
Generic Round-Function-Recovery Attacks for
Feistel Networks over Small Domains

F. Betül Durak and Serge Vaudenay

Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

Abstract. Feistel Networks (FN) are now being used massively to en-
crypt credit card numbers through format-preserving encryption. In our
work, we focus on FN with two branches, entirely unknown round func-
tions, modular additions (or other group operations), and when the do-
main size of a branch (called N) is small. We investigate round-function-
recovery attacks.
The best known attack so far is an improvement of Meet-In-The-Middle
(MITM) attack by Isobe and Shibutani from ASIACRYPT 2013 with op-

timal data complexity q = rN
2

and time complexity N
r−4
2 N+o(N), where

r is the round number in FN. We construct an algorithm with a surpris-
ingly better complexity when r is too low, based on partial exhaustive
search. When the data complexity varies from the optimal to the one of

a codebook attack q = N2, our time complexity can reach N
O

(
N

1− 1
r−2

)
.

It crosses the complexity of the improved MITM for q ∼ N e3

r
2r−3.

We also estimate the lowest secure number of rounds depending on N
and the security goal. We show that the format-preserving-encryption
schemes FF1 and FF3 standardized by NIST and ANSI cannot offer
128-bit security (as they are supposed to) for N 6 11 and N 6 17,
respectively (the NIST standard only requires N > 10), and we improve
the results by Durak and Vaudenay from CRYPTO 2017.

1 Introduction

Feistel Networks (FN) have been used in constructing many block ciphers such
as DES [1]. In the classical FN, we construct a permutation from 2n bits to 2n
bits with round functions from n bits to n bits. We call it as balanced Feistel
network. Fig. 1 represents a 4-round FN with modular addition (modulo the
size of the domain for a branch). Other well known types of Feistel networks are
unbalanced FN, alternating between contracting and expanding round functions.

Although block ciphers only encrypt blocks of a fixed format (typically: a
binary string of length 128), there are many applications requiring to encrypt
data of another format (such as a decimal string of a given length) and to have
encrypted data in the same format. For example, Credit Card Numbers (CCN)
consist of 16 decimal numbers, whose 6 digits must be kept confidential. For
this reason, these 6 digits are typically encrypted in digital transactions using
a Format-Preserving Encryption (FPE). Recently, FPE based on FN [5, 6, 9]



have been standardized [2, 3]. As an example, the FPE solution of the terminal
manufacturer company Verifone encrypts about 30M credit card transactions
per day in the United States alone.

In this work, we are specifically interested in FN with two branches (not
necessarily balanced) with secret round functions and modular addition oper-
ation. Moreover, we are interested in small domain size over larger key space.
We investigate the security when the round function is entirely unknown instead
of a publicly known round function that mixes the input with a secret key (i.e.
round function is Fi = fi(ki, .), where ki is the round key in ith round). We do
not assume that round functions are bijective. This applies to FF1 [6] by Bellare
et al. and FF3 [9] by Brier et al. which have been standardized by The National
Institute of Standards an Technology (NIST) published in March, 2016 [2]. This
standard aims at a 128-bit security for any N > 10. FF3 was broken and repaired
by Durak and Vaudenay [15]. Herein, we denote by FF3∗ the repaired scheme.
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Fig. 1: 4-round Feistel network

Since their invention, Feistel networks and their security analysis have been
studied. Many cryptanalysis studies have been done to give key-recovery, message-
recovery, round-function-recovery, and differential attacks on different types of
Feistel networks [7, 12, 16, 18, 21, 25]. We summarize the best function recovery
attacks in Table 1.1 The complexities are given in terms of number of encryp-
tions. In Appendix, we present a brief survey of existing attacks. So far, the best
generic attack was a variant of Meet-In-The-Middle (MITM) attack.

The most famous security result dates back to late 80’s given by Luby-
Rackoff [20]. In their seminal paper, Luby and Rackoff first showed that a three
round Feistel construction is a secure pseudorandom permutation from 2n bits to

1 Table 1 only reports function recovery attacks. It does not include attacks applying
with round functions in a small space of N (instead of NN). It does not include
distinguishers such as the ones from Patarin [23] either.



2n bits. Moreover, they showed that for more than three rounds FN, all generic
chosen-plaintext attacks on Feistel schemes require q = Ω(2

n
2 ) queries where

n is the input/output size to the round function. Information theoretically, the
number q of queries provides 2qn bits of information. For r-round FN, we need
rn2n bits of information to recover the round functions (each round function
can be represented with a string of size n2n). Therefore, q = r

22n is enough
to reconstruct the round function, in theory. Patarin [24] further showed that
for q � 2n, four rounds are secure against known-plaintext attacks (the ad-

vantage would be bounded by 4q
2n + q2

2·2n for q 6 2n

67n ), five rounds are secure

against chosen-plaintext attacks (the advantage would be bounded by 5q
2n + q2

2·2n
for q 6 2n

67n ) and six rounds are secure against chosen-plaintext and ciphertext

attacks (the advantage would be bounded by 8q
2n + q2

2·2n for q 6 2n

128n ).

As we will not necessarily assume messages in binary, we use the notation
Nl ,Nr as the domain size of the round functions. We introduce some known at-
tacks on Feistel networks with our focused properties: two branches with domain
size Nl and Nr , with modular addition modulo Nl and Nr , secret random round
functions which are balanced (N = Nl = Nr ) or unbalanced but with Nl ≈ Nr .

Table 1: Round-function-recovery attacks against generic balanced 2-branch r-
round FN with domain branch size N. (All β are different constants such that
β < 1.)

rounds method type requirement time complexity T data q ref

3 yo-yo known pt O(N lnN) N lnN [15]

4 cycle finding known pt O (N3) N
3
2 [15]

4 guess and
determine

chosen pt O
(
N

3
2

)
N

3
2 [7]

5 cycle finding chosen pt O
(
N
√
N+3

)
N

3
2 [15]

5 integral attack chosen pt F1 or F3 invertible O (N2.81) N2 [7]
5 yo-yo codebook ⊕-Feistel O (N2) N2 [7]

5 guess and
determine

codebook O

(
NN

3
4

)
N2 [7]

5 SAT solver codebook not specified N2 [8]

6 yo-yo codebook ⊕-Feistel O
(
N

1
2N

)
N2 [7]

