, · · · , x8]. Then we have

L2
3 · xT = [x7 + x8, x7, x1 + x8, x2, x3, x4 + x7 + x8, x5 + x8, x6 + x7 + x8]T ,

u1 = x7 + x8, u2 = x1 + x8, u3 = u1 + x4, u4 = x5 + x8, u5 = u1 + x6.

Therefore, by applying Li’s and relation (16), B is implemented with 28× 8 + 4× 3 + 4×
5 + 8× 3 = 280 XOR for 8-bit input. Moreover, it can be verify that the implementation
cost of B−1 is 280 XOR for 8-bit input. Furthermore, B is implemented with 280 XOR
over F28/0x1A3, since L3 is the binary matrix representation of the root of 0x1A3.

Consider L is an 2k × 2k with k > 3 companion binary matrix provided that the
characteristic polynomial of L over F2 is

(
x

8 + x
7 + x

5 + x + 1
)2k−3

. It is not difficult to prove
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that by applying L the elements of the base set of subdeterminants of B in (15), are
non-singular matrices over F2. Moreover, the implementation cost of L and L−1 is three
XOR and also L2 can be implemented with six XOR. Hence, using L and relation (16) the
implementation cost of B and B−1 are 28× 2k + 60 XOR for 2k-bit input with k > 3. For
instance, L = [[32], [1], [2], [3], [4, 32], [5], · · · , [19], [20, 32], [21], · · · , [27], [28, 32], [29], [30], [31]] is an 32×32
companion binary matrix such that its characteristic polynomial is

(
x

8 + x
7 + x

5 + x + 1
)4

over F2. Therefore, the implementation cost of B by applying L is 28 × 32 + 60 = 956
XOR for 32-bit input.

6 Construction of Lightweight MDS Matrices by Applying
Extended Primitive GFS Matrices

This section is the main work of this paper. First of all, by extension of Definition 2
we define some type of sparse matrices called EGFS matrices. Then, by applying EGFS
matrices we propose 4× 4, 6× 6 and 8× 8 lightweight MDS matrices with implementation
cost 67, 158 and 272 XOR for 8-bit input, respectively. The proposed MDS matrices are
not only suitable by terminology of implementation cost, but also are efficient with respect
to the number of binary linear functions that are used in construction of these matrices.

The proposed 4× 4 MDS matrix is obtained by complete search. But a random search
is applied to achieve the proposed 6× 6 and 8× 8 MDS matrices. Actually, there is an
extensive search space to obtain lightweight 6× 6 and 8× 8 MDS matrices using EGFS
matrices. Therefore, by performing a full search on EGFS matrices, better implementation
results may be achieved to construct 6× 6 and 8× 8 lightweight MDS matrices.

Assume that 1 and 0 arem×m identity and zero matrices over F2, receptively. Consider
Lj ∈ {1,L,L−1} with 1 ≤ j ≤ 3n such that L is an m×m non-singular matrix over F2.
In Definition 3, the following 2× 2 block-matrices with 1 ≤ i ≤ n are used.

c(1,m)
i =

(
L3i−2 L3i−1

0 0

)
, c(2,m)

i =
(

0 0
L3i 0

)
, z(m) =

(
0 0
0 0

)
. (18)

Definition 3 (Extended Primitive GFS Matrices). Consider p1 = {a1, a2, · · · , an} and
p2 = {b1, b2, · · · , bn} are two permutations from 1 to n provided that ai 6= bi for 1 ≤ i ≤ n.
Consider 2× 2 block-matrices c(1,m)

i , c(2,m)
i and z(m) with 1 ≤ i ≤ n that are given in (18).

Assume that by using two permutations p1 and p2, the ith row of an n×n block-matrix
E = (ei,j) with 1 ≤ i, j ≤ n, is filled in the following form.

ei,j =


c(1,m)

i j = ai,

c(2,m)
i j = bi,
z(m) j 6∈ {ai, bi}.

The block-matrix E is called an extended primitive GFS matrix, denoted with EGFS
matrix, if E be a primitive matrix over R.

In Definition 3 to check whether E is a primitive matrix over R, we suppose that c(1,m)
i ,

c(2,m)
i and z(m) with 1 ≤ i ≤ n are 2× 2 matrices over R and also Lj with 1 ≤ j ≤ 3n are

positive integer numbers over R.
Moreover, it can be verified that det(E) =

∏n
i=1 L3i−1L3i over F2[L]. Therefore,

det(E) 6= 0 over F2[L], since it is assumed that Lj ∈ {1,L,L−1} with 1 ≤ j ≤ 3n. In other
words, EGFS matrices are non-singular matrices over F2[L].
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Example 6. For n = 2, consider two permutations p1 = {1, 2} and p2 = {2, 1}. Then
the following two EGFS matrices E1 and E2 are 4-primitive matrices over R.

c(1,m)
1 =

(
1 1
0 0

)
, c(1,m)

2 =
(

L 1
0 0

)
,

c(2,m)
1 =

(
0 0
1 0

)
, c(2,m)

2 =
(

0 0
L−1 0

)
,

E1 =

( 1 1 0 0
0 0 1 0
0 0 L 1

L−1 0 0 0

)
.

c(1,m)
1 =

(
L 1
0 0

)
, c(1,m)

2 =
(

1 1
0 0

)
,

c(2,m)
1 = c(2,m)

2 =
(

0 0
1 0

)
,

E2 =

( L 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)
.

For n = 3, the given EGFS matrix in (19) is an 6-primitive matrix over R.

c(1,m)
1 = c(1,m)

2 = c(1,m)
3 =

(
L 1
0 0

)
,

c(2,m)
1 = c(2,m)

2 =
(

0 0
1 0

)
,c(2,m)

3 =
(

0 0
L−1 0

)
,

p1 = {3, 1, 2}, p2 = {2, 3, 1}.

E =


0 0 0 0 L 1
0 0 1 0 0 0
L 1 0 0 0 0
0 0 0 0 1 0
0 0 L 1 0 0

L−1 0 0 0 0 0

 .

(19)

6.1 Construction of Lightweight 4 × 4 MDS Matrices from EGFS
In this subsection, we propose four EGFS matrices Ei with 1 ≤ i ≤ 4 such that Ei’s
are 4-primitive matrices over R. Moreover, proposed EGFS matrices are constructed of
two permutations p1 = {1, 2} and p2 = {2, 1}. In other words, Ei’s are with the same
structure. In the rest, by applying Ei’s we obtain an MDS matrix H over F2[L] such that
the implementation cost of H over 4 and 8-bit input are 35 and 67 XOR, respectively.

