
Faster Homomorphic Discrete Fourier
Transforms and Improved FHE Bootstrapping

Jung Hee Cheon1, Kyoohyung Han1, and Minki Hhan1

Seoul National University, Seoul Gwanak-ro 1 08826, Korea
{jhcheon, satanigh, hhan }@snu.ac.kr

Abstract. In this work, we propose a faster homomorphic linear trans-
form algorithm for structured matrices such as the discrete Fourier trans-
form (DFT) and linear transformations in bootstrapping.
First, we proposed new method to evaluate the DFT homomorphically
for a given packed ciphertext from the Cooley-Tukey fast Fourier trans-
form algorithm. While the previous method requires O(

√
n) rotations

and O(n) constant vector multiplications, our method only needs O(logn)
rotations/multiplications by consuming O(logn) depth for the length of
input vector n.
Second, we apply the same method to the linear transform of bootstrap-
ping for HEAAN. To achieve this, we construct a recursive relation of
matrices in those linear transformations. Accordingly, we can highly ac-
celerate the linear transformation part of bootstrapping: the number of
homomorphic operations becomes logarithmic to the number of slots, as
in homomorphic DFT.
We also implement both algorithms. Our homomorphic DFT with length
214 only takes about 8 seconds which is about 150 times faster result than
previous one. The bootstrapping for HEAAN with our linear transform
algorithm takes about 2 minutes for C32768 plaintext space with 8 bit
precision, which takes 26 hours using the previous method.

Keywords: Discrete Fourier Transformation · Fully Homomorphic En-
cryption · Bootstrapping.

1 Introduction

Following Gentry’s blueprint [10], various schemes and techniques have been
suggested for efficient fully homomorphic encryption (FHE) schemes. One of
the most important techniques for FHE is to encrypt multiple messages in one
ciphertext, called packing. Homomorphic operation between packed ciphertexts
or single instruction multiple data (SIMD) allows the entry-wise operation of
packed ciphertexts.

Because a large number of messages can be encrypted in single ciphertext
as a vector, applying linear transformations on packed ciphertext is an impor-
tant task for homomorphic encryption. For this reason, many studies have been
done to improve the efficiency of general linear transformations [11, 12]. How-
ever, while the discrete Fourier transform (DFT) and linear transformations in

bootstrapping have in common a special structure that has been overlooked. No
previous study has exploited this structure for linear transformation on packed
ciphertext.

The DFT is a widely used tool in various fields; digital data processing, data
compression, partial differential equations, etc. For example, it is often used to
remove noise sound with small frequency. However, in many applications, the
DFT is applied to the private data such as face, voice, and bioinformation data.
Therefore, homomorphic evaluation of DFT is necessary for data processing with
privacy preserving.

Bootstrapping, the only known way to refresh the noise in the ciphertext
without decryption, is crucial in evaluating large depth circuit or unlimited num-
ber of operations. Linear transformations which convert between coefficient and
slot representations serve as a central role in the bootstrapping procedure. When
the number of slots is large, homomorphic evaluation of the linear transforma-
tion becomes a bottleneck for the performance of bootstrapping. For this reason,
our goal is to build an improved method for homomorphic evaluation of these
two linear transformations.

Our Results. In this paper, we study the fast linear transformations for special
structured matrices. First, we propose a new way to evaluate discrete Fourier
transformation for a given packed ciphertext. Our method only needs O(log n)
number of homomorphic operations while the previous method requires O(

√
n)

rotations and O(n) constant vector multiplications for n the length of input
vector.

We factorize the DFT matrix into log2 n sparse block diagonal matrices using
the Cooley-Tukey factorization with radix 2. We observe that each factor has
only three diagonal vectors, and each log2 k consecutive multiplication of those
factors has (2k − 1) diagonal vectors. Therefore, homomorphic DFT evaluation
is converted to logk n number of homomorphic matrix multiplications for matrix
with (2k − 1) diagonal vectors for an arbitrary integer k dividing n.

From SIMD operation of HE schemes, evaluating matrices with d diagonal
vector in encrypted state can be done with O(

√
d) homomorphic rotations and d

homomorphic constant vector multiplications using the baby-step algorithm. So,
we obtain a homomorphic DFT algorithm which needs O(

√
k log n) number of

homomorphic rotations and O(k log n) number of homomorphic constant vector
multiplications with O(logk n) constant vector multiplication depth. In addition,
we can obtain a trade-off between depth and complexity by adjusting k.

Second, we apply the same matrix decomposition strategy into sparse diago-
nal matrices to improve the linear transformations in bootstrapping for HEAAN.
We decompose corresponding matrices recursively, similarly to the Cooley-Tukey
algorithm. As a result we obtain the same improvement in the linear transfor-
mations in bootstrapping: O(

√
k log n) homomorphic rotations and O(k log n)

homomorphic constant vector multiplications with O(logk n) constant vector
multiplication depth for plaintext vector length n.

We also implement our method using the approximate homomorphic encryp-
tion library [13] to show the improvements. Our implementation shows that the

2

homomorphic DFT with length 213 only takes about 8 seconds when k = 2.
This results shows a more than 150× performance improvement compared to
previous works on homomorphic DFT (or FFT) [6,8,9]. On the other hand, the
bootstrapping procedure for HEAAN using our linear transformation algorithm
only takes 2 minutes for C32768 plaintext space with 8-bit precision. This result
yields an amortized rate per bits of 0.45ms, less than one millisecond. The pre-
vious algorithm takes 26 hours in the same setting, which is only realistic for a
small number of slots.

