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Abstract. It is well known that Canright’s tower field construction
leads to a very small, unprotected AES S-box circuit by recursively
embedding Galois Field operations into smaller fields. The current size
record for the AES S-box by Boyar, Matthews and Peralta improves the
original design with optimal subcomponents, while maintaining the over-
all tower-field structure. Similarly, all small state-of-the-art first-order
SCA-secure AES S-box constructions are based on a tower field struc-
ture.
We demonstrate that a smaller first-order secure AES S-box is achievable
by representing the field inversion as a multiplication chain of length 4.
Based on this representation, we showcase a very compact S-box circuit
with only one GF(28)-multiplier instance. Thereby, we introduce a new
high-level representation of the AES S-box and set a new record for the
smallest first-order secure implementation.

1 Introduction

The increasing pervasiveness of electronics leads to ever smaller devices in de-
mand of strong cryptography and resistance against side-channel analysis (SCA).
Hence, the need to find area-optimal implementations of SCA-protected imple-
mentations of strong cryptographic primitives persists. The Advanced Encryp-
tion Standard (AES) is a cryptographically sound primitive that is notoriously
difficult to protect against side-channels with low area-overhead due to the high
algebraic degree of its S-box. While the size for unprotected implementations of
the AES S-box has steadily decreased from 195 gates for Canright’s S-box [4] to
115 gates for the S-box of Boyar et al. [3], masked implementations do not exhibit
such a clear trend. Instead, they provide some trade-off between area, latency
and fresh randomness. Interestingly, most current state-of-the-art first-order se-
cure implementations follow the tower-field construction [2,6,9,16]. In contrast,
our aim is to achieve the lowest possible circuit size by extending our former
approach [17] and decomposing the S-box even further into multiplications in
GF(28).



Our Contribution. We present two designs for a first-order secure AES S-box
based on a multiplication chain with four multiplications in GF(28) to realize the
inversion: First, we achieve a new size record for the AES S-box and demonstrate
the suitability of our design for low-area and low-power applications. Second, we
show an area-latency trade-off that is practical whenever the implementation
speed is limited by the number of random bits per cycle.

Outline. In Section 2 we introduce the underlying concepts of our contribution
and define our notation for the rest of the paper. In Section 3 we present our
main contribution. We compare implementation results in Section 4 and provide
a side-channel evaluation in Section 5.

2 Preliminaries

In the following we introduce an exponentiation based representation of the AES
S-box, the concept of multiplication chains and Domain-oriented Masking.

2.1 AES S-box representations

The AES S-box consists of an inversion in GF(28) followed by an affine mapping.
While the affine part is simple to mask, the inversion has algebraic degree seven
and can be represented in many different ways. Here, we represent inversion as
exponentiation according to the relation

x−1 = x254

in GF(28). Given only this representation it is unclear how many multipli-
cations are necessary to obtain the end result. An upper bound can be de-
termined by considering the exponent’s binary representation (11111110)b. Its
Hamming weight minus one describes the number of multiplications in a square-
and-multiply algorithm. Hence, The inversion can be computed with six multi-
plications and several squaring operations. Note that minimizing the number of
squaring operations is of little interest as it is a linear operation over GF(28)
and hence easy to mask with a low area overhead.

2.2 Multiplication and Addition Chains.

Given a monomial xn over GF(28), we aim to find a program that, starting from
the identity function x1 over GF(28), computes xn with the fewest multiplica-
tions and an arbitrary number of squaring operations. This can be formalized as
finding a sequence of monomials (v0, . . . , vs) with the following conditions

v0(x) = x1,

vi(x) = v2e1
j (x) ◦ v2e2

k (x), j, k < i, e1, e2 ∈ N
vs(x) = xn



and minimal length. As there is a straightforward homomorphism between the
group of natural numbers and exponentiation in a finite field

φ : N→ F(GF(28)), φ(k) = xk

we can transform the problem into the realm of natural numbers:
Let n be a natural number, we call v = (v0, . . . , vs) an addition chain for n

of length s, if the below expression holds.

v0 = 1,
vi = vj · 2e1 + vk · 2e2 , j, k < i, e1, e2 ∈ N
vs = n

From this representation it is straightforward to implement an exhaustive search
algorithm to find the smallest length s for a given number n.