H = E1 E2 E3 E4

=
( 1 1 0 0

0 0 1 0
0 0 1 1
1 0 0 0

)( L 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)( 1 1 0 0
0 0 1 0
0 0 L 1

L−1 0 0 0

)( 1 1 0 0
0 0 1 0
0 0 1 1
1 0 0 0

)

=

 L + 1 L 1 L + 1
L−1 + 1 L−1 L L

L−1 L−1 + 1 L + 1 L
L L L + 1 1

 .

The implementation cost of H for m-bit input is equal to

#E1︷ ︸︸ ︷
(2m) +

#E2︷ ︸︸ ︷
(2m+ #L) +

#E3︷ ︸︸ ︷
(2m+ #L + #(L−1)) +

#E4︷ ︸︸ ︷
(2m) = 8m+ 2(#L) + #(L−1). (20)

The base set of subdeterminants of H is:

{L,L + 1,L2 + L + 1,L3 + L + 1,L3 + L2 + 1}. (21)

For m = 4, consider 4× 4 non-singular binary matrices Li with 1 ≤ i ≤ 6 in (22). It can
be checked that by using Li’s the given elements in (21) are non-singular matrices over F2.
In addition, the implementation cost of Li and L−1

i with 1 ≤ i ≤ 6 are one XOR.

L1 = [[1, 4], [1], [2], [3]], L2 = [[3, 4], [1], [2], [3]], L3 = [[4], [1, 2], [2], [3]],
L4 = [[4], [1, 4], [2], [3]], L5 = [[4], [1], [2, 3], [3]], L6 = [[4], [1], [2], [3, 4]]. (22)
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Therefore, by applying Li’s and relation (20), the implementation cost of H is 8× 4 + 2×
1 + 1× 1 = 35 XOR for 4-bit input. Moreover, it follows from (21) that the matrix H can
be implemented with 35 XOR over F24 , since two irreducible polynomials 0x13 and 0x19
are not elements of the set (21).

For m = 8, the next 8×8 non-singular binary matrices Lj with 1 ≤ j ≤ 10 are obtained
such that the given elements in (21) are non-singular matrices over F2 by applying Lj ’s.
Moreover, the implementation cost of Lj and L−1

j with 1 ≤ j ≤ 10 are one XOR.

L1 = [[2, 8], [1], [2], [3], [4], [5], [6], [7]], L2 = [[6, 8], [1], [2], [3], [4], [5], [6], [7]],
L3 = [[8], [1, 3], [2], [3], [4], [5], [6], [7]], L4 = [[8], [1, 7], [2], [3], [4], [5], [6], [7]],
L5 = [[8], [1], [2, 4], [3], [4], [5], [6], [7]], L6 = [[8], [1], [2, 8], [3], [4], [5], [6], [7]],
L7 = [[8], [1], [2], [3, 5], [4], [5], [6], [7]], L8 = [[8], [1], [2], [3], [4, 6], [5], [6], [7]],
L9 = [[8], [1], [2], [3], [4], [5, 7], [6], [7]], L10 = [[8], [1], [2], [3], [4], [5], [6, 8], [7]].

(23)

Hence, it follows from (20) that the implementation cost of H by applying Lj ’s is 8×8+2×
1+1×1 = 67 XOR. Moreover, some roots of irreducible polynomials of degree 8 require only
two XOR [Bei16]. Therefore, H can be implemented with at least 8×8 + 2×2 + 1×2 = 70
XOR over F28 , since there are no irreducible polynomials in F2 of degree 8 in (21).

6.2 Construction of Lightweight 6 × 6 MDS Matrices from EGFS

In this subsection, by applying EGFS matrices, we propose a new lightweight 6× 6 MDS
matrix which is implemented with 158 XOR for 8-bit input. The result of this subsection
is not only efficient from hardware perspective, but also are suitable by software point of
view. Actually, in order to construct the proposed 6× 6 MDS matrix, seven binary linear
functions (L) are used. Moreover, the cost of L is very small compared to the total XOR.

Consider the following EGFS matrices Ei with 1 ≤ i ≤ 3 such that Ei’s are constructed
from two permutations p1 = {3, 1, 2} and p2 = {2, 3, 1}. It follows from (19) that Ei’s are
6-primitive matrices over R, since Ei’s are with the same structure as E in (19).

E1 =


0 0 0 0 1 1
0 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
1 0 0 0 0 0

 , E2 =


0 0 0 0 L 1
0 0 1 0 0 0
L 1 0 0 0 0
0 0 0 0 1 0
0 0 L 1 0 0
1 0 0 0 0 0

 , E3 =


0 0 0 0 L 1
0 0 1 0 0 0
L 1 0 0 0 0
0 0 0 0 1 0
0 0 L 1 0 0

1/L 0 0 0 0 0

 .

Now based on the EGFS matrices Ei with 1 ≤ i ≤ 3, the proposed lightweight 6× 6 MDS
matrix H is constructed as follows.

H = E2
1×E2×E3×E2

1 =


L2 + L−1 L2 L2 + L−1 L + L−1 + 1 1 L2 + 1

L + L−1 + 1 1 L2 + L−1 L−1 L2 L2

1 L2 + 1 L2 + 1 L2 L2 + 1 L
L2 L2 L 1 L2 + 1 1

L2 + L−1 L L−1 L2 + L−1 L2 + 1 L2

L2 + 1 1 L2 L2 L 1

 .

The implementation cost of H for m-bit input is equal to

2(#E1)︷ ︸︸ ︷
2(3m) +

#E2︷ ︸︸ ︷
(3m+ 3(#L)) +

#E3︷ ︸︸ ︷
(3m+ 3(#L) + #(L−1)) +

2(#E1)︷ ︸︸ ︷
2(3m) = 18m+ 6(#L) + #(L−1)

(24)
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The base set of subdeterminants of H has 35 elements that are listed in (25).