Related Works. Due to the importance of DFT (or FFT), there are several
works that perform DFT on encrypted domains. In [2, 3], the authors present
works on homomorphic FFT using the Paillier encryption algorithm. In [8, 9],
the authors used homomorphic encryption library named HElib with different en-
coding method for real (or complex) messages. In [6], the authors implemented
homomorphic evaluation of multiple FFTs using approximate homomorphic en-
cryption scheme.

All of those previous works encrypt each element of input vector in different
ciphertext. For this reason, the previous algorithms require as least O(n log n) ci-
phertext and homomorphic operations, which worsens performance on the DFT
and on bootstrapping. If they put several messages in one ciphertext using pack-
ing, these works can achieve O(log n) homomorphic operation complexity only
in amortized sense [6].

Homomorphic encryption schemes with packed message use the linear trans-
formations in bootstrapping, which convert the slots of messages and coefficients
of polynomial. For this linear transformation part, a general linear transforma-
tion method which is called the baby-step giant-step is usually used [4, 5, 11].
This method needs O(

√
n) key-switchings for the length of plaintext vector n.

Especially, when the underlying ring is the (tensor) product of two rings, the
linear transformation in bootstrapping can be decomposed into transformations
in each factor ring. In this case, the number of key-switching is O(

√
n1 +

√
n2)

where the factor rings are of dimension n1, n2.

Road Map. In Section 2, we define the standard notations and briefly introduce
the approximate homomorphic encryption scheme. We then introduce homo-
morphic DFT algorithm including previous approach in Section 3. We apply
our new method in bootstrapping for approximate homomorphic encryption in
Section 4. Each sections includes implementation results of homomorphic DFT
and bootstrapping.

2 Preliminary

Notations. Column vectors are written by bold and lower case letters and matri-
ces are written by bold and upper case letters. The entries of bold face is denoted
as v = (v0, v1, · · · , vn−1)T and M = (Mi,j)1≤i,j≤n. We sometimes take modu-
lar n for indices of vector or matrices, and omit the transpose operator T . The

3

entry-wise multiplication of two vectors v1 and v2 is denoted by v1�v2 which is
called Hadamard multiplication. For the given vector v with length n, diagi(v)
is n by n matrix M such that Mj,j+i = vj for 0 ≤ j < n and all other entries are
zero. We will omit the index i of diag when i = 0. On the other hand, for n by n
matrix M , diagi(M) denotes a length n vector (M0,i,M1,1+i, · · · ,Mn−1,n−1+i).
roti(v) is left shifted vector with index i, this means that the result vector w
is (vi, vi+1, . . . , vi−1). When the index i is negative, it means right shifting with
index −i.

We sometimes use the special order of indices called bit-reversal order. It is
defined by ordering the indices in increasing order of the reverse of binary rep-
resentations that are padded so that each of these binary representation has the
same length. For example, bit-reversal order of the given array (a0, a1, a2, a3) is
(a0, a2, a1, a3) (because bit-reversed index is follows: (00(2), 10(2), 01(2), 11(2)) =
(0, 2, 1, 3)).

2.1 Discrete Fourier Transforms

The discrete Fourier transform (DFT) is a linear transformation DFTn : Cn →
Cn which maps a vector x = (x1, · · · , xn) into another vector y = (y1, · · · , yn)
where

ym =

n−1∑
k=0

xk · wkmn

for wn = e2πi/n. The inverse of discrete Fourier transform iDFTn has a similar
form as xm = 1

n

∑n−1
k=0 yk · w−kmn , which also can be expressed by DFTn as

iDFTn = DFTn(x)/n (here division and x means element-wise division and
conjugation). This algorithm is known to be computed in O(n log n) operations
using so-called fast Fourier transform (FFT).

2.2 Approximate Homomorphic Encryption

In our paper, we will focus on the DFT on complex field. For this reason, we
need homomorphic encryption for complex arithmetic. At 2017, homomorphic
encryption scheme for approximate number arithmetic is proposed by Cheon et
al. [6] which is called HEAAN. The plaintext structure of this scheme is CN/2 for
polynomial ring dimension N , and it is suitable for our purpose. This subsection
gives scheme description and function definition for HEAAN scheme (for more
information about this scheme refer to [5, 6]).

Let R = Z[X]/(XN + 1) and Rq = Zq[X]/(XN + 1) for ciphertext modulus
q and power of two N . For the given σ > 0, DG(σ2) denotes distribution on R
that each coefficient follows discrete Gaussian distribution over Z with standard
deviation σ. For this given h > 0, HWT (h) denotes a uniform distribution on a
set of R with signed binary {±1} coefficients and hamming weight exactly h. For
a real 0 ≤ ρ ≤ 1, ZO(ρ) denotes a distribution on R such that each coefficients
is +1 with probability ρ/2, −1 with probability ρ/2, and 0 with probability 1−ρ.

4

• KeyGen(1λ)
- Let qi = pi for i = 1, . . . , L. Using the given the security parameter λ,

we choose a power-of-two integer N , an integer h, an integer P > qL,
and a real number σ > 0 to achieve λ-bit security level.