2.3 Domain-oriented Masking.

In 2016 Gross et al. [9] introduced Domain-oriented Masking (DOM), a mask-
ing scheme for multiplications over finite fields that extends classical Threshold
Implementations by applying the non-completeness property to each input-bit
individually, thereby enabling d-th order secure designs with only d + 1 input
shares. In the following, we recall the construction of a first-order secure DOM-
indep GF(2n)-multiplier.

To achieve first-order security of a multiplication operation Z = X ·Y , inputs
are independently separated into two domains XA, YA and XB , YB with Boolean
masking, such that X = XA ⊕XB and Y = YA ⊕ YB hold. The multiplication
itself can then be executed with four insecure GF(2n)-multipliers, which may not
combine both domains of the same input variable (cf. Figure 1). Further, the
cross domain products XAYB and XBYA are refreshed with n-bits of randomness
(R) before being reintroduced to either domain. To prevent the propagation
of glitches a register stage is placed directly after the multipliers, respectively
after the refreshing stage. Finally, each share of Z can be computed with an
XOR-operation between the two registers in each domain. The correctness Z =
ZA ⊕ ZB is easy to verify.

While a generalization of DOM for arbitrary non-linear blocks exists [14], we
do not introduce it here, as our focus remains a GF(28)-multiplier forming the
core element of our secure implementation.

3 Implementation

In this section we describe our methodology to derive a mathematical description
of the AES S-box based on GF(28)-multiplication and subsequently present two
variations of circuits based on it.
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Fig. 1: Domain-oriented Masking: First-order secure DOM-indep GF(2n)-multiplier

3.1 Methodology

Our aim is to realize the AES S-box based on GF(28)-multiplications in the
smallest possible hardware area. As the inversion x−1 in GF(28) can be repre-
sented as an exponentiation x254 the challenge is to find a shortest multiplication
chain. As shown in Section 2.2 this corresponds to finding a minimal addition
chain for 254.

Chain Length. As noted in [10,13,17] the inversion in GF(28) can be decomposed
into two cubic functions (xk, xl) with Hamming weights wt(k) = wt(l) = 3.
This directly yields a realization with four multiplications as each function xk,
wt(k) = m can be implemented with m−1 multiplications, e.g., naively with the
square-and-multiply algorithm. Further, exhaustive computations to determine
a length three addition chain for 254 do not yield a result. Hence, we chose to
realize the inversion with four multiplications in GF(28).

As a secondary goal for circuit minimization, we aim to reduce the overhead
in linear operations and delay registers to facilitate the multiplication-based
architecture.

Minimal Overhead. Multiplication chains of length four may still differ in their
overhead for linear operations (x2k) and for delay registers which are necessary
when an intermediate result is not directly processed, which occurs in a multi-
plication chain whenever vi depends on vj with j < i − 1. To determine which
multiplication chain leads to the smallest area, we determine the size of lin-
ear components based on squaring x2k alone and in composition with the AES
affine function Aff. Further, we determine the size reduction through integra-
tion of multiple exponentiations into one hardware circuit. More specifically, we



synthesized each 8-to-8-bit component

x2k

, k = 1, . . . 7

Aff ◦ x2k

, k = 1, . . . 7

and the pairs
(x2k

, x2l

), k, l = 1, . . . 7

as 8-to-16-bit components to determine their sizes in the UMC 0.18µm library
(cf. Table 1)

Table 1: Size of all linear functions x2i

and Aff ◦ x2i

individually (left) and combined
in pairs (right).