{L,L+ 1, L2 + L+ 1, L3 + L+ 1, L3 + L2 + 1, L4 + L+ 1, L4 + L3 + 1,
L4 + L3 + L2 + L+ 1, L5 + L2 + 1, L5 + L3 + 1, L5 + L3 + L2 + L+ 1,
L5 + L4 + L2 + L+ 1, L5 + L4 + L3 + L+ 1, L5 + L4 + L3 + L2 + 1,
L6 + L+ 1, L6 + L3 + 1, L6 + L4 + L2 + L+ 1, L6 + L4 + L3 + L+ 1,

L6 + L5 + 1, L6 + L5 + L2 + L+ 1, L6 + L5 + L3 + L2 + 1,
L6 + L5 + L4 + L+ 1, L6 + L5 + L4 + L2 + 1, L7 + L+ 1,

L7 + L3 + 1, L7 + L3 + L2 + L+ 1, L7 + L4 + 1, L7 + L5 + L2 + L+ 1,
L7 + L5 + L4 + L3 + 1, L7 + L5 + L4 + L3 + L2 + L+ 1,
L7 + L6 + 1, L7 + L6 + L3 + L+ 1, L7 + L6 + L4 + L+ 1,
L7 + L6 + L4 + L2 + 1, L7 + L6 + L5 + L4 + L3 + L2 + 1}

(25)

Consider 8× 8 non-singular binary matrices Li with 1 ≤ i ≤ 32 that are given in (26). It
can be verified that by applying Li’s the given elements in (25) are non-singular matrices
over F2. Moreover, the implementation cost of Li and L−1

i with 1 ≤ i ≤ 32 are two XOR.

L1 = [[1, 8], [1], [2, 5], [3], [4], [5], [6], [7]], L2 = [[1, 8], [1], [2, 7], [3], [4], [5], [6], [7]],
L3 = [[1, 8], [1], [2], [3, 6], [4], [5], [6], [7]], L4 = [[1, 8], [1], [2], [3], [4, 7], [5], [6], [7]],
L5 = [[2, 8], [1], [2], [3, 6], [4], [5], [6], [7]], L6 = [[2, 8], [1], [2], [3], [4, 7], [5], [6], [7]],
L7 = [[3, 8], [1], [2], [3], [4, 5], [5], [6], [7]], L8 = [[3, 8], [1], [2], [3], [4, 6], [5], [6], [7]],
L9 = [[3, 8], [1], [2], [3], [4], [5, 6], [6], [7]], L10 = [[3, 8], [1], [2], [3], [4], [5, 7], [6], [7]],
L11 = [[3, 8], [1], [2], [3], [4], [5], [6, 7], [7]], L12 = [[5, 8], [1], [2], [3], [4], [5], [6, 7], [7]],
L13 = [[8], [1, 2], [2], [3, 6], [4], [5], [6], [7]], L14 = [[8], [1, 2], [2], [3, 8], [4], [5], [6], [7]],
L15 = [[8], [1, 2], [2], [3], [4, 7], [5], [6], [7]], L16 = [[8], [1, 2], [2], [3], [4], [5, 8], [6], [7]],
L17 = [[8], [1, 3], [2], [3], [4, 7], [5], [6], [7]], L18 = [[8], [1, 3], [2], [3], [4], [5, 8], [6], [7]],
L19 = [[8], [1, 4], [2], [3], [4], [5, 6], [6], [7]], L20 = [[8], [1, 4], [2], [3], [4], [5, 7], [6], [7]],
L21 = [[8], [1, 4], [2], [3], [4], [5], [6, 7], [7]], L22 = [[8], [1, 4], [2], [3], [4], [5], [6, 8], [7]],
L23 = [[8], [1, 4], [2], [3], [4], [5], [6], [7, 8]], L24 = [[8], [1, 6], [2], [3], [4], [5], [6], [7, 8]],
L25 = [[8], [1], [2, 3], [3], [4, 7], [5], [6], [7]], L26 = [[8], [1], [2, 3], [3], [4], [5, 8], [6], [7]],
L27 = [[8], [1], [2, 4], [3], [4], [5, 8], [6], [7]], L28 = [[8], [1], [2, 5], [3], [4], [5], [6, 7], [7]],
L29 = [[8], [1], [2, 5], [3], [4], [5], [6, 8], [7]], L30 = [[8], [1], [2, 5], [3], [4], [5], [6], [7, 8]],
L31 = [[8], [1], [2], [3, 4], [4], [5, 8], [6], [7]], L32 = [[8], [1], [2], [3, 6], [4], [5], [6], [7, 8]].

(26)
Therefore, by applying Li’s and relation (24), H is implemented with 18×8+6×2+2 = 158
XOR for 8-bit input. Moreover, H can be implemented with 158 XOR over F28 , since
some roots of irreducible polynomials of degree 8 require only two XOR and there are no
irreducible polynomials of degree 8 in (25).

6.3 Construction of Lightweight 8 × 8 MDS Matrices from EGFS
The given results in this subsection is the main result of this paper. Actually, by applying
EGFS matrices, we propose an 8× 8 MDS matrix H such that H is implemented with 272
XOR for 8-bit input. Moreover, the depth of H is 9 which means H is an efficient MDS
matrix from hardware implementation point of view.

First of all, by applying the Appendix A, we tried to obtain 8× 8 EGFS matrices Ei

with 1 ≤ i ≤ 6 such that Ei’s satisfy the following conditions. First, Ei’s are with the
same structure and are 6-primitive matrices over R. Second, the multiplication of Ei’s
denoted with H =

∏6
i=1 Ei, is an MDS matrix over F2[L]. Finally, the implementation

cost of H is less than 392 XOR for 8-bit input. But we could not get EGFS matrices under
the stated conditions. Therefore, we increased the number of 8× 8 EGFS matrices.

Consider 8 × 8 EGFS matrices Ei with 1 ≤ i ≤ 5, given in (27). The structures of
Ei’s are the same, since Ei’s are constructed from two permutations p1 = {4, 3, 2, 1} and
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p2 = {3, 2, 1, 4}. Moreover, by using Appendix A, it can be checked that EGFS matrices
Ei with 1 ≤ i ≤ 5 are 6-primitive matrices over R.

c(1,m)
1 = · · · = c(1,m)

4 =
(

1 1
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
1 0

)
,

E1 =


0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0


c(1,m)

1 = · · · = c(1,m)
4 =

(
1 L
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
1 0

)
,

c(1,m)
1 = · · · = c(1,m)

4 =
(

L 1
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
1 0

)
,

E2 =


0 0 0 0 0 0 1 L
0 0 0 0 1 0 0 0
0 0 0 0 1 L 0 0
0 0 1 0 0 0 0 0
0 0 1 L 0 0 0 0
1 0 0 0 0 0 0 0
1 L 0 0 0 0 0 0
0 0 0 0 0 0 1 0

 , E3 =


0 0 0 0 0 0 L 1
0 0 0 0 1 0 0 0
0 0 0 0 L 1 0 0
0 0 1 0 0 0 0 0
0 0 L 1 0 0 0 0
1 0 0 0 0 0 0 0
L 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0


c(1,m)

1 = · · · = c(1,m)
4 =

(
1 1
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
L−1 0

)
,

c(1,m)
1 = · · · = c(1,m)

4 =
(

1 1
0 0

)
,

c(2,m)
1 = · · · = c(2,m)

4 =
(

0 0
L 0

)
,

E4 =


0 0 0 0 0 0 1 1
0 0 0 0 L−1 0 0 0
0 0 0 0 1 1 0 0
0 0 L−1 0 0 0 0 0
0 0 1 1 0 0 0 0

L−1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 L−1 0

 , E5 =


0 0 0 0 0 0 1 1
0 0 0 0 L 0 0 0
0 0 0 0 1 1 0 0
0 0 L 0 0 0 0 0
0 0 1 1 0 0 0 0
L 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 L 0


(27)

Now based on the EGFS matrices Ei with 1 ≤ i ≤ 5, we propose an MDS matrix H over
F2[L] such that H is constructed from seven EGFS matrices.