7 yo-yo codebook ⊕-Feistel O
(
NN

)
N2 [7]

r cycle finding chosen pt O
(
N(r−5)N+

√
N+3

)
N

3
2 [15]

r MITM known pt O
(
Nd

r
2 eN

)
rN

2
Eq. (1)

r MITM∗ chosen pt N
r−4
2 N(1+o(1)) rN

2
Eq. (2)

r iterated partial
exhst search

known pt N
(r−2)2

r−1 N(Nq )
1
r−2 (β+o(1)) q 6 N2 Eq. (5)

r iterated partial
exhst search

chosen pt N(r−3)N
1− 1
r−2 (β+o(1)) βN2− 1

r−2 Eq. (8)

r iterated partial
exhst search

chosen pt N
q
N−1+

(r−3)2

r−2 N(Nq )
1
r−3 (β+o(1)) q 6 N2 Eq. (7)



Our Contributions. In this work, we propose the best known generic exhaustive
search attack on Feistel networks with two branches and random functions with
arbitrary number r of rounds. We compare it with MITM. It is better for some
parameters. When the data complexity varies in between the optimal (based on
information theory) and the one of the codebook attack, our best time complexity

goes from N
r−2
2 N+o(N) (MITM-based, see Eq. (2) for r even) to NO(N1− 1

r−2 )

(based on partial exhaustive search, see Eq. (8)), where N is the domain size
of the branch. More precisely, the optimal data complexity is q = rN2 . MITM
works with the optimal data complexity and with time complexity TMITM

∗
=

N
r−2
2 N+o(N) (see Eq. (2)). Our partial exhaustive search attack can use any data

complexity from the optimal to the one of a codebook q = N2, but it is better
than MITM for q > N×e3

r
2r−3. It reaches the time complexity (called T Iter

∗
)

N(r−3)N1− 1
r−2 (β+o(1)) for some constant β < 1 (see Eq. (8)) using q = βN2− 1

r−2

chosen plaintexts.

We plot in Fig. 2 the (r,N) parameters for which we have T Iter
∗
= TMITM

∗
.

As we can see, for any constant N and a low r (including r = 8 and r = 10 as
the NIST standards suggest), Iter∗ is the best attack. The same figure includes
two curves that correspond to the 128-bit and 256-bit security parameters (r,N).
The curves are computed with the minimum between TIter∗ and TMITM

∗
. It can

be read that an intended 128-bit security level in FF3∗ with r = 8, N 6 17 and
in FF1 with r = 10, N 6 11 has not been satisfied.2 E.g., for 6-bit messages and
2-digit messages.3

Fig. 2: Parameters (r,N) for T Iter
∗
= TMITM

∗
and parameters to meet a 128-bit

and a 256-bit security level.

2 It was shown by Durak and Vaudenay [15] that 128-bit security was not reached by
FF3∗ and FF1 for 7 6 N 6 10 and N = 7, respectively.

3 Note that the NIST standard [2] requires N > 10.



Another application could be to reverse engineer an S-box based on FN [8].

Structure of our paper. In Section 2, we review the symmetries in the set of
tuples of round functions which define the same FN and we describe the MITM
attacks. Our algorithm is described and analyzed in Section 3. Section 4 applies
our results to format preserving encryption standards. Finally, we conclude.4

2 Preliminaries

In this section, we present known techniques to recover the r-tuple of round
functions in FN. Note that we actually recover an equivalent tuple of round
functions. Indeed, we can see that round functions differing by constants can
define the actual same cipher [13, 15]. Concretely, let (F0, . . . , Fr−1) be a tuple
defining a cipher C. For every a0, . . . ,ar−1, b0, . . .br−1 such that ai = bi−1 +
bi−3 + bi−5 + · · · and b0 + b2 + b4 + · · · = b1 + b3 + b5 + · · · = 0, we can define
(F ′0, . . . , F ′r−1) by F ′i(x) = Fi(x − ai) + bi. We obtain a tuple defining the same
cipher C. Therefore, we can fix arbitrarily one point of F0, . . . , Fr−3 and we are
ensured to find an equivalent tuple of functions including those points.

2.1 Meet-In-The-Middle (MITM) Attack

The MITM attack was introduced by Diffie and Hellman [10]. It is a generic
known-plaintext attack. Briefly, consider an r round encryption E0,E1, . . . ,Er−1

and corresponding D0,D1, . . . ,Dr−1 decryption algorithms. We assume each
algorithm uses a k-bit key and we denote the keys by K0,K1, . . . ,Kr−1. Let
M1,M2, . . . ,Mq be the plaintexts and C1,C2, . . . ,Cq be the corresponding ci-

phertexts. Let the intermediate values entering to round i beM
(i)
1 ,M

(i)
2 , . . . ,M

(i)
q

for 1 6 i < r. The adversary enumerates each possible combination of the keys
K0,K1, . . . ,Ku−1 for the first u = b r2c rounds and it computes the intermediate

values for each plaintexts as M
(u)
1 ,M

(u)
2 , . . . ,M

(u)
q until round u. Then, these

values along with their possible keys are stored in a table (The memory com-
plexity is 2uk messages). Then, the adversary partially decrypts the ciphertext
C1,C2, . . . ,Cq for each value of the keys Kr−1,Kr−2, . . . ,Ku backward. Finally,
the adversary looks for a match between the partially decrypted values and the
rows of the stored table. Each match suggests keys for K0,K1, . . .Kr−1 and the
adversary recovers all the keys. The time complexity of the MITM attack is
2(r−u)k and memory complexity is 2uk.5

4 The full version of our paper [14] includes appendices with: a description of the
message recovery attacks from Bellare et al. [4], the generic round-function-recovery
attack from Durak and Vaudenay [13,15], an attack exploiting the bias in the modulo-
N reduction inspired by Bleichenbacher (as described by Vaudenay [26]), and the
generic round-function-recovery attacks by Biryukov [7].

5 In order to improve the memory complexity of MITM attack, a new technique called
dissection attack has been introduced by Dinur et. al in [11].



We can apply the MITM attack to the Feistel networks with r rounds and q
known plaintext/ciphertext pairs. In our setting, N is quite small, thus we can
focus on a generic FN with functions specified by tables. This is equivalent to
using a key of k = N log2N bits. Therefore, the standard MITM attack has a
time complexity of N(r−u)N with same memory complexity. We label the time
complexity as follows:

TMITM = O
(
Nd

r
2 eN

)
(1)

with q = rN
2 known plaintexts. The pseudocode is given in Algorithm 1.

Algorithm 1: Meet-In-The-Middle Attack (MITM)

1 Collect q plaintext-ciphertext pairs (Mi,Ci), i = 1, . . . ,q.
2 foreach K0, . . . ,Ku−1 do

3 Compute M
(u)
1 , . . . ,M

(u)
q forward from M1, . . . ,Mq.

4 Store (K0, . . . ,Ku−1) in h(M
(u)
1 , . . . ,M

(u)
q ).