Function Size (GE)

x128 23.7
x16 33.3
x2 22.7
x32 33.3
x4 31.7
x64 29.7
x8 32.0

Aff ◦ x1 41.7
Aff ◦ x128 40.7
Aff ◦ x16 36.3
Aff ◦ x2 40.3
Aff ◦ x32 36.7
Aff ◦ x4 36.3
Aff ◦ x64 29.7
Aff ◦ x8 34.0

Function Size (GE)

x128|| x16 52.3
x128|| x2 41.3
x128|| x32 49.0
x128|| x4 50.7
x128|| x64 43.7
x128|| x8 47.0
x16 || x2 44.7
x16 || x4 54.3
x16 || x8 54.3
x32 || x16 49.7
x32 || x2 45.0
x32 || x4 52.3
x32 || x8 53.0
x4 || x2 45.7
x64 || x16 53.7
x64 || x2 48.3
x64 || x32 53.0
x64 || x4 53.7
x64 || x8 51.7
x8 || x2 44.0
x8 || x4 52.0

Given the area information for each component, we can iterate through all
possible combinations for the linear operations op1, . . . , op4 (as illustrated in
Figure 2) to implement the following three subcircuits with minimal total area:

– the function (x13)2k1 with two multiplications
– the function (x19)2k2 with two multiplications
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Fig. 2: Basic Structure for our search algorithm.

– the function Aff ◦ x2k3

Our minimization search is subject to the additional restriction k1+k2+k3 = 5 to
ensure that the circuit actually computes the AES S-box. The optimal solution
given our weights only uses the linear functions x4, x8 and a delay register. It
corresponds to the choice:

op1(x) = x, op2(x) = x8, op3(x) = x4, op4(x) = x

and yields the optimal parameters k1 = 0, k2 = 4, k3 = 1. More formally,
the circuit can be expressed algebraically as the interleaved application of the
following four linear functions and a multiplier

f1(x) : GF(28)→ GF(28)×GF(28)
x 7→ (x8, x4), mem := x

f2(x) : GF(28)→ GF(28)×GF(28)
x 7→ (mem, x)

f3(x) : GF(28)→ GF(28)×GF(28)
x 7→ (x8, x4), mem := x

f4(x) : GF(28)×GF(28)→ GF(28)
x 7→ (mem, x4)



where mem denotes the last element that was stored in the delay register. The
output Y is determined by applying a fifth affine function

f5(x) : GF(28)→ GF(28)
x 7→ Aff(x2).

The ANFs for all linear functions involved can be seen in Appendix A.

3.2 Domain-oriented Masking

The mathematical description above can be turned into a first-order secure im-
plementation with domain-oriented masking (cf. Figure 3). To minimize area
consumption our circuit is serialized along the multiplication.

Our circuit realizes x4 · x8 = x12 with the first multiplication. Subsequently,
x · x12 = x13 =: x̂ is computed by utilizing the delay register. The third multi-
plication implements x̂4 · x̂8 = x̂12. Finally, the circuit yields (x̂12)4 · x̂ = x̂49.
The subsequent application of Aff ◦ x2 gives the correct result for the S-box
output, as the equation ((x13)49)2 = x−1 holds. To ensure the SCA resistance
of our design, a total of sixteen bits of randomness have to be injected into the
computation of the cross-domain terms, denoted as R1 and R2 in Figure 3.

Further, as we re-introduce intermediate values into the same circuit, com-
posability issues [7] have to be addressed:

Transitional Leakage. To prevent transitional leakage in any of the registers
involved, we reset them to zero in between each "round-operation". This can
easily achieved in the control FSM without introducing additional latency as
at any point in time either the upper (Regi,·) or lower registers (Rego,·) in
Figure 3 are occupied with our intermediate results while the contents of the
other registers can be discarded.

Independent Sharing. As both shared inputs to the multiplier are functions
depending on x, we need to re-fresh one shared input with a total of eight bits
of randomness (R1), before feeding it into the multiplier.

Note that the circuit shown in Figure 3 is generic in the type of multiplier
used. In the following, we demonstrate two designs based on serial-parallel multi-
plication to achieve a very low area and a fully-parallel multiplication to achieve
an interesting trade-off.

3.3 Smallest Masked AES-Sbox

To obtain the smallest implementation of the AES S-box we realize the GF(28)-
multiplication in eight cycles with a serial-parallel multiplier (cf. Figure 4). It
functions by applying all bits of operand a and successively shifting in one bit
at a time of operand b starting with the MSB. Thereby, it computes the product
of a and b in 8 cycles. The modulo reduction is based on the polynomial (11b)x.
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Fig. 3: First-order secure AES S-box circuit based on a GF(28) multiplication chain. It
computes two shares of x12, x13, (x13)12 and (x13)49 in the lower registers and contains
a final application of Aff◦ x2 to determine the shared value of the S-box output. Aff ′

denotes the affine function without constant terms.