H = E1E2E1E3E4E5E1

=


L2 + L + 1 L2 + L + 1 L + L−1 L2 + L

L2 + L + L−1 + 1 L + 1 L2 + L + L−1 L2 + L−1

L + L−1 L2 + L L2 L2 + L + L−1

L2 + L + L−1 L2 + L−1 L3 + L + 1 L3 + L
L2 L2 + L + L−1 L3 + L−1 + 1 L3 + L + L−1

L3 + L + 1 L3 + L L2 L2 + 1
L3 + L−1 + 1 L3 + L + L−1 L2 + L + 1 L2 + L + 1

L2 L2 + 1 L2 + L + L−1 + 1 L + 1

L2 L2 + L + L−1 L3 + L−1 + 1 L3 + L + L−1

L3 + L + 1 L3 + L L2 L2 + 1
L3 + L−1 + 1 L3 + L + L−1 L2 + L + 1 L2 + L + 1

L2 L2 + 1 L2 + L + L−1 + 1 L + 1
L2 + L + 1 L2 + L + 1 L + L−1 L2 + L

L2 + L + L−1 + 1 L + 1 L2 + L + L−1 L2 + L−1

L + L−1 L2 + L L2 L2 + L + L−1

L2 + L + L−1 L2 + L−1 L3 + L + 1 L3 + L

 .

(28)
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It follows from (28) that the implementation cost of matrix H for m-bit input is equal to

#E1︷ ︸︸ ︷
(4m) +

#E2︷ ︸︸ ︷
(4m+ 4(#L)) +

#E1︷ ︸︸ ︷
(4m) +

#E3︷ ︸︸ ︷
(4m+ 4(#L)) +

#E4︷ ︸︸ ︷
(4m+ 4(#L−1)) +

#E5︷ ︸︸ ︷
(4m+ 4(#L))

+
#E1︷ ︸︸ ︷
(4m) = 28m+ 12(#L) + 4(#L−1).

(29)
The base set of subdeterminants of H has 285 elements that are provided in Appendix C.
In this base set, there are all irreducible polynomials of degrees 4 and 8, except for the
primitive polynomial 0x1E7. It can be checked that the given elements in the Appendix
C, are non-singular matrices over F2 by applying the following non-singular 8× 8 binary
matrices Li with 1 ≤ i ≤ 34.

L1 = [[1, 8], [1, 3, 7], [2], [3], [4], [5], [6], [7]], L2 = [[1, 8], [1, 3], [2, 8], [3], [4], [5], [6], [7]],
L3 = [[1, 8], [1, 7], [2, 4], [3], [4], [5], [6], [7]], L4 = [[1, 8], [1, 7], [2], [3, 5], [4], [5], [6], [7]],
L5 = [[1, 8], [1, 7], [2], [3], [4, 6], [5], [6], [7]], L6 = [[1, 8], [1, 7], [2], [3], [4], [5, 7], [6], [7]],
L7 = [[1, 8], [1, 7], [2], [3], [4], [5], [6, 8], [7]], L8 = [[1, 8], [1], [2, 4, 8], [3], [4], [5], [6], [7]],
L9 = [[1, 8], [1], [2, 8], [3, 5], [4], [5], [6], [7]], L10 = [[1, 8], [1], [2, 8], [3], [4, 6], [5], [6], [7]],
L11 = [[1, 8], [1], [2, 8], [3], [4], [5, 7], [6], [7]], L12 = [[1, 8], [1], [2, 8], [3], [4], [5], [6, 8], [7]],
L13 = [[2, 6, 8], [1], [2], [3], [4], [5], [6, 7], [7]], L14 = [[2, 6, 8], [1], [2], [3], [4], [5], [6], [7, 8]],
L15 = [[2, 8], [1, 7], [2], [3], [4], [5], [6], [7, 8]], L16 = [[6, 8], [1, 3], [2], [3], [4], [5], [6, 7], [7]],
L17 = [[6, 8], [1, 3], [2], [3], [4], [5], [6], [7, 8]], L18 = [[6, 8], [1], [2, 4], [3], [4], [5], [6, 7], [7]],
L19 = [[6, 8], [1], [2, 4], [3], [4], [5], [6], [7, 8]], L20 = [[6, 8], [1], [2], [3, 5], [4], [5], [6, 7], [7]],
L21 = [[6, 8], [1], [2], [3, 5], [4], [5], [6], [7, 8]], L22 = [[6, 8], [1], [2], [3], [4, 6], [5], [6, 7], [7]],
L23 = [[6, 8], [1], [2], [3], [4, 6], [5], [6], [7, 8]], L24 = [[6, 8], [1], [2], [3], [4], [5, 7], [6], [7, 8]],
L25 = [[8], [1, 2], [2, 4, 8], [3], [4], [5], [6], [7]], L26 = [[8], [1, 2], [2, 8], [3, 5], [4], [5], [6], [7]],
L27 = [[8], [1, 2], [2, 8], [3], [4, 6], [5], [6], [7]], L28 = [[8], [1, 2], [2, 8], [3], [4], [5, 7], [6], [7]],
L29 = [[8], [1, 2], [2, 8], [3], [4], [5], [6, 8], [7]], L30 = [[8], [1, 3, 7], [2], [3], [4], [5], [6], [7, 8]],
L31 = [[8], [1, 7], [2, 4], [3], [4], [5], [6], [7, 8]], L32 = [[8], [1, 7], [2], [3, 5], [4], [5], [6], [7, 8]],
L33 = [[8], [1, 7], [2], [3], [4, 6], [5], [6], [7, 8]], L34 = [[8], [1, 7], [2], [3], [4], [5, 7], [6], [7, 8]].