5 end
6 foreach Ku, . . . ,Kr−1 do

7 Compute M
(u)
1 , . . . ,M

(u)
q backward from C1, . . . ,Cq.

8 foreach K0, . . . ,Ku−1 in h(Mu
1 , . . . ,Mu

q) do
9 Output K0, . . . ,Kr−1.

10 end

11 end

2.2 Improved MITM

In this section, we elaborate and extend the attack mentioned briefly in [11,12]
on r-round FN. The same attack appears in [17,18] with k = log2N. We are only
adapting the algorithm to our settings. We take u = d r2e − 1 and v = b r2c − 1
so that r = u + v + 2 and u ≈ v. Consider the FN in Fig. 3 for r even (When r
is odd, we can set u = b r2c − 1 so that r − u − 2 = d r2e − 1). We can split the
(2u+ 2)- round FN in 4 parts: starting with a single round F0; a u-round Feistel
Network called G, the (u + 2)th round with function Fu+1, and finally another
v-round Feistel Network called H.

An intuitive attack works as follows. Fix a value M
(0)
R = a and consider

all possible M
(0)
L so that we obtain N plaintexts. We do it q

N
times to obtain q

plaintexts. Hence, we have q
N

values for a. We set the output of F0 for one value of

a arbitrarily. For all the plaintexts, we query (M
(0)
L ‖M

(0)
R ) and obtain q (CL‖CR)

values. We enumerate all the functions of H, and compute (M
(u+2)
L ‖M(u+2)

R )

from (CL‖CR) by decrypting. We set Z = M
(u+2)
L = M

(u+1)
L if u is even and

set Z = M
(u+2)
R = M

(u+1)
R if u is odd. We store each Z in a hash table. We



then enumerate all the functions of G, and compute (M
(u+1)
L ‖M(u+1)

R ) from

(M
(0)
L ‖M

(0)
R ). For each computed values of M

(u+1)
L (for u even) or M

(u+1)
R (for

u odd), we look for a match in the hash table storing Z values (since they have to
be equal). The time complexity of this approach consists of enumerating many
values and functions with memory complexity vN log2(N) to store the hash table.
Enumerating F0, (F1, . . . , Fu) and Fu+2, . . . , Fr−1 gives N

q
N

−1+(u+v)(N−1) tuples
which are filtered by N−q. We obtain N

q
N

−1+(u+v)(N−1)−q tuples. Thus, for
each filtered tuple, we can deduce input/output values for Fu+1 and rule out
inconsistent tables to isolate the solutions (F0, . . . , Fr−1). This post-filtering has
a complexity N

q
N

−1+(u+v)(N−1). We will see that it is lower than the complexity
of the rest of the algorithm. Thus, it disappears in the big-O. The pseudocode
is given in Algorithm 2.

Algorithm 2: Improved Meet-In-The-Middle Attack (MITM∗)

1 Take a1, . . . ,a q
N

pairwise different half blocks.

2 Take M1, . . . ,Mq pairwise different such that (Mi)R ∈ {a1, . . . ,a q
N
}.

3 Collect the encryption C1, . . . ,Cq of M1, . . . ,Mq.
4 foreach v-round Feistel Network H do

5 Compute M
(u+2)
1 , . . . ,M

(u+2)
q backward from C1, . . . ,Cq.

6 Set Zi =M
(u+2)
L if u is even and Zi =M

(u+2)
R if u is odd, i = 1, . . . ,q.

7 Store H in h(Z1, . . . ,Zq).

8 end
9 Set b1 arbitrarily.

10 foreach b2, . . . ,b q
N

do

11 Set F0(ai) = b1, i = 1, . . . , q
N

.
12 foreach u-round Feistel Network G do

13 Compute M
(u+1)
1 , . . . ,M

(u+1)
q forward from M1, . . . ,Mq.

14 Set Zi =M
(u+1)
L if u is even and Zi =M

(u+1)
R if u is odd, i = 1, . . . ,q.

15 foreach H stored in h(Z1, . . . ,Zq) do
16 Deduce input/output values for Fu+1.
17 if consistent then
18 Output (F0,G,H).
19 end

20 end

21 end

22 end

In this attack, we have to guess N
q
N

−1 values for F0, Nu(N−1) values (we
have N − 1 instead of N because one value per round is free to select) for
enumerating F1, F2, . . . , Fu (we guess N

q
N

−1+u(N−1) values in total). And, we
guess Nv(N−1) values for enumerating Fu+2, Fu+3, . . . , Fr−1 (we guess Nv(N−1)

in total). Therefore, the complexity is O
(
N
q
N

−1+( r2−1)(N−1)
)

for r is even and



O
(
N
q
N

−1+( r−1
2 )(N−1)

)
for r is odd. We label the time complexity for described

attack as:

TMITM
∗
= O

(
N( r2−1)N

)
, for r even (2)

TMITM
∗
= O

(
N
r−1
2 N− 1

2

)
, for r odd

with q = rN
2 chosen plaintexts.

F0

G

Fu+1

H

M
(0)
L M

(0)
R

M
(1)
L M

(1)
R

M
(u+1)
L M

(u+1)
R

M
(u+2)
L M

(u+2)
R

M
(2u+2)
L M

(2u+2)
R

CRCL

Fig. 3: (2u+2)-round Feistel Network (with u even on the picture)

3 Round-Function-Recovery by Partial Exhaustive
Search

We consider exhaustive search algorithms dealing with partial functions. Nor-
mally, a function Fj is defined by its set of all possible (z, Fj(z)) pairs. We call a
table as partial table if it is a subset of its table. It is a set of pairs such that

∀x,y, z (x,y) ∈ Fi and (x, z) ∈ Fi =⇒ y = z.

If (x,y) ∈ Fi, we say that Fi(x) is defined and we denote Fi(x) = y. The density
of a partial table is the ratio θ of its cardinality by N. For example, θ = 1

N

corresponds to a partial table defined on a single point z and θ = 1 corresponds
to the full table. Our aim is to enumerate possible partial tables of increasing
density by exhaustive search. So, we will “extend” partial functions. A partial
table is an extension of another partial table if the former is a superset of the
latter.



We deal with partial tables for each round function. We define r-tuples T of
partial tables in which Tj denotes the partial table of Fj in T .6 We say that T is
homogeneous with density θ if for all j, Tj has density θ. Similarly, a tuple T ′ is
an extension of T if for each j, T ′j is an extension of Tj. An elementary tuple is a

homogeneous tuple of density 1
N

. This means that each of its partial functions
are defined on a single point.