While it is clearly necessary to re-mask one input operand to use the DOM-
DOM-indep multiplier with 8-bits of fresh randomness, this can be done at the
rate of one bit per cycle by integrating the refreshing with R1 into the shift regis-
ters Regi,1 and Regi,2. Similarly, it is required to re-mask output of the multiplier
with 8-bits of fresh randomness, which can be done during the computation of
the product, one bit at a time (input wire R2 in Figure 4). Even though the
serial-parallel multiplier contains a shift register internally, an additional regis-
ter stage Rego,1, Rego,2 (cf. Figure 3) is necessary to prevent a cross-domain
term to re-enter a domain without being previously re-masked with the entire 8
bits of entropy. The additional register does not incur a latency overhead as we
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Fig. 4: Circuit of a Serial-Parallel GF(28) multiplier.

use by-passing in cycle eight to write the multiplication result directly to the fol-
lowing register. This leads to a design that computes the linear functions in one
cycle and the multiplication in eight additional cycles. This "round-operation"
with a latency of nine cycles is executed four times. In total, our design computes
an AES S-box in 36 cycles.

3.4 A Latency-Trade-Off

In the above design we can achieve a far lower latency by implementing the
GF(28)-multiplication in one cycle with a fully-parallel multiplier. This straight-
forward design takes two cycles to compute each "round-operation". Hence, the
total latency amounts to eight cycles. The alternate usage of R1 and R2 allows
us to connect both wires to the same source of entropy generating eight random
bits per cycle.

4 Results

In this section we present area and latency results for our design and interpret
them in the context of other first-order secure designs.



Comparison. We compare our design to state-of-the-art implementations of
first-order secure S-boxes. More precisely, area and latency numbers for the
TI(nimble) design of Bilgin et al. [2], the CMS design of Cnudde et al. [6],
the CMS design of Ueno et al. [16], the DOM design of Gross et al. [9] and our
former TI(with guards) design [17]. It is directly apparent that our design #1
is a new area record of first-order secure S-boxes of AES. In fact, with 1378 GE
we improve upon the previous record by Ueno et al. [16] (1656 GE) by several
hundred gate equivalents. This record undoubtedly comes at the cost of huge in-
crease in latency and does not aim to provide a beneficial area-latency trade-off.
Yet, we achieved a practical solution in very special scenarios.

Our design #2 requires only eight random bits per cycle (as R1 and R2 are
injected in alternating cycles) while its size of 2321 GE is comparable to other
state-of-the-art implementations.

Practical Application. Note that our designs provide a benefit over other state-
of-the-art constructions whenever the following two conditions hold: First, if the
device can dedicate only a very small area to cryptographic operations our design
#1 can be considered. Second, in the case of a limited peak power consumption
design #1 is suitable due to its light non-linear part of only four parallel GF(28)-
multiplications. Further, if a trade-off between latency and randomness is the
deciding factor, our design #2 might be suitable.

Unprotected Comparison. Interestingly, an unprotected version of our S-box de-
sign with one parallel-serial multiplier occupies 520 GE, more than twice the size
of the current unprotected area record by Boyar et al. [3] (cf. Table 3). Thereby,
it provides an

Table 2: Comparison of First-Order Secure S-boxes.
IR : inital randomness, Lat : latency, RT : reciprocal throughput, R/C : rand. per cycle

Design Shares Lat crit. path RT R/C Size
(cyc) (ns) (cyc) (bits) (GE)

Bilgin et al. [2] 3 3 N/A 1 16 2224
Cnudde et al. [6] 2 6 N/A 1 46 1872
Gross et al. [9] 2 8 N/A 1 18 2600
Ueno et al.a [16] 2 5 1.5 1 56 1656
Wegener et al. [17] 4 16 3.3 16 0 4200
This work
(#1) 2 36 1.5 36 2 1378
(#2) 2 8 1.6 8 8 2321

a Ueno et al. reported 1389 GE in the TSMC 65 library. We obtained their design
and synthesized it ourselves in the UMC 0.18 µm library.