(30)
Moreover, the implementation cost of Li’s, given in (30), is three XOR. Although, the
implementation cost of L−1

i with 1 ≤ i ≤ 34 are not three XOR, the inverse of Li’s can be
implemented with three XOR. For instance, consider x = [x1, x2, · · · , x8]. Then we have

L−1
2 · xT = [x2 + x4, x1 + x2 + x3 + x4, x4, x5, x6, x7, x8, x1 + x2 + x4]T ,

u1 = x2 + x4, u2 = u1 + x1, u3 = u2 + x3.

Hence, using Li with 1 ≤ i ≤ 34 and relation (29), H is implemented by 28 × 8 + 4 ×
3 + 12 × 3 = 272 XOR for 8-bit input. Now consider α is a root of 0x1E7. Then it can
be verified that the implementation cost of α and α−1 are five XOR. Therefore, H is
implemented with 28× 8 + 4× 5 + 12× 5 = 304 XOR over F28/0x1E7.

Moreover, let L be an 2k × 2k with k > 2 companion binary matrix such that the
characteristic polynomial of L over F2 is

(
x

8 + x
7 + x

6 + x
5 + x

2 + x + 1
)2k−3

. It can be proved
that using L the elements of the base set of subdeterminants of H, given in Appendix C,
are non-singular matrices over F2. Furthermore, the implementation cost of L and L−1

are five XOR. Hence, by applying L and relation (29) the implementation cost of H is
28× 2k + 80 XOR for 2k-bit input with k > 2.

Although we proposed an 8 × 8 lightweight MDS matrix, we strongly believed that
by applying binary linear functions to EGFS matrices it is possible to get an 8× 8 MDS
matrix with the implementation cost less than 272 XOR for 8-bit input. Actually, the
various structure of EGFS matrices give the possibility to get a better result.
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7 Conclusion

This paper proposes a construction heuristic method to design MDS matrices with low
hardware implementation cost based on the generalized Feistel structures. Feistel-based
structures such as GFS structure are suitable choices to construct MDS matrices, since
their inverses can be implemented with simplicity. First of all, using GFS structure, some
types of sparse matrices, called primitive GFS matrices, are proposed. Then, by applying
binary linear functions to primitive GFS matrices we proposed 4 × 4 and 8 × 8 MDS
matrices. The proposed 4× 4 and 8× 8 matrices and their inverse are implemented with
68 and 280 XOR for 8-bit input, respectively. Next, using an extension of primitive GFS
matrices we defined another type of sparse matrices called EGFS matrices. Then based
on the EGFS matrices, 4× 4, 6× 6 and 8× 8 lightweight MDS matrices are implemented
with 67, 158 and 272 XOR for 8-bit input, respectively.

One of the important features of this work is that the proposed MDS matrices are not
only efficient by hardware terminology, but also are suitable by software perspective. In
fact, proposed 4× 4, 6× 6 and 8× 8 lightweight MDS matrices are constructed from 3, 7
and 16 binary linear functions. A summary of results of this paper is presented in Table 2.

Table 2: A summary of results of this paper.

Iteration Implementation Cost Total Cost Inverse Cost Depth Fig.

Lightweight 4× 4 MDS Matrices for 4-bit

4 Round 8 XOR4-bit, 4 L 36 XOR1-bit 36 XOR1-bit 6 1

4 Round 8 XOR4-bit, 3 L 35 XOR1-bit 36 XOR1-bit 5 2

Lightweight 4× 4 MDS Matrices for 8-bit

4 Round 8 XOR8-bit, 4 L 68 XOR1-bit 68 XOR1-bit 6 1

4 Round 8 XOR8-bit, 3 L 67 XOR1-bit 68 XOR1-bit 5 2

Lightweight 6× 6 MDS Matrices for 8-bit

6 Round 18 XOR8-bit, 7 L 158 XOR1-bit 160 XOR1-bit 8 3

Lightweight 8× 8 MDS Matrices for 8-bit

7 Round 28 XOR8-bit, 20 L 280 XOR1-bit 280 XOR1-bit 11 4

7 Round 28 XOR8-bit, 16 L 272 XOR1-bit 296 XOR1-bit 9 5
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Appendix A
Case p1 p2 Order

1 {1, 2, 3, 4} {2, 1, 4, 3} ∞
2 {1, 2, 3, 4} {2, 3, 4, 1} 8
3 {1, 2, 3, 4} {2, 4, 1, 3} 8
4 {1, 2, 3, 4} {3, 1, 4, 2} 8
5 {1, 2, 3, 4} {3, 4, 1, 2} ∞
6 {1, 2, 3, 4} {3, 4, 2, 1} 8
7 {1, 2, 3, 4} {4, 1, 2, 3} 8
8 {1, 2, 3, 4} {4, 3, 1, 2} 8
9 {1, 2, 3, 4} {4, 3, 2, 1} ∞
10 {1, 2, 4, 3} {2, 1, 3, 4} ∞
11 {1, 2, 4, 3} {2, 3, 1, 4} 7
12 {1, 2, 4, 3} {2, 4, 3, 1} 7
13 {1, 2, 4, 3} {3, 1, 2, 4} 7
14 {1, 2, 4, 3} {3, 4, 1, 2} 6
15 {1, 2, 4, 3} {3, 4, 2, 1} 7
16 {1, 2, 4, 3} {4, 1, 3, 2} 7
17 {1, 2, 4, 3} {4, 3, 1, 2} 7
18 {1, 2, 4, 3} {4, 3, 2, 1} 6
19 {1, 3, 2, 4} {2, 1, 4, 3} 6
20 {1, 3, 2, 4} {2, 4, 1, 3} 7
21 {1, 3, 2, 4} {2, 4, 3, 1} 7
22 {1, 3, 2, 4} {3, 1, 4, 2} 7
23 {1, 3, 2, 4} {3, 2, 4, 1} 7
24 {1, 3, 2, 4} {3, 4, 1, 2} 6
25 {1, 3, 2, 4} {4, 1, 3, 2} 7
26 {1, 3, 2, 4} {4, 2, 1, 3} 7
27 {1, 3, 2, 4} {4, 2, 3, 1} ∞
28 {1, 3, 4, 2} {2, 1, 3, 4} 7
29 {1, 3, 4, 2} {2, 4, 1, 3} 6
30 {1, 3, 4, 2} {2, 4, 3, 1} 6
31 {1, 3, 4, 2} {3, 1, 2, 4} 6
32 {1, 3, 4, 2} {3, 2, 1, 4} 7
33 {1, 3, 4, 2} {3, 4, 2, 1} 6
34 {1, 3, 4, 2} {4, 1, 2, 3} 6
35 {1, 3, 4, 2} {4, 2, 1, 3} 6
36 {1, 3, 4, 2} {4, 2, 3, 1} 7
37 {1, 4, 2, 3} {2, 1, 3, 4} 7
38 {1, 4, 2, 3} {2, 3, 1, 4} 6
39 {1, 4, 2, 3} {2, 3, 4, 1} 6
40 {1, 4, 2, 3} {3, 1, 4, 2} 6
41 {1, 4, 2, 3} {3, 2, 1, 4} 7
42 {1, 4, 2, 3} {3, 2, 4, 1} 6
43 {1, 4, 2, 3} {4, 1, 3, 2} 6
44 {1, 4, 2, 3} {4, 2, 3, 1} 7
45 {1, 4, 2, 3} {4, 3, 1, 2} 6
46 {1, 4, 3, 2} {2, 1, 4, 3} 6
47 {1, 4, 3, 2} {2, 3, 1, 4} 7
48 {1, 4, 3, 2} {2, 3, 4, 1} 7
49 {1, 4, 3, 2} {3, 1, 2, 4} 7
50 {1, 4, 3, 2} {3, 2, 1, 4} ∞
51 {1, 4, 3, 2} {3, 2, 4, 1} 7
52 {1, 4, 3, 2} {4, 1, 2, 3} 7
53 {1, 4, 3, 2} {4, 2, 1, 3} 7
54 {1, 4, 3, 2} {4, 3, 2, 1} 6