- Sample s(x) ← HWT (h), a(x) ← U(RqL) and e(x) ← DG(σ2). Set the
secret key sk = (1, s(x)) and the public key for encryption as pkenc ←
(b(x), a(x)) ∈ R2

qL where b(x)← −a(x) · s(x) + e(x) ∈ RqL
• KeySwitchGen(s′(x), sk)

- Sample a′(x) ← U(RP ·qL) and e′ ← DG(σ2). Set the public key for key
switching as (b′(x), a′(x)) ∈ RP ·qL where b′(x) = −a′(x) · s(x) + e′(x) +
P · s′(x) ∈ RP ·qL .

- The method for encoding can be understood as negacyclic DFT and
the group Z×M is generated by 5 and 2 for M = 2N (see [5]). For this
reason, three public keys for homomorphic multiplication and rotation
and conjugation are generated as follows:

pkmult = KeySwitchGen(s2(x), sk),

pkidxrot = KeySwitchGen(s(x5
idx

), sk),

pkconj = KeySwitchGen(s(x2), sk).

• Encode(m)
- Let

U =

1 w0 w2

0 · · · wN−10

1 w1 w2
1 · · · wN−11

...
...

...
. . .

...

1 wN/2−1 w
2
N/2−1 · · · w

N−1
N/2−1

for wi = w5i and w = exp (2πi/M) for M = 2N .

- Output f(x) =
∑N−1
i=0 fiX

i such that f = (fi)0≤i<N = 1
N (U

T ·m+UT ·
m).

• Decode(f(x))

- Output m = U · f such that f = (fi)0≤i<N for f(x) =
∑N−1
i=0 fiX

i.

• Encrypt(m ∈ CN/2, pk, pkenc)
- Let m(x) = Encode(m).
- For pkenc = (b(x), a(x)), output c = (bpk ·m(x)e+v(x)·b(x)+e1(x), v(x)·
a(x) + e2(x)) for v(x)← ZO(ρ) and e1(x), e2(x)← DG(σ2).

• Decrypt(c, pk, sk)
- For c = (b(x), a(x)) ∈ R2

qi , compute 〈(b(x), a(x), sk〉 = M(x) ∈ Rqi .
- Output m = Decode(M(x)/pk ∈ R[X]/(XN + 1)).

• Add(c1, c2)
- For c1 = (b1(x), a1(x)) ∈ R2

qi and c2 = (b2(x), a2(x)) ∈ R2
qi , output

c3 = (b1(x) + b2(x), a1(x) + a2(x)) ∈ R2
qi .

5

• CMult(m ∈ CN/2, c, pk)
- Let m(x) = Encode(m).
- For c = (b(x), a(x)) ∈ R2

qi , output c′ = (m′(x) · b(x),m′(x) · a(x)) ∈ R2
qi

for m′(x) = bpk ·m(x)e.
• Mult(c1, c2, pkmult)

- For c1 = (b1(x), a1(x)) ∈ R2
qi and c2 = (b2(x), a2(x)) ∈ R2

qi , compute
(d0(x), d1(x), d3(x)) = (b1(x) · b2(x), b1(x) · a2(x) + b2(x) · a1(x), a1(x) ·
a2(x)) ∈ R3

qi .
- For pkmult = (B(x), A(x)) ∈ RP ·qi , output c3 = (d0(x) + bP−1 · d2(x) ·
B(x)e, d1(x)+bP−1·d2(x)·A(x)e) ∈ R2

qi (here d2(x)·A(x) and d2(x)·B(x)
are operations in RP ·qi).

• LeftRotate(c, idx, pkrot)

- For c = (b(x), a(x)) ∈ Rqi , compute c′ = (b′(x), a′(x)) = (b(x5
idx

), a(x5
idx

)).

- For pkidxrot = (B(x), A(x)) ∈ RP ·qi , output c′′ = (bP−1·b′(x)·B(x)e, a′(x)+
bP−1 ·b′(x)·A(x)e) ∈ R2

qi (here b′(x)·A(x) and b′(x)·B(x) are operations
in RP ·qi).

• Conj(c, pkconj)
- For c = (b(x), a(x)) ∈ Rqi , compute c′ = (b′(x), a′(x)) = (b(x2), a(x2)).
- For pkconj = (B(x), A(x)) ∈ RP ·qi , output c′′ = (bP−1·b′(x)·B(x)e, a′(x)+
bP−1 ·b′(x)·A(x)e) ∈ R2

qi (here b′(x)·A(x) and b′(x)·B(x) are operations
in RP ·qi).

• Rescale(c, pk)
- For c = (b(x), a(x)) ∈ R2

qi , output (bp−k · b(x)e, bp−k · a(x)e) ∈ R2
qi−k

.

Note that we need to multiply pk to convert real polynomial to integer poly-
nomial. For this reason, we also need to do Rescale after homomorphic multi-
plication between constant vector and encrypted vector. Each Rescale consumes
one level, so we will regard that CMult as depth 1 computation in our paper.
Furthermore, right rotation in encrypted state is obtained from left rotation, we
just need to use index (N/2− idx).

3 Homomorphic Discrete Fourier Transforms

In this section, we briefly review the previous approach to evaluate DFT with
homomorphic encryption (HE) and describe our new homomorphic DFT algo-
rithm. We propose new homomorphic DFT algorithm and also hybrid algorithm
that combines our new method with previous approach.

3.1 Previous Approach

In [11], they proposed faster linear transformation (' NTT) for bootstrapping
when the input size of φ(m) (here m is product of co-prime integers mi). They
understand one variable polynomial ring as multivariate with special basis which

6

is called powerful basis. This approach shows that DFT with dimension m can
be split to several number of DFT with mi for co-prime mis.