Again, our aim is to start with an elementary tuple and to list all extensions,
as long as they are compatible (as defined below) with the collected pairs of
plaintexts and ciphertexts (M,C). We say that a tuple T encrypts a plaintext
Mi into a ciphertext Ci (or decrypts Ci into Mi or even that T encrypts the
pair (Mi,Ci)) if we can evaluate the FN on Mi with the partial information we
have about the round functions and if it gives Ci. We say that a pair (Mi,Ci)
is computable except for r ′ rounds for a tuple T if there exists a round number j
such that the partial functions are enough to encrypt Mi for up to j rounds and
to decrypt Ci for up to r− j− r ′ rounds.

We want to define what it means for a tuple to be compatible with (M,C).
Roughly, it is compatible if for each i, there exists an extension encrypting Mi

into Ci. (However, it does not mean there exists an extension encrypting each
Mi to Ci.) More precisely, we say that a tuple T of partial tables is compatible
with (M,C) if for each i, at least one of the following conditions is satisfied:

(i) T encrypts Mi into Ci
(in this case, there is no need to extend T);

(ii) (Mi,Ci) is computable except for two rounds or more
(indeed, if two rounds are undetermined, we know that we can extend T to
encrypt Mi to Ci);

(iii) (Mi,Ci) is computable except for one round (numbered s below) and their is
a match in the value skipping the missing round: more precisely, their exists
s ∈ {0, . . . , r− 1} and one (x,y) pair such that if T ′s = Ts ∪ {(x,y)}, the tuple
T ′ = (T0, . . . , Ts−1, T ′s, Ts+1, . . . , Tr−1) encrypts Mi to Ci
(indeed, we know we can extend the missing round with Ts(x) = y).

Clearly, if no condition is satisfied for i, then no extension of T can encrypt Mi

into Ci, so we can prune an exhaustive search.

3.1 Iter: Iterative Partial Exhaustive Search

Assume that q plaintext/ciphertext pairs (Mi,Ci) are known to the adversary.
Due to the symmetries in the set of tuples which are compatible with the code-
book, we can focus on the tuples which are extensions of an arbitrarily fixed
elementary tuple T1 which encrypts the pair (M1,C1). So, we define Pooli as
the set of all extensions T of T1 encrypting the pairs (M1,C1), . . . , (Mi,Ci),
which are compatible with all other pairs, and which are minimal (in the sense

6 We denote an r-tuple with capital letter T . Each tuple T consists of r tables, i.e.
T = {T0, . . . Tr−1}. When we have multiple r-tuples, we denote different tuples indexed
with a superscript T1, T2, . . .



that removing any entry in the partial tables of T makes at least one (Mj,Cj)
pair not computable, for 1 6 j 6 i).

Algorithm 3: Iterative partial exhaustive search round-function-recovery
attack

1 Collect q plaintext-ciphertext pairs (Mi,Ci), i = 1, . . . ,q.
2 Get an arbitrary elementary tuple T1 which encrypts M1 to C1.
3 Initialize Pool1 = {T1}.
4 foreach i = 2, . . . ,q do
5 Initialize Pooli to empty.
6 foreach T ∈ Pooli−1 do
7 foreach minimal extension T ′ of T encrypting Mi to Ci do
8 if all (Mi+1,Ci+1), . . . , (Mq,Cq) are compatible with T ′ then
9 Add T ′ in Pooli.

10 end

11 end

12 end

13 end
14 Output Poolq.

We iteratively construct Pooli. For that, we take all possible minimal exten-
sions of tuples from Pooli−1 which encrypt the ith pair and remain compatible
with all others. We proceed as defined by Algorithm 3.

With an appropriate data structure, we can avoid to retry to encrypt Mj or
decrypt Cj and directly go to the next computable round (if any) in every pair.
For each tuple T in Pooli, we maintain a hash table h in which h(u, x) is a list
of pairs of the form (j,+) or (j,−) with j > i. If (j,+) is in h(u, x), this means
that T encrypts Mj up to round u − 1 and that the input to Fu (the output of
which is unknown) is x. If (j,−) is in h(u, x), this means that T decrypts Mj up
to round u+1 and that the input to Fu is x. Concretely, this means that h(u, x)
lists the indices of (Mj,Cj) pairs who need the value of Fu(x) to encrypt/decrypt
one more round. With this type algorithmic trick, we save the inner loop and the
complexity is expected to be close to the total size of the pools:

∑q
i=1 |Pooli|.

3.2 A Heuristic Complexity Analysis of Iter

We heuristically estimate |Pooli|. First, we recall that Pooli is the subset of all
minimal extensions of the elementary tuple T1 which encrypt the first i plain-
text/ciphertext pairs, restricted to the ones which are compatible with all others.

We approximate |Pooli| by NX−Y where X is the number of entries in the
partial tables (i.e. the number of defined points throughout all rounds) and Y is
the number of independent equations modulo N which a tuple must satisfy to
be compatible. So, N−Y is the probability for a tuple to satisfy the conditions
in Pooli. In other words, the NX possible tuples are decimated by a factor NY .



To treat the fact that we start with only T1 in Pool1, we decrease X by r (it
means that entries defined in T1 do not have to be enumerated as they are fixed)
and we decrease Y by 2 (i.e., we consider that the (M1,C1) pair never decimates
tuples as it is always compatible by the choice of T1).

Although it would be inefficient to proceed this way, we could see Pooli as
follows. For all sets (T2, . . . , T i) of elementary tuples in which T j encrypts the jth

pair, we check if {T1, T2, . . . , T i} are non-conflicting, and check if merging them
defines partial tables which are compatible with the q−i other pairs. We consider
that picking an elementary tuple T j encrypting the jth plaintext (irrespective of
the ciphertext) corresponds to picking one random input in each of the r round
functions. We call this a trial. An input to one round function corresponds to
a ball with a number from 0 to N − 1. A round function is a bag of N balls.
So, we have r bags of balls and a trial consists of picking one ball in each bag.
Balls are replaced in their respective bags after picking them. Each T j makes
one trial. Consequently, we have i trials. The balls which are picked during these
i trials are called good balls. Then, checking compatibility with the remaining
q − i pairs corresponds to making q − i additional trials. In those additional
trials, we simply look at the number of good balls to see how many rounds can
be processed for encryption/decryption.

We estimate the random variable X as the total number of good balls (to
which we subtract the r balls corresponding to the trial of T1). Conditioned to
a density of good balls of θi,j in round j, we have E(X|θi,.) =

∑r
j=1 θi,jN− r. All

θi,j are random, independent, and with expected value θi. So, E(X) = rθiN− r.