Case p1 p2 Order
55 {2, 1, 3, 4} {1, 2, 4, 3} ∞
56 {2, 1, 3, 4} {1, 3, 4, 2} 7
57 {2, 1, 3, 4} {1, 4, 2, 3} 7
58 {2, 1, 3, 4} {3, 2, 4, 1} 7
59 {2, 1, 3, 4} {3, 4, 1, 2} 6
60 {2, 1, 3, 4} {3, 4, 2, 1} 7
61 {2, 1, 3, 4} {4, 2, 1, 3} 7
62 {2, 1, 3, 4} {4, 3, 1, 2} 7
63 {2, 1, 3, 4} {4, 3, 2, 1} 6
64 {2, 1, 4, 3} {1, 2, 3, 4} ∞
65 {2, 1, 4, 3} {1, 3, 2, 4} 6
66 {2, 1, 4, 3} {1, 4, 3, 2} 6
67 {2, 1, 4, 3} {3, 2, 1, 4} 6
68 {2, 1, 4, 3} {3, 4, 1, 2} ∞
69 {2, 1, 4, 3} {3, 4, 2, 1} 8
70 {2, 1, 4, 3} {4, 2, 3, 1} 6
71 {2, 1, 4, 3} {4, 3, 1, 2} 8
72 {2, 1, 4, 3} {4, 3, 2, 1} ∞
73 {2, 3, 1, 4} {1, 2, 4, 3} 7
74 {2, 3, 1, 4} {1, 4, 2, 3} 6
75 {2, 3, 1, 4} {1, 4, 3, 2} 7
76 {2, 3, 1, 4} {3, 1, 4, 2} 6
77 {2, 3, 1, 4} {3, 2, 4, 1} 6
78 {2, 3, 1, 4} {3, 4, 2, 1} 6
79 {2, 3, 1, 4} {4, 1, 2, 3} 6
80 {2, 3, 1, 4} {4, 1, 3, 2} 6
81 {2, 3, 1, 4} {4, 2, 3, 1} 7
82 {2, 3, 4, 1} {1, 2, 3, 4} 8
83 {2, 3, 4, 1} {1, 4, 2, 3} 7
84 {2, 3, 4, 1} {1, 4, 3, 2} 7
85 {2, 3, 4, 1} {3, 1, 2, 4} 7
86 {2, 3, 4, 1} {3, 2, 1, 4} 7
87 {2, 3, 4, 1} {3, 4, 1, 2} 8
88 {2, 3, 4, 1} {4, 1, 2, 3} ∞
89 {2, 3, 4, 1} {4, 1, 3, 2} 7
90 {2, 3, 4, 1} {4, 2, 1, 3} 7
91 {2, 4, 1, 3} {1, 2, 3, 4} 8
92 {2, 4, 1, 3} {1, 3, 2, 4} 7
93 {2, 4, 1, 3} {1, 3, 4, 2} 7
94 {2, 4, 1, 3} {3, 1, 2, 4} 7
95 {2, 4, 1, 3} {3, 1, 4, 2} ∞
96 {2, 4, 1, 3} {3, 2, 4, 1} 7
97 {2, 4, 1, 3} {4, 1, 3, 2} 7
98 {2, 4, 1, 3} {4, 2, 3, 1} 7
99 {2, 4, 1, 3} {4, 3, 2, 1} 8
100 {2, 4, 3, 1} {1, 2, 4, 3} 7
101 {2, 4, 3, 1} {1, 3, 2, 4} 7
102 {2, 4, 3, 1} {1, 3, 4, 2} 6
103 {2, 4, 3, 1} {3, 1, 2, 4} 6
104 {2, 4, 3, 1} {3, 1, 4, 2} 6
105 {2, 4, 3, 1} {3, 2, 1, 4} 7
106 {2, 4, 3, 1} {4, 1, 2, 3} 6
107 {2, 4, 3, 1} {4, 2, 1, 3} 6
108 {2, 4, 3, 1} {4, 3, 1, 2} 6
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Case p1 p2 Order
109 {3, 1, 2, 4} {1, 2, 4, 3} 7
110 {3, 1, 2, 4} {1, 3, 4, 2} 6
111 {3, 1, 2, 4} {1, 4, 3, 2} 7
112 {3, 1, 2, 4} {2, 3, 4, 1} 6
113 {3, 1, 2, 4} {2, 4, 1, 3} 6
114 {3, 1, 2, 4} {2, 4, 3, 1} 6
115 {3, 1, 2, 4} {4, 2, 1, 3} 6
116 {3, 1, 2, 4} {4, 2, 3, 1} 7
117 {3, 1, 2, 4} {4, 3, 1, 2} 6
118 {3, 1, 4, 2} {1, 2, 3, 4} 8
119 {3, 1, 4, 2} {1, 3, 2, 4} 7
120 {3, 1, 4, 2} {1, 4, 2, 3} 7
121 {3, 1, 4, 2} {2, 3, 1, 4} 7
122 {3, 1, 4, 2} {2, 4, 1, 3} ∞
123 {3, 1, 4, 2} {2, 4, 3, 1} 7
124 {3, 1, 4, 2} {4, 2, 1, 3} 7
125 {3, 1, 4, 2} {4, 2, 3, 1} 7
126 {3, 1, 4, 2} {4, 3, 2, 1} 8
127 {3, 2, 1, 4} {1, 3, 4, 2} 7
128 {3, 2, 1, 4} {1, 4, 2, 3} 7
129 {3, 2, 1, 4} {1, 4, 3, 2} ∞
130 {3, 2, 1, 4} {2, 1, 4, 3} 6
131 {3, 2, 1, 4} {2, 3, 4, 1} 7
132 {3, 2, 1, 4} {2, 4, 3, 1} 7
133 {3, 2, 1, 4} {4, 1, 2, 3} 7
134 {3, 2, 1, 4} {4, 1, 3, 2} 7
135 {3, 2, 1, 4} {4, 3, 2, 1} 6
136 {3, 2, 4, 1} {1, 3, 2, 4} 7
137 {3, 2, 4, 1} {1, 4, 2, 3} 6
138 {3, 2, 4, 1} {1, 4, 3, 2} 7
139 {3, 2, 4, 1} {2, 1, 3, 4} 7
140 {3, 2, 4, 1} {2, 3, 1, 4} 6
141 {3, 2, 4, 1} {2, 4, 1, 3} 6
142 {3, 2, 4, 1} {4, 1, 2, 3} 6
143 {3, 2, 4, 1} {4, 1, 3, 2} 6
144 {3, 2, 4, 1} {4, 3, 1, 2} 6
145 {3, 4, 1, 2} {1, 2, 3, 4} ∞
146 {3, 4, 1, 2} {1, 2, 4, 3} 6
147 {3, 4, 1, 2} {1, 3, 2, 4} 6
148 {3, 4, 1, 2} {2, 1, 3, 4} 6
149 {3, 4, 1, 2} {2, 1, 4, 3} ∞
150 {3, 4, 1, 2} {2, 3, 4, 1} 8
151 {3, 4, 1, 2} {4, 1, 2, 3} 8
152 {3, 4, 1, 2} {4, 2, 3, 1} 6
153 {3, 4, 1, 2} {4, 3, 2, 1} ∞
154 {3, 4, 2, 1} {1, 2, 3, 4} 8
155 {3, 4, 2, 1} {1, 2, 4, 3} 7
156 {3, 4, 2, 1} {1, 3, 4, 2} 7
157 {3, 4, 2, 1} {2, 1, 3, 4} 7
158 {3, 4, 2, 1} {2, 1, 4, 3} 8
159 {3, 4, 2, 1} {2, 3, 1, 4} 7
160 {3, 4, 2, 1} {4, 1, 3, 2} 7
161 {3, 4, 2, 1} {4, 2, 1, 3} 7
162 {3, 4, 2, 1} {4, 3, 1, 2} ∞