On the other hand, in the case of power of prime dimension, there is no
specialized algorithm for homomorphic DFT. Previously known approaches ap-
ply a general homomorphic linear transform with DFT matrix to the cipher-
text [4, 6]. We review the key ideas of these approaches. HE schemes support
Hadamard multiplication and rotation for the plaintext vector. The following
equation shows a representation of matrix-vector multiplication via Hadamard
multiplications and rotations.

M · v =

n∑
i=0

diagi(M)� roti(v)

=
∑̀
i=0

k∑
j=0

diagki+j(M)� rotki+j(v)

=
∑̀
i=0

rotki

 k∑
j=0

rot−ki(diagki+j(M))� rotj(v)

The first line gives a simple way to compute homomorphic matrix-vector mul-
tiplication which requires O(n) rotations and Hadamard multiplications. Based
on the third line of the equation, we can achieve an algorithm so-called baby-
step giant-step (BSGS) to matrix-vector multiplication with O(

√
n) rotations of

ciphertexts.

3.2 Our method

Now we will introduce our method for fast homomorphic DFT. In this section,
we will mainly consider DFT with bit-reversed output DFTNR

n and its inverse
(the letter NR stands for normal to reversal). In addition, we will describe the
method to extend our method to input bit-reversed case and its inverse in the
last part of this section. We focus on the power-of-two dimension case while
our method can be generalized to other power of prime dimensions, because
power-of-two cases are appropriate to our applications and, moreover, easy to
describe.

The starting point of our method is to observe that the multiplication be-
tween matrix and encrypted vector can be much faster when the matrix only has
the small number of non-zero {diagi(M)}0≤i<n. Bit-reversed order DFT matrix
can be decomposed to sparse matrices, and this property is used to fasten the
discrete Fourier transform. Our observation is that those sparse matrices have
small number of non-zero {diagi(·)}0≤i<n (exactly two or three non-zero vectors).

The DFT matrix factorization. Let DFTNR
n be a matrix coressponding to

the DFT algorithm with input length n with bit-reversed output. The following

7

equation shows that the matrix representation of recursive FFT Cooley-Tukey
algorithm [7].

DFT
NR
n =

[
DFTNR

n/2 DFTNR
n/2

DFTNR
n/2 ·Wn/2 −DFTNR

n/2 ·Wn/2

]
=
[
DFTNR

n/2 0

0 DFTNR
n/2

]
·
[

In/2 In/2

Wn/2 −Wn/2

]
where the matrix W n/2 = diag(1, ωn, ω

2
n, · · · , ω

n/2−1
n) and ωn = e2πi/n. If we

adapt this equation repeatedly, we can decompose the DFT matrix DFTNR
n to

log2 n number of matrices. The following matrix illustrates the specific form of
matrices in the recursive formula:

D
(n)
k =

[
In/k In/k

W n/k −W n/k

]
0 · · · 0

0

[
In/k In/k

W n/k −W n/k

]
· · · 0

...
...

. . .
...

0 0 0

[
In/k In/k

W n/k −W n/k

]

∈ Cn×n. (1)

which has k/2 number diagonal blocks. The recursive equation above implies

DFTNR
n = D(n)

n ·D(n)
n/2 · · · · ·D

(n)
2 . (2)

Remark 1. As noted above, decomposing DFT matrices into sparse diagonal
matrices is possible for other power-of-prime cases and this induces a fast homo-
morphic DFT algorithm for power-of-prime dimension. This fact can be obtained
by using general Cooley-Tukey algorithm.

Homomorphic DFT. We recall the representation of matrix and vector mul-
tiplication via Hadamard multiplication and vector shifting:

M · v =

n∑
i=0

diagi(M)� roti(v).

The matrix-vector multiplication algorithm based on this form is especially ef-
ficient for the matrix M with only small number of non-zero diagonal vector.
Namely, diagi(M) is a non-zero vector only for small number of i’s. We call this
matrix by sparse-diagonal matrix. For sparse diagonal matrix M , we don’t need
to compute roti(v) for those i’s satisfying diagi(M) = 0. Therefore, the required
number of shifting in naive approach is at most the number of non-zero diagonal
vectors that the matrix M has.

Lemma 1. diagk(D
(n)
2i) is nonzero only for k = 0,±n/2i.

Proof. See Equantion (1). ut

8

From Lemma 1, multiplication between matrix D
(n)
2i and vector v can be repre-

sented as follows:

D
(n)
2i · v = diag0(D

(n)
2i)� v + diagn/2i(D

(n)
2i)� rotn/2i(v)

+ diagn−n/2i(D
(n)
2i)� rot−n/2i(v).

Therefore, DFTNR
n · v can be computed recursively as

∏log2 n
i=1 D

(n)
2i · v, where

each multiplication can be done with O(1) number of Hadamard multiplication
and shifting. The overall number of operations is O(log n) homomorphic shiftings
and Hadamard multiplications with constant plaintext vectors. The Algorithm 1
shows our homomorphic DFT algorithm in detail with notations in Section 2.2.