The random variable Y is set to Y = Y1+Y2+Y3. The variable Y1 counts the
number of modulo N equations so that the encryption of the first i plaintexts
match the corresponding ciphertext. So, Y1 = 2(i − 1) (the first pair (M1,C1)
is satisfied by default, and each of the i − 1 other ones define two equations
due to the two halves of the ciphertexts). The variable Y2 counts the number of
equations coming from pairs encrypted for all but one round. So, Y2 counts the
number of trials (out of the last q−i ones) picking exactly r−1 good balls, as they
encrypt for all but one round so they define a single equation. The variable Y3
counts the number of equations coming from pairs in (Mi+1,Ci+1), . . . , (Mq,Cq)
which are fully encrypted. So, Y3 is twice the number of trials (out of the last
q− i ones) with r good balls, as they fully encrypt their corresponding pair and
thus define two equations each. Conditioned to a density of good balls of θi,j in
round j, we have

E(Y|θi,.) = 2(i− 1)︸ ︷︷ ︸
Y1

+(q− i)

r∑
j=1

(1 − θi,j)
∏
j′ 6=j

θi,j︸ ︷︷ ︸
Y2

+ 2(q− i)
∏
j

θi,j︸ ︷︷ ︸
Y3

.

All θi,j are random and independent, with expected value θi. Thus,

E(Y) = 2(i− 1) + rθr−1
i (1 − θi)(q− i) + 2θri(q− i).



We obtain |Pooli| ≈ cns×NE(X−Y) where cns is adjusted such that |Pool1| =
1. Hence,

|Pooli| ≈ cns×NrθiN−r−2(i−1)−rθr−1
i (1−θi)(q−i)−2θri(q−i) (3)

with cns ≈ 1 such that |Pool1| = 1.
To estimate θi, we look at how it grows compared to θi−1. During the ith

trial, with probability θi−1 a picked ball is already good (so the density remains
the same), and with probability 1 − θi−1, picking a ball defines an additional
good one (so the density increases by 1

N
).7 Therefore, on average we have

θi = θi−1 +
1

N
× (1 − θi−1).

As θ1 = 1
N

, we deduce θi = 1 −
(
1 − 1

N

)i
.

Assuming that the above model fits well with Iter, the expected value of
log |Pooli| should match Eq. (3). However, Eq. (3) cannot represent well the
expected value of |Pooli| as exponential with bigger exponents will have a huge
impact on the average. This motivates an abort strategy when the pool becomes
too big. The abort strategy has known and influenced many works [19]. The way
we use this strategy will be discussed in Section 3.5.

Finally, the heuristic complexity is computed by

T Iter =

N∑
i=1

NrθiN−2i−rθr−1
i (1−θi)(q−i)−2θri(q−i)−r+2. (4)

3.3 Approximation of the Complexity

For i� N, we can write θi =
i
N

. By neglecting θri against θr−1
i , the complexity

is approximated by the maximum of NrθN−2Nθ−rθr−1q−r+2. We can easily show
that the maximum is reached by θ = θc with

θc =

(
r− 2

r(r− 1)

) 1
r−2

(
N

q

) 1
r−2

.

We obtain the complexity

T Iter ≈ N
(r−2)2

r−1 ( r−2
r(r−1) )

1
r−2N(Nq )

1
r−2 −r+2 (5)

with q known plaintexts. We will see later that (5) approximates well (4).
The best complexity is reached with the full codebook q = N2 with

T Iter ≈ N
(r−2)2

r−1 ( r−2
r(r−1) )

1
r−2N

1− 1
r−2 −r+2 (6)

which is T Iter = N
(r−2)2

r−1 (β+o(1))N1− 1
r−2

for some β < 1.

7 It would increase with a probability a bit larger than 1− θi−1, namely
N2(1−θi−1)

N2−(i−1)
if

the messages are not independent but conditioned to being pairwise different.



3.4 Iter∗: A Chosen Plaintext Extension to Iter

Finally, if q is not too close to N2, a chosen plaintext attack variant consists of
fixing the right half of the plaintext as much as possible, then guessing F0 on
these points and run the known-plaintext attack on r− 1 rounds to obtain

T Iter
∗
= N

q
N

−1T Iterr−1 ≈ N
q
N

−1+ (r−3)2

r−2 ( r−3
(r−1)(r−2) )

1
r−3N(Nq )

1
r−3 −r+3 (7)

with q chosen plaintexts such that q 6 N2.

Discussion. For N2 > q > N r−3
(r−1)(r−2)

(
2 (r−3)2

(r−2)(r−4)

)r−3

∼ Ne3

r
2r−3, we have

T Iter
∗
< N

q
N

−r+2+ r−4
N and that means T Iter

∗
< TMITM

∗
. Therefore, our Iter∗

algorithm becomes better than MITM∗. Also, for N > (r−3)r−2

r−1 , we have

T Iter
∗
< NN−r+2 so Iter∗ is faster than exhaustive search on a single

round function.

Optimization with larger q. We easily obtain that T Iter
∗

in (7) is optimal with

T Iter
∗
= N

q
N

−1T Iterr−1 ≈ N(r−3)N1− 1
r−2 ( 1

r−1 )
1
r−2 −r+2 (8)

for

q =
r− 3

r− 2
N2− 1

r−2

(
1

r− 1

) 1
r−2

.

chosen plaintexts.

3.5 Variants of Iter and Iter∗

Optimized algorithm. We can speed up the algorithm by adding more points in
the tuples as soon as we can compute them. Concretely, if one plaintext/ciphertext
pair can be “computed” except in one or two rounds, we can deduce the values
in the missing rounds and define them in the tuple. Adding x points reduce the
number of iterations to define the next pool by Nx.

Abort strategy. Our complexity is not an average complexity but its logarithm is
an average logarithmic complexity. To avoid having a too high average complex-
ity, we may change the algorithm to make it abort if the pool exceeds a threshold
to be defined. For instance, if our theoretical formula predicts a complexity Th,
to make sure that the worst case complexity does not exceed Th × Nx, we set
this to the threshold value. This will affect the success probability, which is 100%
without the abort strategy, but may be lower for any real number x.

Other improvements. We believe that we could improve our algorithms in many
ways. For instance, we could take the (Mi,Ci) pairs in an optimized order so
that we do not have too many new values appearing in the first and last round
functions. This would decrease the number of tuples to consider.



3.6 Experimental Results

We implemented Algorithm 3 with known plaintext, r = 5, N = 8, q = 40. Our
algorithm always ended with a pool limited to a correct set of full tables.