Case p1 p2 Order
163 {4, 1, 2, 3} {1, 2, 3, 4} 8
164 {4, 1, 2, 3} {1, 3, 4, 2} 7
165 {4, 1, 2, 3} {1, 4, 3, 2} 7
166 {4, 1, 2, 3} {2, 3, 1, 4} 7
167 {4, 1, 2, 3} {2, 3, 4, 1} ∞
168 {4, 1, 2, 3} {2, 4, 3, 1} 7
169 {4, 1, 2, 3} {3, 2, 1, 4} 7
170 {4, 1, 2, 3} {3, 2, 4, 1} 7
171 {4, 1, 2, 3} {3, 4, 1, 2} 8
172 {4, 1, 3, 2} {1, 2, 4, 3} 7
173 {4, 1, 3, 2} {1, 3, 2, 4} 7
174 {4, 1, 3, 2} {1, 4, 2, 3} 6
175 {4, 1, 3, 2} {2, 3, 1, 4} 6
176 {4, 1, 3, 2} {2, 3, 4, 1} 6
177 {4, 1, 3, 2} {2, 4, 1, 3} 6
178 {4, 1, 3, 2} {3, 2, 1, 4} 7
179 {4, 1, 3, 2} {3, 2, 4, 1} 6
180 {4, 1, 3, 2} {3, 4, 2, 1} 6
181 {4, 2, 1, 3} {1, 3, 2, 4} 7
182 {4, 2, 1, 3} {1, 3, 4, 2} 6
183 {4, 2, 1, 3} {1, 4, 3, 2} 7
184 {4, 2, 1, 3} {2, 1, 3, 4} 7
185 {4, 2, 1, 3} {2, 3, 4, 1} 6
186 {4, 2, 1, 3} {2, 4, 3, 1} 6
187 {4, 2, 1, 3} {3, 1, 2, 4} 6
188 {4, 2, 1, 3} {3, 1, 4, 2} 6
189 {4, 2, 1, 3} {3, 4, 2, 1} 6
190 {4, 2, 3, 1} {1, 3, 2, 4} ∞
191 {4, 2, 3, 1} {1, 3, 4, 2} 7
192 {4, 2, 3, 1} {1, 4, 2, 3} 7
193 {4, 2, 3, 1} {2, 1, 4, 3} 6
194 {4, 2, 3, 1} {2, 3, 1, 4} 7
195 {4, 2, 3, 1} {2, 4, 1, 3} 7
196 {4, 2, 3, 1} {3, 1, 2, 4} 7
197 {4, 2, 3, 1} {3, 1, 4, 2} 7
198 {4, 2, 3, 1} {3, 4, 1, 2} 6
199 {4, 3, 1, 2} {1, 2, 3, 4} 8
200 {4, 3, 1, 2} {1, 2, 4, 3} 7
201 {4, 3, 1, 2} {1, 4, 2, 3} 7
202 {4, 3, 1, 2} {2, 1, 3, 4} 7
203 {4, 3, 1, 2} {2, 1, 4, 3} 8
204 {4, 3, 1, 2} {2, 4, 3, 1} 7
205 {4, 3, 1, 2} {3, 1, 2, 4} 7
206 {4, 3, 1, 2} {3, 2, 4, 1} 7
207 {4, 3, 1, 2} {3, 4, 2, 1} ∞
208 {4, 3, 2, 1} {1, 2, 3, 4} ∞
209 {4, 3, 2, 1} {1, 2, 4, 3} 6
210 {4, 3, 2, 1} {1, 4, 3, 2} 6
211 {4, 3, 2, 1} {2, 1, 3, 4} 6
212 {4, 3, 2, 1} {2, 1, 4, 3} ∞
213 {4, 3, 2, 1} {2, 4, 1, 3} 8
214 {4, 3, 2, 1} {3, 1, 4, 2} 8
215 {4, 3, 2, 1} {3, 2, 1, 4} 6
216 {4, 3, 2, 1} {3, 4, 1, 2} ∞
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Appendix B
x0 x1