Algorithm 1 Homomorphic DFTNR
n algorithm

Require: Ciphertext ctxt such that Dec(ctxt, sk) = m ∈ Cn

for all 1 ≤ i ≤ log2 n do

ctxt0 ← CMult(diag0(D
(n)

2i
), ctxt)

ctxt1 ← LeftRotate(ctxt, n/2i)
ctxt2 ← RightRotate(ctxt, n/2i)

ctxt1 ← CMult(diagn/2i(D
(n)

2i
), ctxt1)

ctxt2 ← CMult(diagn−n/2i(D
(n)

2i
), ctxt2)

ctxt← Add(ctxt0, ctxt1)
ctxt← Add(ctxt, ctxt2)

end for

In each loop of the Algorithm 1, there are two homomorphic rotations and
three homomorphic constant vector multiplications. Furthermore, left rotation
by n/2 and right rotation by n/2 is same. For this reason, we do not need to
compute right and left rotations for i = 1 case. This will reduce one homomorphic
rotation. As a result, our algorithm needs (2 log2 n−1) number of homomorphic
rotation and (3 log2 n) number of homomorphic constant vector multiplications.

Trade-off between depth and complexity. While our method is fairly effi-
cient with respect to the number of operations, the required depth with respect to
constant multiplication is also increased by O(log2 n). In this respect, we adapt
additional parameter r which is called radix to generalize our method. Our gen-
eralized method gives trade-off between the number of steps and complexity of
homomorphic DFT.

Assume that log2 n is even and recall the matrix decomposition of DFT
matrix:

DFTNR
n = D(n)

n ·D(n)
n/2 ·D

(n)
n/4 ·D

(n)
n/8 · · · · ·D

(n)
16 ·D

(n)
8 ·D(n)

4 ·D(n)
2

= (D(n)
n ·D(n)

n/2) · (D(n)
n/4 ·D

(n)
n/8) · · · (D(n)

4 ·D(n)
2).

9

This equation give a factorization of DFT matrix into log4 n number of matrices
of the form

D
(n;4)
i = (D

(n)
22i ·D

(n)
22i−1) for 1 ≤ i ≤ log4 n.

We also can define similar term for r = 2k by

D
(n;r)
j = D

(n)
rj ·D

(n)
rj/2 · · · · ·D

(n)
rj−1·2

for 1 ≤ j ≤ logr n and k| log2 n. This factorization allows us to compute DFT
in a new way. To analyze the efficiency, we observe some properties of these
matrices.

Lemma 2. The multiplication of i-th diagonal matrix and j-th diagonal matrix
is i+ j-th diagonal matrix. More precisely, the following equation holds

diagi(a) · diagj(b) = diagi+j(a� roti(b)).

Proof. Trivial.

Lemma 3. Let Dk be a multiplication of k consecutive matrices in Equation 2:

Dk = D
(n)

2s+k ·D(n)

2s+k−1 · · · · ·D(n)
2s+1 .

Then at most 2k+1 − 1 diagonals of D is nonzero vector. Further, the indices of
nonzero diagonals form arithmetic progression.

Proof. Lemma 2 clearly holds. To show Lemma 3, we decompose D
(n)
2t into

diag−n/2t(D
(n)
2t) + diag0(D

(n)
2t) + diagn/2t(D

(n)
2t) as in Lemma 1. By Lemma 2,

the index of Dk that is non-zero is of the form

es+1 ·
n

2s+1
+ es+2 ·

n

2s+2
+ · · ·+ es+t ·

n

2s+t
,

where ei ∈ {−1, 0, 1} for s+ 1 ≤ i ≤ s+ t. These indices are multiple of n/2s+t,
and the absolute value of it is bounded by

∑s+t
j=s+1 n/2

j = (2t − 1)n/2s+t. ut

According to Lemma 3, the number of nonzero diagonal of D
(n;r)
j is 2r − 1 for

j > 1 and r for j = 1. Thus the required number of homomorphic multiplication

and slot shifting to compute multiplication of encryption of v and D
(n;r)
j is less

than 2r − 1 = O(r) for radix r, respectively. By recursively multiplying D
(n;r)
j

to v, we obtain a new algorithm to compute homomorphic DFT which requires
O(r logr n) homomorphic rotations and constant vector multiplications while
has O(logr n) depth. Overall, we obtain depth-efficiency trade-off using larger
radix. We note that we assumed that the used radix is a divisor of log2 n, but
this condition can be removed by considering dynamic radices for each recursive
step.

10

3.3 Hybrid method

An interesting observation in Lemma 3 is that the indices of D
(n;r)
j forms an

arithmetic progression. We call this property regular. Here we show that this
property yield a hybrid method of our homomorphic DFT algorithm and baby-
step giant-step (BSGS) algorithm. To do this, we apply a BSGS matrix-vector
multiplication method for sparse diagonal matrix M with arithmetic progression
indices as follows:

t∑
i=1

mi � rot`i(v) =

k1−1∑
i=0

k2∑
j=1

mik2+j � rot`·(ik2+j)(v)

=

k1−1∑
i=0

rotlk2i

 k2∑
j=1

rot−lb2i(mik2+j)� rot`j(v)

where mi = diag`i(M) and k1k2 = t.

In this BSGS method we can obtain a matrix multiplication M ·v by O(k1 +
k2) rotations and O(t) constant multiplications. We remark that we can vary the
choice of k1 and k2 by increasing t and add zero diagonals. For this reason, we
can say that the hybrid method needs O(

√
t) homomorphic rotations and O(t)

number of homomorphic constant vector multiplications. The Table 1 shows
comparison our methods with other techniques.

Remark 2. Another advantage of our method is that it highly reduces the size
of public key for operations. While the previous BSGS method requires O(

√
n)

rotation key, our method only needs O(r logr n) number of rotation key.