With these parameters, Eq. (3) estimates Pool3 to be the largest, and esti-
mates |Pool3| = N

2.49. We checked over 100 executions, that logN |Pool3| has an
average of 4.37 and a standard deviation of 0.60. This is a bad news as it is quite
larger than what is predicted. More precisely, each partial function in Pool3 has
on average 2.9 defined entries, which is slightly more than the Nθ3 ≈ 2.64 which
is predicted.8 But adjusting θ3 to 2.9

N
in Eq. (3) gives N3.04, which is not enough

to explain the high |Pool3| which is observed. So, our model for the random
variable X may be correct but Y may be overestimated: Iter decimates less than
expected. Although we thought Pool3 would be the largest from our theory, the
largest observed pool during our experiment were Pool4 with logarithmic size
with average 5.28. This indicates that our model for Iter is not accurate.

All these problems find several explanations. First of all, our parameter N
is so small that a tiny variation of number of defined entries (supposed to be
θiN) in each round has a dramatic impact on the number of tuples. Second,
our approach takes the θi as uniform in all rounds and runs although there are
variations. Some rounds have more than θiN entries and some others have less.
The function we analyze is not linear in θi. It is exponential. So, any round with
more than θiN defined entries increase the complexity quite a lot.

The good news is that using our optimized variant reduced the gap substan-
tially. The largest Pool becomes maxi logN(|Pooli|) = 3.46. Using the abort
strategy with x = 1 gives a success rate of 42% and maxi logN(|Pooli|) = 3.08.
So, we believe that our anticipated complexities are achievable with a
good success probability. However, finding a good model for decimation and
for the improved algorithm remains an open question.

We summarize our experiments in the Table 2. For the max|Pool| column is
the average (logarithmically) of the largest observed pool. The logarithm is the
maximum over each iteration of the average over the runs of the logarithm of the
pool size. The computed average only includes successful runs, as unsuccessful
ones are all on the abort threshold.

4 Applications

In the standards, the supported domain size of messages in FF1 and FF3∗ is
greater than 100 (i.e. N2 > 100). For FF1 and FF3∗, the best attack is roughly
Iter∗ for very low N, then MITM∗ for larger N. More precisely, we achieve the
results shown in Table 3.9

For a better precision, we did the computation without approximations, i.e.
by using Eq. (4) instead of Eq. (5) in Eq. (7). In any case, we have checked that

8 This is partially explained by the fact that plaintexts are pairwise different.
9 Note that the standard requires N > 10. Hence, the first three rows are not relevant

in practice.



Table 2: Experimental results with parameters r = 5, N = 8, and q = 40 and
with parameters r = 5, N = 10, and q = 40. The max |Pool| column reports
maxi Eruns(logN |Pooli|): the average (logarithmically) of the largest observed
pool. It is compared with Th which is derived as the largest theoretical pool size
by our theory. The column opt shows whether we used the optimization trick.
The abort column indicates when we used the abort strategy, and with which
bound.

r = 5, N = 8, q = 40

#runs success max |Pool| opt abort

100 100% Th×N2.79 no no
10 000 0% no Th
1 000 0% no Th×N
1 000 3% Th×N1.76 no Th×N2

100 100% Th×N0.93 yes no
10 000 1% Th×N−0.29 yes Th

100 42% Th×N0.59 yes Th×N
100 99% Th×N0.90 yes Th×N2

r = 5, N = 10, q = 40

#runs success max |Pool| opt abort

10 000 0% no Th
1 000 0% no Th×N

100 0% no Th×N2

14 100% Th×N1.40 yes no
10 000 1% Th×N−0.31 yes Th

100 19% Th×N0.60 yes Th×N
19 68% Th×N1.25 yes Th×N2

Table 3: Time complexity of the chosen-plaintext attacks MITM∗ (TMITM
∗
)

and Iter∗ (T Iter
∗
) with query complexity q for various values of N and r = 8 or

r = 10. Computations for T Iter
∗

were done without using approximations.

r = 8 (FF3∗) r = 10 (FF1)
N TMITM

∗
[q] (2) T Iter

∗
[q] (8) N TMITM

∗
[q] (2) T Iter

∗
[q] (8)

21 26[ 22.0 ] 22[22.0 ] 21 28[ 22.0 ] 23[ 22.0 ]
22 224[ 24.0 ] 213[24.0 ] 22 232[ 24.0 ] 221[ 24.0 ]
23 272[ 25.0 ] 242[25.0 ] 23 296[ 25.3 ] 272[ 25.3 ]
24 2192[ 26.0 ] 2116[26.6 ] 24 2256[ 26.3 ] 2199[ 26.8 ]
25 2480[ 27.0 ] 2279[28.3 ] 25 2640[ 27.3 ] 2487[ 28.6 ]
26 21152[ 28.0 ] 2627[210.1] 26 21536[ 28.3 ] 21115[ 210.5 ]
27 22688[ 29.0 ] 21343[212.0] 27 23584[ 29.3 ] 22445[ 212.4 ]
28 26144[ 210.0 ] 22788[213.8] 28 28192[ 210.3 ] 25202[ 214.3 ]



the figures with approximation do not differ much. They are reported in the
Table 4.

Table 4: Time complexity of the chosen-plaintext attacks MITM∗ (TMITM
∗
)

and Iter∗ (T Iter
∗
) with query complexity q for various values of N and r = 8 or

r = 10. Computations for T Iter
∗

were done using approximations.

r = 8 (FF3∗) r = 10 (FF1)
N TMITM

∗
[q] (2) T Iter

∗
[q] (8) N TMITM

∗
[q] (2) T Iter

∗
[q] (8)

21 26[ 22.0 ] 21[22.0 ] 21 28[ 22.0 ] 22[ 22.0 ]
22 224[ 24.0 ] 213[24.0 ] 22 232[ 24.0 ] 221[ 24.0 ]
23 272[ 25.0 ] 244[25.0 ] 23 296[ 25.3 ] 275[ 25.3 ]
24 2192[ 26.0 ] 2122[26.6 ] 24 2256[ 26.3 ] 2209[ 26.9 ]
25 2480[ 27.0 ] 2295[28.4 ] 25 2640[ 27.3 ] 2512[ 28.8 ]
26 21152[ 28.0 ] 2658[210.3] 26 21536[ 28.3 ] 21166[ 210.7 ]
27 22688[ 29.0 ] 21401[212.1] 27 23584[ 29.3 ] 22543[ 212.5 ]
28 26144[ 210.0 ] 22890[213.9] 28 28192[ 210.3 ] 25383[ 214.4 ]

As an example, for FF3∗ with N = 23 (i.e., messages have 6 bits), MITM∗

uses q = 25 pairs (half of the codebook) and search on three points for F0, the
entire (but one point) F1 and F2, one bit of F3 in the encryption direction, and
the entire (but one point) F7 and F6 and one bit of F5 in the decryption direction.
This is N3+2(N−1) × 2N−1 = 258. With Iter∗, we also use q = 25 and the pool
reaches its critical density for θc ≈ 4.4

N
. The complexity is T Iter

∗
= 242.