⊕

x2 x3

⊕

Π

⊕L L ⊕

Π

⊕L ⊕L

Π

⊕ ⊕

Π

y0 y1 y2 y3
Figure 1: 4× 4 MDS matrix with depth 6:

Π(0,1,2,3) = (3,0,1,2)

x0 x1

⊕

x2 x3

⊕

Π

⊕ L ⊕
L−1

Π

⊕L ⊕

Π

⊕ ⊕

Π

y0 y1 y2 y3
Figure 2: 4× 4 MDS matrix with depth 5:

Π(0,1,2,3) = (3,0,1,2)

x0 x1 x2 x3 x4 x5
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Π
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Π

L ⊕ L ⊕ L ⊕
L−1

Π

L ⊕ L ⊕ L ⊕

Π

⊕ ⊕ ⊕

Π
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Π

y0 y1 y2 y3 y4 y5
Figure 3: 6× 6 MDS matrix with depth 8:

Π(0,1,2,3,4,5) = (5,2,1,4,3,0)
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x0 x1 x2 x3 x4 x5 x6 x7
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y0 y1 y2 y3 y4 y5 y6 y7

Figure 4: 8× 8 MDS matrix with depth 11:
Π(0,1,2,3,4,5,6,7) = (3,0,1,4,7,2,5,6)
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x0 x1 x2 x3 x4 x5 x6 x7
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Figure 5: 8× 8 MDS matrix with depth 9:
Π(0,1,2,3,4,5,6,7) = (5,6,3,4,1,2,7,0)
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Appendix C
The base set of the matrix H, given in (28), which are listed by hexadecimal values. For
instance, we have 0x14ABF = L16 + L14 + L11 + L9 + L7 + L5 + L4 + L3 + L2 + L+ 1.

{0x2, 0x3, 0x7, 0xB, 0xD, 0x13, 0x19, 0x1F, 0x25, 0x29, 0x2F, 0x37, 0x3B, 0x3D, 0x43, 0x49,
0x57, 0x5B, 0x61, 0x67, 0x6D, 0x73, 0x75, 0x83, 0x89, 0x8F, 0x91, 0x9D, 0xA7, 0xAB, 0xB9,
0xBF, 0xC1, 0xCB, 0xD3, 0xD5, 0xE5, 0xEF, 0xF1, 0xF7, 0xFD, 0x11B, 0x11D, 0x12B, 0x12D,
0x139, 0x13F, 0x14D, 0x15F, 0x163, 0x165, 0x169, 0x171, 0x177, 0x17B, 0x187, 0x18B,
0x18D, 0x19F, 0x1A3, 0x1A9, 0x1B1, 0x1BD, 0x1C3, 0x1CF, 0x1D7, 0x1DD, 0x1F3, 0x1F5,
0x1F9, 0x203, 0x21B, 0x221, 0x22D, 0x233, 0x24B, 0x25F, 0x265, 0x269, 0x277, 0x27D,
0x287, 0x295, 0x299, 0x2A3, 0x2A5, 0x2B7, 0x2CF, 0x2DB, 0x2F5, 0x2F9, 0x313, 0x315,
0x31F, 0x331, 0x33B, 0x34F, 0x35B, 0x361, 0x36B, 0x36D, 0x373, 0x37F, 0x385, 0x3A1,
0x3B9, 0x3C7, 0x3CB, 0x3CD, 0x3D5, 0x3D9, 0x3E3, 0x3E9, 0x3FB, 0x409, 0x41B, 0x435,
0x447, 0x453, 0x465, 0x46F, 0x481, 0x4A9, 0x4C5, 0x4E7, 0x4F3, 0x4FF, 0x523, 0x53D,
0x543, 0x557, 0x58F, 0x59B, 0x5A1, 0x5AB, 0x5C7, 0x5F7, 0x615, 0x623, 0x631, 0x637,
0x64F, 0x65B, 0x679, 0x67F, 0x685, 0x689, 0x6A7, 0x6AD, 0x6B5, 0x6C1, 0x6CD, 0x711,
0x717, 0x71D, 0x721, 0x72B, 0x735, 0x755, 0x759, 0x77B, 0x77D, 0x781, 0x787, 0x7B1,
0x7C5, 0x7DB, 0x7F3, 0x7F9, 0x7FF, 0x805, 0x82D, 0x88D, 0x8A9, 0x8C3, 0x8CF, 0x8D1,
0x8E7, 0x93B, 0x949, 0x951, 0x973, 0x975, 0x9E5, 0x9EF, 0xA07, 0xA13, 0xA15, 0xA6D,
0xA79, 0xA7F, 0xAD5, 0xADF, 0xB11, 0xB33, 0xB3F, 0xB87, 0xB95, 0xBAF, 0xBBD, 0xBC9,
0xC0D, 0xC97, 0xCBF, 0xCC7, 0xD0F, 0xD1D, 0xD27, 0xD93, 0xDBB, 0xDC9, 0xDD7, 0xE27,

0xE2B, 0xE7B, 0xEA3, 0xEC9, 0xECF, 0xEF9, 0xF0B, 0xF19, 0xF6B, 0x1069, 0x1077,
0x10D1, 0x11EF, 0x1219, 0x13A9, 0x14B5, 0x154D, 0x1593, 0x15BB, 0x15C5, 0x16E7,
0x17FB, 0x1823, 0x1879, 0x197B, 0x19CF, 0x19F9, 0x1A69, 0x1BFD, 0x1C03, 0x1C27,
0x1CBB, 0x1CED, 0x1E3D, 0x1F11, 0x1F1B, 0x1FAF, 0x1FC3, 0x1FE1, 0x227F, 0x232B,
0x2429, 0x25BD, 0x2B2F, 0x2B97, 0x2F5F, 0x329F, 0x33E5, 0x3499, 0x3A61, 0x3FB5,
0x49E1, 0x4A17, 0x549F, 0x5585, 0x6A6B, 0x6D05, 0x7327, 0x74C7, 0x7BB9, 0x7CA3,

0xA6C7, 0xA7D1, 0xAF2F, 0xB08D, 0xB24F, 0xB909, 0xBB15, 0xD91B, 0xE05F, 0xEB97, 0x14ABF}
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