Naive BSGS Ours with radix r Hybrid with radix r

Hadamard Mult O(n) O(n) O(r logr n) O(r logr n)

Slot Shifting O(n) O(
√
n) O(r logr n) O(

√
r logr n)

Depth 1 1 O(logr n) O(logr n)

Table 1. Comparison: homomorphic operation number and depth consume for homo-
morphic DFT

3.4 Extension to Inverse and Different Orders

Homomorphic Inverse DFT. Now we describe the computation of inverse
DFT (iDFT) in homomorphic way. Note that our homomorphic DFT algorithm
computes the bit-reversal DFT values, so we should compute iDFT from the
bit-reversal order input to regular order output. The matrix representation of
iDFT with bit-reversal order is

iDFTRN
n :=

(
DFTNR

r

)−1
=
(
D(n)
n ·D(n)

n/2 · · · · ·D
(n)
2

)−1
=
(
D

(n)
2

)−1
·
(
D

(n)
4

)−1
· · · · ·

(
D(n)
n

)−1
.

11

These matrices are decomposed into the certain form of matrices with useful
property as follows:[

In/k In/k
W n/k −W n/k

]−1
=

1

2

[
In/k W n/k

In/k −W n/k

]
.

In other words, for the divisor 2i of n, the equation(
D

(n)
2i

)−1
=

1

2
D

(n)
2i

T

holds. This equation implies that diagk((D
(n)

2k
)−1) is nonzero only for two or

three k’s as in Lemma 1. Therefore iDFTRN
n matrix can also be decomposed

into sparse diagonal matrices as DFTNR
n , and it induces the fast homomorphic

iDFT algorithm. We remark that we also obtain a useful equation

iDFTRN
n =

1

n
DFTNR

n

T

.

DFTRN
n and iDFTNR

n . Let R is the bit-reversal permutation matrix. We know

that DFTRN
n = R ·DFTNR

n ·R and R2 = I. If we use D̃
(n)

2i = R ·D(n)
2i ·R instead

of D
(n)
2i , we can get an matrix factorization of DFTRN

n :

DFTRN
n = D̃

(n)

n · D̃(n)

n/2 · D̃
(n)

n/4 · · · · D̃
(n)

16 · D̃
(n)

8 · D̃(n)

4 · D̃(n)

2 .

In addition, we can use same technique as Section 3.4 to obtain matrix factoriza-

tion of iDFTRN
n . For that, we prove that this matrices D̃

(n)

2i has same structure

with D
(n)
n/2i .

Lemma 4. diagk

(
R ·D(n)

2i ·R
)
is nonzero only for k = 0,±2i.

Proof. First, we know that (i, j)-th element of R ·M ·R is a n by n matrix is(
mrev(i),rev(j)

)
. And, Following equation hold:

rev(i+ 2k) = rev(i) + rev(2k) if k-th bit of i is 0.

The equation 1 shows that the nonzero term of D
(n)
2i is in (k, k) or (k, k± n/2i)

,and elements with index (k, k ± n/2i) for bk/(n/2i)c = 0 mod 2 are zero. This
means that we only need to consider elements with index (k, k) and (k′, k′±n/2i)
for (log2 n−i)-th bit of k′ is 0. For all k′ that satisfies the condition,R(k′±n/2i) =
R(k′)±R(n/2i) = R(k′)± 2i.

Above Lemma shows that D̃
(n)

2i also has three diagonals diagk(D̃
(n)

2i) for
k = 0,±2i. For this reason, our method can be applied to those linear transfor-
mations.

12

3.5 Implementation

We implemented our DFT algorithm using HEAAN library [13]. HEAAN library
supports batch encodings, or encoding for vectors, for complex plaintext space
thus it is suitable for our target; discret Fourier transform. All of experiments
in this paper are done at the PC having 32 number of Intel(R) Xeon(R) CPU
E5-2620 v4 2.10 GHz CPU (each CPU has 8 cores) and 64GB RAM. We used
multi-threding with 8 number of threads.

The following HEAAN parameter setting is what we used in the experiment
for our homomorphic DFT algorithm.

• qL = 2440: the largest ciphertext modulus.
• N = 215: the dimension of polynomial ring R.
• ∆ = pk = 230: scaling factor which is used to make integer polynomial in

encryption and constant vector multiplication both.
• σ = 3.2, ρ = 0.5, and h = 64: distribution related parameters.

Note that the expected security of this parameter setting is about 128 bit fol-
lowing the LWEestimator [1].

The Figure 1 shows timing results for various setting. In case of the first one,
radix varies from 2 to 16 with the fixed dimension of input vector 212. In case
of the second one, dimension varies from 26 to 212 with the fixed radix 4.

21 22 23 24
1

2

3

4

5

6

5.2s

4.6s

5.7s
5.9s

radix

se
co
n
d
s

(a) Timming results for various radix
setting with dimension n = 212

6 8 10 12 14
1

2

3

4

5

2.5s

3.1s

4.3s
4.5s

5.4s

log2(dimension)

se
co
n
d
s

(b) Timming results for various dimen-
sion setting with radix r = 4

Fig. 1. Implementation results for our homomorphic DFT algorithm

By the effect of baby-step giant-step method, the left one of the Figure 1
shows that timing does not increase a lot when we increase the radix. And, the
right figure shows that timing increase linearly to logarithm of the dimension
n. Therefore, we can get a homomorphic DFT algorithm which is significantly
faster and similar depth consume. In our experiment, we compare the result with
DFT on un-encrypted vector. We use average of |ai − bi| for all 0 ≤ i < n as

13

difference between two length n vector a and b. The difference between DFT
on encrypted and un-encrypted state in our experiment is 2−9 to 2−10. We can
reduce this difference by using larger ∆ = pk.