We may wonder for which N the ciphers offer a 128-bit security. Durak and
Vaudenay [15] showed that this is not the case for FF3∗ with N 6 10 and FF1
with N 6 7. By doing computations for Iter∗, we extend this to show that FF3∗

does not offer a 128-bit security for N 6 17, and FF1 does not offer a
128-bit security for N 6 11.

Genuinely , we can compute in Table 5 the minimum ropt > 4 of the number
of rounds for which min(TMITM

∗
, T Iter

∗
) > 2s depending on s and N. Again,

we computed without using our approximations. For s = 128 and s = 256, we
fetch the following table.10

Even by adding a safety margin, this shows that we do not need many rounds
to safely encrypt a byte (that is, N = 24) with respect to our best attacks.
However, with low r, we should care about other attacks as in Table 1. Indeed,
for ⊕-FN, we recommend never to take r 6 7 due to the yo-yo attack [7]. For
other FN, we recommend never to take r 6 5.

In Fig. 4, we plot complexities for r = 8 or r = 10 and various ranges of N.
The regions for T Iter

∗
we plot have a minimum for the optimal q and a maximum

for r = rN
2 . The region corresponds to all complexities for q ∈ [ rN2 ,N2].

10 In this table, we computed the value of q suggested by our formulas but rounded in
the

[
rN
2

,N2
]

interval.



Table 5: Minimal number ropt of rounds for various N in order to have com-
plexities at least 2128 or 2256. Computations for T Iter

∗
were done without using

approximations.

s = 128 s = 256
N ropt TMITM

∗
T Iter

∗
N ropt TMITM

∗
T Iter

∗

21 260 2258.0 2128.5 21 516 2514.0 2256.5

22 40 2152.0 2129.3 22 77 2228.0 2257.6

23 14 2144.0 2136.5 23 24 2264.0 2272.2

24 9 2240.0 2155.8 24 12 2320.0 2289.1

25 7 2465.0 2187.9 25 8 2480.0 2279.3

26 6 2768.0 2236.2 26 7 21134.0 2415.8

27 5 21778.0 2195.4 27 6 21792.0 2485.0

28 5 24080.0 2370.4 28 5 24080.0 2370.4

5 Conclusion

Standard Feistel Networks and its variations have created an active research area
since their invention and have been used in constructions of many cryptographic
systems to a wide extent. The security of FN has been studied for many decades
resulting in many interesting results for cryptanalysis purpose. In this work, we
analyze the security of a very specific type of FN with two branches, secure ran-
dom round functions, and modular addition to analyze its security. Additionally,
we consider small domains. The best attack was believed to be MITM. However,
we show that partial exhaustive search can be better. Concretely, we show that
the number of rounds recommended by NIST is insufficient in FF1 and FF3*
for very small N.

This specific FN with the described properties has been used to build Format-
Preserving Encryption and perhaps will inspire many other constructions. How-
ever, the security of FN with various properties is not clear (regardless of the
significant security analyses mentioned in the introduction) and has to be inves-
tigated more. Our work shows only that a caution should be taken in order to
meet the desired security level in the systems.

We proposed a new algorithm based on partial exhaustive search. We ob-
served a gap between our heuristic complexity and experiments and suggested
possible explanations. However, the problem to reduce this gap is left as an open
problem.
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7. Alex Biryukov, Gaëtan Leurent, and Léo Perrin. Cryptanalysis of Feistel Net-
works with Secret Round Functions. In Orr Dunkelman and Liam Keliher, edi-
tors, Selected Areas in Cryptography - SAC 2015: 22nd International Conference,
Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers, volume 9566,
pages 102–121. Springer International Publishing, 2016.
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A Message Recovery Attack [4]

In their recent work [4] on FFX FPE schemes, Bellare et. al. consider an FN
scheme with round functions built as tweakable block ciphers. They gave a mes-
sage recovery attack with data complexity larger than the domain size by using
small number of messages per tweak. Basically, their attack is a differential attack
that exploits the bias introduced on the left/right part of the input in Feistel net-
works. The idea of the bias they exploit was discovered by Patarin [22]. Namely,

consider two messages M(0) = (M
(0)
L ,M

(0)
R ) and M

′(0) = (M
′(0)
L ,M

(0)
R ) as an

input with same M
(0)
R to the FN with modular addition under the same tweak.

Let M
(i)
L (resp. M

′(i)
L ) be the output of left part of FN in ith round. Then, we

can show that M
(i)
L −M

′(i)
L is most likely to be M

(0)
L −M

′(0)
L .



In [4], more specifically, the authors consider two messages M and M ′ en-
crypted under FN where they share the same right that is known to the adver-
sary. In the attack, the adversary obtains the encryption of M and M ′ under q
tweaks, the entire message M ′ and the shared half of the messages. At the end,
the adversary outputs the unknown half of the message M with probability close
to 1 by using a bias. The bias simply works as the following: Consider q pairs
(M,Ci) and (M ′,C ′i) for each tweak, if we apply modular subtraction to the
left part of the Ci and C ′i and modular addition to known left part under each
tweak. The attack observes a value more likely than the others, and outputs this
value as the unknown half of the message. The data complexity of the attack
for an r round FN is q = 24(log(N) + 4)N(r−3) where N is the input size of the
right branch in FN. The time complexity is linear in q.

B Generic Round-Function-Recovery Attack [13,15]

In their recent work, Durak and Vaudenay gave a generic round-function-recovery
attack to the FN for 3, 4 and more rounds. The attack for 3-round and 4-round
FN are known-plaintext attacks while the attack for 5-round FN is a chosen-
plaintext attack. For the description of attacks, consider the Fig. 5.
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(a) 3-round Feistel network
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(b) 4-round Feistel network

Fig. 5: 3-round and 4-round Feistel Schemes

Let’s start with the attack for 2-round FN, which is relatively easier. For
2-round FN, consider input x‖y with output z‖t. The first round function is
easy to compute since we know x and z, F0(y) = x − z. We can deduce the
second round function by simply computing the F1(z) = y − t. With N known
plaintexts/ciphertext pair, we recover the entire table of F0 and F1.

The 3-round attack by Durak and Vaudenay [13, 15] is a known-plaintext
attack. The idea is to fix arbitrarily the output of the round function F0 for



some inputs (refer to Fig. 5 (a)). This gives one point of the table of F0. If we do
so, we can apply 2-round attack. Then, we can make the pool of known points
for F0, F1, F2 increase in a yo-yo game. The time and data complexity is N to
recover a good fraction of the tables and N lnN to recover them totally, with
good probability.