Table 3: Comparison of Unprotected AES S-box Implemenentations

Design Lat crit. path RT Size
(cyc) (ns) (cyc) (GE)

Boyar et al. [3] a 1 5.6 1 205
This work
unprotected 36 1.5 36 520

a We converted the equations given in their paper into VHDL and synthesized it
ourselves in the UMC 0.18 µm library.

5 Side-Channel Evaluation

Measurement Setup. We evaluated our hardware design on a Sakura-G
side-channel evaluation board [1]. It is a well-established measurement platform
that incorporates two Spartan-6 FPGAs separating control and target circuit
to achieve a beneficial signal-to-noise ratio. We ran our implementation at a
frequency of 6 MHz and sampled at a rate of 625MS/s. Additionally, we utilized
the ZFL-1000LN+ amplifier from Mini-Circuits.

Evaluation. As recently shown by De Cnudde et al. [5] the common evaluation
methodology of the non-specific t-test [8,15] is very sensitive to effects originat-
ing from the power distribution network if a masked implementation with only
two shares is being evaluated. Hence, we deviated from the evaluation strategy
based on the non-specific t-test and instead performed an evaluation based on
Moments-Correlating-DPA (MC-DPA) [12]. More precisely, our target consists
of two sequential invocations of the S-box with several idle cycles between them
to minimize both algorithmic noise and the memory effect due to amplifica-
tion [11]. We performed 10 million measurements with each design and found no
leakage in the first-order MC-DPA, while leakage in the second order is clearly
visible (cf. Figure 6 and Figure 7).

6 Conclusion

First, we presented a new record for the smallest first-order SCA secure AES S-
box implementation in hardware. Compared to the previous record our achieve-
ment comes at the cost of an increased latency. Yet, our design is applicable
whenever small area and low power are of paramount importance. As opposed
to implementing the masked inversion in one cycle, our design performs at most
four serial-parallel multiplications in each clock cycle enabling a very low-power
design. Second, we introduce a trade-off that achieves a lower latency than our
first design and consumes only eight bits of randomness per cycle.

Finally, our contribution demonstrates that a design methodology to achieve
the smallest area for unprotected implementations does not necessarily translate
into a recipe for area-optimal SCA protected implementations.
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Fig. 5: Mean trace over 100 traces: parallel (left), serial (right)

Fig. 6: Fully-parallel multiplier: MC-DPA in the first and second order with 10 million
traces.

Fig. 7: Serial-parallel multiplier: MC-DPA in the first and second order with 10 million
traces.
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A ANFs for Linear and Affine Functions in our Design

To enhance the reproducibility of our results, we provide the algebraic normal
form for all linear/affine functions used in our design.

ANF of power-map x4 in GF(28):

y4
0 = x0 + x2 + x3 + x5 + x6 + x7

y4
1 = x2 + x3 + x4 + x5 + x6

y4
2 = x4 + x5 + x7

y4
3 = x2 + x3 + x4

y4
4 = x1 + x2 + x4 + x5 + x6

y4
5 = x3 + x6

y4
6 = x4 + x7

y4
7 = x3 + x5 + x6 + x7



ANF of power-map x8 in GF(28):

y8
0 = x0 + x1 + x3

y8
1 = x1 + x2 + x3

y8
2 = x2 + x4 + x5

y8
3 = x1 + x2 + x6

y8
4 = x1 + x2 + x3 + x5

y8
5 = x3 + x4 + x6 + x7

y8
6 = x2 + x4 + x6

y8
7 = x3 + x4 + x5 + x6

ANF of function Aff ◦ x2 in GF(28):

y2aff
0 = 1 + x0 + x2 + x3 + x6

y2aff
1 = 1 + x0 + x3

y2aff
2 = x0 + x1 + x3 + x6

y2aff
3 = x0 + x1 + x4 + x7

y2aff
4 = x0 + x1 + x2 + x6 + x7

y2aff
5 = 1 + x1 + x2 + x4 + x5 + x6 + x7

y2aff
6 = 1 + x1 + x2 + x3

y2aff
7 = x2 + x3 + x5 + x6 + x7
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