There are a few previous implementation results about homomorphic DFT.
In [8], there homomorphic DFT takes about 22 minutes for n = 213 with 8-bit
precision. In [6], it takes about 22 minutes with same length. But these works
focus on amortized time by put each element of the input vector in different
ciphertext. We note that our results shows about 200 times faster than previous
one.

4 Improved Bootstrapping for approximate HE

In this section, we explain about linear transformations in bootstrapping for ap-
proximate homomorphic encryption scheme. And, we give an improved transfor-
mation algorithms for such linear transform using our homomorphic DFT which
provides an improved bootstrapping procedure for approximate homomorphic
encryption.

4.1 Linear Transformation in Bootstrapping

The bootstrapping procedure for approximate homomorphic encryption in [5]
can be divided as following steps:

1. Put polynomial coefficients in plaintext slots,
2. Evaluate exponent function,
3. Extract Imaginary part,
4, Switch back to the coefficient representation.

The transformations in the first and the last step are called CoeffToSlot and
SlotToCoeff respectively. In [5], the authors use the index i of slots corresponding

to 5k (mod 2N) for 0 ≤ k ≤ N/2 by considering w5k

2N as in Encode map. To
transform coefficients of polynomial representation of plaintext into slots, we
should construct two encodings since there are only N/2 slots while the number
of coefficients is N .

Let t(x) = t0 + t1x+ · · · tN−1xN−1 be a polynomial representation of encod-
ing with messages z = (z0, · · · , zN/2−1) in slots, and let v = (t0, · · · , tN−1) =
(v0,v1) be its vector representation. Suppose that U be the encoding matrix
defined in Section 2.2 and parsed into [U0|U1] for N/2 by N/2 matrices Uk’s.
Then the following equation holds by definition of encoding map, which yields
the SlotToCoeff map,

z = U ·
[
v0

v1

]
= U0 · v0 + U1 · v1.

Note that i ·U0 = U1 and U−10 = 2
N ·U0

T
hold. Using this, we can obtain that

vk =
1

N

(
Uk

T · z + UT
k · z

)
for k = 0, 1.

This equation corresponds to CoeffToSlot map.

14

4.2 Improved Linear Transformation in Bootstrapping

We now describe a modified linear transforms for bootstrapping. We mainly
focus on how to decompose the matrix U into sparse diagonal matrices. To
obtain this, the bit-reversal permutation matrix R works a central role in this
method. Note that the order of the slots after CoeffToSlot does not play any
role in the bootstrapping. For this reason, we replace Uk to V k which is row
permuted by R:

V k = Uk ·R for k = 0, 1.

As in U , the relation V 1 = i ·V 0 holds. For this reason, we focus on the matrix
decomposition of V 0 using recursive relation; this induces the decomposition of
V 1. Let revn(i) denotes bit-reversal permutation of i with size n.

Lemma 5. Let Sn =
(
ω
5i·revn(j)
4n

)
0≤i,j<n

. Then, V 0 = SN/2 and following

equation holds:

Sn =

[
I W n

I −W n

]
·
[
Sn/2 0

0 Sn/2

]
for W n = diag(ω5i

4n)0≤i<n.

Proof. V 0 = SN/2 is clear by definition. Let’s start the proof with the following

claim. Here v2(a) is the maximal integer k such that 2k is a divisor of integer a.

Claim. v2(5e − 1) = v2(e) + 2 holds for a positive integer e.

Proof: This claim can be proven using the mathematical induction on v2(e). �
To prove the recursive formula, it suffices to show the following equation:

Sn =

[
Sn/2 W n · Sn/2
Sn/2 −W n · Sn/2.

]

Let Sn = (si,j)0≤i,j<n, i.e. si,j = ω
5i·revn(j)
4n . The following equations show the

above equation. Note that 4n is a power of two integer.

1. si,j = si+n/2,j for all i and for 0 ≤ j < n/2: this is equivalent to 4n|(5(i+n/2) ·
revn(j)−5i · revn(j)). By the claim v2(5n/2−1) = v2(n/2)+2 = v2(2n) holds
and revn(j) is even for j < n/2. Combining this we obtain the desired result
is induced.

2. si,j = −si+N/2,j for all i and for n/2 ≤ j < n: as in the above, it is equivalent

to v2(5(i+n/2) · revn(j)−5i · revn(j)) = v2(2n). It is showed by v2(5n/2−1) =
v2(n/2) + 2 = v2(2n) and revn(j) is odd for j ≥ n/2.

3. si,j+N/2 = si,j · ω5i

4n for all i and 0 ≤ j < n/2: this is clear by definition of
revn.

If we combine these cases, we can easily show that the recursive relation of S
holds. ut

15

By adapting Lemma 5 repeatedly, we can decompose V 0 to log2 n number
of matrices as in Equation 2. The following matrix illustrates the specific form
of matrices in the recursive formula:

E
(n)
k =

[
In/k W n/k

In/k −W n/k

]
0 · · · 0

0

[
In/k W n/k

In/k −W n/k

]
· · · 0

...
...

. . .
...

0 0 0

[
In/k W n/k

In/k −W n/k

]

∈ Cn×n. (3)

which has k/2 number diagonal blocks. Lemma 5 implies

V 0 = E
(N/2)
2 ·E(N/2)

4 ·E(N/2)
8 · · ·E(N/2)

N/2 .