In 4-round known-plaintext attack, the authors are interested in a special
structure in a set of pairs of plaintext-ciphertext pairs with specific properties
(refer to Fig. 5 (b)). Given a pair of plaintext-ciphertext pairs, these proper-
ties are the equality on the intermediate values of a Feistel Network which are
unknown as well as the known outputs. In order to distinguish the pairs of
plaintext-ciphertext with these properties, the attack constructs a weighted di-
rected graph. In this graph, a vertex is a pair of distinct pairs (xyzt, x ′y ′z ′t ′)
with t − y = t ′ − y ′ and z = z ′ values. There are vertices which are called
“good” when the vertices have c = c ′. Using good vertices, the attack deduces
the equation x+F0(y) = x

′+F0(y
′). One problem in this approach is to tell good

and non-good vertices apart. For this, the attack uses a cycle finding algorithm
to identify these good vertices in the graph. The data complexity of the attack
is N

3
2 and time complexity is O

(
N3

)
.

5-round recovery is straightforward expansion of 4-round attack as a chosen-
plaintext attack. In the first round of 5-round FN, for the chosen plaintexts,
we start with guessing the outputs of the first round function F0. This gives
us a partial table of F0. If we run the 4-round attack given above, for the rest
of the rounds in 5-round FN, we can look for the consistency of this partial
table with the 4-round attack results. The time complexity is, therefore, TDV =

O
(
N
√
N+3

)
for r = 5. We extend this to more rounds by guessing the round

functions on the r− 5 rounds and the attack runs in time

TDV = O
(
N(r−5)N+

√
N+3

)
Durak and Vaudenay [13, 15] also give a non-generic attack on FF3 (which

has 8 rounds). Due to the bad tweak management in FF3, the authors could
reduce the attack on 8-round FF3 construction to a 4-round FN attack and
apply their generic attack. They also fix FF3 into the FF3∗ scheme.

C Biased Outputs Due to the Modular Addition

Consider an FN with round functions producing an `-bit output number which
is reduced modulo N. For an output x ∈ {0, 1, 2, . . . , 2` − 1} of a round function,
we have y = x mod N. Let 2` = uN+ v with v < N. Now, the probability that
y = t for t ∈ {0, . . . , v − 1} is Pr(y = t) = u+1

N
, whereas the probability that

y = t is a bit smaller for t ∈ {v, . . . ,N− 1}, i.e. Pr(y = t) = u
N

. The bias comes
from the fact that the round function typically outputs a value between 0 to
2l − 1 (l = 128) and then it reduced to modulo N. Therefore, the output of a



round function is biased to some values. We can exploit this to design an attack
to FN as in the Bleichenbacher attack against DSA 11.

Assume that we first let the round function output a uniformly distributed
`-bit value, and then the value is reduced modulo N with N < 2`. We consider x
and y as random variables. With the characteristic function of random variable
y distributed among the circle in the Nth roots of unity, we define the bias of y

as bias(y) = E[e
2iπy
N ] = E[e 2iπx

N ].

bias(y) =
1

2`

2`−1∑
x=0

e
2iπx
N =

1

2`
e

2iπ(2`−1)
N

sin
(
π2`

N

)
sin

(
π
N

)
which comes from the sum of the geometric sequence that is

∑2`−1
j=0 tj = 1−t2

`

1−t .
When we have r-round FN, we have b r2c random y in total for a right

branch. Assume that all the random variables are independent. For a branch
(left or right), we have a sum of biased random variables which are defined as
bias(

∑
y) = bias(y)b

r
2 c.

In the worst case, we have 2` mod N = N
2 (to have sin(π2

`

N
) = 1 in the nu-

merator of bias(y)), so |bias(
∑
y)| =

∣∣∣∣ 1

2` sin( πN )

∣∣∣∣b r2 c. Then, we have |bias(
∑
y)| ∼∣∣∣π2`N ∣∣∣−b r2 c for large N.

With the bias that we have computed, we can make (in the worst case) a
distinguisher to decide if a variable has a bias. The complexity to decide if a
variable has bias τ or 0 with good advantage is O(q) with q = 1

τ2
. Therefore,

the time complexity for the distinguisher is O

((
π2`

N

)2b r2 c
)

. (Note that this can

only make sense if q 6 N2.)
In FF1 and FF3∗, we use N < 2`−32 and r > 8, so q is too large.

D Generic Round-Function-Recovery Attack with Guess
and Determine Method [7]

In [7], chosen-plaintext and ciphertext attacks are given for 4 and 5-round FN
with modular addition. Their attack is based on a distinguisher for a 3-round FN
introduced by Luby and Rackoff in [20]. For this distinguisher, refer to the Fig. 5
(a). Let the adversary have access to both encryption and decryption oracle. The
adversary selects a δ, it queries the encryption oracle with arbitrary (x‖y) and
(x+δ‖y), and obtains (z‖t) and (z ′‖t ′) respectively. Then, the adversary queries
(z+δ‖t) for decryption and obtains (x ′′‖y ′′). The distinguisher checks if t−y ′′ =
t ′ − y to distinguish 3-round Feistel Network from a random permutation.

In the 4-round attack given by Biryukov et. al. (refer to the Fig. 5 (b)),
consider a type of plaintext/ciphertext of the form (xyzt), (x ′′y ′′(z + δ)t ′′),

11 It is unpublished but cited by Vaudenay [26]



and ((x + δ)yz ′t ′) with corresponding d,d,d ′ values in plaintexts/ciphertexts
respectively. More precisely, the attacker starts with one arbitrarily fixed value
of F3 and one guessed value for F3 (meaning that it iterates N time what follows).
He sets z and z + δ such that their image by F3 is known. For each d, it sets
t and t ′′. With the queries to the decryption oracle for (z‖t) and (z + δ‖t ′′),
the attacker obtains (x‖y) and (x ′′‖y ′′). With a query to the encryption oracle
on (x + δ‖y), it gets (z ′‖t ′). With all the obtained values, the attacker can
use the 3-round property of the above defined distinguisher and can find an
F3(z

′) = t ′ − d + y ′′ − y output of F3 for a new value. The adversary iterates
on d to get new outputs of F3 until it finds no conflict. On average, the conflicts

occur after O(
√
N) trials for d. The time complexity of this attack is O

(
N

3
2

)
with N

3
2 data complexity.

The 5-round attack in Biryukov et. al. is extended form of 3-round distin-

guisher and 4-round attack with more guesses. Its time complexity is O
(
NN

3
4

)
with N2 data complexity.