These factor matrices have exactly the same structure with D
(n)
k , so we can apply

our method in previous section (from radix to hybrid method). Furthermore, we
can also multiply the inverse of V 0 in encrypted state, as in the same way to
the inverse DFT matrix case.

Now we will describe two linear transformations, CoeffToSlot and SlotToCoeff,
using V 0 , V −10 and its conjugations. As we noted above, V 1 = i·V 0 and further

V −1k = 2
NV k

T
hold as in the case of U for k = 0, 1. Therefore, CoeffToSlot

with bit-reversed result and SlotToCoeff with bit-reversed input are computed
as follows for tk = R · vk for k = 0, 1:

t0 =
1

2

(
V −10 · z + V −10 · z

)
, t1 = −1

2
i
(
V −10 · z − V −10 · z

)
,

z = V 0 · (t0 + i · t1).

Optimization. We can further improve the efficiency of the bootstrapping in
light of hoisting, i.e. by computing the common part first or last. More precisely,
for CoeffToSlot, compute V −10 ·z first and compute other parts using conjugation.
Therefore, t0 and t1 can be computed from z in 2

√
r logr(N/2) homomorphic op-

erations for the radix r. For SlotToCoeff, we compute (t0+i·t1) first and multiply
V 0. This also needs only 2

√
r logr(N/2) number of homomorphic operations.

Remark 3. Our technique can be applied for bootstrapping of (n/2)-sparsely
packed ciphertext in [5]. The plaintext space of sparse packed ciphertext is
Z[Y]/(Y n + 1) for Y = XN/n. So, we just need to replace ω2N to ω2n.

4.3 Implementation

Use one of the parameter sets which is in the previous work [5] for easier com-
parison. And, we run the previous method which is implemented in HEAAN li-
brary [13] in the same machine for fare comparison (with recently release version
v2.1). The PC information is same as the previous implementation in Section 3.5.

16

• q0 = 241: the smallest ciphertext modulus (before bootstrapping).
• qL = 21240: the largest ciphertext modulus.
• N = 216: the dimension of polynomial ring R.
• ∆ = pk = 231: scaling factor which is used to make integer polynomial in

encryption and constant vector multiplication both.
• σ = 3.2, ρ = 0.5, and h = 64: distribution related parameters.
• r = 7 which is the number of iteration in sin evaluation.

The Table 2 shows implementation result of bootstrapping using our linear
transformation and previous method. To maximize the effect of our method, we
used number of slots as the largest one (= N/2).

Key Gen Linear Trans Eval sin Total Amortized Time

Previous 25 hours 26 hours 30 sec 26 hours 5.71 sec

Ours 44 sec 97 sec 30 sec 127 sec 3.8 ms

Table 2. Timing of Bootstrapping with comparison for C32768 plaintext space. Here
amortized time means that bootstrapping time per one complex element. Both works
gives about 2−7 additive error while bootstrapping.

The timing results for linear transformation time shows about 700 times
faster result than previous one. We use radix 32 which means each linear trans-
formation consumes 3 (= log32 215) constant vector multiplication depth. As a
result, the modulus of the return ciphertext is 468 bits which means 14 depth
computation can be done after bootstrapping. In the previous method, the mod-
ulus of the return ciphertext is 632 bits which means 19 depth computation can
be done after bootstrapping.

Another advantage of our method is key generation time. Key generation in-
cludes public key generation for various rotations and pre-encodings for diagonal
vectors. In the previous method, they need to encode for N/2(= 32768) number
of constant vectors for each linear transformation. The number of rotation key
is 2
√
N/2 which is quite large compare to 2

√
k logkN/2 in our case. In the ex-

periment, this problem makes their key generation time slower and the size of
pre-encoded vector and public keys to be huge. Previous method need 800GB
to save them and 7GB for ours.

References

1. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

2. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. Comparison of different fft
implementations in the encrypted domain. In Signal Processing Conference, 2008
16th European, pages 1–5. IEEE, 2008.

3. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. On the implementation of
the discrete fourier transform in the encrypted domain. IEEE Transactions on
Information Forensics and Security, 4(1):86–97, 2009.

17

4. Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and improved
fhe bootstrapping. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 315–337. Springer, 2018.

5. Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
Bootstrapping for approximate homomorphic encryption. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
360–384. Springer, 2018.

6. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 409–
437. Springer, 2017.

7. James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

8. Anamaria Costache, Nigel P Smart, and Srinivas Vivek. Faster homomorphic
evaluation of discrete fourier transforms. In International Conference on Financial
Cryptography and Data Security, pages 517–529. Springer, 2017.

9. Anamaria Costache, Nigel P Smart, Srinivas Vivek, and Adrian Waller. Fixed-
point arithmetic in she schemes. In International Conference on Selected Areas in
Cryptography, pages 401–422. Springer, 2016.

10. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, vol-
ume 9, pages 169–178, 2009.

11. Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Advances in
Cryptology–EUROCRYPT 2015, pages 641–670. Springer, 2015.

12. Shai Halevi and Victor Shoup. Faster homomorphic linear transformations in helib.
Technical report, Cryptology ePrint Archive, Report 2018/244, 2018.

13. Andrey Kim. HEAAN. https://github.com/kimandrik/HEAAN, 2018.

18

https://github.com/kimandrik/HEAAN

	Faster Homomorphic Discrete Fourier Transforms and Improved FHE Bootstrapping

